Some contributions to spatial statistic:

non-stationarity and deformation




A model for non-stationarity

o Z={Z(z),r € G CR?} (centered and standardized) with

correlation r

o ¢ = {e(u),u € D C R?} stationary or isotropic random field with

correlation p

e f bijective and bi-continuous transformation (deformation) from
G to D

Z(x) = e(f(x)) <= Z(f ' (u) = e(u)
—

r(z,y) = p(f(x) = f(y)) or r(z,y) = p(lf(x) = FY)I)
(Guttorp, Sampson (1986, 1992, 1994) and Stock (1988))
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(i) positions (x;,¥y;), 2 = 1,2,...,100, of 100 sites in G

(ii) their deformed positions f(x;,y;) in D

(iii) non-stationary correlations (x4, yi, xj,y;) with respect to the distances
(i, yi) = (@5, 95)] in G

(iv) isotropic correlations exp(—||f(x:,yi) — f(z;,y;)||) with respect to the
distances || (zi, i) — (x5, y;)ll in D




Why such a model ?

e to “generalize” non-stationarity: stationarity when f = identity

e to model non-stationarity:
Y(z) = p(z) +o(z)Z(z)

e to come down to a known framework: Haslett & Raftery (1989)
followed with a discussion from Guttorp & Sampson. Finding a

“well-behaved” covariance function where estimation is feasible.

Developments of this model (in terms of estimation):

Sampson (1986), Sampson & Guttorp (1992), Mardia &
Goodall (1993), Guttorp & Sampson (1994), Meiring (1995),
Sampson et al. (2000), Damian et al. (2000), Schmidt &
O’Hagan (2003), ...




Headlines

e characterization
e cstimation

e generalizations




Characterization of reducible correlations on R"

Answer to this J.L. Krivine’s question (Assouad (1980)):

How to distinguish, among hermitian kernels r of positive type
(satisfying r(x, ) = constant) those with the form

r(x,y) = p(f(x) — f(y)), where p is a function of positive type on a
locally compact Abelian group D and f is an application from G to
D?




Characterization on R

(Perrin & Senoussi (1999))

r(z,y) =p(f(z) — f(y))

if and only if almost everywhere for x = y:

o017 (y, o) o1r(x, xg)

=0
82T(y7 LU())

817“(33, y)

+ (927“(513, y) 827“($ xO)

(f, p) is given by:

T ovr(u, xg)

flz) = — f(l)(azo)du

2, Oor(u, o)

p(u) =r (xo, [~ (u))




Example

Correlation of a fractional Brownian motion Z(x),z > 0:

(,CIZZH —I—y2H . |x _y‘2H)

r(z,y) = Doyt
where H €]0, 1]
r(z,y) = p(f(x) — f(y))
with
f(a) = In(x)
and

p(u) = cosh(Hu) — 27~ (sinh(|ul/2))*"




Counter-example

e P={P(x),x € R?} random field with correlation:
r(z,y) = exp (~[lz - yl*)

e Z(s)=P(x(s)), s €[0,1]

1/2 _i_ (origin for s)




(Generalization

o Let Y = {Y(u,v), (u,v) € R?} be a second-order stationary
random field indexed by R? with the covariance function R
defined by

R(u,v) = Cov [Y(y, 2),Y (y + u, z + v)| = exp(—|u| — [v])
for all (u,v), (y,z) € R=.

e Then consider the restriction of Y to the curve (z,2?) C R? and
define Z(z) = Y (z,2%). The process Z is indexed by R and its
covariance function r is defined by

r(z,2') = cov(Z(x), Z(2")) = exp(—|z — 2'|) exp(1 + |z + 2').
e The covariance function r is nonstationary in R. However,
cov(Z(x), Z(w)) = cov(Y (z,2%)),Y (w,w?))),

where Y is a second-order stationary process in R2.
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(Generalization

(Perrin and Meiring (2003))

This counter-example motivates the general question: given any
random field Z(z) indexed by R™ with moments at least of order 2
and any function ¥ : R® — R”, is there a Y indexed by R?" such that

cov(Z(x), Z(x")) = cov(Y (z,¥(x)),Y (', ¥(z"))),

where the process Y is second-order stationary in R?"?

(Question from Pierre Jacob (University Montpellier 1II))
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Notations

Let Z ={Z(z),x € G CR"}, n > 1, be a centered and standardized
(a priori nonstationary) random field indexed by a subset G of R".

We denote by r(x,x") = cov(Z(x), Z(x")) the covariance function of
Z and by A the diagonal set of G: A = {(z,x),x € G}. We also let 0
denote the origin in R?".
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Theorem

Let ® be a function defined on G C R” by ®(z) = (x, ¥(x)), where
U = (1Yq,...,%,) is a vectorial function of dimension n such that the
transformation

h:GxG — D-—D
(,2") — ®(z) - O(z') = (v — 2", ¥(z) — ¥(a'))
is bijective from (G x G) \ A onto {D — D} \ {0}, where
D=9G) ={(z,¥Y(x)),re€ G}, D—D ={u—u,(u,u') € Dx D}.
Note that D is the graph of W. Then there exists a centered and
standardized Gaussian stationary random field

Y ={Y(u),u € D C R*"} indexed by D with covariance function R
defined on D — D such that, for all (z,2") in G x G,

r(z,z’) = cov(Z(x),Z(x")) = cov(Y(®(x)),Y(P(x")))
= R(h(z,2")) = R(x —2',¥(z) — ¥U(z")).
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Example of transformation

The transformation W is a functional parameter under our control.

We can take, for instance:
- =x7, i=1,2
Vi(xy, ... xn) =x5, 1=1,2,...,n.

The inverse transformation

h=trw = (ug,...,up,v1,...,0,) — (x,2') is defined by:

( 1 [ v n
xI; = — | — U,
2 U,
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Application

(Perrin & Schlater (2005))

An n x n matrix C = (Cj;); j=1,...n is real-valued, symmetric and
positive definite and has identical values on the diagonal if and only
if a real-valued positive definite function ¢ on a graph of R? and

points z1, ..., T, € R? exist, so that

C = (C(CE@ — xj))i,j=1,...,n- (1)
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Characterization on R"

(Perrin & Senoussi (2000))
Correlations reducible to a stationary one

(f, p) is unique up to an affine transformation for f and up to a

scaling for p.
Correlations reducible to an isotropic one

(f, p) is unique up to a homothetic Euclidean motion for f and up to

a scaling for p.

Uniqueness of the solution (f, p) when p is monotonic (no need for
differentiability assumptions anymore) is given in Perrin and Meiring
(1999) (isometric embedding theorem from Schoenberg (1938)).
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Example and counter-example (n = 2)

Correlation of the Lévy fractional Brownian field Z(z), z # 0:

gy = Lyl Ty — o

2||l{ly]
Thus
r(z,y) = R(f(z) = f(y))
with
f(x) = (In(||z||), arctan(zs /1)), where x = (z1,z2)
and
R(ul,ug)
1

2

~ 3 (eXp(u1/2) +exp(—u1/2) — /exp(u1/2) + exp(—u1/2) — 2 COS(W))
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Model estimation

Z ={Z(x),z € G C R?} non-stationary random field with correlation

r(@,y) = ps(fz) — f(y)) or r(z,y) = ps(llf(z) — F(WI)
with § € R?
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Estimation with repetitions

T independent and identically distributed realizations of Z at n fixed

monitoring sites x1,xa, ..., Ty
Ze(xi), t=1,....T,i=1,...,n
f and B minimize the objective function

U(f.58) =Y (i ay) = pa(llf i) = flx))]

1<J

where
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Model estimation: parametric approach

(Perrin & Monestiez (1998)

Elementary radial basis deformations from R? onto R?
f(x) =c+ (x—c)P(u)

where c is the center of the deformation, ® is a function from R* to

R and u = ||x — c||. ® can be
e cosine: ®(u) =1+ bcos(au A )
e exponential: ®(u) =1+ bexp(—au)
e Gaussian: ®(u) = 1 + bexp(—au?)

with a > 0.
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Model estimation: non-parametric approach

(Perrin & Iovleff (2004))

Continuous state version of the simulated annealing
algorithm for a Metropolis-Hastings dynamic subject to

some non-folding constraints

Non-parametric deformation f:

f(XZ> =Yi i:17°°'7n
are the coordinates of the sites in the D-space.
y=(y1,¥2,---,¥n) and 3 minimize:

Uly,8) = > _[#(xi,%5) — pa(lly: — v 1)1,
1<J
with respect toy = (y1,¥2,--.,¥») and 3, and subject to some

non-folding constraints described latter.

(2)
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Advantages of the simulated annealing

e it explores the whole objective function’s surface and tries to
optimize the function while moving both uphill and downhill.
Thus, it is largely independent of the starting values, often a

critical input in conventional algorithms;

e it can escape from local minima and go on to find the global
minimum by the uphill and downhill moves;

e it makes less stringent regularity assumptions regarding the
function than do conventional algorithms (it need not even be

continuous);

e it is well suited for minimizing strongly non-convex functions of
several variables (2n 4 ¢ variables in our problem) having plenty

of local minima;

e 1t can take intricate constraints into account.
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Algorithm

starting step: set y(0) = {y;(0),7=1,2,...,n} and B(0) to arbitrary
values by running 2n + g changes of the parameters with the
transition ¢: choose a candidate j uniformly in the set {1,...,n+ ¢};
if 7 < n then it corresponds to one of the n sites, and move the
corresponding site locally and uniformly at a position y with natural
non-folding constraints we specity below; otherwise, do the change

B — (" where 3’ is chosen uniformly in a neighborhood of S.

Take a sequence of temperatures (cg, c1, ..., Ck, .. .) decreasing to 0

by step of length n + q:

cp = OLE/(nradlo g €l0,1], k € N;
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Algorithm

step k: start from the configuration (y(k), 3(k)) of the sites and
generate a candidate ((y(k), 5(k)) according to the rule g. Then:

o If AU =U(y(k), B(k)) — U(y(k), (k) < 0 then take
(y(k+1),8(k +1)) = (3(k), B(k));

e otherwise sample an uniform law Vj in [0, 1]: if

Vi < exp(=AyU/ey) take (y(k + 1), B(k + 1)) = (3(k), B(k));
otherwise keep (y(k), B(k));

stopping criterion: if

U(y(k(n+q)), 6(k(n+q))) =U(y((E+1)(n+q)), B((k+1)(n+q)))| <

10~® for two consecutive values of the integer k we stop the
algorithm.

This algorithm is written in C language.
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Non-folding constraints

i5

Figure 1: The marked area corresponds to the acceptable move for
M;.

These constraints mean that we impose moves that preserve the

topological structure of the Delaunay triangulation the same.
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Estimation on the whole (G-space

e simulated annealing gives an estimation of the “discrete”

mapping X; — y,;, t=1,...,n

e estimation f of f: a piecewise affine interpolation of (x;,¥;)

f(X) — afx,iyi + ax,jS’j + ax,kak
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Precipitation data

e 10—days aggregated precipitation data

e n = 20 sites in the Languedoc-Roussillon, region of France, with

similar altitudes

e 1'=108: 6 records during November and December each year
from 1975 through 1992

e very few missing values

e sample correlations calculated on the log scale (means and

variances positively related)
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Precipitation data

We use the model:

pplu) = eexp (=fu"), €<|0,1], 6> 0,1 €]0,2], (3)

where [ is the 3-dimension parameter (€, a,n), so that the objective

function (2) is re-written as follows:

Uy1,y2, .- ¥, B) = ) _[P(xi,x;) — eexp (—ally; =y ). (4)

1<J

In the cooling schedule we take ¢y = 1000 and 6 = 0.9999.
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Form of the deformation

Triangulation in the G-space Triangulation in the D-space

Figure 2: On the left: site locations and the corresponding Delaunay
triangulation without the rectangle (the outlines indicate the French
department of Gard and the coast). On the right: deformation of the

triangulation.

29



Fitting of the correlation model

Before deformation (i)
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Application to prediction

Results of a cross validation study: for the previous model: 40.5% of
improvement for the MSEP,

before deformation | after deformation | % of improvement
exp(—0G1u) 0.224 0.129 42.4
B exp(—pF1u) | 0.203 0.136 33.1
exp(—S1u?) 0.271 0.132 51.3
B exp(—pF1u?) | 0.180 0.115 36.1
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Application to the prediction

Z random field with covariance r. Prediction at x:

with )\1,/\2, ce

min E[Z(x) —
[ X0

)\7; —

2

Z(x)]?,
( T(xlv xl)

r(xi,x1)

\ r(Tn, 1)

1=1

, An (krlglng coefficients) solutions of

r(z1,x;)

r(xi, x;)

r(xn, ;)

r(ry, Tn) \

r(x;, Tn)

r(Tn, Tn) )
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Gaussian processes

(Perrin (1999))
Z ={Z(x),x € [0,1]} centered Gaussian process with covariance

function r(x,y) satisfying:
(A1) ris continuous in [0, 1]? and has second derivatives which
are uniformly bounded for x # y.
Singularity function « of Z: Vz € [0, 1]:

a(z) = lim 7Y x,y) — lim p-(0:1) x,
() = lim (2, y) — lim 755 (2, y)

(A2) « has a bounded first derivative in [0, 1].
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The process of the quadratic variations

Vne N, Vk=1,2,...,n, we set:
AZy=Z(k/n)—Z((k—1)/n).

For all x € [0, 1], we define the quadratic variations V,,(z) of Z

1 2
along {O, —, —,...,M} as follows:
n'n

n

[nx

]
Z (AZ)

k=1

Definition. The process of the quadratic variations of Z,
= {v,(x),x € [0, 1]}, is defined as:

vn(z) = Vi(@)+ (nz — [nz)) (AZpaer)’, x€[0,1],
wa(1) = V,(1).
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Functional convergence in distribution

X

Theorem. The process : {\/H(Vn(x) —/
0

converges in distribution in C([0,1]) to the Gaussian process

{/OX V2a(u)dW (u),x € [0, 1]} as n — oo.

a(u)du),x € [0, 1]}
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Non-stationarity by space deformation

Let Z be a centered, standardized Gaussian process with correlation
function r satisfying (A1). Consider the problem of estimating the
function f : [0, 1] — R from one realization of Z in the model

Z(x) = e(f(x)), =€]l0,1], ()

where € is a stationary random process with known correlation R.

(B) f is bijective and has uniformly bounded second derivatives in [0,1],

as well as its inverse.

Model (5) is equivalent to r(z,y) = R(f(y) — f(x)). Note that for
any b > 0 and ¢ € R, (f, R) with f(z) = bf(z) + ¢ and

R(u) = R(u/b) is a solution of the model as well. Thus, without loss
of generality we may impose that f(0) =0 and f(1) = 1.
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Deformation and singularity function

From (A1) and (B) we deduce:

RY(07) = D™ (z)/fP(a),
RY(0F) = DF(x)/fV(x).

Then:
a(x) = 2RW(07)fV(x).

Finally, we get for all z € [0, 1]:

Conclusion: the estimation of f requires an estimation of the

primitive r — / a(u)du of a
0
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Estimation of the space deformation f

Theorem. Almost surely:

lim sup |fu(x) = f(z)] = 0.

n=00 2e10,1]
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Functional convergence in distribution for the deformation

Corollary. The process {\/ﬁ(fn(:e) — f(x)),x € [0, 1]} converges

in distribution in C([0, 1]) to the Gaussian process :

\/§//Oloz(u)dW(u) B f(x)\/?//ofé € [0,1] 3
|, e o S ’

as 1 — Q.

(u)dW (u)

N\




Test for stationarity

f(x) =z against f(x) # .

Under the null hypothesis, {\/ﬁ(fn(x) —x),x € [0, 1]} converges in
distribution C([0, 1]) to the Brownian bridge
{\/§(W(aj) —xW(1)),x € |0, 1]} as n — oo. Thus,

Jn sup |fn(z) — x| converges to the Kolmogorov distribution
x€[0,1]

V2 sup |[W(z) —zW(1)].

x€[0,1]
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Estimating a non-stationarity spatial structure

(Guyon & Perrin (2000))

Problem to be solved: estimate the deformation f from
observations of Z at the nodes of a rectangular partition
{0,1/n,2/n,...,1} x {0,1/m,2/m,...,1} of G = [0,1]? finer and

finer (n — oo and m — 00). The geometry of the partition A = ™

a parameter under our control.

Identification of spatial deformations using linear and superficial

quadratic variations

1S
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Assumptions for the correlation R and the deformation f

(A1) R(u,v)=1-—alu|—Blv|+ O(uv), a>0and > 0.
(A2) R(Z9(y,v), ROV (u,v), R©2)(u,v) are uniformly bounded
outside axis.

For instance R(u,v) = exp(—«al|u| — (|v|) satisfies (A1) and (A2).

(B1) f = (f1, f2) has uniformly bounded second order derivatives in [0, 1]2.
(B2) First partial derivatives of f satisfy:
@) > 057 (@, y) > 0,7 (@) 2 0,57 (2y) 2 0.

(0 1) (0 1)
(B3) a= sup (z,9) < inf 0 (z,9) = b.
(2,9)€[0,1)% f( (z,y)  @webo? f( (x,y)
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Discussion about assumptions for f

The assumption (B3) strengthen the condition:

“The Jacobian determinant of f is strictly positive in [0, 1]2.”
Consider the points A = (x,y), B = (x + H,y), C = (x,y+ E) and
D= (x+ +,y+ L); we deduce from assumptions (B1)-(B3) that,
for all A = 2 €la, b[NQ™, the slopes of the straight lines f(A)f(B)
and f(A)f(C) are positive, and the slope of the straight line

f(B)f(C) is negative, when n — oo and m — oc.

(B2) and (B3) can be weakened like this:

(B2’) The first partial derivatives of f have a constant sign in [0, 1]2.
(0,1) (0 1)(33 y)

1’ (513 y)
£z, y) f“‘”( )

(B3’) a= sup
(x,y)€[0,1]2

< inf = b.

(z,y)€0
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Examples of bijections

e Bijections f = (f1, f2) such that fi(z,y) = F(x) and
fa(x,y) = G(y) where F' and G are two increasing
diffeomorphisms in [0, 1] (a = 0 and b = o).

e Bilinear bijections:
T C1T + C2Y + C3TY
Y dix + day + d3xy

where ¢c; > 0,c9 >0,c3>0,dy >0, dy >0, d3s >0 and
(CQ + Cg)(dl + dg) < c1ds.

Y
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Superficial quadratic variations

Rectangular increase: Z(A) = Z(z',y') — Z (2", y) — Z(z,y") + Z(x,y)

with:
k kE+1 1

ey = [(E ) (B e o
n m n m

A, = [(LnxJ,l),<tnxJ+1,l+1>[,l:O,...,m—l,xe[O,l].
n m n m

Definition of two superficial quadratic variations:

|nx|—1
Hn,)\(aj7y) — Z (Z(Ak,y)>2 )
k=0
[my] -1
Vm,A(xa y) — Z (Z(Aw,l))Q )

[=0

A = > geometry of the partition, parameter under our control
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Linear quadratic variations

Definition of two linear quadratic variations:

|nz|—1

o= 8 (e(500) ()

w3 (2(0) ~z(0. L))"

[=0
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Mean square convergence

Define for all A > 0 and for all (z,y) € [0, 1]

Hy(z,y) = (f2$y) f2(0,9)) /f(o)uydu>

NERD) —4(ﬂ)\/ Fib )xvdv+a(f1xy) fi(x, O))dy)
hz) = 2(afi(z,0) + f2(2,0)) and v(y) = 2 (af1(0,y) + 5f2(0,y)).

Then for all A €]a, b[NQT :

lim Hy x(z,y) 2 Hy(z,y) and lim Vp, a(z,y) = Va(z,y).

n—aoo m—00

Moreover we have:

lim hy,(z) L h(z) and lim v,,(y)

n—ao m—00

2 u(y).

Remark: under the same assumptions we have the uniform almost

sure convergernce.
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Estimation of f

For all (z,y) € [0,1]? and two distinct values of A (A\; and \3) in
Ja, b|NQ™ we obtain one estimator for f = (f1, f2):

O;fl,n(xv y)

BAfQ,n(xv y)

RESULT: f,

>\1V)\2n,)\2 ($, y) - )\2V>\1n,)\1 ($, y) =+ 2()\1 T >\2)hn(aj>

4(A1 — Xo)

(AlHn,)\l (xa O) T >\2Hn,)\2 (xa O))
4(A1 — Xo)

M Hya, (2,9) — AoHyp o, (2, y) + 2(A1 — A2) v, (y)
4(A1 — X2) ’

()\1 V)xgn,)\g (07 y) - )\2V>\1n,)\1 (07 y))
4(A1 — Xo)

(fl,n,fg,n) converge in Ly to f = (f1, f2), n — oo.
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Estimation of f : idea of the proof

1. With the superficial quadratic variation H, x(x,y) we identify

Hy(z,y) =4 (5(f2(37ay) f2(0,)) / f(0 2 (u,y du)

Thus, with two distinct values of A we identify fo(z,y) — f2(0,¥)
and fo(z,0) (we set y = 0 and without loss of generality we
assume f(0,0) = (0,0), the correlation deformation model being

translation invariant).

2. Moreover, with the linear quadratic variation h.,(x) we identify
2 (afi(x,0) 4+ Bfz(x,0)). Thus we get the identification of

fl(CIZ,O).

3. Similarly, with the superficial quadratic variation V,, x(x,y) we
identify fi(x,y) — f1(z,0) with two distinct values of \.

4. Finally, we get the identification of fi(x,y).

A similar treatment leads to the identification of fa(x,y).
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CONCLUSION and PERSPECTIVES

CONCLUSION: for a particular structure of the stationary
correlation R, one single realization of the non-stationary Gaussian
random field Z in [0, 1]? (or on a dense grid in [0, 1]?) is enough to
identify the deformation f that makes this field stationary.

PERSPECTIVES: (i) Study of other correlation structures for R;

(ii) Simultaneous identification of R and f.
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Self-similar Random Fields

Classical definition:

Definition 1 A random field {X (t),t € R™} is self-similar with
index H > 0 (H-ss) if for all a > 0, the finite-dimensional
distributions of { X (at),t € R™} are identical to the
finite-dimensional distributions of {a* X (t),t € R"}.

Let X = {X(t),t € R?} be a mean zero standardized fractional
Brownian sheet with correlation E[X (t) X (u)]

1
_ Z (|t1’2H1 4+ |u1|2H1 L |7f1 L ’LL1’2H1) <’t2|2H2 + ’u2’2H2 o ’t2 o u2|2H2) 7

where t = (t1,t2)1, u= (u,uz)?, and 0 < H; < 1,0 < Hy < 1.

X is H-ss with H = Hy{ + H>, so that this global index H does not

reflect the self-similarity component-wise.
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(Multi-)self-similar Random Fields

(Genton, Perrin & Taqqu (2005))

New definition:

Definition 2 A random field {X (t),t = (t1,...,t,)T € R} is
multi-self-similar with index H = (Hy, ..., H,)" € R? (H-mss) if

(X (a1ts,. .. antn)} 2 {af - aBr X (11, ... ta)),

for all aq > 0,...,a, >0, where, as usual, 2 denotes equality of the

finite-dimensional distributions.

Ifai=---=a,=a>0and H +---+ H,, = H > 0, then our
definition reduces to the classical one, for which the self-similarity

index is the same in all dimensions.
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Multivariate Lamperti Transformation

Proposition 1 If {X(t),t = (t1,...,¢,)" € RT} is H-mss, then
Y(t)=e P HX(eh,. . et"), t=(t,....tn)T €R™,  (6)

is stationary. Conversely, if {Y (t),t = (t1,...,tn)T € R"} is

stationary, then
X(t) =t -ty (In(ty),...,In(t,)), t=(t1,....ta)T € R? is H-mss.

The covariance of X (when it has finite second moments) can be

written as:

where

Ri(w) = eZH W, g(t) = (In(t1),...,In(t,))" and R is a stationary covariance.

(7)
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Locally stationary reducibility

(“Generalization” of Genton & Perrin (2004))

Definition 3 A random field {X (t),t = (t1,...,t,)T € R"} with
finite second moments is locally stationary reducible (LSR) if its

covariance function c can be written in the form:

(t,u) = R, (g(t>;g<“>)z~z<g<t>—g<u>>, tuck", (8)

where R1 18 a nonnegative function, R is a stationary covariance and
g 15 a bijective deformation of the index space R™. If X is Gaussian,
then X (t) 2 Y(g(t)), where Y is an LS random field. We call Y the

reduced random field.

Therefore, multi-self-similar random fields with finite second
moments are a subclass of LSR random fields. In this particular case,

the deformation g does not depend on the index H.
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Fractional Brownian sheet

Let X = {X(t),t € R} } be a mean zero standard fractional

Brownian sheet with covariance

E[X (t)X (u)] = Qin f[ ( — [ti — uz-IQH@') : (9)

1=1

where t = (t1,...,t,)1, u=(u1,...,u,)?, and 0 < H; < 1. Then it
follows from Definition 2 that X is H-mss with H = (Hy,..., H,)?.
From Proposition 1, we obtain that:

X(t) =t tHny(In(ty), ..., In(t,)),

where Y (t) is a mean zero Gaussian stationary process with
covariance R(v) = [[;_, (cosh(H;v;) — 2CHi=D (sinh(|v;|/2))?H1). Tt
follows from Definition 3 and Relation (7) that fractional Brownian
sheets are LSR random fields with R;(w) = g?H'w

g(t) = (In(t1),...,In(t,))? and R given above.
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Lévy fractional Brownian random fields indexed by R?

Theorem 1 Let X = {X(t),t = (t1,t2) € R?} be a mean zero Lévy

fractional Brownian random field with covariance

1
EIX ()X (w)] = S (1" + [l — [t — ul[*"), (10)
where 0 < H <1 and || - || denotes the usual Euclidean norm in R?.
Then
X(8) L pHY (In(pe), 0s), (11)

with py = \/t2 + t3, 0y = arctan(tz/t1) + km, k € Z, and where Y (t)

1s a mean zero Gaussian stationary process with correlation

1
S (e e (e e —2cos(w))). (12)

R(v) =
Conversely, if Y (t), t = (t1,t2)? € R?, is a mean zero Gaussian
stationary process with correlation R(v) given by (12), then Y (t) can
be expressed as: Y (t) = e~t1H X (et cos(ts), et sin(ts)), where X is a

mean zero Lévy fractional Brownian random field.
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Lévy fractional Brownian random fields indexed by R?

According to Definition 1, X defined by (10) and (11) is H-ss with
0 < H < 1. A natural question is whether X is also H-mss? The
answer is no in Cartesian coordinates, but yes in polar coordinates.

Indeed, rewriting (11) as
d 1 t 2 t
Z(pe, ) = X(8) L pf ()Y (In(py), In(e™)),  (13)

with H = (Hy, Hy)! = (H,0)!, we conclude from Proposition 1 that
X is H-mss with respect to the polar coordinates (p¢, 6¢). Thus, from

Definition 3, Lévy fractional Brownian random fields indexed by R?
are LSR random fields with

Ri(w) =Y H=(H, H)" = (H,07, gt) = (In(t1), )7,

and R(v) given by (12).
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Properties of the stationary correlation function

Consider the stationary correlation function R(v), v = (v1,v2) € R?,
given by:

1
~ (e T — (e" + eV — 2c0s(v2))). (14)

R(v) = 5

The asymptotic behavior of R(v) as v; — +00 is given by

1l _—vi H 1
e~ V1 for 0 < H < 3,
R(V)N 2 — 2

(15)
He 1U=H) cog(vy) for 2 < H < 1.

It is interesting to note that, unlike the Lévy fractional Brownian
random field X, the corresponding reduced process Y has a

short-range dependence structure for 0 < H < 1.

58



Modeling a latent dimension

Work in progress with Wendy Meiring (University of California,
Santa Barbara)

Do not find a “good” deformation in the model:

r(z,y) = p(If(x) = f(y)ll2)

may mean that such a deformation do not exist or that the
underlying phenomenon (indexed by R?) depends on other (latent)
dimension(s) (Sampson & Guttorp (1992)).

New model:

r(z,y) = p(l(z,9(@) = (1,0 W)ls) (16)

where ||.||3 represents the canonical Euclidean norm in R® and where

1 is an application from R? to R, modeling the latent dimension.
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Latent dimension: characterization

For random processes indexed by R:

r(@,9) = p (Vi =y + (0) — 0(1))?) (17)

if and only if, for all z,y € R

(2 =y) (r{"V@y) + "V @)

= —(¥(@) = @) (vD @) (@, y) + O (@) V(@) ).

where 1 from R to R satisfies:

P () £ PP (y), ¥z £y
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Comparison stationarity /non-stationarity

Work in progress with Maureen Clerc (INRIA, Sophia Antipolis) and
Marc Genton (Texas A& M University)

e for estimating the deformation: comparison of the quadratic
variations method (Guyon & Perrin (2000)) with the scalogram
method (Clerc & Mallat (2003)

e application of the quadratic variations method to kriging,

estimators of the kriging coefficients (their behavior?)

e influence of the deformation (comparison

stationarity /non-stationarity)
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