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1. The old result
Theorem 1 (DI, 1987). k perfect field, char. p > 0, X/k smooth.
Let X ′ = X ⊗k (k,Fk), and F : X → X ′ = relative Frobenius.

Smooth liftings of X to W2(k) correspond to decompositions

(1.1) OX ′ ⊕ Ω1
X ′/k [−1]

∼→ τ61F∗Ω
•
X/k

in D(X ′,OX ′), inducing C−1 (Cartier isomorphism) on H i .

Gives an affine bijection on isomorphism classes of objects, inducing
identity on translation group H1(X ′,TX ′).

Moreover, any decomposition (1.1) uniquely extends
multiplicatively to a decomposition

(1.2) ⊕i6p−1Ωi
X ′/k [−i ] ∼→ τ6p−1F∗Ω

•
X/k

inducing C−1 on H i .



Idea of proof

• local liftings of X ′ to W2(k): a gerbe on X ′

Lift(X ′/W2),

banded by TX ′ (sheaf of automorphisms of any object).

• local splittings of τ61F∗Ω
•
X/k (= local sections of

F∗ZΩ1
X/k � Ω1

X ′/k): a gerbe on X ′

Split(τ61F∗Ω
•
X/k),

banded again by TX ′/k .

Using local liftings of X ′ plus local liftings F̃ of F (and associated
p−1F̃ ∗ on Ω1), can construct an equivalence of gerbes

(1.3) Lift(X ′/W2)
∼→ Split(τ61F∗Ω

•
X/k)

inducing identity on TX ′/k . (NB. more general (1.3) holds over
bases /Fp flatly lifted mod p2.)



2. Another strategy

Local liftings of X ′ to W2 controlled by τ>−1LX ′/W2

(NB. X/k smooth ⇒ LX/W
∼→ τ>−1LX/W2).

Goal: directly construct isomorphism in D(X ′,OX ′)

(2.1) LX ′/W [−1]
∼→ τ61F∗Ω

•
X/k

inducing C−1 on H1 = Ω1
X ′/k and H0 = OX ′ .

Basics on cotangent complex and deformations show that (2.1)
implies the isomorphism

(1.3) Lift(X ′/W2)
∼→ Split(τ61F∗Ω

•
X/k)



(Proof:

Lift(X ′/W2) = fiber at 1 ∈ OX ′ of map

(Picard stack associated to) RHom(LX ′/W ,OX ′)[1]→ H0

• Split(τ61F∗Ω
•
X/k) = fiber at 1 ∈ OX ′ of map

(Picard stack associated to) RHom(τ61F∗Ω
•
X/k ,OX ′)→ H0,

both stacks having H0 = OX ′ and H−1 = TX ′ , H i = 0 otherwise. )



Will deduce

(2.1) LX ′/W [−1]
∼→ τ61F∗Ω

•
X/k

from:

Theorem 2 (I., 2019). There exists a filtered isomorphism (i.e., in
DF (X ,W )), with O-linear associated graded:

(2.2) LΩ•X/W /Filp ∼→WΩ•X/N p,

where

LΩ•: derived de Rham complex

(if X = Spec(R), LΩ•R/W := Tot(Ω•P•/W ),
P• → R a simplicial resolution by polynomial algebras over W .)

Fili : Hodge filtration,

WΩ•X : de Rham-Witt complex

N i : Nygaard filtration:



FiliLΩ•R/W := Tot(Ω>iP•/W
)

(2.3) griFil = LΩi
X/W [−i ] (:= (LΛiLX/W )[−i ])

(in particular gr1 = LΩ1
X/W [−1] = LX/W [−1]).

N iWΩn
X = pi−n−1VWΩn

X

(for n < i , and N iWΩn
X = WΩn

X for n > i) with

(2.4) griNWΩ•X ′ = τ6iF∗Ω
•
X/k .

(in particular gr1 = τ61F∗Ω
•
X/k).



• graded piece of degree 1 of

(2.2) LΩ•X/W /Filp ∼→WΩ•X/N p,

plus formulas for gr1 imply (2.1), i.e.,

LX ′/W [−1]
∼→ τ61F∗Ω

•
X/k .

• Any smooth lifting X̃ ′ of X ′ to W2 gives a decomposition

LX ′/W [−1] = τ>−1L
X ′/X̃ ′

[−1]⊕ Ω1
X ′/k [−1] = OX ′ ⊕ Ω1

X ′/k [−1],

hence, by applying LΛp−1 and formulas for grp−1, a decomposition
(1.2)

⊕i6p−1Ωi
X ′/k [−i ] ∼→ τ6p−1F∗Ω

•
X/k .



Remark. Not possible to remove /Filp and /N p from (2.2),
because of

Example (Bhatt):

L̂Ω•k/W = Ŵ 〈x〉/(x − p) = Ŵ 〈y〉/(y),

where (̂−) means p-adic completion, W 〈x〉 = divided power
envelope of W [x ].



Proof of Th. 2

Use (local) embeddings X ↪→ Z , ideal J, Z/W smooth.

Gives

(∗) LX/W [−1] = (J/J2 → OX ⊗ Ω1
Z/W ),

from which one deduces a filtered isomorphism

(∗∗) LΩ•X/W /Filp = Ω•Z/W /J
pΩ•Z/W ,

J rΩ•Z/W := (J r → J r−1Ω1
Z/W → · · · → Ωr

Z/W → · · · ).

Key points:

gr1JΩ•Z/W = LΩ1
X/W [−1](:= LX/W [−1])

by (*), and
LΓr (M[−1]) = LΛr [M][−r ],

Γr = S r for r < p.



Additional Frobenius lift F on Z gives (F ,Frobenius)-compatible

OZ →WOX ,

sending J to VWOX , hence filtered (J,N )-map

Ω•Z/W →WΩ•X ,

inducing a filtered quasi-isomorphism

Ω•Z/W /J
pΩ•Z/W

∼→WΩ•X/N p,

as checked locally by taking for Z a lifting of X , and applying
Nygaard’s formula for grr .

Conclude by applying

(∗∗) LΩ•X/W /Filp = Ω•Z/W /J
pΩ•Z/W .



The singular case

By left Kan extension from finite polynomial rings over k , (2.2)
extends to any scheme X/k , provided that WΩ•X is replaced by its
derived variant LWΩ•X :

(2.5) LΩ•X/W /Filp ∼→ LWΩ•X/N p

Again,
griFilLΩ•X/W = LΩi

X/W [−i ],

but

(2.6) griNLWΩ•X ′ = Filconj
i F∗LΩ•X/k ,

where Filconj
• is the (increasing) conjugate filtration, with

(2.7) LΩi
X ′/k [−i ] ∼→ grconj

i F∗LΩ•X/k .



By left Kan extension from finite polynomial rings over W2, any
(flat) lifting X̃ ′ of X ′ over W2 gives a decomposition

(2.8) ⊕i6p−1LΩi
X ′/k [−i ] ∼→ Filconj

p−1F∗LΩ•X/k

generalizing (1.2). Indeed:

Key observation (A. Mathew): though, for X/k not lci,
LX/W → τ>−1LX/W2 no longer an isomorphism, still the datum of
X̃ ′ gives functorial map LX ′/W → LX ′/W2 → L

X ′/X̃ ′
→ OX ′ [1]

splitting the triangle

OX ′ [1]→ LX ′/W → LX ′/k → .

For X/k lci, (2.8) yields partial degeneration and vanishing
theorems, both in char. p and in char. 0, see section 4.



3. A prismatic generalization (after Bhatt et al.)
The RHS of the isomorphism

(3.0) = (2.2) LΩ•X/W /Filp ∼→WΩ•X/N p,

can be re-written in terms of prismatic cohomology relative to the
prism (W = W (k), (p)): one has a canonical isomorphism (special
case of the prismatic-crystalline comparison theorem)
(Bhatt-Scholze, Li-Liu)

(3.1) WΩ•X
∼→ ϕ∗W�X/W ,

where ϕW = Frobenius of W ,

�X/W := Rν∗O(X/W )�
,

ν : (X/W )� → Xet

the canonical map from the prismatic site to the étale one.

Isomorphism (3.1) is compatible with Nygaard filtrations on both
sides.



More generally:

Let (A, I ) be a prism (examples: (W , (p)), (W [[u]], (E (u)) (with
W [[u]]/(E (u)) = OK ), (Ainf , ξ) (with Ainf/(ξ) = OC ),
ϕA : A→ A given by

ϕA(x) = xp + pδA(x)

Assume (A, I ) bounded (i.e. (A/I )[p∞] = (A/I )[pn] for some n).

Let X/(A/I ) a smooth formal scheme.

Define

�X/A := Rν∗O(X/A)�
,

ν : (X/A)� → Xet

the canonical map from the prismatic site to the étale one.

Then:



Theorem 3 (Li-Liu [LL, Th. 4.24]). There exists a (canonical)
filtered isomorphism in the derived ∞-category DF (X ,A):

(3.2) ϕ∗A�X/A ⊗L
A LΩ•(A/I )/A

∼→ LΩ•X/A

(derived tensor product and derived de Rham complexes are
p-completed).

The filtrations are the I -adic filtration on A, the Nygaard filtration
N on ϕ∗A�X/A, and the Hodge filtration Fil on derived de Rham
complexes. The associated graded of (3.2) is an isomorphism in
D(X ,OX ).



Examples

• For (A, I ) transversal (i.e., A/I p torsion free),

LΩ•(A/I )/A = D̂A(I )

(p-completed PD-envelope of I in A), and (3.2) is rewritten

(3.2.1) ϕ∗A�X/A ⊗A D̂A(I )
∼→ LΩ•X/A,

which, in this case, due to a classical result on LΩ•X/A, is a form of
the prismatic-crystalline comparison theorem.

• Take (A, I ) = (W (k), (p)), k perfect. It is not transversal. Then,
by (3.1), (3.2) reads

(3.2.2) WΩ•X ⊗L
W LΩ•k/W (k)

∼→ LΩ•X/W (k).

For X = Spec(k), WΩ•X = W (k), and (3.2.2) is tautologically the
identity. Recall (Bhatt)

L̂Ω•k/W = Ŵ 〈y〉/(y),

and Hodge filtration = filtration on Ŵ 〈y〉/(y) by the (y)[n].



Application

• Dividing (3.2) by p-th steps of the filtrations gives

(3.3) ϕ∗A�X/A/N p ∼→ LΩ•X/A/Filp,

which, for (A, I ) = (W , (p)) is the inverse of the isomorphism (3.0).

• Applying gr1 to (3.3) gives Bhatt-Scholze [BS, 15.6]:

(3.4) LΩ1
X/A[−1]{−1} ∼→ τ61(�X ′/A ⊗L

A A/I )

({−1} := ⊗(I/I 2)−1, X ′ := X ⊗A,ϕA
A).

• (3.4) generalized by Anschütz-Le Bras [AL, 3.2.1) to any formal
X/(A/I ), with � denoting derived prismatic cohomology, and τ61

replaced by first step of conjugate filtration.

• (3.3) proposed by Bhatt (email to I., 21 Feb. 2019) with sketch
of proof.



Techniques of proof

Same as in the Bhatt-Scholze prismatic-crystalline comparison
theorem and construction of the Nygaard filtration.

• Use (corrected) Čech-Alexander complex calculating prismatic
cohomology to define the map (3.2)(in the other direction of (3.0)).

• To analyze compatibility of (3.5) with filtrations, use
quasisyntomic descent and large quasisyntomic (A/I )-algebras.
Work first in the transversal case.

R large quasisyntomic (A/I )-algebra: A/I → R quasisyntomic (i.e.
p-completely flat and tor.amp(LR/(A/I ) ⊂ [−1, 0]), and we have a

surjection of a Tate algebra (A/I )〈X 1/p∞
s 〉s∈Σ � R , Σ a set.



4. The lci case: partial degeneration and vanishing theorems
(after Bhatt)

Back to k = perfect field of char. p, W = W (k), Wn := Wn(k).

Recall that, for any X/k , a flat lifting X̃ ′/W2 of X ′ gives a
decomposition in D(X ′,OX ′)

(2.8) ⊕i6p−1LΩi
X ′/k [−i ] ∼→ Filconj

p−1F∗LΩ•X/k

This decomposition is compatible with the obvious filtrations on
both sides, and induces the (generalized) Cartier isomorphism

C−1 : LΩi
X ′/k [−i ] ∼→ grconj

i F∗LΩ•X/k

on gri .

From (2.8) Bhatt deduced the following theorem:



Theorem 4.1 (Bhatt). X/k proper, lci, of pure dimension d < p,
liftable to W2.

s:= dimension of singular locus of X .

LΩ̂•X/k := R lim←−r
LΩ•X/k/Filr

(Hodge completed derived de Rham complex).

Then, for n < d − s − 1,

dimkH
n(X , LΩ̂•X/k) =

∑
06i6d

dimkH
n(X , LΩi

X/k [−i ]),

and
Hn(X , LΩi

X/k [−i ]) = 0

for i > d .



Remarks. 1. If X/k smooth, then Sing(X ) = ∅, s = −∞,
d − s − 1 = +∞, LΩ̂•X/k = Ω•X/k , so for all n,

dimkH
n
dR(X/k) =

∑
i

dimkH
n−i (X ,Ωi

X/k),

i.e., one recovers [DI]’s result that Hodge to de Rham spectral
sequence degenerates at E1.

2. In [DI], degeneration (even, decomposition of the de Rham
complex with no properness assumption) holds for d = p. Unknown
if conclusion of Th. 4.1 holds assuming only d 6 p.



By standard spreading out arguments Th. 4.1 implies:

Theorem 4.2 (Bhatt). K : field of char. 0, X/K proper, lci, of
(arbitrary) pure dimension d .

s: dimension of singular locus of X

Then, for n < d − s − 1,

dimKH
n(X , LΩ̂•X/K ) =

∑
06i6d

dimkH
n(X , LΩi

X/K [−i ]),

and
Hn(X , LΩi

X/K [−i ]) = 0

for i > d .



Remarks. 1. As above, for X/K smooth, Th. 4.2 recovers the
classical E1-degeneration of Hodge to de Rham spectral sequence in
char. 0.

2. For K = C, and any (separated and of finite type) X/K , one
has (Bhatt, 2012):

RΓ(X , LΩ̂•X/C)
∼→ RΓ(X (C),C)

(Betti cohomology).



Proof of Th. 4.1

Main ingredient: cohomological amplitude estimates on LΩi
X/k ,

LZΩi
X/k , LBΩi

X/k (derived cycles, boundaries), using
perf.amp(LX/k) ⊂ [−1, 0] and Cartier isomorphism.

Key Lemma (Bhatt). X/k lci, purely of dimension d ,
s := dim(Sing(X )). Then all complexes

LΩi
X/k [−i ], F∗LΩi

X/k [−i ], LZΩi
X/k [−i ], LBΩi

X/k [−i ]

live in D>(X ′), and, for i > d , live in D>d−s(X ′).

Proof of key lemma relies on (easy points) of a theory of
Cohen-Macaulayness for complexes developed by Bhatt and used by
him in his proof of Cohen-Macaulayness (modulo powers of a prime
p) of absolute integral closures of excellent noetherian domains.



Combining decomposition (2.8) with Bhatt’s estimates and
Raynaud’s trick [DI, 2.9] one gets Kodaira type vanishing theorems:

Theorem 4.3. X/k as in Th. 4.1: proper, lci, liftable to W2, dim.
d < p, singular locus of dim. s. Let L be an ample invertible sheaf
on X . Then:

For n < min(d , d − s − 1) and all i ,

Hn(X , LΩi
X/k [−i ]⊗ L−1) = 0.

Remarks. 1. For X/k smooth (i.e., s = −∞), one gets

Hn(X ,Ωi
X/k [−i ]⊗ L−1) = 0

for n < d and all i , i.e., [DI, (2.8.2)].



2. For X/k smooth, the vanishing

Hn(X ,Ωi
X/k [−i ]⊗ L−1) = 0

for n < d and all i is, by Serre duality, equivalent to

(∗) Hn(X ,Ωi
X/k [−i ]⊗ L) = 0

for n > d and all i .

However, for X/k singular, the analogue of (*) fails
(H0(X , LΩd+1

X/k ⊗ L) 6= 0 if X has a single isolated singularity)
(observed by Bhatt-Blickle-Lyubeznik-Singh-Zhang [BBLSZ, 3.4]).

3. For X/k not lci, conclusion of 4.3 fails (by Avramov’s solution of
Quillen’s conjecture).



Again, by standard spreading out arguments, Th. 4.3 implies a
(slightly weaker form of) [BBLSZ, Th. 3.2] (with d − s replaced by
d − s − 1):

Theorem 4.4. K : field of char. 0, X/K proper, lci, of pure
dimension d .

s: dimension of singular locus of X

L: an ample invertible sheaf on X .

Then, for n < min(d , d − s − 1) and all i ,

Hn(X , LΩi
X/k [−i ]⊗ L−1) = 0.

Remark. I don’t know how to get d − s instead of d − s − 1 by
mod p2 techniques.



5. A new perspective:
the stacky approach (after Bhatt - Lurie, Drinfeld)

For X/k smooth, liftable to W2, of dimension d = p, the whole
complex F∗Ω

•
X/k is decomposable, not just τ<pF∗Ω

•
X/k ([DI], 2.3]).

Raises the question:

Question ([DI, 2.6 (iii)], still open): X/k smooth, liftable to W2, of
dimension d > p, is F∗Ω•X/k decomposable (in D(X ′,OX ′)) (i.e.,
∼→ ⊕Hi [−i ])? For X/k assumed moreover proper, does Hodge to
dR degenerate at E1?

Partial results:

• (Suh, 2006, unpublished). For X/k smooth, liftable to W2, all
truncations τ [a,a+1]F∗Ω

•
X/k are decomposable.

• (Achinger, 2020). For X/k smooth, liftable to W2, all
truncations τ [a,a+p−2]F∗Ω

•
X/k (a > 0) are decomposable.



Recent improvement by Drinfeld (and, independently, Bhatt-Lurie):

Theorem 5.1. (Drinfeld, Bhatt-Lurie, 2020) Let X/k be smooth,
liftable to W2 = W2(k).

Then a lifting of X to W2 defines a µp-action on F∗Ω
•
X/k in

D(X ′,OX ′),

i.e., a Z/p-grading

F∗Ω
•
X/k = ⊕α∈Z/p(F∗Ω

•
X/k)α,

with nonzero H iF∗Ω
•
X/k of weight the class of −i in Z/p.

Corollary 5.2. Under the assumption of Th. 5.1, all truncations
τ [a,a+p−1]F∗Ω

•
X/k are decomposable.



Glimpses on the proof.

Details haven’t yet appeared. Work in progress.

Main idea (Bhatt-Lurie, 2019): cohomology of prismatic sites
underlies richer structure: cohomology of prismatic stacks, giving
rise to objects in D(BG ), for certain group schemes G/S .

The stacks X�.

To any (formal scheme) X/W (k) is associated a ringed, (formal)
stack

X�/W (k),

called the prismatic stack or prismatization of X , functorial in X :
f : X → Y gives map of ringed stacks

f � : X� → Y�.



Fundamental Example. (Drinfeld’s Σ [Dr])

Spf(Zp)� := [Wprim/W
×](= Σ)

where:

W := (p-typical) Witt scheme over Zp

Wprim:= formal completion of W along locally closed subscheme
defined by p = x0 = 0, x1 6= 0, the formal scheme of primitive Witt
vectors.

W× ⊂W := Zp-group scheme of units in W , acting on Wprim by
multiplication.



Definition 5.3. (Bhatt-Lurie)

For X/W (k) formal, R a p-nilpotent W (k)-algebra,

X�(R)

is the groupoid of pairs

((I , a), f : Spf([W (R)/I ])→ X )

where

• I : an invertible W (R)-module, a : I →W (R): W (R)-linear map
landing into Wprim(R) (“Cartier-Witt divisor”)

• Spf([W (R)/I ]): formal derived scheme such that for X = Spf(A)

Mor(Spf([W (R)/I ]), Spf(A)) := MorAni(A, [I →W (R)])

Ani = category of animated W (k)-algebras (= derived category of
simplicial W (k)-algebras) ([I →W (R)] is a 1-truncated animated
algebra)

In particular,
Spf(Zp)� = Σ, Spec(Fp)� = Zp.



Another key example (Bhatt-Lurie)

Spec(W2(k))� := stack associated to prestack with values

[FW (R)(p2)/W (R)×],

on p-nilpotent W (k)-algebras R , where

FW (R)(p2):= set of factorizations p2 = db in W (R), with
d ∈Wprim(R), b ∈W (R),

and u ∈W (R)× acts by (d , b) 7→ (du, u−1b).



5.4. Hodge-Tate point

V (1) = (0, 1, 0, 0, · · · ) : Spf(Zp)→ Spf(Zp)�

induces (unique) “physical” point:

i : Spec(k)→ Spec(W2(k))�,

corresponding to the factorization p2 = pp, with stabilizer

Stab(i) = G := W×
k [F ]

(kernel of F on the k-group scheme W×
k ) (also denoted G]

m)

Basic formula (Drinfeld, Li-Mondal):

W×
k [F ] = (µp)k ×Wk [F ],

where Wk [F ] = kernel of F on Wk = PD-envelope of 0 in A1
k (=

G]
a)



Back to Drinfeld’s theorem 5.1

Data of Y /W2(k) lifting X/k gives maps

Y� ν→ XZar×Spec(W2(k))�
i← XZar×BG ← XZar×Bµp ← XZar.

Prismatic Hodge-Tate comparison theorem implies:

(ϕ∗Rν∗(O/p))|X ′ ∼→ F∗Ω
•
X/k ∈ D(X ′,O)

(for ϕ = Frobenius on the base W2(k)).

Therefore, F∗Ω•X/k underlies an object of D(X ′ × Bµp,O), and one
checks that H i is of weight −i .



In fact, F∗Ω•X/k underlies an object of D(X ′ × BG ,O).

As quasi-coherent sheaves on BWk [F ] correspond to comodules
over the Hopf algebra k〈x〉 (PD-envelope of (x) in k[x ]), i.e. pairs
(E ,N), where E is a k-vector space, and N a nilpotent
endomorphism of E ,

the basic formula G = (µp)k ×Wk [F ] gives that:

Each summand (F∗Ω
•
X/k)α (α ∈ Z/p) is endowed with an

OX ′-linear, nilpotent endomorphism Nα.



Remark (Bhatt-Lurie). Datum

(F∗Ω
•
X/k = ⊕α∈Z/p(F∗Ω

•
X/k)α), (Nα : (F∗Ω

•
X/k)α → (F∗Ω

•
X/k)α)

equivalent to datum of

θ ∈ EndD(X ′,OX ′ )
(F∗Ω

•
X/k)

with “generalized eigenvalues” in Z/p. Analogous to a Sen
operator. For X proper smooth over Spec(W (k)) (instead of
Spec(k)), analogy is upgraded into a comparison theorem, involving
a new theory of diffraction (ongoing work by Bhatt and Lurie).



Remarks. 1. Alexander Petrov recently gave examples where
N0 6= 0.

2. New approach to action of W×
k [F ] by Shizhang Li and

Shubhodip Mondal [LM], based on study of endomorphisms of the
de Rham cohomology functor. In particular:

Theorem ([LM, Th. 4.23])

Aut(R̃ smooth/W2(k) 7→ Ω•
R̃⊗k/k ∈ CAlg(D(k))) = G]

m,k

Corollary (LM, Mathew). There is no functorial splitting for X̃
smooth over W2(k) of Ω•

X̃⊗k/k
.
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