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Abstract. This is a survey of classical results of Grothendieck on vanishing
cycles, such as the local monodromy theorem and his monodromy pairing for
abelian varieties over local fields ([3], IX). We discuss related current devel-
opments and questions. At the end, we include the proof of an unpublished
result of Gabber giving a refined bound for the exponent of unipotence of
the local monodromy for torsion coefficients.

Résumé. Le présent texte est un exposé de résultats classiques de Gro-
thendieck sur les cycles évanescents, tels que le théorème de monodromie
locale et l’accouplement de monodromie pour les variétés abéliennes sur les
corps locaux ([3], IX). Nous présentons quelques développements récents et
questions qui y sont liés. La dernière section est consacrée à la démonstration
d’un résultat inédit de Gabber donnant une borne raffinée pour l’exposant
d’unipotence de la monodromie locale pour des coefficients de torsion.
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model, Picard-Lefschetz formula, `-adic sheaf.

AMS Classification Numbers. 01A65, 11F80, 11G10, 13D09, 1403, 14D05,
14F20, 14G20, 14K30, 14H25, 14L05, 14L15, 32L55.

Grothendieck’s first mention of vanishing cycles is in a letter to Serre,
dated Oct. 30, 1964 ([5], p. 214). He considers a regular, proper, and
flat curve X over a strictly local trait S = (S, s, η), whose generic fiber is

1This is a slightly expanded version of notes of a talk given on June 17, 2015, at the
conference Grothendieck2015 at the University of Montpellier, and on November 13, 2015,
at the conference Moduli Spaces and Arithmetic Geometry at the Lorentz Center in Leiden.
I wish to thank these institutions for their invitation.
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smooth and whose reduced special fiber is a divisor with normal crossings.
He analyses the difference between the (étale) cohomology of the special fiber
H∗(Xs) and that of the generic geometric fiber H∗(Xη), the coefficients ring
being Z`, ` a prime number invertible on S. A little more precisely, assuming
that the action of the inertia group I on H∗(Xη) is tame, he shows that the
defect of the specialization map H∗(Xs)→ H∗(Xη)

2 to be an isomorphism is
controlled by certain groups (the vanishing cycles groups), that he estimates.
He deduces that there exists an open subgroup I1 of I such that, for all g ∈ I1,
(g − 1)2 acts trivially of H∗(Xη), a key step in his proof of the semistable
reduction theorem for abelian varieties.

We will recall this proof in §3, after a quick review, in §§1, 2, of the defini-
tion and basic properties of nearby and vanishing cycles, and Grothendieck’s
geometric local monodromy theorem. In §4 we discuss Grothendieck’s mon-
odromy pairing for abelian varieties over local fields, a complement to his
semistable reduction theorem. In §5 we say a few words about the develop-
ments that arose from Grothendieck’s work and questions. In §6 we give a
quick update on some of the topics of §§1− 4. The last section is devoted to
the proof of 2.3, a result due to Gabber.

Additional references. Here are a few references that could help the reader who

is not familiar with the topics discussed in this report. The formalism of nearby

and vanishing cycles is presented in Deligne’s exposés I, XIII, XIV and XV of [3].

Fundamental theorems such as constructibility and compatibility with duality are

proved in ([25], Théorèmes de finitude en cohomologie `-adique), [9], [35]. The

reader could also consult Lei Fu’s monograph [27]. Further references are provided

in 6.2. For basics on abelian schemes, including the Picard functor and duality,

see [4]. Néron models are treated in Bosch-Lütkebohmert-Raynaud’s book [17].

1 Nearby and vanishing cycles

1.1

In [3] Grothendieck introduced and studied the functors RΨ and RΦ, both
in the context of Betti cohomology and that of étale cohomology. He called
them functors of vanishing cycles, but in the 1970’s it became customary to
call the former one the functor of nearby cycles, the name vanishing cycles
being reserved to the latter one. Let me recall their definition in the étale
setup, as described by Deligne in ([3], XIII).

2This is the composition of the inverse H∗(Xs)
∼→ H∗(X) of the proper base change

isomorphism and the restriction map H∗(X)→ H∗(Xη).
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Let S = (S, s, η) be a henselian trait, with closed point s, and generic
point η. Let s be a geometric point of S over s, and η a separable closure of
the generic point η̃ of the strict henselization S̃ = S(s) of S at s. We have a
commutative diagram with cartesian squares

(1.1.1) η
j

����������

��
s̃

ĩ //

��

S̃

��

η̃
j̃oo

��
s // S ηoo

where s̃, the closed point of S̃, is a separable closure of s in s. For a morphism
f : X → S, we get morphisms deduced by base change

Xs̃
ĩ→ XS̃

j← Xη.

Let us choose a ring of coefficients Λ = Z/`νZ, ν ≥ 1, with ` a prime number
invertible on S. Other choices are possible, e.g., Z`, Q`, or Q` (when one
works with schemes of finite type over S 3). We will write D(−) for D(−,Λ).
For K ∈ D+(Xη), the nearby cycles complex of K is

(1.1.2) RΨf (K) := ĩ∗Rj∗(K|Xη).

This is an object of D+(Xs̃), more precisely an object of the derived category
of sheaves of Λ-modules on Xs̃ equipped with a continuous action of the
Galois group Gal(η/η), compatible with that on Xs̃. For K ∈ D+(X), the
complex of vanishing cycles RΦf (K) is the cone of the natural morphism

ĩ∗K → RΨf (K|Xη), i.e., we have a distinguished triangle in the category
just mentioned,

(1.1.3) ĩ∗K → RΨf (K|Xη)→ RΦf (K)→ .

If x is a geometric point of X over s, the stalk of RΨf (K) at x is

(1.1.4) RΨf (K)x = RΓ((X(x))η, K).

The scheme (X(x))η, geometric generic fiber of the strict localization of X at
x, plays the role of a Milnor fiber of f at x. We sometimes write RΨX (resp.
RΦX) for RΨf (resp. RΦf ), and drop the subscript X when no confusion
can arise.

3This is to ensure that Db
c is stable under the six operations.
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1.2

The main functoriality properties of these functors are the following. Con-
sider a commutative triangle

X

f
��

h // Y

g
~~~~~~~~~~

S

.

(a) If h is smooth, the natural map

(1.2.1) h∗RΨY → RΨXh
∗

is an isomorphism. In particular (taking Y = S), if f is smooth, then
RΦX(Λ) = 0. So, in general, RΦX(Λ) is concentrated on the non-smoothness
locus of X/S.

(b) If h is proper, the natural map4

(1.2.2) Rh∗RΨX → RΨYRh∗

is an isomorphism. In particular (taking Y = S), if f is proper, for K ∈
D+(Xη), we have a canonical isomorphism (compatible with the Galois ac-
tions)

(1.2.3) RΓ(Xs̃, RΨXK)
∼→ RΓ(Xη, K).

The triangle (1.1.3) thus gives rise to a long exact sequence
(1.2.4)

· · · → H i−1(Xs̃, RΦX(K))→ H i(Xs̃, K)
sp→ H i(Xη, K)→ H i(Xs̃, RΦX(K))→ · · · ,

where sp is the specialization map, generalizing that considered in the intro-
duction.

It was later proved by Deligne ([25],Th. finitude) that, for X of finite type
over S and K ∈ Db

c(Xη), RΨfK is in Db
c(Xs̃) (where Db

c(−) means the full
subcategory of D(−) consisting of complexes with bounded and constructible
cohomology).

2 The geometric local monodromy theorem

In SGA 7 Grothendieck proved the following theorem:

4In (a) and (b), there are obvious abuses of notation for h∗ and h∗.
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Theorem 2.1. Let S = (S, s, η) be as in 1.1, and Xη be separated and of
finite type over η. Let I = Gal(η/η̃) ⊂ Gal(η/η) be the inertia group. Then
there exists an open subgroup I1 ⊂ I such that, for all g ∈ I1 and all i ∈ Z,
g acts unipotently on H i

c(Xη,Q`).

The main ingredient in his proof was his arithmetic local monodromy
theorem ([68], Appendix):

Theorem 2.2. Assume that no finite extension of k(s) contains all roots
of unity of order a power of `. Let ρ : Gal(η/η) → GL(V ) be a continuous
representation into a finite dimensional Q`-vector space V . Then there exists
an open subgroup I1 of I such that, for all g ∈ I1, ρ(g) is unipotent.

The proof of 2.2 is an elegant, elementary exercise. Once we have reduced
to the case where the image of ρ is contained in 1 + `2Mn(Z`), the whole
inertia group I acts unipotently. Indeed, I acts through its `-primary tame
quotient t` : I → Z`(1), and Grothendieck exploits the strong action of the
arithmetic Galois group Gk = Gal(s̃/s) on Z`(1) by conjugation, given by
gσg−1 = σχ(g), where χ : Gk → Z∗` is the cyclotomic character (`2 ensures
that exponential and logarithm are defined and inverse to each other).

The deduction of 2.1 from 2.2 is more difficult. It uses Néron’s desin-
gularization, and a spreading out argument to reduce to the case where the
residue field is radicial over a finite type extension of Fp, see ([3], I 1.3). Once
the finite generation of the groups H i(Xη,Λ) (for Λ = Z/`νZ) (and generic
constructibility of direct images) was known ([25], Th. finitude), the same
reduction worked — hence the conclusion of 2.1 held — for H i(Xη,Q`) as
well.

Grothendieck gave a conditional, alternate proof of 2.1, based on the
formalism of §1. It assumed the validity (in certain degrees and dimensions)
of resolution of singularities and of his absolute purity conjecture ([2] I)5.
This was the case for s of characteristic zero, or dim(Xη) ≤ 1, or i ≤ 1.
The advantage of the method is that it gave bounds on the exponent of
unipotence n(g) of g ∈ I1 acting on H i, i.e., the smallest integer n ≥ 0 such
that (g − 1)n+1 = 0. For example, for i = 1, one gets n(g) ≤ 1. Resolution
is still an open problem, but the absolute purity conjecture was proved by
Rapoport-Zink in the situation arising from a semistable reduction [56] 6,
and thanks to de Jong’s alteration theorems [46], it was possible to make

5One form of this conjecture is that if j : U = X − D ↪→ X is the inclusion of the
complement of a regular divisor D in a regular scheme X, and if ` is invertible on X, then
Rqj∗Λ is Λ for q = 0, ΛD(−1) for q = 1, and 0 for q > 1.

6It was later proved by Gabber in general [28], but the semistable reduction case
sufficed.
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Grothendieck’s argument work in general. As Deligne observed, a by-product
of this argument was that the open subgroup I1 in 2.1 (and its variant for
H i) can be chosen independent of ` (see Berthelot’s Bourbaki exposé [15]).
With more work, one can also get a general bound for n(g), valid also for
torsion coefficients Λ = Z/`νZ, namely, one has the following result:

Theorem 2.3. Let Λ = Z/`νZ. With the assumptions and notation of 2.1
for S and Xη, there exists an open subgroup I1 ⊂ I, independent of `, such
that, for all g ∈ I1 and all i ∈ N, (g − 1)i+1 = 0 on H i

c(Xη,Λ) (resp.
H i(Xη,Λ)).

This result is due to Gabber. See §7 for the proof.

Remark 2.4. For smooth, projective, geometrically connectedXη/η, explicit
uniform bounds for the index of I1 in I for the action of I on H i(Xη,Q`) in
terms of the Betti numbers of Xη and numerical invariants associated with
a very ample line bundle on Xη were obtained by Umezaki [75].

Remark 2.5. Suppose Xη/η is proper and equidimensional of dimension d.
Let IH i(Xη,Λ) := H i(Xη, IC[−d]), where IC is the pull-back to Xη of the
intersection complex ICXη := j!∗(ΛU [d]) (where j : U ↪→ Xη is the inclusion
of a dense open subscheme such that (Uη)red is smooth). One can ask whether
there exists an open subgroup I1 of I, independent of `, such that, for all
g ∈ I1 and all i ∈ N, (g − 1)i+1 = 0 on IH i(Xη,Λ). The answer is yes for
Λ = Q` or Q`. Indeed, by de Jong [46], after replacing η by a finite extension,
one can find an alteration h : Z → Xη, with Z proper and smooth over η
(and purely of dimension d). By the generalization of the decomposition
theorem of Beilinson-Bernstein-Deligne-Gabber ([9], 5.3, 5.4) given in ([70],
3.3.3, 3.3.4), IC is a direct summand of Rh∗ΛZη [d], as the perverse sheaf
ΛZη [d] is of geometric origin, hence admissible. I don’t know the answer for
Λ = Z/`νZ.

2.6

The main step in Grothendieck’s geometric proof is a calculation of the stalks
of the tame nearby cycles groups RqΨX(Λ)t (for Λ = Z/`νZ), in a situation
of quasi-semistable reduction (assuming that absolute purity is available —
which is the case today). Let me recall the definition of these groups. In
(1.1.1), k(η̃) is the maximal unramified extension of k(η) contained in k(η).
Let k(ηt) be the maximal tame extension of k(η) contained in k(η), i.e.,

k(ηt) = lim−→ k(η̃)[π1/n], where π is a uniformizing parameter of S̃, and n runs
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through the integers ≥ 1 prime to the characteristic exponent p of k(s). Then
P := Gal(η/ηt) is the wild inertia subgroup of I = Gal(η/η̃), and

It = Gal(ηt/η̃) = Ẑ′(1) := lim←−
(n,p)=1

Z/n(1)

its tame quotient. Replacing the upper part of (1.1.1) by

(2.6.1) ηt

jt

���������

��
s̃ ĩ // S̃ η̃

j̃oo

one defines, for X over η, and K ∈ D+(X), the tame nearby cycles complex

(2.6.2) RΨf (K)t := ĩ∗Rjt∗(K|Xηt)

As P is a pro-p-group, the functor (−)P (invariants under P ) is exact, and
one has

(2.6.3) RΨf (K)t
∼→ RΨf (K)P .

For X/S and K ∈ D+(X), one defines the tame vanishing cycles complex
RΦf (K)t similarly to RΦf (K). One has a variant of 1.1.4:

(2.6.4) RΨf (K)t,x = RΓ((X(x))ηt , K),

with the Milnor fiber replaced by the tame one (X(x))ηt .

2.7

Assume now that X is regular, flat and of finite type over S, the generic
fiber Xη is smooth, and the reduced special fiber (Xs)red is a divisor with
normal crossings. Let x be a geometric point of X over s, let (Di)1≤i≤r be
the branches of (Xs)red passing through x, and let ni be the multiplicity of Di,
i.e., X is locally defined near x by an equation of the form u

∏
1≤i≤r t

ni
i = π,

where π is a uniformizing parameter of S, the ti’s are part of a system of
regular parameters at the strict localization of X at x, and u is a unit at x.
Then ([3], I 3.3) the stalks of the groups (RqΨΛ)t at x are given by

(2.7.1) (RqΨΛ)t,x = Λ[(Z/dZ)(1)]⊗Z Λq(C(−1)),

where
C = Ker((n1, · · · , nr) : Zr → Z),
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and gcd(ni) = dpm, with (d, p) = 1. The inertia group I acts on them via
its permutation action on (Z/dZ)(1) through the composition I � It �
(Z/dZ)(1). The reason for this is that, because of absolute purity, on the
cohomological level the tame Milnor fiber (X(x))ηt (2.6.4) behaves like the
(prime to p) homotopy fiber of the homomorphism (S1)r → S1, (x1, · · · , xr)→∏
xnii , i.e., the wreath product Ker((S1)r → S1)o (Z/dZ)(1). An immediate

consequence is:

Corollary 2.8. Under the assumptions of 2.7, there exists an open subgroup
I1 of I such that, for all q ∈ Z, I1 acts trivially on (RqΨΛ)t.

At the time of SGA 7, the proof of (2.7.1) was conditional to the validity of
the absolute purity conjecture, which was known only in certain cases (e.g.,
in equal characteristic zero, and for q ≤ 1 in the notation of footnote 1).
Nevertheless, this, together with the cases where resolution of singularities
was known, enabled Grothendieck to show that 2.3 holds if Xη is proper and
smooth and either S is the localization of a smooth curve over C, or i ≤ 1.
Using the formalism of 1.2 (or rather its analogue in the complex case), he
also deduced from 2.8 a positive answer to Milnor’s question ([51], footnote
p. 72)7 on the quasi-unipotence of the monodromy of isolated singularities (a
question that had been one of the motivations for his theory of the functors
RΨ and RΦ). In fact, because of the now known validity of the absolute
purity conjecture, (2.7.1) holds unconditionally, and, moreover, in the case
of semistable reduction, RqΨΛ = (RqΨΛ)t, see 6.3.

Here is a sketch of Grothendieck’s answer to Milnor’s question. As
we have an isolated critical point, by a theorem of Arnol’d-Artin-Mather-
Tougeron (see [6] for references), H̃n(Mf ) depends only on a sufficiently high
order jet of f , so, instead of the original analytic situation, we can consider
an algebraic one, namely a smooth curve S over C, with a closed point s, a
smooth scheme X/C, and a morphism f : X → S, smooth outside a closed
point x of the special fiber Xs. By Hironaka, we can find a proper map
h : X ′ → X, with X ′/C smooth, inducing an isomorphism outside Xs and
such that (X ′s)red is a divisor with normal crossings. Let f ′ = fh. By 2.8,
the action of a generator T of the local fundamental group of S at s on
RΨf ′Z is quasi-unipotent. By (the complex analytic analogue of) (1.2.2),
RΨfZ = Rh∗RΨf ′Z, so T acts quasi-unipotently on RΨfZ, hence on RΦfZ,
which is concentrated at x, i.e., equal to ix∗(RΦfZ)x, where ix : {x} ↪→ Xs.

7i.e., for a holomorphic germ f : (Cn+1, 0)→ (C, 0) having an isolated critical point at

0, the eigenvalues of monodromy T on H̃n(Mf ) are roots of 1 (Mf the Milnor fiber at 0,

where H̃i = Coker(Hi(pt)→ Hi). Here H̃n(Mf ) = RnΦf (Z)0.
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3 The semistable reduction theorem for abelian

varieties

As an abelian variety over an algebraically closed field is a quotient of a
Jacobian, 2.3 for i ≤ 1 implies:

Theorem 3.1. With the notation of 2.1, let Aη be an abelian variety over
η. Then there exists an open subgroup I1 of I such that, for all g ∈ I1,
(g − 1)2 = 0 on H1(Aη).

As mentioned in the introduction, this was the crucial tool enabling
Grothendieck to prove the following theorem (semistable reduction theorem
for abelian varieties) ([3], IX 3.6):

Theorem 3.2. With the notation of 3.1, there exists a finite extension η1 of
η such that Aη1 has semistable reduction8 over the normalization (S1, s1, η1)
of S in η1, i.e., if A1/S1 is the Néron model of Aη1, the connected component
(A1)0

s1
of its special fiber is an extension of an abelian variety by a torus.

The proof of 3.2 occupies over 300 pages in ([3], VII, VIII, IX). However,
the idea is quite simple.

First of all, one rephrases 3.1 in terms of the Tate module of Aη,

T`(Aη) = lim←−Aη[`
n],

where [`n] means the kernel of the multiplication by `n, a free Z`-module of
rank 2g, where g is the dimension of Aη, equipped with a continuous action
of Gal(η/η) (equivalently, a lisse Z`-sheaf, free of rank 2g, over η).

From now on, let us work with Λ = Z`.
By Serre-Lang,

H1(Aη) = T`(Aη)
∨(:= Hom(T`(Aη),Z`))

as Galois modules. Hence, in the notation of 3.1, for all g ∈ I1, (g − 1)2 = 0
on T`(Aη). To prove 3.2 it therefore suffices to prove the following theorem
(cohomological criterion for semistable reduction) ([3], IX, 3.5):

Theorem 3.3. In the situation of 3.1, assume that for all g ∈ I, (g−1)2 = 0
on T`(Aη). Then Aη has semistable reduction over S.

8Today one often prefers to say “semi-abelian reduction”, to avoid confusion with
semistable reduction as a scheme.
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3.4

The main ingredient in the proof of 3.3 is the so-called orhogonality theorem,
which I will now recall. In the situation of 3.1, let A be the Néron model
of Aη over S (so that Aη is the generic fiber of A) ([17], 1.2, 1.3). The Tate
module T`(Aη) admits a Gal(η/η)-equivariant 2-step filtration

(3.4.1) T`(Aη)
t ⊂ T`(Aη)

f ⊂ T`(Aη),

where, as a Galois module, T`(Aη)
f = T`(Aη)

I is the fixed part under I, which,
by the universal property of the Néron model, is also canonically isomorphic
to T`(As) = T`(A

0
s), and T`(Aη)

t the toric part, i.e., T`(T ), where T is the
maximal subtorus of A0

s. In ([3], IX), Grothendieck likes to write (3.4.1) in
the form

W ⊂ V ⊂ U.

This is a filtration by free, finitely generated Z`-modules, and the quotients
U/V , V/W are torsion-free9. Let A′η = Ext1(Aη,Gm) be the dual abelian
variety (cf. ([3], VIII 3.2))10, A′ its Néron model , and let (W ′ ⊂ V ′ ⊂ U ′)
be the corresponding filtration of U ′ = T`(A

′
η). The Poincaré bi-extension

of Aη × A′η by Gm defines a perfect pairing (cf. ([3], IX, 1.0.3) (the Weil
pairing):

(3.4.2) 〈 , 〉 : U ⊗ U ′ → Z`(1).

The orthogonality theorem is the following formula (loc. cit., 2.4):

(3.4.3) W = V ∩ V ′⊥,

where (−)⊥ means the orthogonal for the pairing (3.4.2). Let g be the di-
mension of Aη, µ be that of the torus T , and α (resp. λ) be the abelian (resp.
unipotent) rank11 of A0

s. By (3.4.3) we have rk(U/(V + V ′⊥)) = rk(W ) = µ,
and rk((V + V ′⊥)/V ′⊥) = rk(V/W ) = 2α, so, as g = α + λ+ µ, we get

(3.4.4) rk(V ′⊥/W ) = 2λ.

By definition, Aη has semistable reduction over S if and only if λ = 0, which,
by (3.4.4) is equivalent to V ′⊥ ⊂ V .

9For U/V this is because U I = (U ⊗ Q`)
I ∩ U , for V/W because over an algebraic

closure of s, A0
s/T becomes an extension of an abelian variety by a unipotent group.

10The Ext1 group is calculated in the category of abelian sheaves on the fppf site of η.
This identification is classical: see ([67], p. 196) for its history, and ([4], XI, Th. 2.2) for
a proof of a generalization over a locally noetherian base.

11i.e., the dimension of the quotient abelian variety (resp. unipotent part) of A0
s/T over

an algebraic closure of s.
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From this it is immediate to prove 3.3. Indeed, as its action is unipotent,
I acts on U (and U ′) through its tame quotient It = Ẑ′(1) (and even through
its `-primary part Z`(1)). We have to show V ′⊥ ⊂ V , i.e., if g is a topological
generator of It, that g − 1 is zero on V ′⊥. But, by assumption, (g − 1)2 is
zero on U , hence on U ′, hence g − 1 is zero on U ′/V ′, hence on (U ′/V ′)∨(1),
but under (3.4.2), (U ′/V ′)∨(1) = V ′⊥.

The first appearance of (3.4.3) is in a paper of Igusa [33]. Igusa consid-
ers the case where Aη is the Jacobian of Xη, for X/S a proper curve with
geometrically connected fibers and semistable reduction, smooth outside a
unique rational point x of Xs. He deduces (3.4.3) from what is called, in
today’s language, a Picard-Lefschetz formula at x for `-adic vanishing cycles.
This inspired to Grothendieck his theory of the monodromy pairing, that we
discuss in the next section. However, Grothendieck’s proof of (3.4.3) does
not involve any vanishing cycles. These are, somehow, replaced by the Néron
models, and Grothendieck obtains (3.4.3) as a consequence of a vast theory
of bi-extensions, developed in ([3] VII, VIII), considerably generalizing —
and, should I say, simplifying — the notion initially introduced by Mumford
for formal groups [52]. The inclusion W ⊂ V ∩ V ′⊥ is more or less formal.
The fact that it is an equality is proved in ([3], IX 2.4) as a corollary of an
ampleness criterion of Raynaud ([57], XI 1.11).

Remark 3.5. (a) The converse of 3.3 holds: if Aη has semistable reduction
over S, then, for all g ∈ I, (g − 1)2 = 0 on T`(Aη). Indeed, as V ′⊥ =
(U ′/V ′)∨(1) is contained in V = U I , (g − 1)2 is zero on U ′, hence on U .

(b) There is a variant of 3.3 (and its converse) for the case of good re-
duction, namely Aη has good reduction over S (i.e., A is an abelian scheme
over S) if and only if I acts trivially on T`(Aη) ([3], IX 2.2.9). This is the
so-called Néron-Ogg-Shafarevich criterion for good reduction. The proof is
easy. It does not use the orthogonality relation (3.4.3).

(c) In ([3], IX 2.6 a)) Grothendieck observes that the inclusion W ⊂
V ∩V ′⊥ can be proved by an arithmetic argument, independent of the theory
of bi-extensions, using Weil’s theorem on the weights of Frobenius for abelian
varieties over finite fields. Pushing the argument further, Deligne was able to
prove the semistable reduction theorem 3.2, bypassing (3.4.3) ([3], I 6), and,
in fact, getting it as a bonus (his argument gives ((V ∩ V ′⊥)/W ) ⊗Q` = 0,
hence (3.4.3), as V/W is free over Z`, as recalled after (3.4.1)).
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4 Grothendieck’s monodromy pairing

4.1

Let (S, s, η) and Aη be as in 3.1. We denote by A′η the dual abelian variety,
by A (resp. A′) the Néron model of Aη (resp. A′η), and by T (resp. T ′) the
maximal subtorus of A0

s (resp. A′0s ). From now on — unless otherwise stated
— we assume that Aη has semistable reduction over S, i.e., A0

s is extension
of an abelian variety B by the torus T . It follows from the criterion 3.3 that
A′η also has semistable reduction, i.e., A′0s is extension of an abelian variety
B′ by T ′.

As in the previous section, we consider the Tate modules U = T`(Aη),
U ′ = T`(A

′
η), and their 2-step filtrations (W ⊂ V ⊂ U), (W ′ ⊂ V ′ ⊂ U ′),

where V = U I = T`(A
0
s), W = T`(T ), and similarly V ′ = U ′I = T`(A

′0
s ), W ′ =

T`(T
′). Following Grothendieck’s notation, we denote by M the character

group of T ′:

(4.1.1) M = Hom(T ′,Gm),

so that the co-character group is M∨ = Hom(Gm, T
′) = Hom(M,Z) (these

are free finitely generated Z-modules with action of Gal(s̃/s) (in the notation
(1.1.1)), and similarly

(4.1.2) M ′ = Hom(T,Gm),

with M ′∨ = Hom(Gm, T ) = Hom(M ′,Z). As T ′[`n] = Hom(Z/`n, T ′) =
Hom(µ`n , T

′)⊗ µ`n = (M∨/`nM∨)⊗ µ`n , we have

(4.1.3) W ′ = M∨ ⊗ Z`(1),

and similarly

(4.1.4) W = M ′∨ ⊗ Z`(1).

Let M` := M ⊗ Z`, M
′
` := M ′ ⊗ Z`. As Aη has semistable reduction, by

(3.4.3) and (3.4.4), we have

(4.1.5) W = V ′⊥ = (U ′/V ′)∨(1),

hence by (4.1.4),

(4.1.6) U ′/V ′ = M ′
`,

and similarly

(4.1.7) U/V = M`,

12



which formulas are probably the reason for the a priori strange notation
(4.1.1).

As I acts on U through its quotient t` : I � Z`(1), and unipotently of
exponent ≤ 1, there exists a unique homomorphism (the monodromy opera-
tor)

(4.1.8) N : U → U(−1)

such that gx = x + t`(g)Nx for all x ∈ U and g ∈ I. We have N2 = 0,
and N is Gal(η/η)-equivariant. We again denote by N : U ′ → U ′(−1) the
monodromy operator corresponding to A′η. By definition, V and V ′ are the
kernels of N . As the Weil pairing (3.4.2) is Galois equivariant, in particular,
I-equivariant, it satisfies the formula

(4.1.9) 〈Nx, y〉+ 〈x,Ny〉 = 0.

This implies that N(U) ⊂ V ′⊥(−1) (= W (−1) by (4.1.5)), and, as N(V ) = 0,
N induces a homomorphism

N : U/V → W (−1),

which, by (4.1.5) and (4.1.6), can be rewritten

(4.1.10) u` : M` →M ′∨
` ,

or, equivalently, a pairing

(4.1.11) 〈 , 〉` : M` ⊗M ′
` → Z`.

This is Grothendieck’s monodromy pairing. By definition, u` is injective,
hence is an isogeny. The pairing (4.1.11) is symmetric, i.e., the pairing de-
duced by exchanging Aη and A′η (and identifying Aη with (A′η)

′ by the bidual-
ity isomorphism) is obtained from (4.1.11) by 〈x, y〉 7→ 〈y, x〉. Grothendieck’s
main result is the following ([3], IX 10.4) (discussed for the first time in a
letter to Serre, dated October 3-5, 1964, see ([5], p. 207, 209)):

Theorem 4.2. (a) There exists a unique homomorphism

(4.2.1) u : M →M ′∨

such that u⊗ Z` = u` for all `. Let

(4.2.2) 〈 , 〉 : M ⊗M ′ → Z

denote the pairing defined by (4.2.1).
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(b) Let ξ : Aη → A′η be a polarization, ξ∗ : M → M ′ the homomorphism
deduced by functoriality. Then the pairing

〈 , 〉ξ : M ⊗M → Z

defined by 〈x, y〉ξ = 〈x, ξ∗y〉 is symmetric, and negative definite12.

We will sketch Grothendieck’s proof at the end of §4. An alternate con-
struction of u and proof of (4.2 (b)) was given by Raynaud, using rigid
methods ([59] and (SGA7, IX 14)).

Remark 4.3. The construction of u` (4.1.10) makes essential use of the
hypothesis ` 6= p. Let Mp := M ⊗ Zp, M

′
p := M ′ ⊗ Zp. For S of mixed char-

acteristic, using Tate’s theorem on homomorphisms of Barsotti-Tate groups
([73], Th. 4), Grothendieck directly constructs in ([3], IX 9) a homomor-
phism up : Mp → M ′∨

p in terms of the pro-p-groups Tp(A
0), Tp(A

′0), and, by
an analytic argument, shows (in [3], IX 12) that (4.2 (a)) extends to ` = p,
i.e., up = u⊗ Zp. Now that thanks to de Jong [45] Tate’s theorem has been
established in equal characteristic, the restriction on S is superfluous13.

In the sequel, we assume again ` 6= p. An immediate consequence of 4.2,
actually just the fact that u` is an isogeny, is:

Corollary 4.4. (a) Consider the filtration (W ⊂ V ⊂ U) (3.4.1) as an
increasing filtration (Mi)i∈Z, with Mi = U for i ≥ 1, M0 = V , M−1 = W ,
Mi = 0 for i ≤ −2. Then Mi ⊗ Q` is the monodromy filtration of U ⊗ Q`

with respect to the nilpotent operator N , i.e., N(Mi⊗Q`) ⊂Mi−2⊗Q`(−1),
and N i : grMi (U ⊗Q`)→ grM−i(U ⊗Q`)(−i) is an isomorphism for all i ≥ 0.

(b) Assume that k is a finite field Fq. Then the filtration (Mi) is pure,
i.e., equals, up to a shift, the weight filtration of U ⊗ Q` in the sense of
Deligne ([26], 1.7.5): grMi U is pure 14 of weight i− 1.

As H1(Aη) := H1(Aη,Z`) is dual to U = T`(Aη), the filtration, still de-
noted M• on H1(Aη) dual to the filtration M• on U , is again the monodromy
filtration (for the monodromy operator N), and when k = Fq, is the weight
filtration up to shift : grMi H

1(Aη) is pure of weight i+ 1.

12In loc. cit., it is asserted to be positive definite. This discrepancy seems to be due to
a sign in the Picard-Lefschetz formula.

13A construction of up valid without assuming S of mixed characteristic, and using only
Tate’s theorem (but over a higher dimensional normal base, a formal moduli scheme as in
([3], IX 12.8)), has been made by B. Conrad (private communication).

14i.e., the eigenvalues of the geometric Frobenius F are q-Weil numbers of weight i− 1;
moreover (by Weil), det(1− Ft, grMi (U ⊗Q`)) has coefficients in Z and is independent of
`.
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As we mentioned in (3.5 (c)), Deligne gave an alternate short proof of this.
However, weight arguments don’t work for the next corollary 4.6, which lies
deeper. We need some preliminary remarks before stating it.

4.5

For the moment, we don’t assume that Aη has semistable reduction over
S. Consider the finite commutative étale group scheme over s of connected
components of the special fiber of the Néron model A of Aη,

(4.5.1) Φ0 := Φ0(Aη) := As/A
0
s,

and similarly define Φ′0 := Φ0(A′η) := A′s/A
′0
s . In ([3], IX), Grothendieck :

(i) defined a canonical pairing Φ0 × Φ′0 → Q/Z, which he conjectured to
be perfect;

(ii) in the semistable reduction case, constructed a canonical isomorphism
between Φ0 and the cokernel of u : M →M ′∨ (4.2.1).

Let me first discuss (ii). We now assume that Aη has semistable reduction.

For simplicity, assume that S is strictly local (so that S = S̃ in the notation
(1.1.1), and Φ0, Φ′0 are usual finite groups), and take ` 6= p. Let Φ0(`) be the
`-primary component of Φ0. The `-primary component of Coker(u) is

Coker(u)(`) = Ker(u` ⊗Q`/Z` : M` ⊗Q`/Z` →M ′∨
` ⊗Q`/Z`).

On the other hand, as A0
s is `-divisible, we have

Φ0(`) = As(`)/A
0
s(`),

where (−)(`) = lim−→(−)[`n], hence

(4.5.2) Φ0(`) = (U ⊗Q`/Z`)
I/(V ⊗Q`/Z`),

with the above notation U = T`(Aη), V = U I = T`(A
0
s)

15. We thus have an
injection

(4.5.3) Φ0(`) ↪→ (U/V )⊗Q`/Z`
(4.1.7)

= M ⊗Q`/Z`.

Now using that Aη has semistable reduction, Grothendieck extends the defi-
nition of (4.5.3) to ` = p, and proves:

15This formula does not use that Aη has semistable reduction.
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Corollary 4.6. For Aη having semistable reduction, the homomorphism
(4.5.3) induces a short exact sequence

(4.6.1) 0→ Φ0(`)→M ⊗Q`/Z`
u⊗Q`/Z`→ M ′∨ ⊗Q`/Z` → 0

for all primes `, where u is the homomorphism (4.2.1). In other words, the
maps (4.6.1) induce an isomorphism

(4.6.2) Φ0
∼→ Coker(u : M →M ′∨).

The proof for ` 6= p is easy: from (4.5.2) a simple calculation shows that
Φ0(`) is the torsion subgroup of H1(I, U) = U/NU(1) ([3], IX (11.3.8)), i.e.,
W/NU(1), which, by (4.1.5) and the definition of u` is just Coker(u`). The
proof for ` = p is more delicate.

Remark 4.7. When Aη is the Jacobian of the generic fiber of a proper, flat
curve X/S, with geometrically connected fibers and semistable reduction (in
other words, X is regular, Xη is smooth, and Xs is a (reduced) divisor with
normal crossings), i.e., Aη = Pic0

Xη/η
(see e.g. [17], 9.2) for general properties

of Jacobians), (4.6.2) leads (via the Picard-Lefschetz formula) to a purely
combinatorial description of Φ0, in terms of the irreducible components and
double points of the special fiber Xs. We will briefly discuss this in 6.1 and
6.3. Similar descriptions of Φ0 under milder assumptions on X were given
independently by Raynaud [58], see also ([17], 9.6), [34].

An interesting special case computed by Deligne, and discussed by Mazur-
Rapoport in [49] is when S = Spec Zp, X is the modular curve X0(p) localized
over S, with p ≥ 5. Then, over an algebraic closure of Fp, Φp := Φ0(Jp) (Jp
the special fiber of the Néron model) is a cyclic group of order the numerator
of (p − 1)/12 ([49], A1), having as a generator the image of the Q-rational
divisor (0)− (∞). As an application, Mazur shows that, for ` 6= p, the Hecke
operator T` on Φp equals 1 + ` (loc. cit., 9.7). Ribet proved, more generally,
that T` = 1+ ` on Φ0(Jp(X0(pN)) (for (`, pN) = 1, (p,N) = 1) ([60], (3.12)),
a result he used to prove that the Shimura-Taniyama-Weil conjecture implies
Fermat.

4.8

Let us recall the definition of the pairing mentioned in (4.5 (i)). Let

(4.8.1) wη ∈ Ext1(Aη ⊗L A′η,Gm)

be the Poincaré bi-extension (tensor product taken over Z) (see ([3] VII
2.9.5, VIII 3.2), where reference [1] of loc. cit. is [4] of the present paper)
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and consider the immersions i : s ↪→ S, j : η ↪→ S. As R1j∗Gm = 0 (Hilbert
90), the exact sequence (of group schemes over S)

(4.8.2) 0→ Gm → j∗Gm → i∗Z→ 0

(where the middle term is the Néron-Raynaud model of Gm, a smooth com-
mutative group scheme over S) yields an exact sequence

(4.8.3) Ext1(A⊗L A′,Gm)→ Ext1(Aη ⊗L A′η,Gm)
c→ Ext1(A⊗L A′, i∗Z).

On the other hand, a boundary map gives a canonical isomorphism

(4.8.4) δ : Hom(Φ0 ⊗ Φ′0,Q/Z)
∼→ Ext1(A⊗L A′, i∗Z).

Grothendieck defines the pairing ([3], IX (1.2.1))

(4.8.5) w0 : Φ0 ⊗ Φ′0 → Q/Z

as the image of wη (4.8.1) by δ−1c. This is the obstruction to extending wη
to a bi-extension w ∈ Ext1(A⊗LA′,Gm). Grothendieck conjectured that the
pairing w0 is perfect. Here is a brief history of the question:

- In the semistable reduction case, 4.6 gives the existence of a perfect
pairing w′0 of the form (4.8.5) and Grothendieck conjectures that, up to a
sign that should be determined, it coincides with w0 ([3], IX 11.4) 16.

- Various cases were treated by Bégueri [8], McCallum [50], Bosch [18],
Bosch-Lorenzini [19].

- Counter-examples for k not perfect were given by Bertapelle-Bosch [13],
using Weil restrictions, and by Bosch-Lorenzini [19] for Jacobians.

- A proof in the general case (k perfect) was given by Suzuki [71] (see
also [72] for a generalization).

While in the works of Bertapelle, Bosch, Bosch-Lorenzini, Werner, the
main tools are those provided by the geometry of abelian varieties, Bégueri’s
approach exploits another ingredient, namely Serre’s geometric local class
field theory, the perfection of Grothendieck’s pairing appearing as a by-
product of the reciprocity isomorphism. It seems to me, however, that the
relation between these various methods is not yet fully understood. For exam-
ple, in the case of the Jacobian of a proper, smooth curve having semistable
reduction, the pairing (4.1.11), as described below by (4.9.14) via Picard-
Lefschetz, should be more directly related to Néron’s height pairing: one
would like to exhibit the vanishing cycles hidden in ([19], 4.4).

16The definition of a perfect pairing of the form w0 on the `-primary components, ` 6= p,
using (4.5.2) is easy (loc. cit. 11.3) and doesn’t need the semi-stability assumption; its
coincidence with w0 was checked by Bertapelle [14]. In the semistable case, the verification
of the coincidence between w′0 and w0 was made by Werner [76], using the rigid geometry
of Raynaud’s extensions in [59].
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4.9

We now sketch Grothendieck’s proof of Th. 4.2. In (4.2 (a)) the uniqueness
of u is clear (one ` even suffices). The construction of u is easily reduced
to the case where Aη is the Jacobian of a proper smooth and geometrically
irreducible curve Xη/η ([3], IX 10.5.1-10.5.3). At this point, Grothendieck
uses a result that was proved at about the same time by Deligne and Mum-
ford17 [20] as a corollary to 3.2, the so-called semistable reduction theorem for
curves, thanks to which, after a finite extension of η, Xη admits a proper, flat
model X/S with X regular, having semistable reduction, i.e. étale locally
étale over S[x, y]/(xy − t), where t is a uniformizing parameter of S. Thus,
after a further reduction, we may – and we will in the following – assume
that Xη is the generic fiber of a model X/S as above, and also that the
residue field k is separably closed. In this situation, we have combinatorial
descriptions of M and u` in terms of the dual graph of Xs, and they suggest
the definition of u.

(a) Description of M . By the canonical polarization of Aη = Pic0
Xη/η

, we

identify Aη and A′η, hence their Néron models A and A′, the maximal tori T
and T ′ in their special fibers, and their character groups M and M ′. Thus,
by (4.1.1), M∨ is the co-character group of T . On the other hand, by a result
of Raynaud, A0

s = Pic0
Xs/s

([3], IX (12.1.12)). Put Y := Xs, denote by Γ(Y )

its dual graph. A simple calculation (([3], IX 12.3), ([34], 2.3)) shows that

(4.9.1) M = H1(Γ(Y ),Z)

(and M∨ = H1(Γ(Y ),Z)). More explicitly, if J is the set of irreducible
components of Y , Σ the set of double points of Y , and, if for each x ∈ Σ we
choose an order on the set Jx of the two branches passing through x (points
x1, x2 of the normalization of Y sitting over x), so that we have a basis
δ′(x) = (1,−1) of the kernel Z′(x) of the sum map ZJx → Z, then we have
an exact sequence

(4.9.2) 0→M → ⊕x∈ΣZ′(x)→ ZJ ,

where Jx = (x1, x2) and the second map sends δ′(x) to the difference Cx1−Cx2
of the components of Y corresponding to x1 and x2. Dually18, we have an
exact sequence

(4.9.3) ZJ → ⊕x∈ΣZ(x)→M∨ → 0,

17Other proofs, independent of 3.2, were found later: Artin-Winters [7], T. Saito [61],
Temkin [74].

18The cokernel of the last map is Z, as Y is geometrically connected, hence Γ(Y ) con-
nected.
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where Z(x) is the cokernel of the diagonal map Z → ZJx , with basis δ(x)
dual to δ′(x), and the first map is dual to the second map in (4.9.2).

(b) Description of N . The specialization sequence (1.2.4) for K = Z`(1)
gives an exact sequence
(4.9.4)

0→ H1(Xs)(1)→ H1(Xη)(1)→ Φ1(1)→ H2(Xs)(1)→ H2(Xη)(1)→ 0,

where H i(−) = H i(−,Z`), Φi := H i(Xs, RΦ(Z`)). The vanishing cycle
groups RqΦ(Z`) were calculated by Deligne in ([3], XV 3) (as a special case
of pencils with ordinary quadratic singularities). The complex RΦ(Z`) is
concentrated in degree 1 and on the set Σ of double points of Xs, so that

(4.9.5) Φ1(1) = ⊕x∈ΣΦ1(1)x,

and, with the choice of the ordering on Jx made above, Φ1(1)x has a distin-
guished basis δ′x, called the vanishing cycle at x:

(4.9.6) Φ1(1)x = Z`δ
′
x.

By definition (4.1.7), M` = T`(Aη)/T`(A
0
s) = H1(Xη)(1)/H1(Xs)(1), hence,

by (4.9.4),

(4.9.7) M` = Ker(Φ1(1)→ H2(Xs)(1)).

Dually to (4.9.5) and (4.9.6), we have

(4.9.8) H1
Σ(Xs, RΨ(Z`)) = ⊕x∈ΣH

1
x(Xs, RΨ(Z`)),

with H1
x(Xs, RΨ(Z`)) dual to Φ1

x(1) (with values in Z`), with dual basis δx:

(4.9.9) H1
x(Xs, RΨ(Z`)) = Z`δx

The monodromy operator N on U = T`(Aη) = H1(Xη) factors (by definition
of RΦ) through a sum of local variation maps

(4.9.10) Nx : Φ1
x(1) = Z`.δ

′
x → H1

x(Xs, RΨ(Z`)) = Z`.δx,

i.e., we have a commutative diagram

(4.9.11) H1(Xη)(1)

N
��

// ⊕x∈ΣΦ1
x(1)

⊕Nx
��

H1(Xη) ⊕x∈ΣH
1
x(Xs, RΨ(Z`))oo

,

19



where Nx is an isomorphism, the Picard-Lefschetz isomorphism (see 6.1),
given by

(4.9.12) Nx(δ
′
x) = −δx.

Using duality and the cospecialization sequence, dual to (4.9.4),

(4.9.13) H1(Xη)← H1
Σ(RΨ)← H0(X̃s)← H0(Xη)← 0,

where X̃s is the normalization ofXs, one checks that the factorization (4.9.11)
is refined into the following one:

(4.9.14) H1(Xη)(1)

N
��

//M ⊗ Z`

u⊗Z`
��

// ⊕x∈ΣΦ1
x(1)

⊕Nx
��

H1(Xη) M∨ ⊗ Z`
oo ⊕x∈ΣH

1
x(Xs, RΨ(Z`))oo

,

in which u : M →M∨ is the map making the following square commute:

(4.9.15) M

u

��

// ⊕x∈ΣZδ′(x)

−Id
��

M∨ ⊕x∈ΣZδ(x)oo

,

where the upper (resp. lower) row is the injection (4.9.2) (resp. surjection
(4.9.3)). In other words, u is induced by the negative definite quadratic form∑
−t2i on Zr =

∑
x∈Σ Z.

In the case considered by Igusa [33] — which was for Grothendieck the
starting point of the whole theory — the special fiber Xs is irreducible, and
Σ consists of a single point x. The rows of (4.9.15) are isomorphisms (hence
u also). If we identify δx with its image in M∨ ⊗Z` ⊂ H1(Xs) ⊂ H1(Xη) by
the bottom arrow of (4.9.14), (4.9.4) yields a short exact sequence

(4.9.16) 0→ H1(Xs)(1)→ H1(Xη)(1)
N→ Z`δx → 0,

where H1(Xs) is the fixed part, and Z`δx the toric part

M∨ ⊗ Z` = W (−1) = T`(T )(−1) = H1(Xs)(1)⊥,

where T is the maximal torus in A0
s, i.e., the 1-dimensional torus at x defined

by π∗Gm/Gm, π : X̃s → Xs being the normalization map. Elements σ
of the inertia group I act on H1(Xη)(1) by the symplectic transvections
a 7→ a− t`(σ)〈a, δx〉δx ([3], XV 3.4).

More generally, under the assumptions of 4.9 on X/S, if Xs is irreducible,
then the map on H2 in (4.9.4) is an isomorphism, and (4.9.11) yields an exact
sequence similar to (4.9.16), with Z`δx replaced by ⊕x∈ΣZ`δx, which is again
the toric part M∨ ⊗ Z`.
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5 Grothendieck’s dreams

In ([3], IX, Introduction), Grothendieck writes: “... le présent exposé peut
aussi être considéré comme une étude détaillée des phénomènes de mon-
odromie locale pour les H1 `-adiques (ou mieux encore, pour les H1 “mo-
tiviques”) des variétés projectives et lisses sur K. Dans cette optique, il
semble clair que les principaux résultats du présent exposé sont destinés
à être englobés dans une “théorie de Néron” pour des motifs de poids quel-
conque, i. e. pour des H i (`-adiques, ou de de Rham, ou de Hodge, etc.) avec
i quelconque, qu’on ne commence qu’à entrevoir à l’heure actuelle. (Cf. à ce
sujet [P. A. Griffiths, Report on variation of Hodge structures, à parâıtre]19,
et plus particulièrement les conjectures de Deligne 9.8 à 9.13 du rapport
cité.)”

These questions have been at the origin of several vast theories:
• mixed Hodge theory
• theory of weights in `-adic cohomology
• p-adic Hodge theory
• mixed motives.
Hodge theory came first, with Deligne’s fundamental work ([21], [22],

[24]), and subsequent developments on the analytic and algebraic theory
of variations of Hodge structures by Griffiths, Schmid, and many others.
Grothendieck’s conjectural “yoga” of weights over finite fields had inspired
Deligne for his mixed Hodge theory. In turn, mixed Hodge theory gave some
guidelines in his theory of mixed `-adic sheaves in [26].

At the end of ([3], IX, Introduction), Grothendieck observes that, in the
notation of 4.1, the Galois module Tp(Aη) (p the residual characteristic)
behaves quite differently from its `-adic analogue, ` 6= p (as indeed Tate’s
seminal article [73] had shown). He adds that Barsotti-Tate groups over η
play the role of p-adic local systems over η, those which appear in the p-
adic analysis of the H1 of projective, smooth varieties over η. He suggests
that in order to understand the higher H i’s from a p-adic viewpoint, the
category of Barsotti-Tate groups should be suitably enlarged, using inputs
from crystalline cohomology, this new theory he had just introduced. This
can be seen as the origin of p-adic Hodge theory, which really started only
a couple of years later with Fontaine’s foundational work on Grothendieck’s
problem of the mysterious functor.

The degenerating abelian varieties studied in ([3] IX) are the prototype
of mixed motives (over S, in cohomological degree 1). Grothendieck’s dream

19See [30]. See also [31], Deligne’s report [21], and Griffiths-Schmid’s survey [32], giving
the state of the art in 1975, taking into account Deligne’s work on Hodge theory.
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of generalizing this theory to higher degree is far from being fulfilled today,
even in the case of a base field, despite extensive work during the past forty
years (starting with Deligne’s theory of 1-motives in [24], up to the recent
achievements accomplished by Voevodsky and many others, for which even
a rough survey would by far exceed the scope of this report).

I will limit myself to a very brief update on `-adic vanishing cycles and
monodromy.

6 Update on the `-adic side

6.1 Picard-Lefschetz

The Picard-Lefschetz formula in `-adic cohomology proved by Deligne in ([3]
XV) — and used by Grothendieck in the proof of 4.2 — was the key tool
in the cohomological theory of Lefschetz pencils, developed in ([3] XVIII),
which provided the basic framework for Deligne’s first proof of the Weil
conjecture [23]. In the odd relative dimension n case (and already for n = 1,
in which case Deligne’s calculation in ([3] XV) showed that (2.7.1) holds
unconditionally), the proof given in ([3] XV 3.3) is of transcendental nature,
using a lifting to characteristic zero, a comparison theorem ([3] XIV) between
`-adic and Betti nearby cycles, and an explicit topological calculation in the
Betti case. A purely algebraic proof was found later [37], as a by-product of
Rapoport-Zink’s description of the monodromy operator N in the semistable
reduction case (see 6.3).

6.2 Structure of RΨ

Let S and Λ be as in 1.1, and let X be of finite type over S. Deligne proved in
([25], Th. finitude) that for K ∈ Db

c(Xη), we have RΨX(K) ∈ Db
c(Xs). Finer

results were obtained later in relation with the theory of perverse sheaves. It
was proved in [9] that the functor RΨ is right t-exact (see the appendix in [9]
for an alternate proof). Combined with a result of Gabber to the effect that
RΨ commutes with duality, it implies that RΨ is t-exact, and in particular
transforms perverse sheaves into perverse sheaves. Moreover, it was also
proved by Gabber that, for K perverse on X, RΦX(K)[−1] is perverse, and
that RΨ commutes with external products (see [11], [35]). It was proved by
Beilinson [10] that RΦ commutes with duality up to a twist. A new proof
and generalizations over higher dimensional bases (cf. 6.7) are given in [48].
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6.3 The semistable case

Assume that X/S has semistable reduction: X is regular, Xη is smooth,
and Xs is a reduced divisor with normal crossings in X, i.e., étale locally
at any geometric point x of Xs, X is defined by an equation of the form∏

1≤i≤r ti = π, where π is a uniformizing parameter of S and the ti’s are
part of a system of regular parameters at the strict localization of X at
x. In [56], Rapoport and Zink proved that the absolute purity assumption
needed to justify the calculation (2.7.1) was satisfied, and, moreover, that
the action of the inertia I on the the nearby cycle groups RqΨΛ was tame,
hence trivial (by (2.7.1)). It follows that I acts through its tame quotient
It, and if T is a topological generator of It, the action of T − 1 on RΨΛ
is nilpotent. In fact, imitating a construction of Steenbrink, they gave an
explicit description of this action, using a realization of RΨΛ as the total
complex of a certain bicomplex (the Rapoport-Zink bicomplex ), at least in
the strict semistable reduction case, i.e., when the special fiber Xs is a sum
of smooth components Di, 1 ≤ i ≤ m (see [56], [35]).

If d = dim(Xs) = dim(Xη) is the relative dimension of X/S, one has
(T − 1)d+1 = 0 on RΨΛ. As ΛXη [d] is perverse, so is RΨΛ[d] (6.2). When
d ≤ 1, or m ≤ 2 (in which cases (T − 1)2 = 0), or Λ = Q`, the monodromy
operator

(6.3.1) N : RΨΛ(1)→ RΨΛ

such that σ = exp(Nt`(σ)) for all σ ∈ I is defined, and it is more convenient
to work with N , which does not depend of the choice of a generator of It, and
is Galois equivariant. Let Per(Xs) denote the category of perverse sheaves
on Xs. As N is a (twisted) nilpotent endomorphism of RΨΛ in the abelian
category Per(Xs)[−d], it defines a monodromy filtration

(6.3.2) · · · ⊂Mi ⊂Mi+1 ⊂ · · · ,

characterized by NMi(1) ⊂ Mi−2, and N i : grMi
∼→ grM−i(−i) for i ≥ 0. As a

by-product of [56], T. Saito [62] calculated the associated graded object:

(6.3.3) grMk RΨΛ =
⊕

p−q=k,p≥0,q≥0

Kp,q,

with
Kp,q := (ap+q∗Λ)[−p− q](−p),

where
an : X(n)

s :=
∐

J⊂{1,··· ,m},|J |=n+1

⋂
i∈J

Di → Xs
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is the natural projection. The operator N : grMk → grMk−2(−1) sends Kp,q to
Kp−1,q+1(−1) by the identity20.

Example. If m = 2, so that Xs consists of a pair D1, D2 of smooth divisors
(of dimension d) crossing transversally, we have the following picture, where
C = D1 ∩D2:

(6.3.4) gr1 ΛC [−1](−1)

N

��

gr0 ΛD1 ⊕ ΛD2

gr−1 ΛC [−1]

,

where the isomorphism N : gr1
∼→ gr−1(−1) is the identity of ΛC [−1](−1).

Note that ΛD1 ⊕ΛD2 = ICXs [−d], where ICXs is the intersection complex of
Xs, i.e., j!∗(Λ[d]) (j : Xs−C ↪→ Xs the inclusion). The object (6.3.4) appears
in the Picard-Lefschetz formula in odd relative dimension (cf. [37]21). The
simplest case is X = S[t1, t2]/(t1t2 − π). It is sometimes called the Picard-
Lefschetz oscillator (cf. [65]), as the triple (gr1, gr−1, N) uniquely extends to
the standard representation of SL2 over Λ.

6.4 The weight-monodromy conjecture

Let X/S be proper, with strict semistable reduction. The monodromy filtra-
tion 6.3.2 induces a spectral sequence, called the weight spectral sequence

(6.4.1) Ei,j
1 = H i+j(Xs, grM−iRΨΛ)⇒ H i+j(Xη),

whose initial term can be re-written

(6.4.2) E−r,n+r
1 = ⊕q≥0,r+q≥0H

n−r−2q(X
(r+1+2q)
s )(−r − q)

thanks to (6.3.3). The differential d1 is a sum of restriction and Gysin maps.
Note that though (E1, d1) depends only on Xs, (6.4.1) does depend on X 22.

The weight spectral degenerates at E2. This was first proved for k fi-
nite [56], as a consequence of Weil II. 23. The general case was proved by
Nakayama [54] and Ito [43], independently.

20See also [38] for an alternate proof of the tameness of RΨΛ and an exposition of the
above calculations.

21There is a typo on p. 251, l. 18: |i| > −1 should be replaced by |i| > 1.
22actually only via X ⊗R/(π2), where S = SpecR, as shown by Nakayama [53].
23The complex analogue had been proved by Steenbrink [69], using Hodge theory
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Let M̃• be the abutment filtration of (6.4.1). For m ∈ Z, the monodromy

operator N on Hm(Xη) sends M̃i to M̃i−2(−1). A central problem in the
theory is the following conjecture, called the weight monodromy conjecture:

Conjecture 6.5. Assume that Λ = Q`. Then, for all m ∈ Z, the filtration
M̃• on Hm(Xη) is the monodromy filtration M• associated with the nilpotent

operator N , i.e., for all i ≥ 0, N i : grM̃i H
m ∼→ grM̃−iH

m(−i).

By the description of N given in (6.3.3), N induces isomorphisms at the
E1-level. As (6.4.1) degenerates at E2, 6.5 is equivalent to saying that N
induces isomorphisms at the E2-level. When k is finite, it follows from Weil
II that M̃• on Hn(Xη) is the weight filtration, up to shift: M̃r is the piece of
weight ≤ i + n. Therefore, in this case, 6.5 is equivalent to saying that the
monodromy filtration M• is pure, i.e., the graded pieces of grM• are pure.

Here is the status of 6.5:
- for k finite, X/S coming by localization from a proper, flat scheme over

a smooth curve over k, with semistable reduction at a closed point, 6.5 was
proved by Deligne ([26], 1.8.5);

- in the general equicharacteristic p case, by Ito [43];
- for k finite and dim(X/S) ≤ 1 (resp. dim(X/S) ≤ 2) by Grothendieck

(4.4 (b)) (resp. by Rapoport-Zink ([56], 2.13, 2.23);
- for certain 3-folds Xη, and certain p-adically uniformized varieties Xη

([42], [44]);
- for Xη a set-theoretic complete intersection in a projective space (or in

a smooth projective toric variety), by Scholze [66].
The general case is still open.

6.6 Euler-Poincaré characteristics of `-adic sheaves

Deep relations between `-adic nearby cycles and global Euler-Poincaré char-
acteristics were discovered by Deligne in the mid 1970’s, spurring a new line
of research which has been active for the past forty years. See ([39], [41]) for
(partial) surveys. Breakthroughs were made recently by Beilinson [12] and
T. Saito [64] in their work on singular supports and characteristic cycles of
`-adic sheaves.

6.7 Vanishing cycles over higher dimensional bases

Though, in general, vanishing cycles don’t behave well in families, in the
early 1980’s Deligne proposed a theory of functors RΨ and RΦ over general
bases. It was summarized in [47], and revisited and completed in [55], [40].
This formalism is used in [29] and [64].
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7 Bounds for the exponent of unipotence

This section is devoted to the proof of 2.3. This proof is due to Gabber.

The following lemma is well known. We give it for lack of a suitable
reference.

Lemma 7.1. Let S = (S, s, η) be a strictly local trait, Λ be as in 1.1, (X,Z)
a strict semistable pair over S in the sense of de Jong ([46], 6.3). Let u :
X − Zf ↪→ X be the open immersion, where Zf is the horizontal part of Z,
in de Jong’s notation. Then, for all q ∈ Z, the inertia group I acts trivially
on RqΨX(Ruη∗Λ) (resp. RqΨX(uη!Λ)).

Proof. The assertion relative to Ruη∗Λ is a particular case of ([53], 3.5) (see
also ([36], 8.4.4). A direct proof can be given as follows. The conclusion
has to be checked on the stalks at geometric points x of Xs. By the local
description of strict semistable pairs ([46], 6.4), étale locally at such a point
x, X is isomorphic to X1 ×S X2, where X1 = S[t1, · · · , tn]/(t1 · · · tn − π),
X2 = S[s1, · · · , sm], and the horizontal part Zf is X1 ×S D, where D =
S[s1, · · · , sm]/(s1 · · · sr), with 1 ≤ r ≤ m, and π is a uniformizing parameter
of S. We may therefore assume that X = X1×SX2 and Zf = X1×SD. Then
Xη−Zη = X1×S (X2−D), and u = IdX1×S v, where v : X2−D ↪→ X2 is the
inclusion. As Ruη∗Λ = ΛX1η�Rvη∗Λ (smooth base change), the commutation
of RΨ with external tensor products ([35], 4.7) implies:

(7.1.1) RΨX(Ruη∗Λ) = RΨX1(Λ)�L RΨX2(Rvη∗Λ).

As X2 is smooth over S and D is a relative divisor with normal crossings in
X2, RΦX2(Rvη∗Λ) = 024, so that

(7.1.2) RΨX2(Rvη∗Λ) = Rvs∗Λ,

and in particular I acts trivially on RΨX2(Rvη∗Λ). On the other hand, I acts
trivially on RqΨX1(Λ) for all q (cf. 6.3) for all q. Moreover, by (2.7.1), the
stalks of RqΨX1(Λ) are finitely generated and free over Λ, and the same is
true of the RqΨX2(Rvη∗Λ) by (7.1.2). Therefore, by Künneth, (7.1.1) gives

(7.1.3) RqΨX(Ruη∗Λ) = ⊕i+j=qRiΨX1(Λ)�Rjvs∗(Λ).

As I acts trivially on both factors of each summand in the right hand side,
the conlusion follows in this case. Similarly, we have

(7.1.4) RΨX(uη!Λ) = RΨX1(Λ)�L RΨX2(vη!Λ),

24As can be checked by induction on r, using relative purity, see ([63], Prop. 3.15) for
a generalization.
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and

(7.1.5) RΨX2(vη!Λ) = vs!Λ,

([3], vol. II, XIII 2.1.11, p.105)25 So (7.1.4) and (7.1.5) yield

(7.1.6) RΨX(uη!Λ) = us!RΨX−Zf (Λ).

In particular, I acts trivially on RqΨX(uη!Λ) for all q, which finishes the
proof.

The next lemma is also more or less standard, but again we couldn’t find
a suitable reference26. Its statement and proof are due to Gabber.

Lemma 7.2. Let S = (S, s, η) be a strictly local complete trait. Let X be a
proper scheme over S, which is a compactification of an open subscheme Xη

of its generic fiber Xη. Let n ∈ N. Then there exists a finite extension of

traits S ′ = (S ′, s′, η′)→ S, a proper simplicial scheme X
′
• over S ′, an S ′-map

h• : X
′
• → X

′
:= X ×S S ′ satisfying the following conditions:

(i) The morphism X
′
• → X

′
induced by h• is a proper hypercovering;

(ii) For 0 6 r 6 n, if C is a connected component of X
′
r, then either

C ×X′ X
′
η′ = ∅ (where X ′η′ := Xη ×η η′), or there exists a strictly local

complete trait S ′′ between S and S ′, a strict semistable pair (Y, Z) over S ′′

such that C = Y ×S′′ S ′ and C ×X′ X
′
η′ = (Y − Z)×S′′ S ′.

Proof. We will prove, by induction on n, the existence of S ′ and h• satisfying
(i), (ii), and in addition,

(iii) The n-truncated simplicial scheme X
′
6n is split, in the sense of ([1],

Vbis, 5.1.1).
Assume first n = 0. Decompose the set I of reduced irreducible compo-

nents Ci (1 6 i 6 r) of X into I = I1

∐
I2, where, for i ∈ I1, Ci ∩Xη = ∅,

and for i ∈ I2, Ci ∩ Xη 6= ∅. For each i ∈ I2, apply ([46], 6.5) to the pair
consisting of Ci and the (proper) closed subset Ci − (Ci ∩ Xη). We find a
finite extension of traits S ′′i → S, a strict semistable pair (C ′′i , Zi) over S ′′i ,
with geometrically irreducible generic fiber C ′′iη′′i

, an alteration C ′′i → Ci over

S, such that C ′′i ×X′′i X
′′
iη′′i

= C ′′i − Zi. As the generic fiber of C ′′i remains

connected after any finite extension of traits, we can find a common finite

25It can also be deduced from (7.1.2) by duality, as RΨ commutes with duality. See
again ([63], Prop. 3.15) for a generalization.

26The closest one seems to be ([16], 2.2), but it doesn’t suffice, as the authors assume
Xη = Xη.
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extension S1 of the S ′′i such that the components C ′′i ×S′′i S1 satisfy condition
(ii). However, C ′′i ×S′′i S1 → Ci×S S1 is not necessarily surjective. To correct
this, we proceed as in the proof of ([16], 2.2). We take a finite extension S ′ of
S1, normal over S with group G := Aut(S ′/S) and replace C ′′i ×S′′i S1 by the
disjoint sum, for g ∈ G, of the C ′′i,g deduced from C ′′i ×S′′i S1 by base change

by the composite S ′
g→ S ′ → S1. Denote this disjoint sum by C ′i. Let

X
′
0 := (

∐
i∈I1

Ci ×S S ′)
∐

(
∐
i∈I2

C ′i)

Then the map
cosk0(X

′
0/X

′
)→ X

′

satisfies conditions (i) and (ii) (and trivially (iii)) for n = 0.
Assume now that 7.2 has been proved up to n, and let us prove it for

n + 1. Take S ′, h• : X
′
• → X

′
:= X ×S S ′ satisfying conditions (i), (ii),

(iii). Let us construct a finite extension T of S ′, with generic point ζ, and
v• : V• → X×ST satisfying conditions (i), (ii), (iii) up to n+1 for S ′ replaced

by T and (X
′
, X ′η′) replaced by (X×S T,Xη×η ζ). Note that these conditions

are stable under finite extensions of traits. Let

W := (coskn(X
′
6n/X

′
))n+1

We proceed as before with (W,W×X′X
′
η′) in place of (X,Xη). We find a finite

extension T of S ′, a proper surjective morphism Wn+1 → WT := W×S′ T , for
which the connected components of Wn+1 satisfy (ii) (relative to T ). Then, as
in the proof of ([16], 2.2), we extend the split n-truncated simplicial scheme

V6n := X
′
6n×S′ T over X

′
T := X ×S T to a split (n+ 1)-truncated simplicial

scheme V6n+1 over X
′
T by ([1], Vbis, 5.1.3), namely, by putting

Vn+1 := Wn+1

∐
(

∐
[n+1]�[i],i≤n

N(Vi))

where N(Vi) is the complement of the union of the images of the degener-
acy morphisms with target Vi, and defining face and degeneracy operators
between Vn+1 and Vn as in loc. cit.. Finally, we define

V• := coskn+1(V6n+1/X
′
T ),

and v• : V• → X×ST to be the canonical extension of V6n+1 → X
′
T = X×ST .

The pair (V•, v•) over T satisfies conditions (i), (ii), (iii) up to n+ 1.
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7.3

Let’s prove 2.3. We may assume S strictly local, and, furthermore, complete
(which doesn’t change the inertia I nor H∗(Xη,Λ) (resp. H∗c (Xη,Λ)). We
may assume Xη is nonempty. Let d be its dimension. Recall that

H i(Xη,Λ) = H i
c(Xη,Λ) = 0

for i > 2d ([1], X 4.3). Apply 7.2 for an integer n > 2d and a compactification
X of Xη over S. Let u : Xη ↪→ Xη be the open immersion. Take a finite

extension S ′ of S, a proper simplicial scheme X
′
• over S ′, and an S ′-map

h• : X
′
• → X

′
= X ×S S ′ satisfying conditions (i) and (ii) for n. Consider

the cartesian square

(7.3.1) (X ′•)η

��

u•,η // (X
′
•)η

h•η
��

Xη

uη // Xη.

Let I1 = Gal(η/η′). It suffices to show that for any 0 6 m 6 2d, and g ∈ I1,
(g − 1)m+1 = 0 on Hm(Xη,Λ) and Hm

c (Xη,Λ). We have

Hm(Xη,Λ) = Hm(Xη, Ru∗Λ),

Hm
c (Xη,Λ) = Hm(Xη, u!Λ),

As h• is a proper hypercovering of X
′
, hence h•η a proper hypercovering of

Xη = X
′
η, by cohomological descent and proper base change, we deduce from

(7.3.1)

Hm(Xη, Ru∗Λ) = Hm(X
′
•η, R(u•η)∗Λ),

Hm(Xη, u!Λ) = Hm(X
′
•η, (u•η)!Λ).

As X
′
• is proper over S ′, we have

Hm(X
′
•η, R(u•η)∗Λ) = Hm(X

′
•s′ , RΨR(u•η)∗Λ),

where RΨ is relative to X
′
• over S ′ (we use here a (straightforward) extension

of the formalism of RΨ to simplicial schemes). Similarly,

Hm(X
′
•η, (u•η)!Λ) = Hm(X

′
•s′ , RΨ(u•η)!Λ).

Therefore, by the spectral sequences

Eij
2 = H i(X

′
•s′ , R

jΨR(u•η)∗Λ)⇒ H i+j(X
′
•s′ , RΨR(u•η)∗Λ),
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Eij
2 = H i(X

′
•s′ , R

jΨ(u•η)!Λ)⇒ H i+j(X
′
•s′ , RΨ(u•η)!Λ),

it suffices to show that for all g ∈ I1, g acts trivially on Eij
2 for 0 6 i, j 6 m

and i+j = m. The map defined by g−1 on Eij
2 factors through H i(X

′
•s′ , (g−

1)RjΨR(u•η)∗Λ) (resp. H i(X
′
•s′ , (g − 1)RjΨ(u•η)!Λ)). Therefore it suffices

to show

(∗) H i(X
′
•s′ , (g − 1)RjΨR(u•η)∗Λ) = H i(X

′
•s′ , (g − 1)RjΨ(u•η)!Λ) = 0

for 0 6 i, j 6 m, i+ j = m. Now, for any sheaf of Λ-modules F• on X
′
•s′ , we

have the descent spectral sequence

Eab
1 = Hb(X

′
a,s′ ,Fa)⇒ Ha+b(X

′
•s′ ,F•).

In particular, given i > 0, if for all 0 6 a 6 i, Fa = 0, then H i(X
′
•s′ ,F•) = 0.

Therefore, to show (*) we need only to prove that, for 0 6 i 6 m (and any
j), we have

(∗∗) (g − 1)RjΨR(uiη)∗Λ = (g − 1)RjΨ(uiη)!Λ = 0

(on X
′
is′). This is checked at geometric points x of X

′
is′ . As i 6 m 6 2d 6 n,

X
′
i satisfies condition (ii) of 7.2. If x is above a point x of a connected

component C such that C ×X′ X
′
η′ = ∅ (hence C ×X′ X

′
η′ = ∅), then

RΨ(Rui,∗Λ)x = RΨ(ui,!Λ)x = 0,

and there is nothing to prove. Otherwise, x is above a point x of a component
C satisfying the conditions stated in (ii) relative to a semistable pair (Y, Z)
over S ′′. Then, if I ′′ := Gal(η/η′′) (a group containing I1), by 7.1 I ′′ acts
trivially on RjΨ(Rui,∗Λ)x and RjΨ(ui,!Λ)x, hence (**) is satisfied at x. This
completes the proof of 2.3.
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1964–1965 (SGA 4), dirigé par M. Artin, A. Grothendieck, J.-L. Verdier.

[2] SGA 5. Cohomologie l-adique et fonctions L. Lecture Notes in Mathematics,
Vol. 589. Springer-Verlag, Berlin-New York, 1977. Séminaire de Géometrie
Algébrique du Bois-Marie 1965–1966 (SGA 5), dirigé par A. Grothendieck.
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International des Mathématiciens (Nice, 1970), Tome 1, pages 473–477.
Gauthier-Villars, Paris, 1971.

[60] K. A. Ribet. On modular representations of Gal(Q/Q) arising from modular
forms. Invent. Math., 100(2):431–476, 1990.

[61] T. Saito. Vanishing cycles and geometry of curves over a discrete valuation
ring. Amer. J. Math., 109(6):1043–1085, 1987.

[62] T. Saito. Weight spectral sequences and independence of `. J. Inst. Math.
Jussieu, 2(4):583–634, 2003.

[63] T. Saito. Wild ramification and the cotangent bundle. J. Algebraic Geom.
26(3):399–473, 2017

[64] T. Saito. The characteristic cycle and the singular support of a constructible
sheaf. Invent. Math., 207(2):597–695, 2017. Correction to: The character-
istic cycle and the singular support of a constructible sheaf. Invent. Math.,
216(3):1005–1006, 2019.

[65] S. Schieder. Picard-Lefschetz oscillators for the Drinfeld–Lafforgue–Vinberg
degeneration for SL2. Duke Math. J., 167(5):835–921, 2018.

[66] P. Scholze. Perfectoid spaces. Publ. Math. Inst. Hautes Études Sci., 116:245–
313, 2012.
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