Elementary abelian ℓ -groups and mod ℓ equivariant étale cohomology algebras

Luc Illusie

This is a report on joint work with W. Zheng [8]. It grew out of questions that Serre asked me about traces for finite group actions. These questions were the subject of the previous joint papers ([6], [7]). They led us to consider more generally actions of algebraic groups and revisit, in the context of mod ℓ étale cohomology, a theory of equivariant cohomology developed in the early 70's by Quillen for actions of compact Lie groups on topological spaces ([14], [15]).

1. Finite ℓ -group actions, fixed point sets and localizations

Let k be an algebraically closed field of characteristic p and ℓ a prime number $\neq p$. Let X be a separated k-scheme of finite type, acted on by a finite ℓ -group G. Serre ([18], 7.2) observed that we have the following identity

(1.1)
$$\chi(X) \equiv \chi(X^G) \bmod \ell.$$

Here X^G is the fixed point set of G, and $\chi = \chi(-, \mathbf{Q}_{\ell}) = \sum (-1)^i \dim H^i(-, \mathbf{Q}_{\ell})$ denotes an Euler-Poincaré ℓ -adic characteristic. It has been known since the early sixties that this integer does not depend on ℓ , as follows from Grothendieck's cohomological formula for the zeta function of a variety over a finite field. Recall also that, by a theorem of Laumon [11], $\chi = \chi_c := \sum (-1)^i \dim H_c^i(-, \mathbf{Q}_{\ell})$.

The proof of (1.1) is immediate: by dévissage one reduces to the case where $G = \mathbf{Z}/\ell\mathbf{Z}$; in this case, as $|G| = \ell \neq p$ and G acts freely on $X - X^G$, by a theorem of Deligne (cf. ([6], 4.3)) we have $\chi_c(X - X^G) = \ell \chi_c((X - X^G)/G)$, hence $\chi_c(X) = \chi_c(X^G) + \chi_c(X - X^G)$, and (1.1) follows from Laumon's result. When $G = \mathbf{Z}/\ell\mathbf{Z}$, for $g \in G$ we have a more precise result:

(1.2)
$$\operatorname{Tr}(g, H_c^*(X, \mathbf{Q}_{\ell})) = \chi(X^G) + \chi(X - X^G)/G)\operatorname{Reg}_G(g),$$

where $\text{Tr}(g, H_c^*) := \sum (-1)^i \text{Tr}(g, H_c^i)$ and Reg_G denotes the character of the regular representation of G. In fact (([6], (2.3)) $\text{Tr}(g, H_c^*) = \text{Tr}(g, H^*)$ (an equivariant form of Laumon's theorem).

In particular, if ℓ does not divide $\chi(X)$, then X^G is not empty. This is the case, for example, if X is the standard affine space \mathbf{A}_k^n of dimension n over k, as (1.1) implies $\chi(X^G) \equiv 1 \mod \ell$. Serre ([18], 1.2) remarks that in this case one can show $X^G \neq \emptyset$ in a much more elementary way: reduce to the case where k is the algebraic closure of a finite field $k_0 = \mathbf{F}_q$ and the action of K on K on

have the stronger property $X_0(k_0)^G \neq \emptyset$, as $|X_0(k_0)| = q^n$ and ℓ divides the cardinality of any non trivial orbit. Given a field K and an action of a finite ℓ -group G on \mathbf{A}_K^n , Serre ([18], loc. cit.) asks whether $\mathbf{A}_K^n(K)^G$ is not empty. This is the case for $n \leq 2$ (elementary for n = 1, by Esnault-Nicaise ([5], 5.12) for n = 2). The answer is unknown for n = 3, $K = \mathbf{Q}$, |G| = 2. In the positive direction, in addition to the case where K is finite, Esnault-Nicaise ([5], 5.17) prove that the answer is yes if K is a henselian discrete valuation field of characteristic zero whose residue field is of characteristic $\neq \ell$, and which is either algebraically closed or finite of cardinality q with $\ell |q - 1$. In the case K = k, Smith's theory gives more than the existence of a fixed point. Indeed we have:

Theorem 1.3 ([18], 7.9) ([6], 7.3, 7.8). Let X be an algebraic space separated and of finite type over k endowed with an action of a finite ℓ -group G. Then, if X is mod ℓ acyclic, so is X^G .

Here, we say that Y/k is $mod \ \ell$ acyclic if $H^*(Y, \mathbf{F}_{\ell}) = H^0(Y, \mathbf{F}_{\ell}) = \mathbf{F}_{\ell}$. It is shown in *loc. cit.* that the conclusion of 1.3 still holds if the assumption $\ell \neq p$ made at the beginning of this section is dropped.

Sketch of proof of 1.3. As in the proof of (1.1) we may assume by dévissage that $G = \mathbf{Z}/\ell\mathbf{Z}$. In this case, Serre's proof exploits the action of the algebra $\mathbf{F}_{\ell}[G]$ on $\pi_*(\mathbf{Z}/\ell\mathbf{Z})$, where $\pi: X \to X/G$ is the projection. The proof given in [6], which uses equivariant cohomology, is close in spirit to that of Borel [2] in the topological case. Let us first give a general definition.

For an algebraic space Y separated and of finite type over k endowed with an action of a finite group G, $R\Gamma(Y, \mathbf{F}_{\ell})$ is an object of $D^{+}(\mathbf{F}_{\ell}[G])$. The equivariant cohomology complex of Y is defined as

(1.3.1)
$$R\Gamma_G(Y, \mathbf{F}_{\ell}) := R\Gamma(G, R\Gamma(Y, \mathbf{F}_{\ell})),$$

which we will abbreviate here to $R\Gamma_G(Y)$. It has a natural multiplicative structure, and $H_G^*(Y) = H^*R\Gamma_G(Y)$ is a graded algebra over the graded \mathbf{F}_{ℓ} -algebra $H_G^* = H^*(G, \mathbf{F}_{\ell})$. For $G = \mathbf{Z}/\ell\mathbf{Z}$, we have

(1.3.2)
$$H_{\mathbf{Z}/\ell\mathbf{Z}}^* = \begin{cases} \mathbf{F}_{\ell}[x] & \text{if } \ell = 2\\ \mathbf{F}_{\ell}[x]/(x^2) \otimes \mathbf{F}_{\ell}[y] & \text{if } \ell > 2, \end{cases}$$

where x is the tautological generator of $H^1_{\mathbf{Z}/\ell\mathbf{Z}}$, and, for $\ell > 2$, $y = \beta x$, where $\beta : H^1_{\mathbf{Z}/\ell\mathbf{Z}} \xrightarrow{\sim} H^2_{\mathbf{Z}/\ell\mathbf{Z}}$ is the Bockstein operator (associated with the exact sequence $0 \to \mathbf{F}_{\ell} \to \mathbf{Z}/\ell^2\mathbf{Z} \to \mathbf{F}_{\ell} \to 0$).

Coming back to the proof of 1.3, the key point is that (for $G = \mathbf{Z}/\ell\mathbf{Z}$) the restriction map

(1.3.3)
$$H_G^*(X) \to H_G^*(X^G) = H_G^* \otimes H^*(X^G),$$

which is a map of graded H_G^* -modules, becomes an isomorphism after inverting $\beta x \in H^2_{\mathbf{Z}/\ell\mathbf{Z}}$. Indeed, the assumption that X is mod ℓ acyclic implies that $H_G^*(X) = H_G^*$, hence $H^*(X^G)$ has to be of rank one over \mathbf{F}_ℓ . The assertion about (1.3.3) follows from the fact that $H_G^*(X, j_!\mathbf{F}_\ell)$ is of bounded degree, where $j: X - X^G \hookrightarrow X$ is the inclusion, as X/G is of finite ℓ -cohomological dimension.

The above key point is similar to various *localization formulas* considered by Quillen, Atiyah-Segal, Goresky-Kottwitz-MacPherson. For actions of elementary abelian ℓ -groups¹ we have the following result, which is an analogue of Quillen's theorem ([14], 4.2):

Theorem 1.4 ([6], 8.3). Let X be an algebraic space separated and of finite type over k endowed with an action of an elementary abelian ℓ -group G of rank r, and let

$$e := \prod_{\xi \in H_G^1 - \{0\}} \beta \xi \in H_G^{2(\ell^r - 1)},$$

where $\beta: H_G^1 \to H_G^2$ is the Bockstein operator. Then the restriction map

$$H_G^*(X)[e^{-1}] \to H_G^*(X^G)[e^{-1}]$$

is an isomorphism.

The proof in ([6], 8.3) is by dévissage on G. In ([14], 4.2) it is deduced from general structure theorems for $H_G^*(X, \mathbf{F}_{\ell})$ for actions of compact Lie groups G on certain topological spaces X. This led us to investigate algebraic analogues of these results.

${\bf 2.}$ Quotient stacks and equivariant cohomology algebras : finiteness theorems

2.1. If G is a compact Lie group, we have a classifying space BG, which is the base of a universal G-torsor PG, whose total space is contractible. If X is a G-space², i. e. a topological space endowed with a continuous action of G, the projection $w: PG \times X \to BG$ induced by $PG \to BG$ factors through the quotient

$$PG \wedge^G X := (PG \times X)/G,$$

¹An elementary abelian ℓ -group is a group G isomorphic to the direct product of a finite number r of cyclic groups of order ℓ . The integer r is called the rank of G.

²We let groups act on spaces on the right.

where G acts by (p, x)g = (pg, xg), giving a commutative diagram

$$(2.1.1) PG \times X \xrightarrow{u} PG \wedge^{G} X .$$

Here u makes $PG \times X$ into a G-torsor over $PG \wedge^G X$, and v is a locally trivial fibration of fiber X. The torsor u is universal in the sense that, up to homotopy, maps from a compact space T to $PG \wedge^G X$ correspond to pairs of a G-torsor P on T and an equivariant map from P to $PG \times X$.

Let ℓ be a prime number. The equivariant mod ℓ cohomology complex of X, $R\Gamma_G(X, \mathbf{F}_{\ell})$, is defined, à la Borel, by

(2.1.2)
$$R\Gamma_G(X, \mathbf{F}_{\ell}) := R\Gamma(PG \wedge^G X, \mathbf{F}_{\ell}).$$

Its cohomology,

$$H_G^*(X, \mathbf{F}_\ell) := H^*R\Gamma_G(X, \mathbf{F}_\ell),$$

is a graded \mathbf{F}_{ℓ} -algebra over $H^*(BG, \mathbf{F}_{\ell}) = H_G^*(pt, \mathbf{F}_{\ell})$. Using v one can rewrite (2.1.2) as

(2.1.3)
$$R\Gamma_G(X, \mathbf{F}_{\ell}) = R\Gamma(BG, R\Gamma(X, \mathbf{F}_{\ell})),$$

where by abuse $R\Gamma(X, \mathbf{F}_{\ell}) \in D^{+}(BG, \mathbf{F}_{\ell})$ denotes $Rv_{*}\mathbf{F}_{\ell}$ (a locally constant complex of value $R\Gamma(X, \mathbf{F}_{\ell})$). This equivariant cohomology is studied in Quillen's papers [14], [15]. One of the main results is that $H^{*}(BG, \mathbf{F}_{\ell})$ is a finitely generated \mathbf{F}_{ℓ} -algebra, and, if $H^{*}(X, \mathbf{F}_{\ell})$ is finite dimensional, then $H^{*}_{G}(X, \mathbf{F}_{\ell})$ is finite over $H^{*}(BG, \mathbf{F}_{\ell})$ ([14], 2.1, 2.2, 2.3).

2.2. Similar results are available in the setting of mod ℓ étale cohomology and actions of algebraic groups. From now on we denote by k an algebraically closed field of characteristic $p \geq 0$ and ℓ a prime number $\neq p$. Let G be an algebraic group over k, and let X be an algebraic space of finite type over k³, endowed with an action of G. Consider the quotient stack [X/G] ([12], 3.4.2). This is an Artin stack⁴ of finite type over k, which comes equipped with a surjection $u: X \to [X/G]$ making X into a universal G-torsor over

 $^{^3}$ By an algebraic group over k we mean a k-group scheme of finite type. By an algebraic space X over k we mean the quotient of a k-scheme by an étale equivalence relation ; we do not assume X to be quasi-separated.

⁴By an Artin stack over k we mean a stack in groupoids \mathcal{X} over the big fppf site of Spec k such that the diagonal $\mathcal{X} \to \mathcal{X} \times_k \mathcal{X}$ is representable (by algebraic spaces) and there exists a smooth surjective k-morphism $X \to \mathcal{X}$ with X a k-algebraic space.

[X/G], in the sense that the groupoid of points of [X/G] with values in a k-algebraic space T consists of pairs of a G-torsor P on T and an equivariant map $P \to X$. The quotient stack $[\operatorname{Spec} k/G]$ is called the *classifying stack* of G and is denoted BG. We have a 2-commutative diagram similar to (2.1.1):

$$(2.2.1) X \xrightarrow{u} [X/G] ,$$

$$\downarrow^{w} v$$

$$RG$$

where $v: [X/G] \to [\operatorname{Spec} k/G] = BG$ is an fppf locally trivial fibration of fiber X. The equivariant mod ℓ cohomology complex of X, $R\Gamma_G(X, \mathbf{F}_{\ell})$, is defined, similarly to (2.1.2), by

(2.2.2)
$$R\Gamma_G(X, \mathbf{F}_{\ell}) := R\Gamma([X/G], \mathbf{F}_{\ell}).$$

The cohomology on the right hand side is that of the smooth-étale site of [X/G]. As above, using v, one can rewrite it as

(2.2.3)
$$R\Gamma_G(X, \mathbf{F}_{\ell}) = R\Gamma(BG, R\Gamma(X, \mathbf{F}_{\ell})),$$

where by abuse $R\Gamma(X, \mathbf{F}_{\ell}) \in D^{+}(BG, \mathbf{F}_{\ell})$ denotes $Rv_{*}\mathbf{F}_{\ell}$. Thus, if G is a finite (discrete) group, the definition given in (2.2.2) agrees with that given in (1.3.1). The cohomology

$$H_G^*(X, \mathbf{F}_\ell) := H^*R\Gamma_G(X, \mathbf{F}_\ell)$$

is a graded \mathbf{F}_{ℓ} -algebra over the graded algebra $H^*(BG, \mathbf{F}_{\ell})$.

By definition, $R\Gamma_G(X, \mathbf{F}_{\ell})$ depends only on the stack [X/G], which can have various descriptions as a quotient stack. For example, if G is a subgroup of an algebraic group G' over k, we have a natural equivalence

$$(2.2.4) [X/G] \stackrel{\sim}{\to} [X \wedge^G G'/G'],$$

called induction formula, and hence an isomorphism

$$(2.2.5) H_G^*(X, \mathbf{F}_{\ell}) \xrightarrow{\sim} H_{G'}^*(X \wedge^G G', \mathbf{F}_{\ell}).$$

Here $X \wedge^G G'$ is the quotient of $X \times G'$ by the diagonal action of G, an fppf locally trivial fibration of fiber X over the homogeneous space $G'/G = \operatorname{Spec} k \wedge^G G'$.

The following theorem is similar to the results of Quillen mentioned at the end of 2.1:

Theorem 2.3 ([8], 4.6). With the notations of 2.2, assume X of finite presentation over k. Then $H^*(BG, \mathbf{F}_{\ell})$ is a finitely generated \mathbf{F}_{ℓ} -algebra, and $H^*_G(X, \mathbf{F}_{\ell})$ is a finite $H^*(BG, \mathbf{F}_{\ell})$ -module.

In an earlier version of [8] this result was first proved by Illusie-Zheng in the case that G is an affine group, or a semi-abelian variety. A few more cases were suggested to us by Brion. The day after my talk at the conference, Deligne kindly provided me with a proof of the general case [3].

Remark 2.4. The result established in ([8], 4.6) is slightly more general. One can replace \mathbf{F}_{ℓ} by a noetherian $\mathbf{Z}/n\mathbf{Z}$ -algebra Λ , with n invertible in $k: H^*(BG, \Lambda)$ is a finitely generated Λ -algebra. One can also replace \mathbf{F}_{ℓ} by an object K of $D_c^b([X/G], \Lambda)$, i. e. the full subcategory of $D^b([X/G], \Lambda)$ consisting of complexes (over the lisse-étale site) with bounded, cartesian, constructible cohomology (the datum of a cartesian, constructible sheaf of Λ -modules on [X/G] is equivalent to the datum of a constructible sheaf of Λ -modules F on X together with an action of G on F compatible with the action of G on G on G if G acts trivially on G0, this action factors through the finite discrete group $\pi_0(G)$ 1. Then $H_G^*(X,K):=H^*([X/G],K)$ is a finite $H^*(BG,\Lambda)$ -module.

Examples 2.5. Let Λ be as in 2.4.

(a) Let r be an integer ≥ 1 . For $1 \leq i \leq r$, let $c_i \in H^{2i}(BGL_{r,k}, \Lambda(i))$ be the i-th Chern class of the tautological bundle \mathcal{O}^r over $BGL_{r,k}$. Let $\Lambda[x_1, \dots, x_r]$ be the polynomial algebra over Λ on generators x_i of degree 2i for $1 \leq i \leq r$. Then $H^q(BGL_{r,k}, \Lambda) = 0$ for q odd, and the homomorphism of Λ -algebras

$$\Lambda[x_1, \cdots, x_r] \to H^{2*}(BGL_{r,k}, \Lambda(*)) := \bigoplus_{i>0} H^{2i}(BGL_{r,k}, \Lambda(i))$$

sending x_i to c_i is an isomorphism.

This result has been known since the 60's. A proof of the analogous result for de Rham cohomology, consisting in approximating $BGL_{r,k}$ by grassmannians, was communicated to me by Deligne in 1967. The argument is sketched by Behrend in ([1], 2.3.2).

(b) Let G be a semi-abelian variety over k, extension of an abelian variety A of dimension g by a torus T of dimension r. Then we have a short exact sequence of free Λ -modules

$$0 \to H^1(A,\Lambda) \to H^1(G,\Lambda) \to H^1(T,\Lambda) \to 0,$$

of successive ranks 2g, 2g + r, r, and isomorphisms of algebras

$$H^*(G,\Lambda) \simeq \Lambda^*_{\Lambda}(H^1(G,\Lambda)),$$

$$H^{2*}(BG,\Lambda) \simeq S^*_{\Lambda}(H^1(G,\Lambda)),$$

where $H^1(G,\Lambda)$ is placed in degree 2, and $H^q(BG,\Lambda) = 0$ for q odd.

2.6. Sketch of proof of 2.3. When G is affine, one can embed G into $GL_{r,k}$ for some r, and by the induction formula (2.2.5) one is reduced to the case $G = GL_{r,k}$. One can then imitate Quillen's proof, using 2.5 (a). The general case is reduced to this one, using the general structure of algebraic groups over k. We may assume G reduced. Then G has a filtration $1 \subset G_2 \subset G_1 \subset G_0 = G$, with G_{i+1} normal in G_i , and successive quotients : G_0/G_1 a finite discrete group, G_1/G_2 an abelian variety, G_2 a connected affine group. Very roughly, the idea is that the abelian variety layer A in this dévissage can be replaced by the inductive system of its division points

$$A[m\ell^{\infty}] = "\lim_{n>1} "A[m\ell^n]$$

for a suitable integer $m \geq 1$ (e. g. the order of G_0/G_1), where A[d] denotes the kernel of the multiplication by d, using the fibration $BA[m\ell^n] \to BA$ with fiber $A/A[m\ell^n] \xrightarrow{\sim} A$, and the fact that the transition map

$$H^*(A/A[m\ell^{n+1}], \mathbf{F}_{\ell}) \to H^*(A/A[m\ell^n], \mathbf{F}_{\ell})$$

vanishes in positive degree.

3. The amalgamation and stratification theorems

- 3.1. If G is a compact Lie group and X a G-space which is either compact of paracompact and of finite ℓ -cohomological dimension, and such that $H^*(X, \mathbf{F}_{\ell})$ is finite dimensional, Quillen relates the size of the (finitely generated) graded algebra $H^*_G(X) := H^*_G(X, \mathbf{F}_{\ell})$, i.e. the dimension of the spectrum of the (commutative) reduced algebra $H^*_G(X)_{\mathrm{red}}$, to elementary abelian ℓ -subgroups of G. He shows that this dimension is equal to the maximum rank of an elementary abelian ℓ -subgroup of G fixing a point in X. He deduces this from a more precise theorem describing the spectrum, up to a homeomorphism, as an amalgamated sum of spectra of reduced algebras $H^*(BA, \mathbf{F}_{\ell})_{\mathrm{red}}$, for A varying among elementary abelian ℓ -subgroup of G with non empty fixed point sets ([15], 8.10). Again, analogous results are available in the algebraic setting, which we will now discuss.
- 3.2. First, recall the structure of $H_A^* := H^*(BA, \mathbf{F}_{\ell})$ for an elementary abelian ℓ -group A of rank r ([14], §4) ([6], §8). Let $\check{A} := \operatorname{Hom}(A, \mathbf{F}_{\ell})$. Then

$$H_A^1 = \check{A},$$

the Bockstein map

$$\beta: H_A^1 \to H_A^2$$

defined by the exact sequence $0 \to \mathbf{F}_{\ell} \to \mathbf{Z}/\ell^2 \mathbf{Z} \to \mathbf{F}_{\ell} \to 0$ is injective, and we have an isomorphism of graded \mathbf{F}_{ℓ} -algebras

$$H_A^* = \begin{cases} S(\check{A}) & \text{if } \ell = 2\\ \Lambda \check{A} \otimes S(\beta \check{A}) & \text{if } \ell > 2. \end{cases}$$

If $\{x_1, \dots, x_r\}$ is a basis of \check{A} over \mathbf{F}_{ℓ} , then

$$H_A^* = \begin{cases} \mathbf{F}_{\ell}[x_1, \cdots, x_r] & \text{if } \ell = 2\\ \Lambda(x_1, \cdots, x_r) \otimes \mathbf{F}_{\ell}[y_1, \cdots, y_r] & \text{if } \ell > 2. \end{cases}$$

In particular, ${\rm Spec}\,(H_A^*)_{\rm red}$ is the affine space ${\bf A}_{{\bf F}_\ell}^r.$

3.3. Let k, ℓ, G and X be as in 2.2. By analogy with ([15], 8.1) we define the following category

$$\mathcal{A}_{(G,X,\ell)}.$$

Objects of $\mathcal{A}_{(G,X,\ell)}$ are pairs (A,C), where A is an elementary abelian ℓ subgroup of G, and C is a connected component of the fixed point space X^A (in particular, is not empty). For objects (A,C) and (A',C') of $\mathcal{A}_{(G,X,\ell)}$,
maps from (A,C) to (A',C') are defined by

$$\operatorname{Hom}_{\mathcal{A}_{(G,X,\ell)}}((A,C),(A',C')) = \operatorname{Trans}_{G}((A,C),(A',C'))(k),$$

where $\operatorname{Trans}_G((A,C),(A',C'))$, the transporter of (A,C) into (A',C'), is the closed subscheme of G representing the functor on k-schemes

$$S \mapsto \{g \in G(S) | g^{-1}A_S g \subset A_S', C_S g \supset C_S'\}$$

(see ([8], 6.4)). Composition is defined by composition of transporters. When no confusion can arise, we will abbreviate $\mathcal{A}_{(G,X,\ell)}$ into $\mathcal{A}_{(G,X)}$ and write \mathcal{A}_G for $\mathcal{A}_{(G,\operatorname{Spec} k)}$.

3.4. In the rest of this section we will consider projective systems indexed by a smaller category $\mathcal{A}^{\flat}_{(G,X)}$. As in ([14], (8.2)), the map

$$\operatorname{Trans}_G((A,C),(A',C'))(k) \to \operatorname{Hom}(A,A')$$

sending g to the homomorphism $a \mapsto g^{-1}ag$ induces an injection

(3.4.1)
$$\operatorname{Cent}_G(A,C)(k) \backslash \operatorname{Trans}_G((A,C),(A',C'))(k) \hookrightarrow \operatorname{Hom}(A,A'),$$
 where

$$\operatorname{Cent}_G(A,C)(k) = \{g \in G(k) | Cg = C \text{ and } g^{-1}ag = a \text{ for all } a \in A\}.$$

The injection (3.4.1) is compatible with composition. The category

$$\mathcal{A}_{(G,X,\ell)}^{\flat}$$

having the same objects as $\mathcal{A}_{(G,X,\ell)}$, but with maps defined by the left hand side of (3.4.1) is the analogue of the category defined by Quillen in [14]. As in *loc. cit.*,

$$(3.4.3) \quad W(A,C) := \operatorname{Cent}_G(A,C)(k) \backslash \operatorname{Trans}_G((A,C),(A,C))(k) \subset \operatorname{End}(A)$$

is a (finite) group, called the Weyl group of (A, C). For $X = \operatorname{Spec} k$ we write $W(A, \operatorname{Spec} k) = W(A)$. For G connected, reductive, with Weyl group $W = N_T(G)/T$, where T is a maximal torus of G, if $T[\ell]$) := $\operatorname{Ker} \ell : T \to T$, $W(T[\ell])$ is a quotient of W and $W(T[\ell]) = W$ if $\ell > 2$; for $G = \operatorname{GL}_n$, $W(T[\ell]) = W$. See ([8], 6.7).

Lemma 3.5. The category $\mathcal{A}^{\flat}_{(G,X,\ell)}$ is equivalent to a finite category, more precisely:

- (a) For any objects (A, C) and (A', C') of $\mathcal{A}_{(G,X)}$, the set of homomorhisms in $\mathcal{A}_{(G,X)}^{\flat}$ from (A, C) to (A', C') is finite.
 - (b) The set of isomorphism classes of objects of $\mathcal{A}^{\flat}_{(G,X)}$ is finite.

Assertion (a) is trivial. For (b), the main point is the following fact, which was communicated to us by Serre: the set of conjugacy classes of elementary abelian ℓ -subgroups of G is finite. This follows from the boundedness of the ranks of such subgroups, and the fact that if H is a finite group of order prime to p, the orbits of G acting on $\operatorname{Hom}_{\rm gp}(H,G)$ by conjugation are open.

3.6. For $(A, C) \in \mathcal{A} := \mathcal{A}_{(G,X)}$, we have a restriction homomorphism

$$(3.6.1) H_G^*(X) \to H_A^*(C) = H_A^* \otimes H^*(C) \to H_A^* \otimes H^0(C) = H_A^*,$$

where $H_G^*(X) := H_G^*(X, \mathbf{F}_{\ell})$, etc. For $g \in G(k)$, the map

$$\theta_q: H_G^*(X) \to H_G^*(X)$$

induced by $(h, x) \mapsto (g^{-1}hg, xg)$ is the identity.

For $g \in \operatorname{Hom}_{\mathcal{A}(G,X)}((A,C),(A',C'))$, we thus get a commutative triangle

and hence a canonical map

$$(3.6.2) a_{(G,X)}: H_G^*(X) \to \varprojlim_{(A,C) \in \mathcal{A}_{(G,X)}} H_A^*.$$

Note that $\theta_g: H_{A'}^* \to H_A^*$ depends only on the image of g in $\mathcal{A}_{(G,X)}^{\flat}$, so that in the above projective limit, we can replace the index category by $\mathcal{A}_{(G,X)}^{\flat}$ (which is equivalent to finite category).

The following result (amalgamation theorem) is an analogue of ([14], 6.2), ([15], 8.5).

Theorem 3.7 ([8], 6.11). Assume X separated. Then the homomorphism $a_{(G,X)}$ is a uniform F-isomorphism.

That $a_{(G,X)}$ is a uniform F-isomorphism means that its kernel and cokernel are annihilated by a power of $F: a \mapsto a^{\ell}$, i. e., there exists an integer $N \geq 1$ such that for any a in the kernel (resp. target) of $a_{(G,X)}$, $F^N a = 0$ (resp. $F^N a \in \text{Im } a_{(G,X)}$).

Remark. When G is an elementary abelian ℓ -group, the localization theorem 1.4 for $X^G = \emptyset$, namely that $H_G^*(X)[e^{-1}] = 0$, is an easy corollary of 3.7. However, it is not clear how to transpose to the algebraic setting the arguments of Quillen in ([14], 4.2) to reduce to this case. The proof in ([6], 8.3) uses an independent method.

Theorem 3.7 has the following geometric consequence, which justifies the terminology "amalgamation theorem". Define

(3.7.1)
$$(G,X) := \operatorname{Spec} H_G^{\varepsilon *}(X)_{\operatorname{red}},$$

where $\varepsilon = 1$ if $\ell = 2$, and $\varepsilon = 2$ otherwise. In particular, for an elementary abelian ℓ -group A,

$$\underline{A} := (\underline{A}, \operatorname{Spec} k) = \operatorname{Spec} (H_A^{\varepsilon *})_{\operatorname{red}},$$

a standard affine space of dimension equal to the rank of A (3.2). The map (3.6.1) induces a morphism or schemes

$$(3.7.2) (A,C)_*: \underline{A} \to (G,X),$$

hence $a_{(G,X)}$ (3.6.2) induces a morphism of schemes

$$(3.7.3) \qquad \underset{(A,C)\in\mathcal{A}_{(G,X)}^{b}}{\underline{\lim}} \underline{A} \to \underline{(G,X)}.$$

It follows from 3.7 that (3.7.3) is a universal homeomorphism. If $(A_i, C_i)_{i \in I}$ is a finite set of representatives of isomorphism classes of objects of $\mathcal{A}^{\flat}_{(G,X)}$, by a corollary to the finiteness theorem 2.3 (see ([8], 4.8)) $\coprod_{i \in I} \underline{A}_i$ is finite over $\underline{(G,X)}$ and the limit on the left hand side is the quotient of $\underline{\coprod}_{i \in I} \underline{A}_i$ by a (finite) equivalence relation over $\underline{(G,X)}$, see ([8], 11.1). Therefore we get the following corollary, similar to ([14], 7.7):

Corollary 3.8. The dimension of (G,X) is the maximal rank of an elementary abelian ℓ -subgroup of G fixing a point in X.

Example: The dimension of Spec $H^*(BGL_{n,k})$ is n (2.5 (a)), which is also the rank of Ker $\ell: T \to T$, where T is a maximal torus of $GL_{n,k}$.

The structure of (G, X) in relation with (3.7.2) can be described more precisely. We have the following *stratification theorem*, similar to ([15], 10.2, 12.1):

Theorem 3.9 ([8], 11.2). Denote by $V_{(A,C)}$ the reduced subscheme which is the image of the (finite) map $\underline{A} \to (G,X)$ (3.7.2). Let

$$\underline{A}^+ := \underline{A} - \bigcup_{A' < A} \underline{A'},$$

$$V_{(A,C)}^+ := V_{(A,C)} - \cup_{A' < A} V_{(A',C|A')}$$

(where A' < A means $A' \subset A$ and $A' \neq A$ and C|A' the component of $X^{A'}$ containing C). Then:

(a) The Weyl group W(A,C) (3.5.3) acts freely on \underline{A}^+ and the map $\underline{A}^+ \to V_{(A,C)}^+$ given by (3.7.2) induces a homeomorphism

$$\underline{A}^+/W(A,C) \to V_{(A,C)}^+.$$

(b) The subschemes $V_{(A,C)}$ of $\underline{(G,X)}$ are the integral closed sub-cones of (G,X) that are stable under the Steenrod operations on $H_G^{\varepsilon*}(X)$ (see 3.12).

 $\overline{(c)}$ Let $(A_i, C_i)_{i \in I}$ be a finite set of representatives of isomorphism classes of objects of $\mathcal{A}^{\flat}_{(G,X)}$. Then the $V_{(A_i,C_i)}$'s form a finite stratification of $\underline{(G,X)}$, namely $\underline{(G,X)}$ is the disjoint union of the $V^+_{(A_i,C_i)}$, and $V_{(A_i,C_i)}$ is the closure of $V^+_{(A_i,C_i)}$.

The proof is based on 2.3 and 3.7, and is entirely analogous to that of ([15], 10.2, 12.1).

Examples 3.10. In the following, we set

$$R^{\varepsilon*}(G,X):=\varprojlim_{(A,C)\in\mathcal{A}^{\flat}_{(G,X)}}H^{\varepsilon*}_A,$$

and

$$(G,X)_{\text{proj}} := \operatorname{Proj} H_G^{\varepsilon *}(X)_{\text{red}},$$

so that $(G, X) - \{0\}$ is a \mathbf{G}_m -bundle over $(G, X)_{\text{proj}}$. We also omit \mathbf{F}_{ℓ} from the notations of cohomology groups.

- (a) For $X = \mathbf{P}_k^1$, with the natural action of $G = \mathbf{G}_{m,k}$, the category $\mathcal{A}_{(G,X)}^{\flat}$ has three objects : $(\{0\},X)$, $(\mu_{\ell},0)$, (μ_{ℓ},∞) , and $\underline{(G,X)}$ is a cone on $\{0\} \cup \{\infty\}$, a union of two lines, $V_{(\mu_{\ell},0)}$ and $V_{(\mu_{\ell},\infty)}$, their intersection being the point $V_{(\{0\},X)}$. In other words, $\operatorname{Proj} R^{\varepsilon*}(G,X)_{\operatorname{red}} = \{0,\infty\}$.
- (b) More generally, let X be the projective space \mathbf{P}_k^n , with its natural action of the torus $T = \mathbf{G}_m^{n+1}/\mathbf{G}_m$ of rank n by $(x_0 : \cdots : x_n)g = (x_0g : \cdots : x_ng)$. Then $\operatorname{Proj} R^{\varepsilon *}(T,X)_{\operatorname{red}} = X T$ (hence $(T,X)_{\operatorname{proj}}$ is homeomorphic to X T). The stratification of 3.9 (c) is deduced from the standard stratification of X T. Similar results hold for toric varieties ([8], 6.15). For example, if X is the toric variety $\operatorname{Spec} k[P]$ for a fine and saturated monoid P such that $P^* = 0$, with the action of the torus $T = \operatorname{Spec} k[P^{\operatorname{gp}}]$, then (T,X), with its stratification (3.9 (c)), is homeomorphic to $\mathbf{V}(P^{\operatorname{gp}} \otimes \mathbf{F}_{\ell})$, with the stratification given by the faces of P.
- (c) Let n be an integer ≥ 1 and let T be the standard maximal torus in $G = \mathrm{GL}_{n,k}$. Let $W(= N_T(G)/T = S_n)$ be the Weyl group. A complement to 2.5 (a) is that the restriction map $H^*(BG) \to H^*(BT)$ induces an isomorphism

$$H^*(BG) \xrightarrow{\sim} H^*(BT)^W$$
.

The map $a_{(G,X)}$ (3.6.2) (for $X = \operatorname{Spec} k$) is the composition with the restriction $H^*(BT)^W \to H^*(BT[\ell])^W$, where $T[\ell] = \operatorname{Ker} \ell : T \to T$ (recall that $W(T[\ell]) = W$ (3.4.3)). It is injective and its cokernel is annihilated by F. The space (G,X) is the affine space \mathbf{A}^n over \mathbf{F}_{ℓ} .

Question 3.11. In the situation of 3.7, let $d_{\ell}(G,X)$ be the dimension of Spec $H_G^{\varepsilon*}(X, \mathbf{F}_{\ell})$, and let us write $d_{\ell}(G)$ for $d_{\ell}(G, \operatorname{Spec} k)$. We have $d_{\ell}(G,X) = d_{\ell}(G_{\operatorname{red}}, X_{\operatorname{red}})$. Is there an integer N such that, for all $\ell > N$, $d_{\ell}(G,X)$ is independent of ℓ ? For $d_{\ell}(G)$, does it suffice to take for N the supremum of the orders of G_1/G_0 and the Weyl group W of G_2/R_u in the dévissage mentioned in 2.6 (with G reduced), where R_u denotes the unipotent radical of G_2 ?

If [X/G] is a Deligne-Mumford stack, it follows from 3.7 that $d_{\ell}(G, X) = 0$ as soon as ℓ does not divide the orders of the (finite) inertia groups. On the other hand, it is easy to see that $d_{\ell}(G, X)$ is bounded by an integer independent of ℓ . Indeed, we have $d_{\ell}(G, X) \leq d_{\ell}(G)$ (by 2.3 or 3.8), $d_{\ell}(G) \leq d_{\ell}(G_0/G_1) + d_{\ell}(G_1/G_2) + d_{\ell}(G_2)$, and, for $\ell > N$, $d_{\ell}(G_0/G_1) = 0$ (as $\ell > |G_0/G_1|$), $d_{\ell}(G_1/G_2) = 2\dim(G_1/G_2)$ (2.5 (b)), $d_{\ell}(G_2) = d_{\ell}(G_2/R_u)$, and as

 $\ell > |W|$ all elementary abelian ℓ -subgroups of G_2/R_u are toral ([17], 1.2.2), whence $d_{\ell}(G_2) = \text{rk}(G_2/R_u)$.

3.12. Steenrod operations. The graded algebra $H_G^*(X) := H_G^*(X, \mathbf{F}_{\ell})$ admits Steenrod operations, preserving $H_G^{\varepsilon_*}(X)$. These are homomorphisms

(3.12.1)
$$P^{i}: H_{G}^{*}(X) \to \begin{cases} H_{G}^{*+i}(X) & \text{if } \ell = 2\\ H_{G}^{*+2(\ell-1)i}(X) & \text{if } \ell > 2. \end{cases}$$

For $\ell=2$, P^i is sometimes denoted Sq^i . Their construction is a particular case of Steenrod operations on $H^*(T, \mathbf{F}_\ell)$ for a topos T, see [4], [16], ([8], 11.6). They satisfy the following properties, where we write H^* for $H^*_G(X)$: $P^i=0$ for i<0, $P^0=\operatorname{Id}$; for $x\in H^q$, $P^ix=0$ for q<i if $\ell=2$, $P^ix=0$ for q<2i if $\ell>2$; for $x\in H^i$ (resp. $x\in H^{2i}$), $P^ix=x^\ell$ if $\ell=2$ (resp. $\ell>2$); if one defines

$$P_t: H^* \to H^*[t]$$

by $P_t(x) = \sum_{i \geq 0} P^i(x)t^i$, so that $P_t(x) = x + x^{\ell}t$ for $x \in H^1$, $\ell = 2$ (resp. $x \in H^2$, $\ell > 2$), then P_t is a ring homomorphism (Cartan's formula).

4. A stack-theoretic reformulation of the amalgamation theorem, and a generalization.

The source of the homomorphism $a_{(G,X)}$ (3.6.2) depends only on the stack $\mathcal{X} = [X/G]$, but the target involves fixed points of the action of subgroups of G on X. However, one can rewrite this target as a limit over a certain category \mathcal{C} of points of \mathcal{X} . This reformulation makes sense on any Artin stack, and can also be extended to include constructible coefficients. Such a reformulation is in fact needed to prove 3.7. Indeed a crucial continuity property ([14], 5.6) used by Quillen in his proof of the analogous topological result has to be replaced by an analysis of specialization of points in \mathcal{C} .

- 4.1. Let k and ℓ be as in 2.2, and let \mathcal{X} be an Artin stack over k (see footnote 3).
- (a) We define a geometric point of \mathcal{X} to be a representable morphism $x: S \to \mathcal{X}$, where S is a strictly local scheme. A morphism from $x: S \to \mathcal{X}$ to $y: T \to \mathcal{X}$ is a morphism $f: S \to T$ together with a 2-morphism $f: S \to T$ together with a 2-morph

$$(4.1.1) \mathcal{P}_{\mathcal{X}}$$

called the category of geometric points of \mathcal{X} . In the case \mathcal{X} is a scheme, this category is equivalent to the usual category of geometric points of \mathcal{X} . If Λ

is a noetherian ring, and F is a constructible sheaf of Λ -modules on \mathcal{X} , the natural map

$$(4.1.2) \Gamma(\mathcal{X}, F) \to \varprojlim_{x \in \mathcal{P}_{\mathcal{X}}} F_x$$

is an isomorphism ([8], 7.12). Here, for $(x : S \to \mathcal{X}) \in \mathcal{P}_{\mathcal{X}}$, $F_x = \Gamma(S, F) = F_s$ is the stalk of F at the closed point s of S.

(b) We will need a bigger category of geometric points, depending on ℓ . We define an ℓ -elementary point of $\mathcal X$ to be a representable morphism $x:\mathcal S\to\mathcal X$, where $\mathcal S$ is isomorphic to a quotient stack [S/A], where S is a strictly local scheme endowed with an action of an elementary abelian ℓ -group A acting trivially on the closed point of S. Note that the representability condition imposes that $x:[S/A]\to\mathcal X$ induces an injection $A\hookrightarrow \operatorname{Aut}_{\mathcal X}(s\to\mathcal X)$. A morphism from $x:[S/A]\to\mathcal X$ to $y:[T/B]\to\mathcal X$ is an isomorphism class of pairs (φ,α) , where $\varphi:[S/A]\to[T/B]$ is an $\mathcal X$ -morphism, and $\alpha:x\to y\varphi$ is a 2-morphism; an isomorphism between pairs (φ,α) and (ψ,β) is a 2-morphism $c:\varphi\to\psi$ such that $\beta=c\alpha$. Such a pair (φ,α) is represented by a morphism of $\mathcal X$ -schemes $f:S\to T$ and a group homomorphism $u:A\to B$ (and if $(f_1,u_1), (f_2,u_2)$ are two such pairs, then $u_1=u_2$ and there exists a unique $r\in B$ such that $f_1r=f_2$). By inverting morphisms (φ,α) such that f sends s to t and the (unique) homomorphism $u:A\to B$ is an isomorphism, we get a category

$$\mathcal{C}_{\mathcal{X},\ell},$$

called the category of ℓ -elementary points of \mathcal{X} , abbreviated to $\mathcal{C}_{\mathcal{X}}$ if no confusion can arise. It follows readily from the definitions that the obvious functor

$$(4.1.4) \mathcal{P}_{\mathcal{X}} \to \mathcal{C}_{\mathcal{X}}$$

is fully faithful, and one can show that if \mathcal{X} is of finite type over k and F a constructible sheaf of Λ -modules as in (a), the natural map

(4.1.5)
$$\Gamma(\mathcal{X}, F) \to \varprojlim_{x \in \mathcal{C}_{\mathcal{X}}} F_s^A$$

is again an isomorphism (compatible with (4.1.2)), where, for $(x : [S/A] \to \mathcal{X}) \in \mathcal{C}_{\mathcal{X}}, F_s^A := \Gamma([S/A], x^*F) = \Gamma(BA, F_s)$ (s the closed point of S).

4.2. Replacing F_x by $H^q([S/A], F)$ in (4.1.5) leads to the announced reformulation and generalization of 3.7. Let $D_c^+(\mathcal{X}, \mathbf{F}_\ell)$ denote the full subcategory of $D^+(\mathcal{X}, \mathbf{F}_\ell)$ consisting of complexes of sheaves of \mathbf{F}_ℓ -modules over

the lisse-étale site of \mathcal{X} with bounded below, cartesian, constructible cohomology. For $K \in D_c^+(\mathcal{X}, \mathbf{F}_{\ell})$, and $q \in \mathbf{Z}$,

$$(x: \mathcal{S} \to \mathcal{X} \in \mathcal{C}_{\mathcal{X}}) \mapsto H^q(\mathcal{S}, K|\mathcal{S})$$

is a projective system (of \mathbf{F}_{ℓ} -vector spaces) indexed by $\mathcal{C}_{\mathcal{X}}$, and the restriction maps $H^q(\mathcal{X}, K) \to H^q(\mathcal{S}, K|\mathcal{S})$ are compatible with the transition morphisms, hence yield a homomorphism

$$(4.2.1) a_{\mathcal{X},K}: H^q(\mathcal{X},K) \to \varprojlim_{(\mathcal{S} \to \mathcal{X}) \in \mathcal{C}_{\mathcal{X}}} H^q(\mathcal{S},K).$$

For \mathcal{X} a quotient stack of the form [X/G] as in 2.2, with X separated, and K the constant sheaf \mathbf{F}_{ℓ} , the right hand side of (4.2.1) is naturally identified with the right hand side of (3.5.2) and $a_{\mathcal{X},K}$ with $a_{(G,X)}$ ([8], 8.6).

More generally, the right hand side of (4.2.1) can be described in terms of a certain inverse limit involving fixed point sets X^A for elementary abelian ℓ -subgroups A of G.

For a pair (A, C) in $\mathcal{A}_{(G,X)}$, we have a restriction map $H_G^q(X,K) \to H_A^q(C,K|C)$, and an edge homomorphism $H_A^q(C,K|C) = H^q(BA,K|C) \to H^0(C,\mathcal{H}_A^q(K))$, where $\mathcal{H}_A^q(K)$ denotes the cohomology sheaf \mathcal{H}^q of the complex $R\Gamma(BA,K|C)$ on C, hence a composition

$$(4.2.2) H_G^q(X,K) \to H^0(C,\mathcal{H}_A^q(K|C)).$$

For a map $(\theta_g: A \hookrightarrow A', Cg \supset C')$ in $\mathcal{A}_{(G,X)}(k)$, we don't have a map $H^0(C', \mathcal{H}^q_{A'}(K|C')) \to H^0(C, \mathcal{H}^q_{A}(K|C))$, but instead a commutative square

$$(4.2.3) \qquad H_G^q(X,K) \longrightarrow H^0(C,\mathcal{H}_A^q(K)) ,$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$H^0(C',\mathcal{H}_{A'}^q(K)) \longrightarrow H^0(C'g^{-1},\mathcal{H}_A^q(K))$$

where the right vertical map is the restriction and the lower horizontal map is given by the isomorphism $H^0(C', \mathcal{H}^q_{A'}(K)) \xrightarrow{\sim} H^0(C'g^{-1}, \mathcal{H}^q_{gA'g^{-1}}(K))$ followed by the restriction to A. Let $R^q_G(X, K)$ be the set of families

$$(x_{(A,C)} \in H^0(C, \mathcal{H}_A^q(K)))_{(A,C) \in \mathcal{A}_{(G,X)}}$$

such that for any map $g:(A,C)\to (A',C')$ in $\mathcal{A}_{(G,X)}$ the images of $x_{(A,C)}$ and $x_{(A',C')}$ in $H^0(C'g^{-1},\mathcal{H}^q_A(K))$ coincide. We therefore get a map

(4.2.4)
$$a_{(G,X;K)}: H_G^q(X,K) \to R_G^q(X,K).$$

For $K = \mathbf{F}_{\ell}$, the right hand side of (4.2.4) coincides with that of (3.6.2).

Here is an alternate description of $R_G^q(X,K)$ ([8], 6.18). Let \mathcal{A}_G^{\natural} denote the following category. Objects of \mathcal{A}_G^{\natural} are triples (A,A',g), where A,A' are elementary abelian ℓ -subgroups of G and g is an element of G(k) such that the conjugation $c_g: s \mapsto g^{-1}sg$ maps A into A'. Morphisms in \mathcal{A}_G^{\natural} from (A,A',g) to (Z,Z',h) are pairs $(a,b) \in G(k) \times G(k)$ such that g=ahb, $c_a: A \to Z, c_b: Z' \to A'$. For $(A,A',g) \in \mathcal{A}_G^{\natural}$, we have an equivariant map $(1,c_g): (X^{A'},A) \to (X,G)$, where A acts trivially on $X^{A'}$ via $c_g: A \to A'$, hence a morphism

$$[1/c_g]: [X^{A'}/A] \to [X/G].$$

On the other hand, we have the second projection

$$\pi: [X^{A'}/A] = BA \times X^{A'} \to X^{A'}.$$

Consider the sheaf $R^q \pi_*[1/c_g]^* K$ (= $\mathcal{H}^q_A([1/c_g]^* K)$) on $X^{A'}$. A map (a,b): $(A,A',g) \to (Z,Z',h)$ in \mathcal{A}^{\natural}_G induces a morphism

$$(b,a)^*: H^0(X^{Z'}, R^q \pi_*[1/c_h]^*K) \to H^0(X^{A'}, R^q \pi_*[1/c_q]^*K),$$

and

(4.2.5)
$$R_G^q(X,K) = \varprojlim_{A_G^{\natural}} H^0(X^{A'}, R^q \pi_* [1/c_g]^* K).$$

Now, we have the key compatibility, whose proof is not formal:

Lemma 4.3 ([8], 8.6). For $\mathcal{X} = [X/G]$ as in 2.2, with X separated, $K \in D_c^+(\mathcal{X}, \mathbf{F}_\ell)$, and each integer q, there is a natural isomorphism

$$\varepsilon: \varprojlim_{(\mathcal{S} \to \mathcal{X}) \in \mathcal{C}_{\mathcal{X}}} H^q(\mathcal{S}, K) \xrightarrow{\sim} R_G^q(X, K)$$

making the following diagram commute:

$$H^{q}([X/G], K) \longrightarrow \varprojlim_{(\mathcal{S} \to \mathcal{X}) \in \mathcal{C}_{\mathcal{X}}} H^{q}(\mathcal{S}, K) ,$$

$$\downarrow^{\varepsilon}$$

$$R^{q}_{G}(X, K)$$

where the horizontal and oblique arrows are given respectively by (4.2.1) and (4.2.4), with the identification (4.2.5).

Thanks to 4.3, the following result generalizes 3.7:

Theorem 4.4 ([8], 8.3). Let \mathcal{X} be an Artin stack of finite presentation over k which is either a Deligne-Mumford stack with finite inertia or a quotient stack of the form [X/G] for a separated algebraic space of finite type X over k and G an algebraic group over k, and let K be an object of $D_c^+(\mathcal{X}, \mathbf{F}_{\ell})$ having a multiplicative structure. Let

$$R^*(\mathcal{X},K) := \bigoplus_{q} \varprojlim_{(\mathcal{S} \to \mathcal{X}) \in \mathcal{C}_{\mathcal{X}}} H^q(\mathcal{S},K).$$

Then

$$a_{\mathcal{X},K}: H^*(\mathcal{X},K) \to R^*(\mathcal{X},K)$$

is a uniform F-isomorphism.

By a multiplicative structure on K we mean a multiplication map $m: K \otimes K \to K$ and a unit map $e: \mathbf{F}_{\ell} \to K$ satisfying the usual associativity and commutativity conditions with respect to the constraints of the symmetric monoidal category $D_c^+(\mathcal{X}, \mathbf{F}_{\ell})$ ([8], §3). Such a structure makes $H^*(\mathcal{X}, K)$ into a graded \mathbf{F}_{ℓ} -algebra.

A common generalization of the two cases of 4.4 would be the case where \mathcal{X} has a stratification by global quotients, i. e. \mathcal{X}_{red} has a stratification by locally closed substacks such that each stratum is isomorphic to a quotient stack [X/G] as in 4.4. Indeed, by a theorem of Kresch [10], if for any geometric point $x \to \mathcal{X}$ the fiber at x of the inertia $I_{\mathcal{X}}$ is affine, in particular if \mathcal{X} is a Deligne-Mumford stack with finite inertia, then \mathcal{X} has a stratification by global quotients of the form [X/G] with G affine. When X has a stratification by global quotients, one can still show that the kernel of $a_{\mathcal{X},K}$ is annihilated by a power of $F: a \mapsto a^{\ell}$ ([8], loc. cit.).

On the other hand, recall that in the case $\mathcal{X} = [X/G]$ and K is in $D_c^b(\mathcal{X}, K)$, the source, $H^*(\mathcal{X}, K)$, of $a_{\mathcal{X}, K}$ is a finitely generated \mathbf{F}_{ℓ} -algebra (2.4). The target, $R^*(\mathcal{X}, K)$, is finitely generated, too ([8], 6.17). In fact ([8], 8.3 (a)), $R^*(\mathcal{X}, K)$ is finitely generated when \mathcal{X} is an Artin stack of finite presentation over k admitting a stratification by global quotients. One can therefore ask:

Questions 4.5. Let \mathcal{X} be an Artin stack of finite presentation over k admitting a stratification by global quotients, and let K be an object of $D_c^b(\mathcal{X}, \mathbf{F}_\ell)$ endowed with a multiplicative structure.

- (a) Is $H^*(\mathcal{X}, \mathbf{F}_{\ell})$ a finitely generated \mathbf{F}_{ℓ} -algebra?
- (b) Is $a_{\mathcal{X},K}$ a uniform F-isomorphism?

5. Outline of proof of 4.4.

We roughly follow the pattern of Quillen's proof for the analogous results ([14], 6.2), ([15], 8.5). In *loc. cit.* the starting point is to analyze $H_G^*(X, \mathbf{F}_{\ell})$

via the Leray spectral sequence of the quotient map

$$\pi: PG \wedge^G X \to X/G$$
,

which is a proper map whose fiber at a point y of X/G is $PG \wedge^G Gx$ for a point x in X above y, so that $(R^q\pi_*\mathbf{F}_\ell)_y = H^q_G(Gx, \mathbf{F}_\ell) \stackrel{\sim}{\to} H^q(BG_x, \mathbf{F}_\ell)$, where $G_x \subset G$ is the stabilizer of x. In the situation of 4.4, with $\mathcal{X} = [X/G]$, the quotient X/G doesn't make sense in general, but with some additional hypotheses on \mathcal{X} , a coarse moduli space will be a satisfactory substitute.

5.1. In particular, suppose that \mathcal{X} in 4.4 is a Deligne-Mumford stack with finite inertia. Then, by the Keel-Mori theorem [9] there exists a coarse moduli space morphism

$$(5.1.1) f: \mathcal{X} \to Y.$$

Recall that this means that Y is an algebraic space over k, f is initial among maps from \mathcal{X} to a k-algebraic space, and for any algebraically closed field K over k, f induces an isomorphism from the set of isomorphism classes of objects of $\mathcal{X}(K)$ to Y(K). In addition, f is proper, and is a universal homeomorphism. For an algebraically closed geometric point y of Y, the reduced fiber $f^{-1}(y)_{\text{red}}$ consists of a single isomorphism class of objects of f over f0, namely that of the quotient stack f1 (f2) (f3) (f4) (f4) (f5) f5 (f4) (f5) for a geometric point f5 (f6) (f6) (f7) (f8) f8) f9.

A key fact, similar to ([14], 3.2), is that the edge homomorphism

(5.1.2)
$$e: H^*(\mathcal{X}, K) \to H^0(Y, R^* f_* K)$$

of the Leray spectral sequence of f is a uniform F-isomorphism. As in loc. cit. it is a simple consequence of the multiplicative structure of the spectral sequence.

As f is proper, by (an easy case of) ([13], 9.14) the sheaves $R^q f_* K$ are constructible and for any geometric point y of Y, we have

$$(5.1.3) (R^q f_* K)_y \xrightarrow{\sim} H^q(BG_x, K|BG_x)$$

(for a geometric point x of \mathcal{X} above y). Therefore, by (4.1.2) applied to Y and $R^q f_* K$, we have

(5.1.4)
$$H^{0}(Y, R^{q} f_{*} K) \xrightarrow{\sim} \varprojlim_{y \in \mathcal{P}_{Y}} H^{q}(BG_{x}, K | BG_{x}).$$

 $^{^5}$ Fibers of f are not necessarily reduced, as the example of a Kummer cover of the affine line already shows.

Assume now:

(*) All inertia groups G_x of \mathcal{X} are elementary abelian ℓ -groups. Then, by (4.1.5), (5.1.4) induces an isomorphism

(5.1.5)
$$H^{0}(Y, R^{q} f_{*}K) \xrightarrow{\sim} \varprojlim_{[S/A] \in \mathcal{C}_{\mathcal{X}}} H^{q}([S/A], K).$$

The composite of (5.1.2) and (5.1.5) is the canonical map

$$a_{\mathcal{X},K}: H^*(\mathcal{X},K) \to R^*(\mathcal{X},K)$$

of 4.4, and it is a uniform F-isomorphism.

- 5.2. Suppose now that \mathcal{X} in 4.4 is a quotient stack [X/G]. Imitating Quillen's method in [14], one reduces to the situation of 5.1 with the additional assumption (*). By the dévissage used in the proof of 2.3 (cf. 2.6), one first reduces to the case where G is affine. One then embeds G into some general linear group $L := \operatorname{GL}_{n,k}$ and let G act diagonally on $X_0 := X \times (T[\ell] \setminus L)$, where $T \subset L$ is a maximal torus. The map $G \times X_0 \to X_0 \times X_0$, $(g, x) \times (x, xg)$ is then finite and unramified, and all the inertia groups G_x are elementary abelian ℓ -subgroups of G. Therefore $\mathcal{X}_0 := [X_0/G]$ satisfies the assumptions of 5.1, plus (*). So $a_{\mathcal{X}_0,K}$ is a uniform F-isomorphism. One repeats the operation with $\mathcal{X}_1 := [X_1/G]$, where $X_1 = X \times (T[\ell] \setminus L) \times (T[\ell] \setminus L)$, and gets that $a_{\mathcal{X}_1,K}$ is a uniform F-isomorphism. A descent argument yields the conclusion for \mathcal{X} .
- 5.3. When \mathcal{X} in 4.4 is a Deligne-Mumford stack with finite inertia, but does not necessarily satisfy (*), one applies 4.4 to the stacks BG_x (and $K|BG_x$) appearing in the right hand side of (5.1.4). A closer analysis shows that one can find a bound N for the power of F annihilating the kernel and the cokernel of $a_{BG_x,K}$ which is independent of the order of G_x . One then concludes using (5.1.4) and (4.1.5).

Acknowledgement. This report was written during a visit to the Korea Institute for Advanced Study (Seoul) in January, 2013. I wish to warmly thank this institute for its support and hospitality. I am grateful to the referee for helpful corrections and comments.

References

[1] K. Behrend, The Lefschetz trace formula for algebraic stacks, Invent. Math. 112 (1993), 127-149.

- [2] A. Borel, Nouvelle démonstration d'un théorème de P. A. Smith, Comment. Math. Helv. **29** (1955), 27-39 (= Oe., vol. I, no. 34).
- [3] P. Deligne, Letter to L. Illusie, June 26, 2012.
- [4] D. Epstein, Steenrod Operations in Homological Algebra, Invent. Math. 1 (1966), 152-208.
- [5] H. Esnault and J. Nicaise, Finite group actions, rational fixed points and weak Néron models, Pure Appl. Math. Q. 7 (2011), 1209-1240.
- [6] L. Illusie and W. Zheng, Odds and ends on finite group actions and traces, Int. Math. Res. Not., 2013(1), 1-62, doi:10.1093/imrn/rnt009.
- [7] L. Illusie and W. Zheng, Errata and Addenda to "Odds and ends on finite group actions and traces", IMRN, doi:10.1093/imrn/rnt009.
- [8] L. Illusie and W. Zheng, Quotient stacks and mod ℓ equivariant cohomology algebras: Quillen's theory revisited, preprint, 2013, http://www.math.ac.cn/zheng/index.html.
- [9] S. Keel and S. Mori, Quotients by groupoids, Ann. of Math. 145 (1997), 193-213.
- [10] A. Kresch, Cycle groups for Artin stacks, Invent. Math. 138 (1997), 495-536.
- [11] G. Laumon, Comparaison de caractéristiques d'Euler-Poincaré en cohomologie ℓ-adique, C. R. Acad. Sc. Paris, t. 292 Série I (1981), 209-212.
- [12] G. Laumon and L. Moret-Bailly, *Champs algébriques*, Ergebnisse der Mathematik und ihrer Grenzgebiete **39**, Springer-Verlag, 2000.
- [13] M. Olsson, Sheaves on Artin stacks, J. Reine Angew. Math. 603 (2007), 55-112.
- [14] D. Quillen, The spectrum of an equivariant cohomology ring. I., Ann. of Math. 94 (1971), 549-572.
- [15] D. Quillen, The spectrum of an equivariant cohomology ring. II., Ann. of Math. 94 (1971), 573-602.
- [16] M. Raynaud, Modules projectifs universels, Invent. Math. 6 (1968), 1-26.

- [17] J-P. Serre, Sous-groupes finis des groupes de Lie, Sém. Bourbaki, Vol. 1998/99, Exp. No. 864, Astérisque **266** (2000), 415-430.
- [18] J-P. Serre, How to use finite fields for problems concerning infinite fields, Arithmetic, Geometry, Cryptography and coding theory, Eds. G. Lachaud, C. Ritzenthaler, and M. Tsfasman, Contemporary Math. 487 (2009), 183-194.