Elementary abelian /-groups
and mod ¢ equivariant étale cohomology algebras

Luc Illusie

This is a report on joint work with W. Zheng [8]. It grew out of questions
that Serre asked me about traces for finite group actions. These questions
were the subject of the previous joint papers ([6], [7]). They led us to consider
more generally actions of algebraic groups and revisit, in the context of mod ¢
étale cohomology, a theory of equivariant cohomology developed in the early
70’s by Quillen for actions of compact Lie groups on topological spaces ([14],

[15]).
1. Finite /-group actions, fixed point sets and localizations

Let k£ be an algebraically closed field of characteristic p and ¢ a prime
number # p. Let X be a separated k-scheme of finite type, acted on by a
finite (-group G. Serre ([18], 7.2) observed that we have the following identity

(1.1) X(X) = x(X%) mod .

Here X ¢ is the fixed point set of G, and x = x(—, Q;) = >_(—1)'dim H'(—, Q)
denotes an Fuler-Poincaré ¢-adic characteristic. It has been known since
the early sixties that this integer does not depend on ¢, as follows from
Grothendieck’s cohomological formula for the zeta function of a variety over
a finite field. Recall also that, by a theorem of Laumon [11], x = x. :=
> (=1)'dim Hi(—, Qq).

The proof of (1.1) is immediate : by dévissage one reduces to the case
where G = Z/(Z ; in this case, as |G| = £ # p and G acts freely on X — X% by
a theorem of Deligne (cf. ([6], 4.3)) we have y.(X —X%) = lx.((X - X%)/G),
hence x.(X) = xe(X9)+x(X —X%), and (1.1) follows from Laumon’s result.
When G = Z/VZ, for g € G we have a more precise result :

(1.2) Tr(g, H; (X, Q) = x(XF) + x(X — X9)/G)Reg(9g),

where Tr(g, HY) := > _(—1)"Tr(g, H:) and Reg denotes the character of the
regular representation of G. In fact (([6], (2.3)) Tr(g, H}) = Tr(g, H*) (an
equivariant form of Laumon’s theorem).

In particular, if £ does not divide x(X), then X¢ is not empty. This is
the case, for example, if X is the standard affine space A} of dimension n
over k, as (1.1) implies x(X%) = 1mod /. Serre ([18], 1.2) remarks that in
this case one can show X # () in a much more elementary way : reduce
to the case where £ is the algebraic closure of a finite field &y, = F, and the
action of G on X = A} comes from an action of G on Xy = A} . Then we
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have the stronger property Xo(ko)® # 0, as | Xo(ko)| = ¢" and ¢ divides the
cardinality of any non trivial orbit. Given a field K and an action of a finite
¢-group G on A", Serre ([18], loc. cit.) asks whether A (K )¢ is not empty.
This is the case for n < 2 (elementary for n = 1, by Esnault-Nicaise ([5],
5.12) for n = 2). The answer is unknown for n = 3, K = Q, |G| = 2. In the
positive direction, in addition to the case where K is finite, Esnault-Nicaise
([5], 5.17) prove that the answer is yes if K is a henselian discrete valuation
field of characteristic zero whose residue field is of characteristic # ¢, and
which is either algebraically closed or finite of cardinality ¢ with ¢|g — 1. In
the case K = k, Smith’s theory gives more than the existence of a fixed
point. Indeed we have :

Theorem 1.3 ([18], 7.9) ([6], 7.3, 7.8). Let X be an algebraic space
separated and of finite type over k endowed with an action of a finite £-group
G. Then, if X is mod { acyclic, so is X©.

Here, we say that Y/k is mod ¢ acyclic if H*(Y,F,) = H'(Y,F;) = F,. Tt
is shown in loc. cit. that the conclusion of 1.3 still holds if the assumption
¢ # p made at the beginning of this section is dropped.

Sketch of proof of 1.3. As in the proof of (1.1) we may assume by dévissage
that G = Z/{Z. In this case, Serre’s proof exploits the action of the algebra
Fy[G] on m.(Z/lZ), where m : X — X /G is the projection. The proof given
in [6], which uses equivariant cohomology, is close in spirit to that of Borel
[2] in the topological case. Let us first give a general definition.

For an algebraic space Y separated and of finite type over k endowed
with an action of a finite group G, RT'(Y,Fy) is an object of DT (F,[G]). The
equivariant cohomology complex of Y is defined as

(1.3.1) RTG(Y,F,) := RU(G, RT(Y,Fy)),

which we will abbreviate here to R['¢(Y). It has a natural multiplicative
structure, and HE(Y) = H*RI'¢(Y) is a graded algebra over the graded
F-algebra H, = H*(G,Fy). For G = Z/(Z, we have

. R if ¢ =2
(1.3.2) z/tz. = {Fe[$]/<x2) @ Foly] if £> 2,

where z is the tautological generator of H, 10z and, for ¢ > 2, y = Sx, where
B Hyyy — Hyy is the Bockstein operator (associated with the exact
sequence 0 — F, — Z/(*Z — F; — 0).

Coming back to the proof of 1.3, the key point is that (for G = Z/(Z)
the restriction map

(1.3.3) H:(X) — HLY(XY) = H, @ H(X©),
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which is a map of graded H}-modules, becomes an isomorphism after invert-
ing Sz € HZ 0z Indeed, the assumption that X is mod ¢ acyclic implies that
HY(X) = HY, hence H*(XY) has to be of rank one over F,. The assertion
about (1.3.3) follows from the fact that Hj(X, iF,) is of bounded degree,
where j : X — X% < X is the inclusion, as X/G is of finite /-cohomological
dimension.

The above key point is similar to various localization formulas considered
by Quillen, Atiyah-Segal, Goresky-Kottwitz-MacPherson. For actions of ele-
mentary abelian /-groups! we have the following result, which is an analogue
of Quillen’s theorem ([14], 4.2) :

Theorem 1.4 ([6], 8.3). Let X be an algebraic space separated and of
finite type over k endowed with an action of an elementary abelian £-group
G of rank r, and let

e — H B¢ € Hé(er,l)’

¢cHL—{0}
where 3 : HY — HE is the Bockstein operator. Then the restriction map
Hg(X)[e™) = Hg(X9)[e™]

s an isomorphism.

The proof in ([6], 8.3) is by dévissage on G. In ([14], 4.2) it is deduced
from general structure theorems for H} (X, Fy) for actions of compact Lie
groups GG on certain topological spaces X . This led us to investigate algebraic
analogues of these results.

2. Quotient stacks and equivariant cohomology algebras : finite-
ness theorems

2.1. If G is a compact Lie group, we have a classifying space BG, which is
the base of a universal G-torsor PG, whose total space is contractible. If X
is a G-space?, i. e. a topological space endowed with a continuous action of
G, the projection w : PG x X — BG induced by PG — BG factors through
the quotient

PG A® X = (PG x X)/G,

!An elementary abelian /-group is a group G isomorphic to the direct product of a
finite number 7 of cyclic groups of order ¢. The integer r is called the rank of G.
2We let groups act on spaces on the right.



where G acts by (p,z)g = (pg,xg), giving a commutative diagram

(2.1.1) PG x X —“~PGN¢ X .

.

BdG

Here u makes PG x X into a G-torsor over PG A® X, and v is a locally
trivial fibration of fiber X. The torsor « is universal in the sense that, up to
homotopy, maps from a compact space T to PG A% X correspond to pairs
of a G-torsor P on T" and an equivariant map from P to PG x X.

Let ¢ be a prime number. The equivariant mod ¢ cohomology complex of
X, RT'¢(X,Fy), is defined, a la Borel, by

(2.1.2) RT¢(X,Fy) := RT(PG A® X, Fy).

Its cohomology,
HAH(X,Fy) .= H*RU¢(X,F)),

is a graded F,-algebra over H*(BG,F,) = H(pt,F,). Using v one can
rewrite (2.1.2) as

(2.1.3) RUG(X,¥,) = RI(BG,RI'(X,Fy)),

where by abuse RI'(X,F,) € DT (BG,F,) denotes Rv,F, (a locally constant
complex of value RI'(X,Fy)). This equivariant cohomology is studied in
Quillen’s papers [14], [15]. One of the main results is that H*(BG,Fy) is a
finitely generated Fy-algebra, and, if H*(X,F,) is finite dimensional, then

H:(X,F,) is finite over H*(BG, Fy) ([14], 2.1, 2.2, 2.3).

2.2. Similar results are available in the setting of mod ¢ étale cohomology
and actions of algebraic groups. From now on we denote by k an algebraically
closed field of characteristic p > 0 and ¢ a prime number # p. Let G be an
algebraic group over k, and let X be an algebraic space of finite type over
k 3, endowed with an action of G. Consider the quotient stack [X/G] ([12],
3.4.2). This is an Artin stack? of finite type over k, which comes equipped
with a surjection u : X — [X/G] making X into a universal G-torsor over

3By an algebraic group over k we mean a k-group scheme of finite type. By an algebraic
space X over k we mean the quotient of a k-scheme by an étale equivalence relation ; we
do not assume X to be quasi-separated.

4By an Artin stack over k we mean a stack in groupoids X over the big fppf site of
Speck such that the diagonal X — X X X is representable (by algebraic spaces) and
there exists a smooth surjective k-morphism X — X with X a k-algebraic space.



[X/G], in the sense that the groupoid of points of [X/G] with values in a k-
algebraic space T' consists of pairs of a Gp-torsor P on T" and an equivariant
map P — X. The quotient stack [Spec k/G| is called the classifying stack of
G and is denoted BG. We have a 2-commutative diagram similar to (2.1.1) :

(2.2.1) X —“[X/q],

BG
where v : [X/G]| — [Speck/G| = BG is an fppf locally trivial fibration of

fiber X. The equivariant mod ¢ cohomology complex of X, RI'¢(X,Fy), is
defined, similarly to (2.1.2), by

(2.2.2) RT(X,F,) := RT([X/G], Fy).

The cohomology on the right hand side is that of the smooth-étale site of
[X/G]. As above, using v, one can rewrite it as

(2.2.3) RU¢(X,F,) = RT['(BG, RT'(X, Fy)),

where by abuse RI'(X,F,) € D*(BG,F,) denotes Rv,Fy. Thus, if G is a
finite (discrete) group, the definition given in (2.2.2) agrees with that given
in (1.3.1). The cohomology

H{(X,F,) .= H"RT'¢(X,Fy)

is a graded Fy-algebra over the graded algebra H*(BG,Fy).

By definition, RI'¢(X,F;) depends only on the stack [X/G], which can
have various descriptions as a quotient stack. For example, if G is a subgroup
of an algebraic group G’ over k, we have a natural equivalence

(2.2.4) (X/G] 5 [X A9 GG,
called induction formula, and hence an isomorphism
(2.2.5) HA(X,F)) 5 HL (X NG G FY).

Here X A% G’ is the quotient of X x G’ by the diagonal action of G, an
fppf locally trivial fibration of fiber X over the homogeneous space G' /G =
Speck AE G'.

The following theorem is similar to the results of Quillen mentioned at
the end of 2.1 :



Theorem 2.3 ([8], 4.6). With the notations of 2.2, assume X of finite
presentation over k. Then H*(BG,Fy) is a finitely generated Fy-algebra, and
HE(X,Fy) is a finite H(BG, Fy)-module.

In an earlier version of [8] this result was first proved by Illusie-Zheng
in the case that G is an affine group, or a semi-abelian variety. A few more
cases were suggested to us by Brion. The day after my talk at the conference,
Deligne kindly provided me with a proof of the general case [3].

Remark 2.4. The result established in ([8], 4.6) is slightly more general.
One can replace Fy by a noetherian Z/nZ-algebra A, with n invertible in
k : H*(BG,A) is a finitely generated A-algebra. One can also replace Fy
by an object K of D%([X/G],A), i. e. the full subcategory of D°([X/G], A)
consisting of complexes (over the lisse-étale site) with bounded, cartesian,
constructible cohomology (the datum of a cartesian, constructible sheaf of
A-modules on [X/G] is equivalent to the datum of a constructible sheaf of
A-modules F' on X together with an action of G on F' compatible with the
action of G on X ; if G acts trivially on X, this action factors through the
finite discrete group mo(G)). Then Hi (X, K) = H*([X/G],K) is a finite
H*(BG, A)-module.

Ezxamples 2.5. Let A be as in 2.4.

(a) Let r be an integer > 1. For 1 < i < r, let ¢; € H*(BGL,, A(i))
be the i-th Chern class of the tautological bundle O" over BGL, . Let
Alzq, -+, x,] be the polynomial algebra over A on generators x; of degree 2i
for 1 <i <r. Then HY(BGL,,A) = 0 for ¢ odd, and the homomorphism
of A-algebras

A[.fll'l, s ,.Z'r] — Hz*(BGLT’k, A(*)) = @120H2i<BGLT',]€7 A(Z))

sending x; to ¢; is an isomorphism.

This result has been known since the 60’s. A proof of the analogous result
for de Rham cohomology, consisting in approximating BG L, , by grassmanni-
ans, was communicated to me by Deligne in 1967. The argument is sketched
by Behrend in ([1], 2.3.2).

(b) Let G be a semi-abelian variety over k, extension of an abelian variety
A of dimension g by a torus T of dimension r. Then we have a short exact
sequence of free A-modules

0— HY(A,A) — HY(G,A) — H(T,A) — 0,
of successive ranks 2¢g, 2¢g + r, r, and isomorphisms of algebras

H*(G,A) ~ A (HY G, A)),
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H*(BG, A) = Sy(H'(G, 0)),
where H'(G, A) is placed in degree 2, and HY(BG,A) = 0 for q odd.
2.6. Sketch of proof of 2.3. When G is affine, one can embed G into GL, ;,

for some r, and by the induction formula (2.2.5) one is reduced to the case
G = GL,j. One can then imitate Quillen’s proof, using 2.5 (a). The general
case is reduced to this one, using the general structure of algebraic groups
over k. We may assume G reduced. Then G has a filtration 1 C Gy C G; C
Gy = G, with G;;1 normal in G, and successive quotients : Go/G1 a finite
discrete group, G1/G5 an abelian variety, G a connected affine group. Very
roughly, the idea is that the abelian variety layer A in this dévissage can be
replaced by the inductive system of its division points

Aml>] = “lim” A[m/"]
for a suitable integer m > 1 (e. g. the order of Gy/G1), where Ald] denotes
the kernel of the multiplication by d, using the fibration BA/m¢"] — BA
with fiber A/A[m("] = A, and the fact that the transition map

H*(AJAIm0" Y, Fy) — H*(A/A[m("), Fy)
vanishes in positive degree.

3. The amalgamation and stratification theorems

3.1. If G is a compact Lie group and X a G-space which is either com-
pact of paracompact and of finite /-cohomological dimension, and such that
H*(X,Fy) is finite dimensional, Quillen relates the size of the (finitely gen-
erated) graded algebra H}(X) := H (X, Fy), i.e. the dimension of the spec-
trum of the (commutative) reduced algebra H (X )yeq, to elementary abelian
(-subgroups of G. He shows that this dimension is equal to the maximum
rank of an elementary abelian /-subgroup of G fixing a point in X. He
deduces this from a more precise theorem describing the spectrum, up to
a homeomorphism, as an amalgamated sum of spectra of reduced algebras
H*(BA,Fy)eq, for A varying among elementary abelian ¢-subgroup of G
with non empty fixed point sets ([15], 8.10 ). Again, analogous results are
available in the algebraic setting, which we will now discuss.

3.2. First, recall the structure of H} := H*(BAV, F,) for an elementary
abelian (-group A of rank r ([14], §4) ([6], §8). Let A := Hom(A, F;). Then
Hj = A,
the Bockstein map
B:Hjy— H3
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defined by the exact sequence 0 — F, — Z/(*Z — F, — 0 is injective, and
we have an isomorphism of graded F,-algebras

. S(A) if £ =2
HA: v ~ .
AA® S(BA) if > 2.

If {x1, -, 2.} is a basis of A over Fy, then
. Fylxy, -,z if ¢ =2
HA = 3
Az, 2,) @ Folyn, -y 0> 2.

In particular, Spec (H})req is the affine space Af,.

3.3. Let k, ¢, G and X be as in 2.2. By analogy with ([15], 8.1) we define
the following category

(3.3.1) A x.0)-

Objects of A x, are pairs (A,C), where A is an elementary abelian (-
subgroup of GG, and C' is a connected component of the fixed point space
X4 (in particular, is not empty). For objects (A, C) and (A', C") of A x4,
maps from (A, C) to (A’,C") are defined by

HomA(GYX_’e)((A, ), (A", C") = Transg((A, C), (A", C")(k),

where Transg((A, C), (A, C")), the transporter of (A, C) into (A’,C"), is the
closed subscheme of GG representing the functor on k-schemes

S+ {g€G(S)|g tAsg C A, Csg D Cg}

(see ([8], 6.4)). Composition is defined by composition of transporters. When
no confusion can arise, we will abbreviate A (g x,¢) into A(g x) and write Ag
for A(G,Spec k)-

3.4. In the rest of this section we will consider projective systems indexed
by a smaller category .A'ZG’X). As in ([14], (8.2)), the map

Transg((A, C), (A, C"))(k) — Hom(A, A")
sending ¢ to the homomorphism a — ¢ 'ag induces an injection
(3.4.1) Centg (A, C)(k)\Transg((4, C), (A", C"))(k) — Hom(A, A"),
where

Centg(A,C)(k) = {g € G(k)|Cg = C and g 'ag = a for all a € A}.
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The injection (3.4.1) is compatible with composition. The category
(3.4.2) Alex.0

having the same objects as A(g x,), but with maps defined by the left hand
side of (3.4.1) is the analogue of the category defined by Quillen in [14]. As
in loc. cit.,

(3.4.3) W(A,C) := Centg(A, C)(k)\Transg((A, C), (A,C))(k) C End(A)

is a (finite) group, called the Weyl group of (A,C). For X = Speck we
write W (A, Speck) = W(A). For G connected, reductive, with Weyl group
W = Nr(G)/T, where T is a maximal torus of G, if T[(]) := Ker ¢ : T — T,
W(T[{]) is a quotient of W and W(T[{]) = W if £ > 2 ; for G = GL,,
W(T'[¢]) = W. See ([8], 6.7).

Lemma 3.5. The category A%G,X,Z) 15 equivalent to a finite category, more
precisely :

(a) For any objects (A, C) and (A’, C') of A x), the set of homomorhisms
in A?G’X) from (A,C) to (A", C")) is finite.

(b) The set of isomorphism classes of objects of A?ax) is finite.

Assertion (a) is trivial. For (b), the main point is the following fact, which
was communicated to us by Serre : the set of conjugacy classes of elementary
abelian /-subgroups of G is finite. This follows from the boundedness of the
ranks of such subgroups, and the fact that if H is a finite group of order
prime to p, the orbits of G acting on Hom,,(H, G) by conjugation are open.

3.6. For (A,C) € A:= A x), we have a restriction homomorphism
(3.6.1) HE(X) = HA(C) = Hy ® H*(C) — H3 @ H°(C) = Hj,
where H}(X) := HA(X,Fy), etc. For g € G(k), the map

0, : H.(X) — HL(X)

induced by (h,z) — (g 'hg,xg) is the identity.
For g € Hom ¢ x)((A, C), (A’,C")), we thus get a commutative triangle

Hg(X) :

L

g
HYy —— I,



and hence a canonical map

(3.6.2) aex)  Hy(X) = lim  Hj
(A,C)E.A(ij)

Note that 0, : H, — H} depends only on the image of g in A?QX), so that
in the above projective limit, we can replace the index category by A?G, X)
(which is equivalent to finite category).

The following result (amalgamation theorem) is an analogue of ([14], 6.2),
([15], 8.5).

Theorem 3.7 ([8], 6.11). Assume X separated. Then the homomorphism
a(q,x) is a uniform F-isomorphism.

That a(g x) is a uniform F-isomorphism means that its kernel and cok-
ernel are annihilated by a power of F': a — a’, i. e., there exists an integer
N > 1 such that for any a in the kernel (resp. target) of aiq.x) , FNa =0
(resp. FVa € Ima(g,x))-

Remark. When G is an elementary abelian /-group, the localization the-
orem 1.4 for X¢ = (), namely that H(X)[e™!] = 0, is an easy corollary of
3.7. However, it is not clear how to transpose to the algebraic setting the
arguments of Quillen in ([14], 4.2) to reduce to this case. The proof in ([6],
8.3) uses an independent method.

Theorem 3.7 has the following geometric consequence, which justifies the
terminology “amalgamation theorem”. Define

(3.7.1) (G, X) := Spec HZ' (X )red,

where ¢ = 1 if £ = 2, and € = 2 otherwise. In particular, for an elementary
abelian /-group A,

4= (A, Speck) = Spec (H s

a standard affine space of dimension equal to the rank of A (3.2). The map
(3.6.1) induces a morphism or schemes

(3.7.2) (A,C),: A— (G, X),

hence a(g,x) (3.6.2) induces a morphism of schemes

(3.7.3) lip A (G X).

(AC)edl
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It follows from 3.7 that (3.7.3) is a universal homeomorphism. If (A4;, C;)er
is a finite set of representatives of isomorphism classes of objects of A?G, X)s
by a corollary to the finiteness theorem 2.3 (see ([8], 4.8)) [[;c; 4; is finite
over (G, X) and the limit on the left hand side is the quotient of [, A; by
a (finite) equivalence relation over (G, X), see ([8], 11.1). Therefore we get
the following corollary, similar to ([14], 7.7) :

Corollary 3.8. The dimension of (G,X) is the mazimal rank of an
elementary abelian £-subgroup of G fixing a point in X.

Example : The dimension of Spec H*(BGL,, ;) is n (2.5 (a)), which is also
the rank of Ker ¢ : T"— T', where T' is a maximal torus of GL,, j.

The structure of (G, X) in relation with (3.7.2) can be described more

precisely. We have the following stratification theorem, similar to ([15], 10.2,
12.1) ;

Theorem 3.9 ([8], 11.2). Denote by Via,c) the reduced subscheme which
is the image of the (finite) map A — (G, X) (3.7.2). Let

AT = A—Uncad,

Viiey = Viae) — UacaViw olar

(where A" < A means A’ C A and A’ # A and C|A’ the component of X*
containing C'). Then :

(a) The Weyl group W (A, C) (3.5.3) acts freely on A* and the map A" —
V(t&,c) given by (3.7.2) induces a homeomorphism

AT IW(A,C) = Vi 0.

(b) The subschemes Viacy of (G,X) are the integral closed sub-cones of
(G, X) that are stable under the Steenrod operations on HZ(X) (see 3.12).

(c) Let (A;, Ci)icr be a finite set of representatives of isomorphism classes
of objects of A?G,X)' Then the Via,c,y’s form a finite stratification of (G, X),
namely (G, X) is the disjoint union of the V(:i,Ci)’ and Via,,c,) s the closure
of ‘/(:zivci)'

The proof is based on 2.3 and 3.7, and is entirely analogous to that of
([15], 10.2, 12.1).

Examples 3.10. In the following, we set

R™(G,X)= lm Hy,

(A,C)EA'ZQX)
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and
(G, X)proj = Proj HZ' (X )red,

so that (G, X) — {0} is a G,,-bundle over (G, X )pr0;. We also omit Fy from
the notations of cohomology groups.

(a) For X = Pj, with the natural action of G = G, the category
.A'EQX) has three objects : ({0}, X), (g, 0), (e, 00), and (G, X) is a cone on
{0} U {oo}, a union of two lines, V{,,0) and V|4, «), their intersection being
the point V{foy,x). In other words, Proj R (G, X )ieqa = {0, 00}.

(b) More generally, let X be the projective space P}, with its natural
action of the torus T = G™"/G,, of rank n by (zg : -+ : z,)g = (209 :

-1 pg). Then Proj R*(T, X)rea = X — T (hence (7', X)pro; is homeomor-
phic to X — T'). The stratification of 3.9 (c) is deduced from the standard
stratification of X — 7. Similar results hold for toric varieties ([8], 6.15). For
example, if X is the toric variety Spec k[P] for a fine and saturated monoid P
such that P* = 0, with the action of the torus T' = Spec k[ P*8P|, then (T, X),
with its stratification (3.9 (c)), is homeomorphic to V(P8 ® F,), with the
stratification given by the faces of P.

(c) Let n be an integer > 1 and let T be the standard maximal torus
in G = GL, ;. Let W(= Nr(G)/T = S,,) be the Weyl group. A comple-
ment to 2.5 (a) is that the restriction map H*(BG) — H*(BT) induces an
isomorphism

H*(BG) = H*(BT)".
The map a,x) (3.6.2) (for X = Speck) is the composition with the restric-
tion H*(BT)W — H*(BT[())", where T[{] = Ker{ : T — T (recall that
W(T[{]) = W (3.4.3)). It is injective and its cokernel is annihilated by F'.
The space (G, X) is the affine space A™ over F.

Question 3.11. In the situation of 3.7, let d;(G, X) be the dimension of
Spec HE (X, Fy), and let us write dy(G) for dy(G, Spec k). We have dy(G, X) =
dy(Gred;s Xred)- Is there an integer N such that, for all £ > N, dy(G, X) is
independent of ¢ 7 For dy(G), does it suffice to take for N the supremum
of the orders of G1/Gy and the Weyl group W of G5/R, in the dévissage
mentioned in 2.6 (with G reduced), where R, denotes the unipotent radical
of Go 7

If [X/G] is a Deligne-Mumford stack, it follows from 3.7 that d,(G, X) =0
as soon as ¢ does not divide the orders of the (finite) inertia groups. On
the other hand, it is easy to see that d,(G,X) is bounded by an integer
independent of ¢. Indeed, we have d,(G, X) < d¢(G) (by 2.3 or 3.8), do(G) <
dg(Go/Gl) + dg(Gl/Gg) + dg(GQ), and, for £ > N, dg(Go/Gl) =0 (as { >
|G0/G1|), d((Gl/Gg) = 2d1m(G1/G2) (25 (b)), dg(Gg) = dg(Gg/Ru), and as
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¢ > |W| all elementary abelian ¢-subgroups of Gy/R,, are toral ([17], 1.2.2),
whence d¢(G2) = rk(G2/R,).

3.12. Steenrod operations. The graded algebra H{(X) = HE(X,Fy)
admits Steenrod operations, preserving Hg (X). These are homomorphisms

. H:E(X) if (=2
3.12.1 P HY(X) — ¢ .
( ) G( ) {Hé—l—Q(ﬂ—l)Z(X) f0> 9

For ¢ = 2, P’ is sometimes denoted Sq’. Their construction is a particular
case of Steenrod operations on H*(T,F,) for a topos T, see [4], [16], ([8],
11.6). They satisfy the following properties, where we write H* for H5(X) :
Pi=0fori<0, P°=1d;for x € H, Plxz =0 for ¢ <iif { =2, Pix =0
for q < 2iif £ > 2 ; for v € H' (vesp. x € H*), Pix = 2 if { = 2 (resp.
¢ > 2) ; if one defines

P H* — HY]

by Pi(z) = > ;50 P'(x)t', so that P(x) = x + 2’ for x € H', £ = 2 (resp.
r € H? (> 2), then P, is a ring homomorphism (Cartan’s formula).

4. A stack-theoretic reformulation of the amalgamation theo-
rem, and a generalization.

The source of the homomorphism a(¢,x) (3.6.2) depends only on the stack
X = [X/G], but the target involves fixed points of the action of subgroups
of G on X. However, one can rewrite this target as a limit over a certain
category C of points of X'. This reformulation makes sense on any Artin
stack, and can also be extended to include constructible coefficients. Such
a reformulation is in fact needed to prove 3.7. Indeed a crucial continuity
property ([14], 5.6) used by Quillen in his proof of the analogous topological
result has to be replaced by an analysis of specialization of points in C.

4.1. Let k and ¢ be as in 2.2, and let X be an Artin stack over k (see
footnote 3).

(a) We define a geometric point of X to be a representable morphism
x: S — X, where S is a strictly local scheme. A morphism from z : S — X
toy : T — X is a morphism f : S — T together with a 2-morphism
w : x — yf. By inverting morphisms (f,u) such that f sends the closed
point of S to the closed point of T', we get a category

(4.1.1) P

called the category of geometric points of X. In the case X is a scheme, this
category is equivalent to the usual category of geometric points of X'. If A
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is a noetherian ring, and F' is a constructible sheaf of A-modules on X, the
natural map

(4.1.2) DX, F) = lim F,

TEPxy

is an isomorphism ([8], 7.12). Here, for (z: S — X) € Py, F, =T'(S,F) =
F is the stalk of F' at the closed point s of S.

(b) We will need a bigger category of geometric points, depending on /.
We define an (-elementary point of X to be a representable morphism z : § —
X, where S is isomorphic to a quotient stack [S/A], where S is a strictly local
scheme endowed with an action of an elementary abelian /-group A acting
trivially on the closed point of S. Note that the representability condition
imposes that z : [S/A] — X induces an injection A — Auty(s — X). A
morphism from = : [S/A] — & to y: [I'/B] — X is an isomorphism class of
pairs (g, ), where ¢ : [S/A] — [T'/B] is an X-morphism, and o : & — yp is a
2-morphism; an isomorphism between pairs (p, @) and (¢, 5) is a 2-morphism
¢ : ¢ — 1 such that § = ca. Such a pair (¢, ) is represented by a morphism
of X-schemes f : S — T and a group homomorphism u : A — B (and if
(f1,u1), (f2,u2) are two such pairs, then u; = us and there exists a unique
r € B such that fir = f;). By inverting morphisms (¢, o) such that f sends
s to t and the (unique) homomorphism u : A — B is an isomorphism, we get
a category

(413) CX,Z;

called the category of (-elementary points of X, abbreviated to Cy if no
confusion can arise. It follows readily from the definitions that the obvious
functor

is fully faithful, and one can show that if X is of finite type over k and F' a
constructible sheaf of A-modules as in (a), the natural map

(4.1.5) DX, F) — lim F;

CEECX’[

is again an isomorphism (compatible with (4.1.2)), where, for (x : [S/A] —
X) €Cy, FA:=T([S/A],2*F) = T'(BA, F,) (s the closed point of S).

s

4.2. Replacing F, by HY([S/A],F) in (4.1.5) leads to the announced
reformulation and generalization of 3.7. Let DI (X, F,) denote the full sub-
category of DT (X, F,) consisting of complexes of sheaves of Fy-modules over
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the lisse-étale site of X with bounded below, cartesian, constructible coho-
mology. For K € D (X,Fy), and q € Z,

(x:8 = X €Cy)— HIS, K|S)

is a projective system (of Fy-vector spaces) indexed by Cy, and the restric-
tion maps H9(X, K) — HY(S, K|S) are compatible with the transition mor-
phisms, hence yield a homomorphism

(4.2.1) ari HUX,K) = lim  HY(S,K).
(S—X)eCx

For X a quotient stack of the form [X/G] as in 2.2, with X separated, and
K the constant sheaf F, the right hand side of (4.2.1) is naturally identified
with the right hand side of (3.5.2) and ax x with ac x) ([8], 8.6).

More generally, the right hand side of (4.2.1) can be described in terms of
a certain inverse limit involving fixed point sets X for elementary abelian
(-subgroups A of G.

For a pair (4,C) in A x), we have a restriction map H{(X,K) —
HY%(C,K|C), and an edge homomorphism HY%(C, K|C) = HY(BA, K|C) —
H°(C,H%(K)), where H%(K) denotes the cohomology sheaf H? of the com-
plex RI'(BA, K|C) on C, hence a composition

(4.2.2) HL(X,K) — H°(C,HY(K|C)).

For a map (6, : A — A',Cg D (') in A.x)(k), we don’t have a map
HY(C', H, (K|C") — HY(C,H%(K|C)), but instead a commutative square

(4.2.3) HL(X,K) H(C, HY(K))

l |

HO(C, 1Y (K)) — H(C'g™! HY(K)

where the right vertical map is the restriction and the lower horizontal map
is given by the isomorphism H°(C", H%, (K)) = H(C'g~", M ., (K)) fol-
lowed by the restriction to A. Let R (X, K) be the set of families

(zac) € H(C,HY(K))) (a0)eanq

such that for any map g : (A,C) = (4, C") in A x) the images of z(4 ¢
and (u oy in H°(C'g™', HY(K)) coincide. We therefore get a map

(4.2.4) axi) - HE(X, K) = RL(X, K).
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For K = Fy, the right hand side of (4.2.4) coincides with that of (3.6.2).

Here is an alternate description of R%(X, K) ([8], 6.18). Let A% denote
the following category. Objects of ADG are triples (A, A, g), where A, A’ are
elementary abelian ¢-subgroups of G and g is an element of G(k) such that
the conjugation ¢, : s — ¢ 'sg maps A into A’. Morphisms in AuG from
(A, A’ g) to (Z,Z',h) are pairs (a,b) € G(k) x G(k) such that g = ahb,
Ca: A= Z, ¢p: 7' — A For (A A g) € Aug, we have an equivariant map
(1,¢,) : (XA, A) — (X,G), where A acts trivially on X4 via ¢, : A — A,
hence a morphism

[1/eg)  [X*/A] = [X/G.
On the other hand, we have the second projection
7 [XAJA] = BA x X4 — X4,

Consider the sheaf RiT,[1/c,]*K (= H%4([1/c,]*K)) on X*. A map (a,b) :
(A, A g) — (Z,Z',h) in AhG induces a morphism

(b,a)* : HY (X% Rim,[1/ch]) K) — HY (XA Rim,[1/¢c,]" K),
and

(4.2.5) RE(X, K) = lim HO(XY, Rim.[1/¢,]" K).
Al

Now, we have the key compatibility, whose proof is not formal :

Lemma 4.3 ([8], 8.6). For X = [X/G] as in 2.2, with X separated,
K € DF(X,Fy), and each integer q, there is a natural isomorphism

i lim HYS,K) 3 RL(X,K)
(S—X)eCx

making the following diagram commute :

Hq([X/G]7K) H@(S—M{)EC,\» Hq(S7K) )
RL(X,K)

where the horizontal and oblique arrows are given respectively by (4.2.1) and
(4.2.4), with the identification (4.2.5).

Thanks to 4.3, the following result generalizes 3.7 :
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Theorem 4.4 ([8], 8.3). Let X be an Artin stack of finite presentation
over k which is either a Deligne-Mumford stack with finite inertia or a quo-
tient stack of the form [X/G] for a separated algebraic space of finite type X
over k and G an algebraic group over k, and let K be an object of DI (X, Fy)
having a multiplicative structure. Let

R'X,K) =&, lm HYS K).
(S—X)eCx

Then
ax i H (X, K) — R*(X,K)

15 a uniform F-isomorphism.

By a multiplicative structure on K we mean a multiplication map m :
K®K — K and aunit map e : F, — K satisfying the usual associativity and
commutativity conditions with respect to the constraints of the symmetric
monoidal category DI (X, Fy) ([8], §3). Such a structure makes H*(X, K)
into a graded F,-algebra.

A common generalization of the two cases of 4.4 would be the case where
X has a stratification by global quotients, i. e. X,q has a stratification by
locally closed substacks such that each stratum is isomorphic to a quotient
stack [X/G] as in 4.4. Indeed, by a theorem of Kresch [10], if for any geo-
metric point x — A the fiber at x of the inertia [y is affine, in particular
if X is a Deligne-Mumford stack with finite inertia, then X has a stratifi-
cation by global quotients of the form [X/G]| with G affine. When X has a
stratification by global quotients, one can still show that the kernel of ax x
is annihilated by a power of F' : a + a* ([8], loc. cit.).

On the other hand, recall that in the case X = [X/G] and K is in
Db(X, K), the source, H*(X, K), of ax  is a finitely generated F-algebra
(2.4). The target, R*(X, K), is finitely generated, too ([8], 6.17). In fact ([8],
8.3 (a)), R*(X, K) is finitely generated when X is an Artin stack of finite
presentation over k admitting a stratification by global quotients. One can
therefore ask :

Questions 4.5. Let X be an Artin stack of finite presentation over k
admitting a stratification by global quotients, and let K be an object of
Db(X,Fy) endowed with a multiplicative structure.

(a) Is H*(X,Fy) a finitely generated F,-algebra 7

(b) Is ax x a uniform F-isomorphism 7

5. Outline of proof of 4.4.

We roughly follow the pattern of Quillen’s proof for the analogous results
([14], 6.2), ([15], 8.5). In loc. cit. the starting point is to analyze Hj (X, Fy)
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via the Leray spectral sequence of the quotient map
m: PGAY X = X/G,

which is a proper map whose fiber at a point y of X/G is PG AY Gz for
a point z in X above y, so that (RIm.Fy), = HL(Gx, Fy) = HY(BG,,F,),
where G, C G is the stabilizer of z. In the situation of 4.4, with X = [X/G],
the quotient X/G doesn’t make sense in general, but with some additional
hypotheses on X', a coarse moduli space will be a satisfactory substitute.

5.1. In particular, suppose that X in 4.4 is a Deligne-Mumford stack
with finite inertia. Then, by the Keel-Mori theorem [9] there exists a coarse
moduli space morphism

(5.1.1) fiX Y.

Recall that this means that Y is an algebraic space over k, f is initial among
maps from X to a k-algebraic space, and for any algebraically closed field
K over k, f induces an isomorphism from the set of isomorphism classes
of objects of X(K) to Y(K). In addition, f is proper, and is a universal
homeomorphism. For an algebraically closed geometric point y of Y, the
reduced fiber® f~1(y),eq consists of a single isomorphism class of objects of X
over y, namely that of the quotient stack [Gx/G] (= [Spec k(y) A% G/G] =
BG, (2.2.4)) for a geometric point z of X above y.
A key fact, similar to ([14], 3.2), is that the edge homomorphism

(5.1.2) e: H(X,K) — H(Y, R* f.K)

of the Leray spectral sequence of f is a uniform F-isomorphism. Asin loc. cit.
it is a simple consequence of the multiplicative structure of the spectral se-
quence.

As f is proper, by (an easy case of) ([13], 9.14) the sheaves R?f,K are
constructible and for any geometric point y of Y, we have

(5.1.3) (RIf.K), = HY(BG,, K|BG,)

(for a geometric point x of X above y). Therefore, by (4.1.2) applied to Y
and RIf,K, we have

(5.1.4) H(Y,Rf.K) = lim H'(BG,, K|BG,).

yEPy

Fibers of f are not necessarily reduced, as the example of a Kummer cover of the
affine line already shows.
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Assume now :

(*) All inertia groups Gy of X are elementary abelian (-groups.

Then, by (4.1.5), (5.1.4) induces an isomorphism

(5.1.5) HY(Y,RUf.K) = lim H([S/A], K).
[S/AleCx

The composite of (5.1.2) and (5.1.5) is the canonical map
axvy  H' (X, K) — R* (X, K)

of 4.4, and it is a uniform F-isomorphism.

5.2. Suppose now that X in 4.4 is a quotient stack [X/G]. Imitating
Quillen’s method in [14], one reduces to the situation of 5.1 with the addi-
tional assumption (*). By the dévissage used in the proof of 2.3 (cf. 2.6), one
first reduces to the case where G is affine. One then embeds G into some gen-
eral linear group L := GL, ; and let G act diagonally on X, := X x (T[(]\L),
where T' C L is a maximal torus. The map G x Xo — Xox X, (g, ) X (z, zg)
is then finite and unramified, and all the inertia groups G, are elementary
abelian (-subgroups of G. Therefore X, := [X(/G] satisfies the assumptions
of 5.1, plus (*). So ax, x is a uniform F-isomorphism. One repeats the oper-
ation with X7 := [X;/G], where X; = X x (T[¢(]\L) x (T[¢]\L), and gets that
ax, k is a uniform F-isomorphism. A descent argument yields the conclusion
for X.

5.3. When X in 4.4 is a Deligne-Mumford stack with finite inertia, but
does not necessarily satisfy (*), one applies 4.4 to the stacks BG, (and
K|BG,) appearing in the right hand side of (5.1.4). A closer analysis shows
that one can find a bound N for the power of F' annihilating the kernel and
the cokernel of apq, x which is independent of the order of G,. One then
concludes using (5.1.4) and (4.1.5).
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