
Elementary abelian `-groups
and mod ` equivariant étale cohomology algebras

Luc Illusie

This is a report on joint work with W. Zheng [8]. It grew out of questions
that Serre asked me about traces for finite group actions. These questions
were the subject of the previous joint papers ([6], [7]). They led us to consider
more generally actions of algebraic groups and revisit, in the context of mod `
étale cohomology, a theory of equivariant cohomology developed in the early
70’s by Quillen for actions of compact Lie groups on topological spaces ([14],
[15]).

1. Finite `-group actions, fixed point sets and localizations

Let k be an algebraically closed field of characteristic p and ` a prime
number 6= p. Let X be a separated k-scheme of finite type, acted on by a
finite `-group G. Serre ([18], 7.2) observed that we have the following identity

(1.1) χ(X) ≡ χ(XG) mod `.

HereXG is the fixed point set ofG, and χ = χ(−,Q`) =
∑

(−1)idimH i(−,Q`)
denotes an Euler-Poincaré `-adic characteristic. It has been known since
the early sixties that this integer does not depend on `, as follows from
Grothendieck’s cohomological formula for the zeta function of a variety over
a finite field. Recall also that, by a theorem of Laumon [11], χ = χc :=∑

(−1)idimH i
c(−,Q`).

The proof of (1.1) is immediate : by dévissage one reduces to the case
where G = Z/`Z ; in this case, as |G| = ` 6= p and G acts freely on X−XG, by
a theorem of Deligne (cf. ([6], 4.3)) we have χc(X−XG) = `χc((X−XG)/G),
hence χc(X) = χc(X

G)+χc(X−XG), and (1.1) follows from Laumon’s result.
When G = Z/`Z, for g ∈ G we have a more precise result :

(1.2) Tr(g,H∗c (X,Q`)) = χ(XG) + χ(X −XG)/G)RegG(g),

where Tr(g,H∗c ) :=
∑

(−1)iTr(g,H i
c) and RegG denotes the character of the

regular representation of G. In fact (([6], (2.3)) Tr(g,H∗c ) = Tr(g,H∗) (an
equivariant form of Laumon’s theorem).

In particular, if ` does not divide χ(X), then XG is not empty. This is
the case, for example, if X is the standard affine space An

k of dimension n
over k, as (1.1) implies χ(XG) ≡ 1 mod `. Serre ([18], 1.2) remarks that in
this case one can show XG 6= ∅ in a much more elementary way : reduce
to the case where k is the algebraic closure of a finite field k0 = Fq and the
action of G on X = An

k comes from an action of G on X0 = An
k0

. Then we
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have the stronger property X0(k0)G 6= ∅, as |X0(k0)| = qn and ` divides the
cardinality of any non trivial orbit. Given a field K and an action of a finite
`-group G on An

K , Serre ([18], loc. cit.) asks whether An
K(K)G is not empty.

This is the case for n ≤ 2 (elementary for n = 1, by Esnault-Nicaise ([5],
5.12) for n = 2). The answer is unknown for n = 3, K = Q, |G| = 2. In the
positive direction, in addition to the case where K is finite, Esnault-Nicaise
([5], 5.17) prove that the answer is yes if K is a henselian discrete valuation
field of characteristic zero whose residue field is of characteristic 6= `, and
which is either algebraically closed or finite of cardinality q with `|q − 1. In
the case K = k, Smith’s theory gives more than the existence of a fixed
point. Indeed we have :

Theorem 1.3 ([18], 7.9) ([6], 7.3, 7.8). Let X be an algebraic space
separated and of finite type over k endowed with an action of a finite `-group
G. Then, if X is mod ` acyclic, so is XG.

Here, we say that Y/k is mod ` acyclic if H∗(Y,F`) = H0(Y,F`) = F`. It
is shown in loc. cit. that the conclusion of 1.3 still holds if the assumption
` 6= p made at the beginning of this section is dropped.

Sketch of proof of 1.3. As in the proof of (1.1) we may assume by dévissage
that G = Z/`Z. In this case, Serre’s proof exploits the action of the algebra
F`[G] on π∗(Z/`Z), where π : X → X/G is the projection. The proof given
in [6], which uses equivariant cohomology, is close in spirit to that of Borel
[2] in the topological case. Let us first give a general definition.

For an algebraic space Y separated and of finite type over k endowed
with an action of a finite group G, RΓ(Y,F`) is an object of D+(F`[G]). The
equivariant cohomology complex of Y is defined as

(1.3.1) RΓG(Y,F`) := RΓ(G,RΓ(Y,F`)),

which we will abbreviate here to RΓG(Y ). It has a natural multiplicative
structure, and H∗G(Y ) = H∗RΓG(Y ) is a graded algebra over the graded
F`-algebra H∗G = H∗(G,F`). For G = Z/`Z, we have

(1.3.2) H∗Z/`Z =

{
F`[x] if ` = 2

F`[x]/(x2)⊗ F`[y] if ` > 2,

where x is the tautological generator of H1
Z/`Z, and, for ` > 2, y = βx, where

β : H1
Z/`Z

∼→ H2
Z/`Z is the Bockstein operator (associated with the exact

sequence 0→ F` → Z/`2Z→ F` → 0).
Coming back to the proof of 1.3, the key point is that (for G = Z/`Z)

the restriction map

(1.3.3) H∗G(X)→ H∗G(XG) = H∗G ⊗H∗(XG),
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which is a map of graded H∗G-modules, becomes an isomorphism after invert-
ing βx ∈ H2

Z/`Z. Indeed, the assumption that X is mod ` acyclic implies that

H∗G(X) = H∗G, hence H∗(XG) has to be of rank one over F`. The assertion
about (1.3.3) follows from the fact that H∗G(X, j!F`) is of bounded degree,
where j : X −XG ↪→ X is the inclusion, as X/G is of finite `-cohomological
dimension.

The above key point is similar to various localization formulas considered
by Quillen, Atiyah-Segal, Goresky-Kottwitz-MacPherson. For actions of ele-
mentary abelian `-groups1 we have the following result, which is an analogue
of Quillen’s theorem ([14], 4.2) :

Theorem 1.4 ([6], 8.3). Let X be an algebraic space separated and of
finite type over k endowed with an action of an elementary abelian `-group
G of rank r, and let

e :=
∏

ξ∈H1
G−{0}

βξ ∈ H2(`r−1)
G ,

where β : H1
G → H2

G is the Bockstein operator. Then the restriction map

H∗G(X)[e−1]→ H∗G(XG)[e−1]

is an isomorphism.

The proof in ([6], 8.3) is by dévissage on G. In ([14], 4.2) it is deduced
from general structure theorems for H∗G(X,F`) for actions of compact Lie
groups G on certain topological spaces X. This led us to investigate algebraic
analogues of these results.

2. Quotient stacks and equivariant cohomology algebras : finite-
ness theorems

2.1. If G is a compact Lie group, we have a classifying space BG, which is
the base of a universal G-torsor PG, whose total space is contractible. If X
is a G-space2, i. e. a topological space endowed with a continuous action of
G, the projection w : PG×X → BG induced by PG→ BG factors through
the quotient

PG ∧G X := (PG×X)/G,

1An elementary abelian `-group is a group G isomorphic to the direct product of a
finite number r of cyclic groups of order `. The integer r is called the rank of G.

2We let groups act on spaces on the right.
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where G acts by (p, x)g = (pg, xg), giving a commutative diagram

(2.1.1) PG×X u //

w
��

PG ∧G X

v
wwooo

ooo
ooo

ooo

BG

.

Here u makes PG × X into a G-torsor over PG ∧G X, and v is a locally
trivial fibration of fiber X. The torsor u is universal in the sense that, up to
homotopy, maps from a compact space T to PG ∧G X correspond to pairs
of a G-torsor P on T and an equivariant map from P to PG×X.

Let ` be a prime number. The equivariant mod ` cohomology complex of
X, RΓG(X,F`), is defined, à la Borel, by

(2.1.2) RΓG(X,F`) := RΓ(PG ∧G X,F`).

Its cohomology,
H∗G(X,F`) := H∗RΓG(X,F`),

is a graded F`-algebra over H∗(BG,F`) = H∗G(pt,F`). Using v one can
rewrite (2.1.2) as

(2.1.3) RΓG(X,F`) = RΓ(BG,RΓ(X,F`)),

where by abuse RΓ(X,F`) ∈ D+(BG,F`) denotes Rv∗F` (a locally constant
complex of value RΓ(X,F`)). This equivariant cohomology is studied in
Quillen’s papers [14], [15]. One of the main results is that H∗(BG,F`) is a
finitely generated F`-algebra, and, if H∗(X,F`) is finite dimensional, then
H∗G(X,F`) is finite over H∗(BG,F`) ([14], 2.1, 2.2, 2.3).

2.2. Similar results are available in the setting of mod ` étale cohomology
and actions of algebraic groups. From now on we denote by k an algebraically
closed field of characteristic p ≥ 0 and ` a prime number 6= p. Let G be an
algebraic group over k, and let X be an algebraic space of finite type over
k 3, endowed with an action of G. Consider the quotient stack [X/G] ([12],
3.4.2). This is an Artin stack4 of finite type over k, which comes equipped
with a surjection u : X → [X/G] making X into a universal G-torsor over

3By an algebraic group over k we mean a k-group scheme of finite type. By an algebraic
space X over k we mean the quotient of a k-scheme by an étale equivalence relation ; we
do not assume X to be quasi-separated.

4By an Artin stack over k we mean a stack in groupoids X over the big fppf site of
Spec k such that the diagonal X → X ×k X is representable (by algebraic spaces) and
there exists a smooth surjective k-morphism X → X with X a k-algebraic space.
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[X/G], in the sense that the groupoid of points of [X/G] with values in a k-
algebraic space T consists of pairs of a GT -torsor P on T and an equivariant
map P → X. The quotient stack [Spec k/G] is called the classifying stack of
G and is denoted BG. We have a 2-commutative diagram similar to (2.1.1) :

(2.2.1) X
u //

w

��

[X/G]

v{{vv
vv
vv
vv

BG

,

where v : [X/G] → [Spec k/G] = BG is an fppf locally trivial fibration of
fiber X. The equivariant mod ` cohomology complex of X, RΓG(X,F`), is
defined, similarly to (2.1.2), by

(2.2.2) RΓG(X,F`) := RΓ([X/G],F`).

The cohomology on the right hand side is that of the smooth-étale site of
[X/G]. As above, using v, one can rewrite it as

(2.2.3) RΓG(X,F`) = RΓ(BG,RΓ(X,F`)),

where by abuse RΓ(X,F`) ∈ D+(BG,F`) denotes Rv∗F`. Thus, if G is a
finite (discrete) group, the definition given in (2.2.2) agrees with that given
in (1.3.1). The cohomology

H∗G(X,F`) := H∗RΓG(X,F`)

is a graded F`-algebra over the graded algebra H∗(BG,F`).
By definition, RΓG(X,F`) depends only on the stack [X/G], which can

have various descriptions as a quotient stack. For example, if G is a subgroup
of an algebraic group G′ over k, we have a natural equivalence

(2.2.4) [X/G]
∼→ [X ∧G G′/G′],

called induction formula, and hence an isomorphism

(2.2.5) H∗G(X,F`)
∼→ H∗G′(X ∧G G′,F`).

Here X ∧G G′ is the quotient of X × G′ by the diagonal action of G, an
fppf locally trivial fibration of fiber X over the homogeneous space G′/G =
Spec k ∧G G′.

The following theorem is similar to the results of Quillen mentioned at
the end of 2.1 :
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Theorem 2.3 ([8], 4.6). With the notations of 2.2, assume X of finite
presentation over k. Then H∗(BG,F`) is a finitely generated F`-algebra, and
H∗G(X,F`) is a finite H∗(BG,F`)-module.

In an earlier version of [8] this result was first proved by Illusie-Zheng
in the case that G is an affine group, or a semi-abelian variety. A few more
cases were suggested to us by Brion. The day after my talk at the conference,
Deligne kindly provided me with a proof of the general case [3].

Remark 2.4. The result established in ([8], 4.6) is slightly more general.
One can replace F` by a noetherian Z/nZ-algebra Λ, with n invertible in
k : H∗(BG,Λ) is a finitely generated Λ-algebra. One can also replace F`

by an object K of Db
c([X/G],Λ), i. e. the full subcategory of Db([X/G],Λ)

consisting of complexes (over the lisse-étale site) with bounded, cartesian,
constructible cohomology (the datum of a cartesian, constructible sheaf of
Λ-modules on [X/G] is equivalent to the datum of a constructible sheaf of
Λ-modules F on X together with an action of G on F compatible with the
action of G on X ; if G acts trivially on X, this action factors through the
finite discrete group π0(G)). Then H∗G(X,K) := H∗([X/G], K) is a finite
H∗(BG,Λ)-module.

Examples 2.5. Let Λ be as in 2.4.
(a) Let r be an integer ≥ 1. For 1 ≤ i ≤ r, let ci ∈ H2i(BGLr,k,Λ(i))

be the i-th Chern class of the tautological bundle Or over BGLr,k. Let
Λ[x1, · · · , xr] be the polynomial algebra over Λ on generators xi of degree 2i
for 1 ≤ i ≤ r. Then Hq(BGLr,k,Λ) = 0 for q odd, and the homomorphism
of Λ-algebras

Λ[x1, · · · , xr]→ H2∗(BGLr,k,Λ(∗)) := ⊕i≥0H
2i(BGLr,k,Λ(i))

sending xi to ci is an isomorphism.
This result has been known since the 60’s. A proof of the analogous result

for de Rham cohomology, consisting in approximatingBGLr,k by grassmanni-
ans, was communicated to me by Deligne in 1967. The argument is sketched
by Behrend in ([1], 2.3.2).

(b) Let G be a semi-abelian variety over k, extension of an abelian variety
A of dimension g by a torus T of dimension r. Then we have a short exact
sequence of free Λ-modules

0→ H1(A,Λ)→ H1(G,Λ)→ H1(T,Λ)→ 0,

of successive ranks 2g, 2g + r, r, and isomorphisms of algebras

H∗(G,Λ) ' Λ∗Λ(H1(G,Λ)),
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H2∗(BG,Λ) ' S∗Λ(H1(G,Λ)),

where H1(G,Λ) is placed in degree 2, and Hq(BG,Λ) = 0 for q odd.

2.6. Sketch of proof of 2.3. When G is affine, one can embed G into GLr,k
for some r, and by the induction formula (2.2.5) one is reduced to the case
G = GLr,k. One can then imitate Quillen’s proof, using 2.5 (a). The general
case is reduced to this one, using the general structure of algebraic groups
over k. We may assume G reduced. Then G has a filtration 1 ⊂ G2 ⊂ G1 ⊂
G0 = G, with Gi+1 normal in Gi, and successive quotients : G0/G1 a finite
discrete group, G1/G2 an abelian variety, G2 a connected affine group. Very
roughly, the idea is that the abelian variety layer A in this dévissage can be
replaced by the inductive system of its division points

A[m`∞] = “ lim−→
n≥1

”A[m`n]

for a suitable integer m ≥ 1 (e. g. the order of G0/G1), where A[d] denotes
the kernel of the multiplication by d, using the fibration BA[m`n] → BA
with fiber A/A[m`n]

∼→ A, and the fact that the transition map

H∗(A/A[m`n+1],F`)→ H∗(A/A[m`n],F`)

vanishes in positive degree.

3. The amalgamation and stratification theorems

3.1. If G is a compact Lie group and X a G-space which is either com-
pact of paracompact and of finite `-cohomological dimension, and such that
H∗(X,F`) is finite dimensional, Quillen relates the size of the (finitely gen-
erated) graded algebra H∗G(X) := H∗G(X,F`), i.e. the dimension of the spec-
trum of the (commutative) reduced algebra H∗G(X)red, to elementary abelian
`-subgroups of G. He shows that this dimension is equal to the maximum
rank of an elementary abelian `-subgroup of G fixing a point in X. He
deduces this from a more precise theorem describing the spectrum, up to
a homeomorphism, as an amalgamated sum of spectra of reduced algebras
H∗(BA,F`)red, for A varying among elementary abelian `-subgroup of G
with non empty fixed point sets ([15], 8.10 ). Again, analogous results are
available in the algebraic setting, which we will now discuss.

3.2. First, recall the structure of H∗A := H∗(BA,F`) for an elementary
abelian `-group A of rank r ([14], §4) ([6], §8). Let Ǎ := Hom(A,F`). Then

H1
A = Ǎ,

the Bockstein map
β : H1

A → H2
A
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defined by the exact sequence 0 → F` → Z/`2Z → F` → 0 is injective, and
we have an isomorphism of graded F`-algebras

H∗A =

{
S(Ǎ) if ` = 2

ΛǍ⊗ S(βǍ) if ` > 2.

If {x1, · · · , xr} is a basis of Ǎ over F`, then

H∗A =

{
F`[x1, · · · , xr] if ` = 2

Λ(x1, · · · , xr)⊗ F`[y1, · · · , yr] if ` > 2.

In particular, Spec (H∗A)red is the affine space Ar
F`

.

3.3. Let k, `, G and X be as in 2.2. By analogy with ([15], 8.1) we define
the following category

(3.3.1) A(G,X,`).

Objects of A(G,X,`) are pairs (A,C), where A is an elementary abelian `-
subgroup of G, and C is a connected component of the fixed point space
XA (in particular, is not empty). For objects (A,C) and (A′, C ′) of A(G,X,`),
maps from (A,C) to (A′, C ′) are defined by

HomA(G,X,`)
((A,C), (A′, C ′)) = TransG((A,C), (A′, C ′))(k),

where TransG((A,C), (A′, C ′)), the transporter of (A,C) into (A′, C ′), is the
closed subscheme of G representing the functor on k-schemes

S 7→ {g ∈ G(S)|g−1ASg ⊂ A′S, CSg ⊃ C ′S}

(see ([8], 6.4)). Composition is defined by composition of transporters. When
no confusion can arise, we will abbreviate A(G,X,`) into A(G,X) and write AG
for A(G,Spec k).

3.4. In the rest of this section we will consider projective systems indexed
by a smaller category A[(G,X). As in ([14], (8.2)), the map

TransG((A,C), (A′, C ′))(k)→ Hom(A,A′)

sending g to the homomorphism a 7→ g−1ag induces an injection

(3.4.1) CentG(A,C)(k)\TransG((A,C), (A′, C ′))(k) ↪→ Hom(A,A′),

where

CentG(A,C)(k) = {g ∈ G(k)|Cg = C and g−1ag = a for all a ∈ A}.
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The injection (3.4.1) is compatible with composition. The category

(3.4.2) A[(G,X,`)

having the same objects as A(G,X,`), but with maps defined by the left hand
side of (3.4.1) is the analogue of the category defined by Quillen in [14]. As
in loc. cit.,

(3.4.3) W (A,C) := CentG(A,C)(k)\TransG((A,C), (A,C))(k) ⊂ End(A)

is a (finite) group, called the Weyl group of (A,C). For X = Spec k we
write W (A, Spec k) = W (A). For G connected, reductive, with Weyl group
W = NT (G)/T , where T is a maximal torus of G, if T [`]) := Ker ` : T → T ,
W (T [`]) is a quotient of W and W (T [`]) = W if ` > 2 ; for G = GLn,
W (T [`]) = W . See ([8], 6.7).

Lemma 3.5. The category A[(G,X,`) is equivalent to a finite category, more
precisely :

(a) For any objects (A,C) and (A′, C ′) of A(G,X), the set of homomorhisms
in A[(G,X) from (A,C) to (A′, C ′)) is finite.

(b) The set of isomorphism classes of objects of A[(G,X) is finite.

Assertion (a) is trivial. For (b), the main point is the following fact, which
was communicated to us by Serre : the set of conjugacy classes of elementary
abelian `-subgroups of G is finite. This follows from the boundedness of the
ranks of such subgroups, and the fact that if H is a finite group of order
prime to p, the orbits of G acting on Homgp(H,G) by conjugation are open.

3.6. For (A,C) ∈ A := A(G,X), we have a restriction homomorphism

(3.6.1) H∗G(X)→ H∗A(C) = H∗A ⊗H∗(C)→ H∗A ⊗H0(C) = H∗A,

where H∗G(X) := H∗G(X,F`), etc. For g ∈ G(k), the map

θg : H∗G(X)→ H∗G(X)

induced by (h, x) 7→ (g−1hg, xg) is the identity.
For g ∈ HomA(G,X)((A,C), (A′, C ′)), we thus get a commutative triangle

H∗G(X)

�� ##G
GG

GG
GG

GG

H∗A′
θg // H∗A

,
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and hence a canonical map

(3.6.2) a(G,X) : H∗G(X)→ lim←−
(A,C)∈A(G,X)

H∗A.

Note that θg : H∗A′ → H∗A depends only on the image of g in A[(G,X), so that

in the above projective limit, we can replace the index category by A[(G,X)

(which is equivalent to finite category).
The following result (amalgamation theorem) is an analogue of ([14], 6.2),

([15], 8.5).

Theorem 3.7 ([8], 6.11). Assume X separated. Then the homomorphism
a(G,X) is a uniform F -isomorphism.

That a(G,X) is a uniform F -isomorphism means that its kernel and cok-
ernel are annihilated by a power of F : a 7→ a`, i. e., there exists an integer
N ≥ 1 such that for any a in the kernel (resp. target) of a(G,X) , FNa = 0
(resp. FNa ∈ Im a(G,X)).

Remark. When G is an elementary abelian `-group, the localization the-
orem 1.4 for XG = ∅, namely that H∗G(X)[e−1] = 0, is an easy corollary of
3.7. However, it is not clear how to transpose to the algebraic setting the
arguments of Quillen in ([14], 4.2) to reduce to this case. The proof in ([6],
8.3) uses an independent method.

Theorem 3.7 has the following geometric consequence, which justifies the
terminology “amalgamation theorem”. Define

(3.7.1) (G,X) := SpecHε∗
G (X)red,

where ε = 1 if ` = 2, and ε = 2 otherwise. In particular, for an elementary
abelian `-group A,

A := (A, Spec k) = Spec (Hε∗
A )red,

a standard affine space of dimension equal to the rank of A (3.2). The map
(3.6.1) induces a morphism or schemes

(3.7.2) (A,C)∗ : A→ (G,X),

hence a(G,X) (3.6.2) induces a morphism of schemes

(3.7.3) lim−→
(A,C)∈A[

(G,X)

A→ (G,X).
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It follows from 3.7 that (3.7.3) is a universal homeomorphism. If (Ai, Ci)i∈I
is a finite set of representatives of isomorphism classes of objects of A[(G,X),

by a corollary to the finiteness theorem 2.3 (see ([8], 4.8))
∐

i∈I Ai is finite
over (G,X) and the limit on the left hand side is the quotient of

∐
i∈I Ai by

a (finite) equivalence relation over (G,X), see ([8], 11.1). Therefore we get
the following corollary, similar to ([14], 7.7) :

Corollary 3.8. The dimension of (G,X) is the maximal rank of an
elementary abelian `-subgroup of G fixing a point in X.

Example : The dimension of SpecH∗(BGLn,k) is n (2.5 (a)), which is also
the rank of Ker ` : T → T , where T is a maximal torus of GLn,k.

The structure of (G,X) in relation with (3.7.2) can be described more
precisely. We have the following stratification theorem, similar to ([15], 10.2,
12.1) :

Theorem 3.9 ([8], 11.2). Denote by V(A,C) the reduced subscheme which
is the image of the (finite) map A→ (G,X) (3.7.2). Let

A+ := A− ∪A′<AA′,

V +
(A,C) := V(A,C) − ∪A′<AV(A′,C|A′)

(where A′ < A means A′ ⊂ A and A′ 6= A and C|A′ the component of XA′

containing C). Then :
(a) The Weyl group W (A,C) (3.5.3) acts freely on A+ and the map A+ →

V +
(A,C) given by (3.7.2) induces a homeomorphism

A+/W (A,C)→ V +
(A,C).

(b) The subschemes V(A,C) of (G,X) are the integral closed sub-cones of
(G,X) that are stable under the Steenrod operations on Hε∗

G (X) (see 3.12).
(c) Let (Ai, Ci)i∈I be a finite set of representatives of isomorphism classes

of objects of A[(G,X). Then the V(Ai,Ci)’s form a finite stratification of (G,X),

namely (G,X) is the disjoint union of the V +
(Ai,Ci)

, and V(Ai,Ci) is the closure

of V +
(Ai,Ci)

.

The proof is based on 2.3 and 3.7, and is entirely analogous to that of
([15], 10.2, 12.1).

Examples 3.10. In the following, we set

Rε∗(G,X) := lim←−
(A,C)∈A[

(G,X)

Hε∗
A ,
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and
(G,X)proj := ProjHε∗

G (X)red,

so that (G,X)− {0} is a Gm-bundle over (G,X)proj. We also omit F` from
the notations of cohomology groups.

(a) For X = P1
k, with the natural action of G = Gm,k, the category

A[(G,X) has three objects : ({0}, X), (µ`, 0), (µ`,∞), and (G,X) is a cone on

{0} ∪ {∞}, a union of two lines, V(µ`,0) and V(µ`,∞), their intersection being
the point V({0},X). In other words, ProjRε∗(G,X)red = {0,∞}.

(b) More generally, let X be the projective space Pn
k , with its natural

action of the torus T = Gn+1
m /Gm of rank n by (x0 : · · · : xn)g = (x0g :

· · · : xng). Then ProjRε∗(T,X)red = X − T (hence (T,X)proj is homeomor-
phic to X − T ). The stratification of 3.9 (c) is deduced from the standard
stratification of X−T . Similar results hold for toric varieties ([8], 6.15). For
example, if X is the toric variety Spec k[P ] for a fine and saturated monoid P
such that P ∗ = 0, with the action of the torus T = Spec k[P gp], then (T,X),
with its stratification (3.9 (c)), is homeomorphic to V(P gp ⊗ F`), with the
stratification given by the faces of P .

(c) Let n be an integer ≥ 1 and let T be the standard maximal torus
in G = GLn,k. Let W (= NT (G)/T = Sn) be the Weyl group. A comple-
ment to 2.5 (a) is that the restriction map H∗(BG) → H∗(BT ) induces an
isomorphism

H∗(BG)
∼→ H∗(BT )W .

The map a(G,X) (3.6.2) (for X = Spec k) is the composition with the restric-
tion H∗(BT )W → H∗(BT [`])W , where T [`] = Ker ` : T → T (recall that
W (T [`]) = W (3.4.3)). It is injective and its cokernel is annihilated by F .
The space (G,X) is the affine space An over F`.

Question 3.11. In the situation of 3.7, let d`(G,X) be the dimension of
SpecHε∗

G (X,F`), and let us write d`(G) for d`(G, Spec k). We have d`(G,X) =
d`(Gred, Xred). Is there an integer N such that, for all ` > N , d`(G,X) is
independent of ` ? For d`(G), does it suffice to take for N the supremum
of the orders of G1/G0 and the Weyl group W of G2/Ru in the dévissage
mentioned in 2.6 (with G reduced), where Ru denotes the unipotent radical
of G2 ?

If [X/G] is a Deligne-Mumford stack, it follows from 3.7 that d`(G,X) = 0
as soon as ` does not divide the orders of the (finite) inertia groups. On
the other hand, it is easy to see that d`(G,X) is bounded by an integer
independent of `. Indeed, we have d`(G,X) ≤ d`(G) (by 2.3 or 3.8), d`(G) ≤
d`(G0/G1) + d`(G1/G2) + d`(G2), and, for ` > N , d`(G0/G1) = 0 (as ` >
|G0/G1|), d`(G1/G2) = 2dim(G1/G2) (2.5 (b)), d`(G2) = d`(G2/Ru), and as
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` > |W | all elementary abelian `-subgroups of G2/Ru are toral ([17], 1.2.2),
whence d`(G2) = rk(G2/Ru).

3.12. Steenrod operations. The graded algebra H∗G(X) := H∗G(X,F`)
admits Steenrod operations, preserving Hε∗

G (X). These are homomorphisms

(3.12.1) P i : H∗G(X)→

{
H∗+iG (X) if ` = 2

H
∗+2(`−1)i
G (X) if ` > 2.

For ` = 2, P i is sometimes denoted Sqi. Their construction is a particular
case of Steenrod operations on H∗(T,F`) for a topos T , see [4], [16], ([8],
11.6). They satisfy the following properties, where we write H∗ for H∗G(X) :
P i = 0 for i < 0, P 0 = Id ; for x ∈ Hq, P ix = 0 for q < i if ` = 2, P ix = 0
for q < 2i if ` > 2 ; for x ∈ H i (resp. x ∈ H2i), P ix = x` if ` = 2 (resp.
` > 2) ; if one defines

Pt : H∗ → H∗[t]

by Pt(x) =
∑

i≥0 P
i(x)ti, so that Pt(x) = x + x`t for x ∈ H1, ` = 2 (resp.

x ∈ H2, ` > 2), then Pt is a ring homomorphism (Cartan’s formula).

4. A stack-theoretic reformulation of the amalgamation theo-
rem, and a generalization.

The source of the homomorphism a(G,X) (3.6.2) depends only on the stack
X = [X/G], but the target involves fixed points of the action of subgroups
of G on X. However, one can rewrite this target as a limit over a certain
category C of points of X . This reformulation makes sense on any Artin
stack, and can also be extended to include constructible coefficients. Such
a reformulation is in fact needed to prove 3.7. Indeed a crucial continuity
property ([14], 5.6) used by Quillen in his proof of the analogous topological
result has to be replaced by an analysis of specialization of points in C.

4.1. Let k and ` be as in 2.2, and let X be an Artin stack over k (see
footnote 3).

(a) We define a geometric point of X to be a representable morphism
x : S → X , where S is a strictly local scheme. A morphism from x : S → X
to y : T → X is a morphism f : S → T together with a 2-morphism
u : x → yf . By inverting morphisms (f, u) such that f sends the closed
point of S to the closed point of T , we get a category

(4.1.1) PX

called the category of geometric points of X . In the case X is a scheme, this
category is equivalent to the usual category of geometric points of X . If Λ
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is a noetherian ring, and F is a constructible sheaf of Λ-modules on X , the
natural map

(4.1.2) Γ(X , F )→ lim←−
x∈PX

Fx

is an isomorphism ([8], 7.12). Here, for (x : S → X ) ∈ PX , Fx = Γ(S, F ) =
Fs is the stalk of F at the closed point s of S.

(b) We will need a bigger category of geometric points, depending on `.
We define an `-elementary point of X to be a representable morphism x : S →
X , where S is isomorphic to a quotient stack [S/A], where S is a strictly local
scheme endowed with an action of an elementary abelian `-group A acting
trivially on the closed point of S. Note that the representability condition
imposes that x : [S/A] → X induces an injection A ↪→ AutX (s → X ). A
morphism from x : [S/A]→ X to y : [T/B]→ X is an isomorphism class of
pairs (ϕ, α), where ϕ : [S/A]→ [T/B] is an X -morphism, and α : x→ yϕ is a
2-morphism; an isomorphism between pairs (ϕ, α) and (ψ, β) is a 2-morphism
c : ϕ→ ψ such that β = cα. Such a pair (ϕ, α) is represented by a morphism
of X -schemes f : S → T and a group homomorphism u : A → B (and if
(f1, u1), (f2, u2) are two such pairs, then u1 = u2 and there exists a unique
r ∈ B such that f1r = f2). By inverting morphisms (ϕ, α) such that f sends
s to t and the (unique) homomorphism u : A→ B is an isomorphism, we get
a category

(4.1.3) CX ,`,

called the category of `-elementary points of X , abbreviated to CX if no
confusion can arise. It follows readily from the definitions that the obvious
functor

(4.1.4) PX → CX

is fully faithful, and one can show that if X is of finite type over k and F a
constructible sheaf of Λ-modules as in (a), the natural map

(4.1.5) Γ(X , F )→ lim←−
x∈CX ,`

FA
s

is again an isomorphism (compatible with (4.1.2)), where, for (x : [S/A] →
X ) ∈ CX , FA

s := Γ([S/A], x∗F ) = Γ(BA,Fs) (s the closed point of S).

4.2. Replacing Fx by Hq([S/A], F ) in (4.1.5) leads to the announced
reformulation and generalization of 3.7. Let D+

c (X ,F`) denote the full sub-
category of D+(X ,F`) consisting of complexes of sheaves of F`-modules over
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the lisse-étale site of X with bounded below, cartesian, constructible coho-
mology. For K ∈ D+

c (X ,F`), and q ∈ Z,

(x : S → X ∈ CX ) 7→ Hq(S, K|S)

is a projective system (of F`-vector spaces) indexed by CX , and the restric-
tion maps Hq(X , K)→ Hq(S, K|S) are compatible with the transition mor-
phisms, hence yield a homomorphism

(4.2.1) aX ,K : Hq(X , K)→ lim←−
(S→X )∈CX

Hq(S, K).

For X a quotient stack of the form [X/G] as in 2.2, with X separated, and
K the constant sheaf F`, the right hand side of (4.2.1) is naturally identified
with the right hand side of (3.5.2) and aX ,K with a(G,X) ([8], 8.6).

More generally, the right hand side of (4.2.1) can be described in terms of
a certain inverse limit involving fixed point sets XA for elementary abelian
`-subgroups A of G.

For a pair (A,C) in A(G,X), we have a restriction map Hq
G(X,K) →

Hq
A(C,K|C), and an edge homomorphism Hq

A(C,K|C) = Hq(BA,K|C) →
H0(C,Hq

A(K)), where Hq
A(K) denotes the cohomology sheaf Hq of the com-

plex RΓ(BA,K|C) on C, hence a composition

(4.2.2) Hq
G(X,K)→ H0(C,Hq

A(K|C)).

For a map (θg : A ↪→ A′, Cg ⊃ C ′) in A(G,X)(k), we don’t have a map
H0(C ′,Hq

A′(K|C ′))→ H0(C,Hq
A(K|C)), but instead a commutative square

(4.2.3) Hq
G(X,K)

��

// H0(C,Hq
A(K))

��
H0(C ′,Hq

A′(K)) // H0(C ′g−1,Hq
A(K))

,

where the right vertical map is the restriction and the lower horizontal map
is given by the isomorphism H0(C ′,Hq

A′(K))
∼→ H0(C ′g−1,Hq

gA′g−1(K)) fol-

lowed by the restriction to A. Let Rq
G(X,K) be the set of families

(x(A,C) ∈ H0(C,Hq
A(K)))(A,C)∈A(G,X)

such that for any map g : (A,C) → (A′, C ′) in A(G,X) the images of x(A,C)

and x(A′,C′) in H0(C ′g−1,Hq
A(K)) coincide. We therefore get a map

(4.2.4) a(G,X;K) : Hq
G(X,K)→ Rq

G(X,K).
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For K = F`, the right hand side of (4.2.4) coincides with that of (3.6.2).
Here is an alternate description of Rq

G(X,K) ([8], 6.18). Let A\G denote
the following category. Objects of A\G are triples (A,A′, g), where A, A′ are
elementary abelian `-subgroups of G and g is an element of G(k) such that
the conjugation cg : s 7→ g−1sg maps A into A′. Morphisms in A\G from
(A,A′, g) to (Z,Z ′, h) are pairs (a, b) ∈ G(k) × G(k) such that g = ahb,
ca : A → Z, cb : Z ′ → A′. For (A,A′, g) ∈ A\G, we have an equivariant map
(1, cg) : (XA′ , A) → (X,G), where A acts trivially on XA′ via cg : A → A′,
hence a morphism

[1/cg] : [XA′/A]→ [X/G].

On the other hand, we have the second projection

π : [XA′/A] = BA×XA′ → XA′ .

Consider the sheaf Rqπ∗[1/cg]
∗K (= Hq

A([1/cg]
∗K)) on XA′ . A map (a, b) :

(A,A′, g)→ (Z,Z ′, h) in A\G induces a morphism

(b, a)∗ : H0(XZ′ , Rqπ∗[1/ch]
∗K)→ H0(XA′ , Rqπ∗[1/cg]

∗K),

and

(4.2.5) Rq
G(X,K) = lim←−

A\
G

H0(XA′ , Rqπ∗[1/cg]
∗K).

Now, we have the key compatibility, whose proof is not formal :

Lemma 4.3 ([8], 8.6). For X = [X/G] as in 2.2, with X separated,
K ∈ D+

c (X ,F`), and each integer q, there is a natural isomorphism

ε : lim←−
(S→X )∈CX

Hq(S, K)
∼→ Rq

G(X,K)

making the following diagram commute :

Hq([X/G], K) //

))SSS
SSSS

SSSS
SSSS

S
lim←−(S→X )∈CX

Hq(S, K)

ε

��
Rq
G(X,K)

,

where the horizontal and oblique arrows are given respectively by (4.2.1) and
(4.2.4), with the identification (4.2.5).

Thanks to 4.3, the following result generalizes 3.7 :
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Theorem 4.4 ([8], 8.3). Let X be an Artin stack of finite presentation
over k which is either a Deligne-Mumford stack with finite inertia or a quo-
tient stack of the form [X/G] for a separated algebraic space of finite type X
over k and G an algebraic group over k, and let K be an object of D+

c (X ,F`)
having a multiplicative structure. Let

R∗(X , K) := ⊕q lim←−
(S→X )∈CX

Hq(S, K).

Then
aX ,K : H∗(X , K)→ R∗(X , K)

is a uniform F -isomorphism.

By a multiplicative structure on K we mean a multiplication map m :
K⊗K → K and a unit map e : F` → K satisfying the usual associativity and
commutativity conditions with respect to the constraints of the symmetric
monoidal category D+

c (X ,F`) ([8], §3). Such a structure makes H∗(X , K)
into a graded F`-algebra.

A common generalization of the two cases of 4.4 would be the case where
X has a stratification by global quotients, i. e. Xred has a stratification by
locally closed substacks such that each stratum is isomorphic to a quotient
stack [X/G] as in 4.4. Indeed, by a theorem of Kresch [10], if for any geo-
metric point x → X the fiber at x of the inertia IX is affine, in particular
if X is a Deligne-Mumford stack with finite inertia, then X has a stratifi-
cation by global quotients of the form [X/G] with G affine. When X has a
stratification by global quotients, one can still show that the kernel of aX ,K
is annihilated by a power of F : a 7→ a` ([8], loc. cit.).

On the other hand, recall that in the case X = [X/G] and K is in
Db
c(X , K), the source, H∗(X , K), of aX ,K is a finitely generated F`-algebra

(2.4). The target, R∗(X , K), is finitely generated, too ([8], 6.17). In fact ([8],
8.3 (a)), R∗(X , K) is finitely generated when X is an Artin stack of finite
presentation over k admitting a stratification by global quotients. One can
therefore ask :

Questions 4.5. Let X be an Artin stack of finite presentation over k
admitting a stratification by global quotients, and let K be an object of
Db
c(X ,F`) endowed with a multiplicative structure.

(a) Is H∗(X ,F`) a finitely generated F`-algebra ?
(b) Is aX ,K a uniform F -isomorphism ?

5. Outline of proof of 4.4.

We roughly follow the pattern of Quillen’s proof for the analogous results
([14], 6.2), ([15], 8.5). In loc. cit. the starting point is to analyze H∗G(X,F`)
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via the Leray spectral sequence of the quotient map

π : PG ∧G X → X/G,

which is a proper map whose fiber at a point y of X/G is PG ∧G Gx for
a point x in X above y, so that (Rqπ∗F`)y = Hq

G(Gx,F`)
∼→ Hq(BGx,F`),

where Gx ⊂ G is the stabilizer of x. In the situation of 4.4, with X = [X/G],
the quotient X/G doesn’t make sense in general, but with some additional
hypotheses on X , a coarse moduli space will be a satisfactory substitute.

5.1. In particular, suppose that X in 4.4 is a Deligne-Mumford stack
with finite inertia. Then, by the Keel-Mori theorem [9] there exists a coarse
moduli space morphism

(5.1.1) f : X → Y.

Recall that this means that Y is an algebraic space over k, f is initial among
maps from X to a k-algebraic space, and for any algebraically closed field
K over k, f induces an isomorphism from the set of isomorphism classes
of objects of X (K) to Y (K). In addition, f is proper, and is a universal
homeomorphism. For an algebraically closed geometric point y of Y , the
reduced fiber5 f−1(y)red consists of a single isomorphism class of objects of X
over y, namely that of the quotient stack [Gx/G] (

∼→ [Spec k(y)∧Gx G/G]
∼→

BGx (2.2.4)) for a geometric point x of X above y.
A key fact, similar to ([14], 3.2), is that the edge homomorphism

(5.1.2) e : H∗(X , K)→ H0(Y,R∗f∗K)

of the Leray spectral sequence of f is a uniform F -isomorphism. As in loc. cit.
it is a simple consequence of the multiplicative structure of the spectral se-
quence.

As f is proper, by (an easy case of) ([13], 9.14) the sheaves Rqf∗K are
constructible and for any geometric point y of Y , we have

(5.1.3) (Rqf∗K)y
∼→ Hq(BGx, K|BGx)

(for a geometric point x of X above y). Therefore, by (4.1.2) applied to Y
and Rqf∗K, we have

(5.1.4) H0(Y,Rqf∗K)
∼→ lim←−

y∈PY

Hq(BGx, K|BGx).

5Fibers of f are not necessarily reduced, as the example of a Kummer cover of the
affine line already shows.
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Assume now :

(*) All inertia groups Gx of X are elementary abelian `-groups.

Then, by (4.1.5), (5.1.4) induces an isomorphism

(5.1.5) H0(Y,Rqf∗K)
∼→ lim←−

[S/A]∈CX

Hq([S/A], K).

The composite of (5.1.2) and (5.1.5) is the canonical map

aX ,K : H∗(X , K)→ R∗(X , K)

of 4.4, and it is a uniform F -isomorphism.

5.2. Suppose now that X in 4.4 is a quotient stack [X/G]. Imitating
Quillen’s method in [14], one reduces to the situation of 5.1 with the addi-
tional assumption (*). By the dévissage used in the proof of 2.3 (cf. 2.6), one
first reduces to the case where G is affine. One then embeds G into some gen-
eral linear group L := GLn,k and let G act diagonally on X0 := X×(T [`]\L),
where T ⊂ L is a maximal torus. The map G×X0 → X0×X0, (g, x)×(x, xg)
is then finite and unramified, and all the inertia groups Gx are elementary
abelian `-subgroups of G. Therefore X0 := [X0/G] satisfies the assumptions
of 5.1, plus (*). So aX0,K is a uniform F -isomorphism. One repeats the oper-
ation with X1 := [X1/G], where X1 = X× (T [`]\L)× (T [`]\L), and gets that
aX1,K is a uniform F -isomorphism. A descent argument yields the conclusion
for X .

5.3. When X in 4.4 is a Deligne-Mumford stack with finite inertia, but
does not necessarily satisfy (*), one applies 4.4 to the stacks BGx (and
K|BGx) appearing in the right hand side of (5.1.4). A closer analysis shows
that one can find a bound N for the power of F annihilating the kernel and
the cokernel of aBGx,K which is independent of the order of Gx. One then
concludes using (5.1.4) and (4.1.5).
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