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1. Grothendieck at Pisa

Grothendieck visited Pisa twice, in 1966, and in 1969. It is on these
occasions that he conceived his theory of crystalline cohomology and wrote
foundations for the theory of deformations of p-divisible groups, which he
called Barsotti-Tate groups. He did this in two letters, one to Tate, dated
May 1966, and one to me, dated Dec. 2-4, 1969. Moreover, discussions with
Barsotti that he had during his first visit led him to results and conjectures
on specialization of Newton polygons, which he wrote in a letter to Barsotti,
dated May 11, 1970.

May 1966 coincides with the end of the SGA 5 seminar [77]. Grothendieck
was usually quite ahead of his seminars, thinking of questions which he might
consider for future seminars, two or three years later. In this respect his
correspondence with Serre [18] is fascinating. His local monodromy theorem,
his theorems on good and semistable reduction of abelian varieties, his theory
of vanishing cycles all appear in letters to Serre from 1964. This was to be
the topic for SGA 7 [79], in 1967-68. The contents of SGA 6 [78] were for
him basically old stuff (from before 1960), and I think that the year 1966-67
(the year of SGA 6) was a vacation of sorts for him, during which he let
Berthelot and me quietly run (from the notes he had given to us and to the
other contributors) a seminar which he must have considered as little more
than an exercise.

In 1960 Dwork’s proof [24] of the rationality of the zeta function of vari-
eties over finite fields came as a surprise and drew attention to the power of
p-adic analysis. In the early sixties, however, it was not p-adic analysis but
étale cohomology which was in the limelight, due to its amazing development
by Grothendieck and his collaborators in SGA 4 [76] and SGA 5. Étale co-
homology provided a cohomological interpretation of the zeta function, and
paved the way to a proof of the Weil conjectures. Moreover, it furnished in-
teresting `-adic Galois representations. For example, if, say, X is proper and
smooth over a number field k, with absolute Galois group Γk = Gal(k/k),
then for each prime number `, the cohomology groups H i(X ⊗ k,Q`) are
continuous, finite dimensional Q`-representations of Γk (of dimension bi, the
i-th Betti number of X ⊗ C, for any embedding k ↪→ C). These represen-
tations have local counterparts : for each finite place v of k and choice of
an embedding of k in kv, the groups H i(X ⊗ kv,Q`) are naturally identi-
fied to H i(Xk,Q`), and the (continuous) action of the decomposition group
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Γkv = Gal(kv/kv) ⊂ Γk on them corresponds to the restriction of the action
of Γk. For ` not dividing v, the structure of these local representations had
been well known since 1964 : by Grothendieck’s local monodromy theorem,
an open subgroup of the inertia group Iv ⊂ Γkv acts by unipotent automor-
phisms. For ` dividing v, the situation was much more complicated and it’s
only with the work of Fontaine in the 70’s and 80’s and the development
of the so-called p-adic Hodge theory that a full understanding was reached.
However, the first breakthroughs were made around 1965, with the pioneer-
ing work of Tate on p-divisible groups. Together with Dieudonné theory, this
was one of the main sources of inspiration for Grothendieck’s letters.

2. From formal groups to Barsotti-Tate groups

2.1. The Tate module of an abelian variety
As Serre explains in his Bourbaki talk [69], numerous properties of abelian

varieties can be read from their group of division points. More precisely, if A
is an abelian variety over a field k of characteristic p, k an algebraic closure
of k, and ` a prime number, one can consider the Tate module of A,

T`(A) := lim←−
n

A(k)[`n],

(where, for a positive integer m, [m] denotes the kernel of the multiplication
by m), which is a free module of rank r over Z`, equipped with a continuous
action of Gal(k/k). For ` 6= p, one has r = 2g, where g = dimA, and it has
been known since Weil that when k is finite, this representation determines
the zeta function of A. For k of characteristic p > 0, and ` = p, one has
r ≤ g, and it was observed in the 50’s that in this case it was better to
consider not just the kernels of the multiplications by pn on the k-points of
A, but the finite algebraic group schemes A[pn], and especially their identity
components A[pn]0, whose union is the formal group of A at the origin, a
smooth commutative formal group of dimension g. For example, when g = 1
(A an elliptic curve), this group has dimension 1 and height 1 or 2 according
to whether r = 1 (ordinary case) or r = 0 (supersingular case).

In the late 50’s and early 60’s formal groups were studied by Cartier,
Dieudonné, Lazard, and Manin, mostly over perfect fields or sometimes over
complete local noetherian rings with perfect residue fields. The notion of
p-divisible group, which was first introduced by Barsotti [2] under the name
“equidimensional hyperdomain”, was formalized and studied by Serre and
Tate (around 1963-66) before Grothendieck got interested in the topic. Let
me briefly recall a few salient points of what was known at that time.

2.2. Dieudonné theory, p-divisible groups
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Let k be a perfect field of characteristic p > 0, W = W (k) the ring of Witt
vectors on k, σ the automorphism of W defined by the absolute Frobenius
of k, i. e. a = (a0, a1, · · · ) 7→ aσ = (ap0, a

p
1, · · · ). Dieudonné theory associates

with a finite commutative algebraic p-group G over k its Dieudonné module,

M(G) = Hom(G,CW ),

where CW is the fppf sheaf of Witt covectors on Spec k. This M(G) is a
W -module of finite length, equipped with a σ-linear operator F and a σ−1-
operator V satisfying the relation FV = V F = p, defined by the Frobenius
F and the Verschiebung V on G. The above definition is due to Fontaine
[31]. Classically (cf. [62], [23]) one first defined M(G) for G unipotent as
Hom(G,CWu), where CWu = lim−→Wn ⊂ CW is the sheaf of unipotent cov-
ectors, and treated the multiplicative case by Cartier duality.

In general, by a Dieudonné module, one means a W -module, with op-
erators F and V as above. The Dieudonné module of G is a contravariant
functor of G, and this functor defines an anti-equivalence from the category
of finite commutative algebraic p-groups over k to that of Dieudonné mod-
ules of finite length over W . The functor G 7→ M(G) is extended to formal
groups, viewed as direct limits of connected finite commutative p-groups, and
gives an embedding of the category of formal groups into a suitable category
of Dieudonné modules.

A central result in the theory is the Dieudonné-Manin classification the-
orem, which describes the category of finitely generated Dieudonné modules
up to isogeny. More precisely, let K denote the fraction field of W . De-
fine an F -space2 as a finite dimensional K-vector space equipped with a
σ-linear automorphism F . The Dieudonné-Manin theorem says that, if k is
algebraically closed, the category of F -spaces is semi-simple, and for each
pair of integers (r, s), with r = 0 and s = 1 or r 6= 0 and s > 0 co-
prime, there is a unique isomorphism class of simple objects, represented by
Er,s = Kσ[T ]/(T s − pr), where Kσ[T ] is the non-commutative polynomial
ring with the rule Ta = aσT , and F acts on Er,s by multiplication by T .
Grothendieck was to revisit this theorem in his 1970 letter to Barsotti ([39],
Appendix). We will discuss this in §5.

The Dieudonné module of a formal group is not necessarily finitely gen-
erated over W . For example, for the formal group G = Ĝa, one has M(G) =
kσ[[F ]], with V = 0. Such phenomena do not occur, however, for p-divisible
groups. Recall (cf. [69]) that given a base scheme S and an integer h ≥ 0, a p-
divisible group (Barsotti-Tate group in Grothendieck’s terminology) of height
h over S is a sequence of finite locally free commutative group schemes Gn of

2F -isocrystal, in today’s terminology
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rank pnh over S and homomorphisms in : Gn → Gn+1, for n ≥ 1, such that
the sequences

0→ Gn
in→ Gn+1

pn→ Gn+1

are exact. For n ≥ 0, m ≥ 0, one then gets short exact sequences of group
schemes over S

0→ Gn → Gn+m
pn→ Gm → 0.

The abelian sheaf G := lim−→n
Gn on the fppf site Sfppf of S is then p-divisible,

p-torsion, and Ker p.IdG is G1, which in particular is finite locally free (of rank
ph). The sequence (Gn, in) is reconstructed from G by Gn := Ker pnIdG. It
was to avoid confusion with the more general notion of p-divisible abelian
sheaf - and also to pay tribute to Barsotti and Tate - that Grothendieck
preferred the terminology Barsotti-Tate group to denote an abelian sheaf G
on Sfppf which is p-divisible, p-torsion, and such that Ker pIdG is finite locally
free.

The Cartier duals G∨n = Hom(Gn,Gm), with the inclusions dual to p :
Gn+1 → Gn, form a p-divisible group of height h, called the dual of G,
denoted G∨. The basic examples of p-divisible groups are : (Qp/Zp)S =
((Z/pnZ)S), its dual (Qp/Zp)(1)S = (µpn,S), and the p-divisible group of an
abelian scheme A over S

A[p∞] = (A[pn])n≥1.

When S = SpecK, for K a field of characteristic 6= p, with an algebraic
closure K, a p-divisible group G of height h over S is determined by its Tate
module

Tp(G) := lim←−Gn(K),

a free Zp-module of rank h, equipped with a continuous action of Gal(K/K).
If S = Spec k, with k as above, let G be a p-divisible group of height h

over S. Then, G is determined by its Dieudonné module

M(G) := lim←−M(Gn),

a free W -module of rank h. And M(G∨) is the dual M(G)∨, with F and
V interchanged. The functor G 7→ M(G) is an (anti)-equivalence from the
category of p-divisible groups over k to the full subcategory of Dieudonné
modules consisting of modules which are free of finite rank over W .

Suppose now that S = SpecR, where R is a complete discrete valuation
ring, with perfect residue field k of characteristic p > 0 and fraction field K
of characteristic zero, and let K be an algebraic closure of K. Let G be a
p-divisible group of height h over S. Then two objects of quite a different
nature are associated with G :
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• the Tate module of GK , Tp(GK), a free Zp-module of rank h on which
Gal(K/K) acts continuously
• the Dieudonné module of Gk, a free W -module of rank h, equipped with

semi-linear operators F and V satisfying FV = V F = p.
Understanding the relations between these two objects, as well as their

relations with the differential invariants associated with an abelian scheme
A over S when G = A[p∞] (such as Lie(A), its dual, and the de Rham
cohomology group H1

dR(A/S)), was the starting point of p-adic Hodge theory.

2.3. The theorems of Tate and Serre-Tate
Let me briefly recall the main results, see [69] and [70] for details. Let

S = SpecR, k, K, K as before.

Theorem 2.3.1 (Tate) ([70], Th. 4). The functor G 7→ GK from the
category of p-divisible groups over S to that of p-divisible groups over K is
fully faithful, i. e., for p-divisible groups G, H over S, the map

Hom(G,H)→ Hom(GK , HK)(
∼→ HomGal(K/K))(Tp(GK), Tp(HK))

is bijective.
(Actually, Tate shows that 2.3.1 holds more generally for R local, com-

plete, integral, normal, with perfect residue field k (of characteristic p > 0)
and fraction field K of characteristic zero, but the proof is by reduction to
the complete discrete valuation ring case.)

The equal characteristic analogue of 2.3.1 was to be established only many
years later, by de Jong in 1998 [21].

Theorem 2.3.2 (Tate) ([70], Th. 3, Cor. 2). Let C := K̂, be the
completion of K, with its continuous action of Gal(K/K). Let G be a p-
divisible group over S. Then there is a natural decomposition, equivariant
under Gal(K/K),

Tp(GK)⊗ C ∼→ (tG ⊗ C(1))⊕ ((tG∨)∨ ⊗ C),

where, for a p-divisible group H over S, tH denotes the Lie algebra of its
identity component, a formal group over S.

Note that, in particular, if d = dim(tG), d∨ = dim(tG∨), one has d+d∨ =
h, where h is the height of G, a relation which can already be read on the
Dieudonné modules of Gk and G∨k .

When G = A[p∞], for an abelian scheme A over S, the decomposition of
1.3.2 gives, by passing to the duals, a Gal(K/K)-equivariant decomposition
of the form

H1(AK ,Zp)⊗ C
∼→ (H0(AK ,Ω

1
AK/K

)⊗ C(−1))⊕ (H1(AK ,OAK
)⊗ C).
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In his seminar at the Collège de France in 1966-67, Tate conjectured a gener-
alization of this decomposition in higher dimension, the so-called Hodge-Tate
decomposition, which was fully proven only in 1998, by Tsuji and de Jong
as a corollary of the proof of Fontaine-Jannsen’s conjecture Cst ([73], [20],
[6]), after partial results by many authors (Raynaud, Fontaine, Bloch-Kato,
Fontaine-Messing, Hyodo, Kato) (different proofs of Cst as well as of the re-
lated conjectures Ccris, Cpst, CdR - by Faltings [27], Niziol [61], Beilinson [3],
[4] - have been given since then). A report on this is beyond the scope of
these notes. In ([70], p. 180) Tate also asked for a similar decomposition for
suitable rigid-analytic spaces over K. This question was recently solved by
Scholze [67].

Theorem 2.3.3 (Serre-Tate). Let R be a local artinian ring with perfect
residue field k of characteristic p > 0, and let A0 be an abelian variety
over k. Then the functor associating with a lifting A of A0 over R the
corresponding lifting A[p∞] of the p-divisible group A0[p

∞] is an equivalence
from the category of liftings of A0 to that of lifting of A0[p

∞].

Serre and Tate did not write up their proof, sketched in notes of the
Woods Hole summer school of 1964 [54]. The first written proof appeared
in Messing’s thesis ([58], V 2.3). A different proof was found by Drinfeld,
see [48]. Another proof, based on Grothendieck’s theory of deformations for
Barsotti-Tate groups, is given in [43] (see 4.2 (ii)).

3. Grothendieck’s letter to Tate : crystals and crystalline coho-
mology

That was roughly the state of the art when Grothendieck came on the
scene. In the form of a riddle, a natural question was : what do the following
objects have in common :

- a Dieudonné module
- a p-adic representation of the Galois group of a local field K as above
- a de Rham cohomology group ?
At first sight, nothing. However, a p-adic Galois representation is, in a

loose sense, some kind of analogue of a local system on a variety over C. Local
systems arising from the cohomology of proper smooth families can be inter-
preted in terms of relative de Rham cohomology groups, with their Gauss-
Manin connection. In characteristic zero at least, integrable connections cor-
respond to compatible systems of isomorphisms between stalks at infinites-
imally near points. On the other hand, by Oda’s thesis [62] the reduction
mod p of the Dieudonné module of the p-divisible group A[p∞] of an abelian
variety A over k is isomorphic to H1

dR(A/k) (see the end of this section).
Recall also that in his letter to Atiyah (Oct. 14, 1963) [34] Grothendieck had
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asked for an algebraic interpretation of the Gauss-Manin connection in the
proper smooth case and discussed the H1

dR of abelian schemes. These were
probably some of the ideas that Grothendieck had in mind when he wrote
his famous letter to Tate, of May 1966. Here is the beginning of this letter :

“Cher John,

J’ai réfléchi aux groupes formels et à la cohomologie de de Rham, et suis
arrivé à un projet de théorie, ou plutôt de début de théorie, que j’ai envie de
t’exposer, pour me clarifier les idées.

Chapitre 1 La notion de cristal.
Commentaire terminologique : Un cristal possède deux propriétés car-

actéristiques : la rigidité, et la faculté de crôıtre dans un voisinage approprié.
Il y a des cristaux de toute espèce de substance : des cristaux de soude, de
soufre, de modules, d’anneaux, de schémas relatifs etc.”

Grothendieck refined and expanded his letter in a seminar he gave at the
IHÉS in December, 1966, whose notes were written up by Coates and Jussila
[35]. The contents are roughly the following :

3.1. Crystals. The word is as beautiful as the mathematical objects
themselves. Starting with a scheme S over a base T , Grothendieck considers
the category C of T -thickenings of open subschemes of S, i. e. T -morphisms
i : U ↪→ V where U is an open subscheme of S and i is a locally nilpotent
closed immersion, with maps from U ↪→ V to U ′ ↪→ V ′ given by the obvious
commutative diagrams. He calls crystal in modules on S (relative to T ) a
cartesian section over C of the fibered category of quasi-coherent modules over
the category Sch/T of T -schemes. More generally, given a fibered category F
over Sch/T , he calls crystal in objects of F a cartesian section of F over C. He
gives a few examples (especially for T of characteristic p > 0, showing that
crystals in modules with additional Frobenius and Verschiebung structures
can be viewed as a family of Dieudonné modules parametrized by the points
of S) and, for S smooth over T , he gives a description of a crystal in modules
in terms of a quasi-coherent module E on S equipped with what we now call
a stratification, namely an isomorphism χ : p∗1E

∼→ p∗2E, where p1, p2 are the
projections to X from the formal completion of the diagonal S ↪→ S ×T S,
such χ satisfying a natural cocycle descent condition on the formal completion
of the diagonal in S ×T S ×T S.

He also introduces the first avatar of what was to become the crystalline
site, which he calls the “crystallogenic site” (“site cristallogène”), consisting
of thickenings U ↪→ V as above, with covering families those families (Ui ↪→
Vi)i∈I → (U ↪→ V such that (Vi → V ) is Zariski covering and Ui = U ∩ Vi.
He notes that crystals in modules can be re-interpreted in terms of certain
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sheaves on this site, and that for f : X → Y (in Sch/T ), the functoriality
will not be for the sites, but for the corresponding topoi (a point which will
later be crucial in Berthelot’s theory [5]). He adds that he expects that for f
proper and smooth, then the Rif∗ of the structural sheaf of the crystallogenic
topos of X should give the relative de Rham cohomology sheaves Rif∗Ω

.
X/Y

endowed with their Gauss-Manin connection.
However, in the course of his letter Grothendieck realizes that these def-

initions will have to be modified to take into account characteristic p > 0
phenomena. He adds a handwritten note in the margin : “fait mouche en
car. 0, et pas en car. p > 0”. We will discuss this in the next section.

3.2. De Rham cohomology as a crystal. This is of course the most striking
observation. In his letter, Grothendieck, carefully enough, writes : “Chapitre
2 : la cohomologie de de Rham est un cristal. L’affirmation du titre n’est
pour l’instant qu’une hypothèse ou un vœu pieux, mais je suis convaincu
qu’elle est essentiellement correcte.” He gives two pieces of evidence for his
claim.

(a) He mentions Monsky-Wahnitzer’s work on the independence of de
Rham cohomology of (“weakly complete”) liftings to W (k) of smooth affine
k-schemes. He criticizes the authors for not being able to globalize their
construction to proper schemes (except for curves) and having to work ⊗Q.
A couple of years later, Berthelot’s thesis solved the globalization problem,
however a full understanding of Monsky-Washnitzer cohomology was reached
by Berthelot again, but only in the 80’s, with his theory of rigid cohomology
(where ⊗Q is essential).

(b) He says that he has found an algebraic construction of the Gauss-
Manin connection on Rif∗Ω

•
X/S for a smooth morphism X/S (and S over

some base T ), or rather on the object Rf∗Ω
•
X/S of the derived category

D(S,OS), adding that, however, he has not yet checked the integrability
condition. He also asks for a crystalline interpretation (i. e. in terms of
cohomology of a suitable crystalline site) of this connection, and of the cor-
responding Leray spectral sequence for X → S → T . In his lectures at the
IHÉS [35], he gave the details of his construction and explained the link be-
tween (a) and (b). His construction, close in spirit to Manin’s, based on local
liftings of derivations, was used later by Katz in [47]. As for the integrability,
Katz and Oda found a simple, direct proof in [46], based on the analysis of
the Koszul filtration of the absolute de Rham complex Ω•X/T . However, the
crystalline interpretation requested by Grothendieck, which was to be given
by Berthelot in his thesis [5], and the (dual) approach, in char. zero, via
D-modules was to give a deeper insight into this structure.

As for the link between (a) and (b), Grothendieck’s observation was the
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following. Suppose X is proper and smooth over S = SpecW [[t]] (t =
(t1, · · · , tn)), andHi

dR(X/S) is free of finite type for all i. Let u : SpecW → S,
v : SpecW → S be sections of S such that u ≡ v mod p. We then get
two schemes over W , Xu := u∗X, Xv := v∗X such that Xu ⊗ k = Xv ⊗
k = Y , and two de Rham cohomology groups, H i

dR(Xu/W ) = u∗Hi(X/S),
H i
dR(Xv/W ) = v∗Hi(X/S). By the Gauss-Manin connection

∇ : Hi
dR(X/S)→ Ω1

S/W ⊗Hi
dR(X/S),

we get an isomorphism

χ(u, v) : H i
dR(Xu/W )

∼→ H i
dR(Xv/W ),

defined by

u∗(a) 7→
∑
m≥0

(1/m!)(u∗(t)− v∗(t))mv∗(∇(D)ma)

for a ∈ Hi
dR(X/S), with the usual contracted notations, where

D = (D1, · · · , Dn), Di = ∂/∂ti

(note that (1/m!)(u∗(t) − v∗(t))m ∈ W and that the series converges p-
adically : this is easy for p > 2, was proved by Berthelot in general [5]).
These isomorphisms satisfy χ(u, u) = Id and χ(v, w)χ(u, v) = χ(u,w), for
w ≡ u mod p.

This suggested to Grothendieck that, for Y/k proper, smooth, given two
proper smooth liftings X1, X2 of Y over W , one could hope for an isomor-
phism (generalizing χ(u, v))

χ12 : H i
dR(X1/W )

∼→ H i
dR(X2/W )

with χ23χ12 = χ13. Monsky-Washnitzer’s theory provided such an isomor-
phism (after tensoring with Q) in the affine case, for good liftings Xi. This
hope was to be realized by the construction of crystalline cohomology groups
H i(Y/W ) (depending only on Y , with no assumption of existence of lifting),
providing a canonical isomorphism :

χ : H i(Y/W )
∼→ H i

dR(X/W )

for any proper smooth lifting X/W of Y , such that for X1, X2 as above,
χ2 = χ12χ1. Grothendieck sketched the construction in [35] (which worked
for p > 2), the general case was done and treated in detail by Berthelot [5].

9



But let us come back to Grothendieck’s letter. For f : X → S proper
and smooth, of relative dimension d, S being over some base T , Grothendieck
(boldly) conjectures :

(*) Rf∗Ω
•
X/S should be a perfect complex on S, underlying a structure of

crystal relative to T , commuting with base change, and that for each prime
number p, on the corresponding object Hp for the reduction mod p of f , the

Frobenius operator F : H
(p)
p → Hp should be an isogeny, with an operator V

in the other direction, satisfying FV = V F = pd.
He analyzes the case where X/S is an abelian scheme, and makes two

critical observations.
(3.2.1) For S = SpecW and X/S an abelian scheme, H1

dR(X/S), which
should be the value on S of the sought after crystal defined byX⊗k, equipped
with the operators F and V defined by Frobenius and Verschiebung, should
be the Dieudonné module of the p-divisible group associated with X ⊗ k.

(3.2.2) He realizes that in char. p > 0 his assertion that de Rham co-
homology is a crystal in the sense defined at the beginning of his letter is
wrong. In fact, for S smooth over T , a (quasi-coherent) crystal on S/T would
correspond (cf. 3.1) to a stratified module M relative to T . And, it would not
be possible to put such a stratification on H1

dR(A/S) relative to T = Spec k
for an elliptic curve A over S, in a way which would be functorial in A and
compatible with base change, for S of finite type, regular, and of dimension
≤ 1 over k. He gives the example of an elliptic curve A/S, S a smooth curve
over T , with a rational point s where As has Hasse invariant zero. In this
case, the (absolute) Frobenius map F : H1(As,O)(p) → H1(As,O) is zero, so
F 2 : H1

dR(As/s)
(p2) → H1

dR(As/s) is zero, hence, because of the stratification,
F 2 would be zero on the completion of S at s, hence in a neighborhood of s,
which is not the case when S is modular. This observation led him, in [35],
to call the previously defined site (the “crystallogenic site”) the infinitesimal
site, and define a new site (and, accordingly, a new notion of crystal), putting
divided powers on the ideals of the thickenings. Technical problems arose for
p = 2, as the natural divided powers of the ideal pW are not p-adically
nilpotent, but these were later solved by Berthelot in his thesis, dropping the
restriction of nilpotence on the divided powers introduced in [35], on schemes
where p is locally nilpotent.

Why add divided powers ? In [35] Grothendieck explains that the intro-
duction of divided powers was “practically imposed by the need to define the
first Chern class c1(L) ∈ H2(Xcris,J ) of an invertible sheaf L on X”, as the
obstruction to lifting L to Xcris, using the logarithm

log : 1 + J → J , log(1 + x) =
∑
n≥1

(−1)n−1(n− 1)!(xn/n!),
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where J is the kernel of the natural surjective map from OXcris
to OXzar .

While this was certainly a motivation, it seems to me that the primary mo-
tivation was to make de Rham cohomology a crystal.

For S smooth over T , and E a quasi-coherent module on S, a stratification
on E relative to T is given by an action of the ring DiffS/T = ∪DiffnS/T of
differential operators of S over T . In general, an integrable connection ∇ on
E relative to T does not extend to an action of DiffS/T . But it does extend to
an action of the ring of PD-differential operators PD-DiffS/T = ∪ PD-DiffnS/T
(PD for “puissances divisées”), where PD-DiffnS/T is the dual (with values in
OS) of the divided power envelope Dn

S/T of the ideal of the n-th infinitesimal

neighborhood of S in S×T S. In terms of local coordinates (xi)1≤i≤r on S, the
associated graded (for the filtration by the order) of Diff is a divided power
polynomial algebra on generators δi corresponding to ∂/∂xi, while that of
PD-Diff is a usual polynomial algebra on the δi’s. And crystals, for a suitable
site defined by thickenings with divided powers, were to correspond exactly
(for S/T smooth and schemes T where p is locally nilpotent) to modules with
an integrable connection (satisfying an additional condition of p-nilpotency),
the datum of ∇ being equivalent to that of the action of PD-DiffS/T , i.e. to
a PD-analogue of a stratification relative to T .

A good definition of a crystalline site was worked out by Berthelot in [5],
and the first part of Grothendieck’s conjecture (*) above proven in ([5], V
3.6). The existence of V satisfying FV = V F = pd was shown by Berthelot-
Ogus in ([11], 1.6).

As for Grothendieck’s expectation (3.2.1) above, it was proved by Oda
([62], 5.11) that H1

dR(A/k)(
∼→ H1

dR(X/S) ⊗ k) (where A := X ⊗ k) is iso-
morphic to the Dieudonné module of A[p], i. e. to M/pM , where M is
the Dieudonné module of the p-divisible group G associated with A. With
Berthelot’s definition of crystalline cohomology, H1

dR(X/S) is isomorphic
to the crystalline cohomology group H1(A/W ). The isomorphism between
H1(A/W ) (with the operators F and V ) and M was first proved by Mazur-
Messing in [56]. Different proofs were given later ([8], ([42], II 3.11.2)).

For a survey of crystalline cohomology (up to 1990), see [44].

4. Grothendieck’s letter to Illusie : deformations of Barsotti-
Tate groups

This letter has two parts. In the first part, Grothendieck describes a
(conjectural) theory of first order deformations for flat commutative group
schemes. This theory was developed in the second volume of my thesis [41].
In the second part, he applies it to Barsotti-Tate groups, stating theorems
of existence and classification of deformations for Barsotti-Tate groups and
truncated ones. He gave the proofs in his course at the Collège de France in
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1970-71. These proofs were written up in [43].

4.1. Deformations of flat commutative group schemes.
“Marina, les 2-4 déc. 1969. Cher Illusie, Le travail avance, mais avec

une lenteur ridicule. J’en suis encore aux préliminaires sur les groupes de
Barsotti-Tate sur une base quelconque - il n’est pas encore question de met-
tre des puissances divisées dans le coup ! La raison de cette lenteur réside
en partie dans le manque de fondements divers. (...) De plus, à certains mo-
ments, je suis obligé d’utiliser une théorie de déformations pour des schémas
en groupes plats mais non lisses, qui doit certainement être correcte, et qui
devrait sans doute figurer dans ta thèse, mais que tu n’as pas dû écrire en-
core, sans doute. Je vais donc commencer par te soumettre ce que tu devrais
bien prouver. (...)”

Grothendieck then proposes a theory of (first-order) deformations for
group schemes G/S which are locally of finite presentation and flat. He
says he is mainly interested in the commutative case, but that the non com-
mutative case should also be considered (which I did in [41]). In both cases,
the invariant which controls the deformations is the co-Lie complex of G/S,

`G := Le∗LG/S,

where e : S → G is the unit section, LG/S the cotangent complex of G/S,
and Le∗ : D−(G,OG)→ D−(S,OS) the derived functor of e∗. This complex
appeared for the first time in the work of Mazur-Roberts [57]. As G/S is
locally a complete intersection, this is a perfect complex, of perfect amplitude
in [−1, 0] (and LG/S is recovered from it by LG/S = π∗`G, where π : G→ S is
the projection). When G is commutative, finite and locally free, `G is related
to the Cartier dual G∗ of G by the following beautiful formula (proposed
by Grothendieck in his letter, and proven by him in his course at Collège
de France, see ([56], 14.1)) : if M is a quasi-coherent OS-module, there is a
natural isomorphism (in D(S,OS)),

RHomOS
(`G,M)

∼→ τ≤1RHom(G∗,M).

After having stated a (conjectural) theory of obstructions for deforma-
tions of G in the commutative case, Grothendieck realizes that he needs
more. In fact, he sees that he will need to apply this theory to the trun-
cations G(n) = Ker pnIdG of Barsotti-Tate groups G. Such truncations are
Z/pn-modules, and deformations should preserve this structure. But then, in
order to get a common theory for commutative group schemes and commu-
tative group schemes annihilated by pn, it is natural to introduce a ring A of
complex multiplication acting on G (hence on `G); obstruction groups (and
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related ones) should involve this A-linear structure. He adds that whether
A should be a constant ring or a more or less arbitrary sheaf of rings, he has
not yet tried to think about it. In [41] I treat the case where A is a (non
necessarily commutative) ring scheme satisfying a mild hypothesis with re-
spect to the given infinitesimal thickening. For applications to deformations
of abelian schemes and Barsotti-Tate groups, the case where A is the scheme
defined by a constant commutative ring (in fact, Z or Z/n) suffices. One of
the main results is the following.

Theorem 4.1.1 ([41], VII 4.2.1). Let i : S ↪→ S ′ be a closed immersion
defined by an ideal I of square zero. Let A be a (constant) ring, and G a
scheme in A-modules over S, flat and locally of finite presentation over S.
Let us work with the fppf topology on S. Consider the differential graded
ring A⊗LZ OS 3 and let

`∨G ∈ D[0,1](A⊗LZ OS)

be the Lie complex of G/S, defined in ([41], VII (4.1.5.4)), whose image in
D(OS) is the dual RHom(`G,OS) of the co-Lie complex of G. Then :

(i) There is an obstruction

o(G, i) ∈ Ext2A(G, `∨G ⊗LOS
I)

whose vanishing is necessary and sufficient for the existence of a deformation
G′ of G over S ′ as a scheme in A-modules, flat over S ′.

(ii) This obstruction depends functorially on G in the following sense :
if u : F → G is a homomorphism of (flat and locally of finite presentation)
schemes in A-modules over S, then

u∗(o(G, i)) = `∨u(o(F, i)),

where u∗ and `∨u are the natural functoriality maps.
(iii) When o(G, i) = 0, the set of isomorphism classes of deformations G′

of G over S ′ is a torsor under Ext1A(G, `∨G⊗LOS
I), and the group of automor-

phisms of a given deformation G′ is Ext0A(G, `∨G ⊗LOS
I).

The proof is long and technical, involving complicated diagrams and a
delicate homotopical stabilization process. Those diagrams were suggested
by Grothendieck’s attempts to calculate ExtiZ(G,−) by canonical resolutions
of G by finite sums of Z[Gr] (r ≥ 1), which he had described, for i ≤ 2,
in ([37], VII 3.5), and that he recalls in his letter to me (such resolutions,

3When A = Z/n, this is simply the differential graded ring [OS
n→ OS ], in degrees 0

and -1.
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called Moore complexes, were constructed by Deligne [22]). Variants, called
MacLane resolutions, involving sums of Z[Gr ×Zs], and taking into account
the multiplicative structures, are given in ([41] VI 11.4.4)) (see also [13]).
The method, however, is flexible, and can be applied to many other kinds of
deformation problems (such as morphisms, with source and target, or only
source or target extended). The functoriality statement (iii) (and similar
properties for homomorphisms of rings A → B) are of course crucial in the
applications, where the obstruction group Ext2 may be nonzero, but the
obstruction is zero, because of functoriality constraints.

At the end of ([41], VII) I write that Deligne’s theory of Picard stacks
might yield simpler proofs of the above results. But over forty years have
elapsed, and no such simpler proof has yet appeared.

4.2. Deformations of BT’s and BTn’s.
The second part of his letter starts with what Grothendieck calls “fas-

cicule de résultats sur les groupes de BT (= Barsotti-Tate) et les groupes
de BT tronqués (“part soritale”)”. As he had explained in the first part,
while the goal was to show the existence of infinitesimal liftings of BT’s and
classify them, the key objects of study were in fact n-truncated BT’s.

Given an integer n ≥ 1, an n-truncated BT (or BTn) G over a base
scheme S is defined as an abelian sheaf on S (for the fppf topology), which
is annihilated by pn, flat over Z/pn, and such that G(1) := Ker pIdG is finite
locally free over S (its rank is then of the form ph, where h is called the
height of G). When n = 1, one imposes an additional condition, namely

that on S0 = V (p) ⊂ X, one has KerV = ImF , where V : G
(p)
0 → G0

and F : G0 → G
(p)
0 are the Verschiebung and the Frobenius morphisms

respectively, with G0 = G×S S0.
If G is a BT over S, one shows that for all n ≥ 1, G(n) := Ker pnIdG is a

BTn, which raises the question whether any BTn is of the form G(n) for a BT
G. Grothendieck tackles this question in his letter, simultaneously with that
of existence and classification of deformations of BT’s and BTn’s. In order to
apply the general obstruction theory, one needs precise information on co-Lie
complexes of truncated BT’s. If S is a scheme where pNOS = 0, for an integer
N ≥ 1, and G is a BTn, with n ≥ N , then the co-Lie complex `G enjoys nice
properties. In particular ωG := H0(`G) and nG := H−1(`G) are locally free of
the same rank, which, when G = G(n) for a BT G on S, is the dimension of
the formal Lie group associated to G. After a subtle analysis of the relations
between these invariants and the behavior of Ext∗(−,M), M a quasi-coherent
OS-module, under exact sequences 0 → G(n) → G(n + m) → G(m) → 0,
Grothendieck obtains the following theorem (first stated in ([36], 6.3)), see
([39], 4.1), ([43], 4.4)) :

14



Theorem 4.2.1. Let n ≥ 1. Let i : S → S ′ be a nilimmersion, with S ′

affine.
(1) Let G be a BTn on S. There exists a BTn G

′ on S ′ extending G.
(2) Let H be a BT on S. There exists a BT H ′ on S ′ extending H.
(3) If E(H,S ′) (resp. E(H(n), S ′)) denotes the set of isomorphism classes

of BT’s (resp. BTn’s) on S ′ extending H (resp. H(n))), then the natural
map

E(H,S ′)→ E(H(n), S ′)

is surjective, and bijective if i is nilpotent of level k and there exists N ≥ 1
such that pNOS = 0 and n ≥ kN .

(4) For k = 1 and n ≥ N as in (3), E(G,S ′) (resp. E(H,S ′)) is a torsor
under tG∨ ⊗ tG ⊗ I (resp. tH∨ ⊗ tH ⊗ I), where I is the ideal of i, and the
automorphism group of a deformation of G (resp. H) on S ′ is tG∨ ⊗ tG ⊗ I
(resp. 0). Here tG denotes the dual of ωG, and G∨ the Cartier dual of G.

(5) If S is the spectrum of a complete noetherian local ring with perfect
residue field, for any BTn G on S there exists a BT H on S such that
G = H(n).

(For formal BT’s H, (2) and (4) had been proven by Cartier and Lazard
[17], [53].)

Just to give an idea on how 4.2.1 is derived from 4.1.1, let me observe
that assertions (4) for a BT H follow from the following facts :
• deforming H on S ′ is equivalent to deforming the projective system

H(·) = H(n)n≥1 on S ′,
• the obstruction o(H, i) to deforming H(.) lies in

Ext2Z/p.(H(·), `∨H(·) ⊗LOS
I),

and this group is zero,
• the isomorphism classes of deformations of H on S ′ form a torsor under

Ext1Z/p.(H(·), `∨H(·) ⊗LOS
I),

and this group is canonically isomorphic to tH∨ ⊗ tH ⊗ I,
• the automorphism group of a deformation H ′ on S ′ is

Ext0Z/p.(H(·), `∨H(·) ⊗LOS
I),

which is zero.

This theorem had immediate applications, and cast long shadows.
Among the immediate applications, we have (i) and (ii) below, already

mentioned by Grothendieck in his letter :
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(i) The pro-representability of the deformation functor of a BT H over
a perfect field k of characteristic p > 0, namely the fact that the functor
of deformations of H over the category of artinian local W (k)-algebras of
residue field k is pro-represented by a smooth formal scheme

S = Spf (W (k)[[tij]]1≤i≤d,1≤j≤d∨

where d (= rkωH) is the dimension of H, and d∨ that of its Cartier dual H∨

(as after 2.3.2 , one has d+ d∨ = h, where h is the height of H).

(ii) A short proof of the existence of infinitesimal liftings of abelian schemes
and of Serre-Tate’s theorem 1.3.3, see ([43], Appendice). Concerning Serre-
Tate’s theorem, Grothendieck made an interesting comment. At the begin-
ning of [48], Katz recalls that this theorem, in the case of a g-dimensional
ordinary abelian variety over k (assumed to be algebraically closed), implies
the existence of “a remarkable and unexpected structure of group on the cor-
responding formal moduli space”. At the end of his letter (6.7), Grothendieck
explains why, in fact, this structure was expected. His explanation relies on
a theory of deformations of extensions in the general context of flat group
schemes in A-modules (as in 4.1.1), which he applies to BT’s or BTn’s. Un-
fortunately, this (beautiful) part of his letter was not discussed in [41] nor
[43].

As for the long shadows :
(iii) Property 4.2.1 (5) (which did not appear in [36] nor [39], but was an

easy consequence of the theory) implies a formula for the different dG/S of
a BTn G over the spectrum S of a complete discrete valuation ring R with
perfect residue field k of characteristic p > 0, with dimension d, namely

dG/S = pndOS,

As a corollary, when k is algebraically closed and the fraction field K of R is
of characteristic zero, this implies a formula for the determinant of the Tate
module of GK ,

Λh
Z/pnGK

∼→ (Z/pn)(d),

where h is the height of G, see ([43], (4.9.2), (4.10)). These results were used
by Raynaud in [65] to effectively bound the modular height in an isogeny
class of abelian varieties, an improvement of Faltings’ theorem.

(iv) The existence of infinitesimal liftings of BT’s and BTn’s was the
starting point for the study of their Dieudonné theory from a crystalline
view point. In his letter to Tate [33] (2.6), Grothendieck makes the following
observation. For an abelian scheme f : A → S over a base S, with dual
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abelian scheme A∨, consider the universal extension G(A) of A by a vector
bundle (a construction due to Serre),

0→ (tA∨)∨ → G(A)→ A→ 0,

where
tA∨

∼→ R1f∗OA
is the Lie algebra of A∨. The Lie algebra of G(A) is the dual H1

dR(A/S)∨ of
H1

dR(A/S), with its natural filtration :

0→ (tA∨)∨ → H1
dR(A/S)∨ → (f∗Ω

1
A/S)∨ → 0,

dual to the Hodge filtration of H1
dR(A/S),

0→ f∗Ω
1
A/S → H1

dR(A/S)→ R1f∗OA → 0.

The crystalline nature of H1
dR led Grothendieck to conjecture that the uni-

versal extension G(A) itself should be crystalline. Of course, as explained
above, the definition of “crystalline” in [33] had to be modified, but with this
modified definition, Grothendieck statement was indeed correct. A variant
of this extension for BT’s (also proposed by Grothendieck in [33], chap. 3)
together with the local liftability statement (4.2.1 (1)) enabled Messing [58]
to construct the Dieudonné crystals associated to BT’s. The theory was
developed in several directions afterwards (Mazur-Messing [56], Berthelot-
Breen-Messing [7], [8], [9]). For a description of the state of the art on this
subject in 1998, see de Jong’s survey [21]. New breakthroughs were made
quite recently by Scholze, using his theory of perfectoid spaces [68], giving in
particular a classification of BT’s over the ring of integers of an algebraically
closed complete extension of Qp.

Other types of “Dieudonné theories” have been considered. The oldest
one is Cartier’s theory of p-typical curves ([14], [16], see also [53], [75]), which
works well for formal groups (even in mixed characteristic). This theory has
had a wide range of applications (including K-theory and homotopy theory).
For those pertaining to the theory of the de Rham-Witt complex, see [44] for
a brief survey. More recently, we have the theories of Breuil-Kisin (for finite
flat commutative group schemes) ([15], [51]), and Zink’s theory of displays
(see Messing’s Bourbaki report [59]), which plays an important role in the
study of Rapoport-Zink spaces (see (vi) below).

(v) The mysterious functor, Fontaine’s rings and p-adic Hodge theory.
In his talk at the Nice ICM [38] Grothendieck explains that, given a base S
where the prime number p is locally nilpotent, and a BT G on S, if D(G)
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denotes its Dieudonné crystal (constructed in [58]), the “value” D(G)S of
D(G) on S, a locally free OS-module of rank equal to the height of G, comes
equipped with a canonical filtration by a locally direct summand Fil(D(G)S)
(namely ωG), and that if S ′ is a thickening of S equipped with nilpotent
divided powers, then, up to isomorphisms, liftings of G to S ′ correspond
bijectively to liftings of Fil(D(G)S) to a locally direct summand of D(G)S′ .

He gives the following corollary. Let R be a complete discrete valuation
ring of perfect reside field k of characteristic p and fraction field K of charac-
teristic zero. Let K0 := Frac(W ), W = W (k). Then the functor associating
to a BT G on R up to isogeny the pair (M,Fil) consisting of the F -space (see
footnote 1) M = D(Gk)⊗W K0 (a K0-vector space of dimension equal to the
height of G, equipped with a σ-linear automorphism F ) and the K-submodule
Fil = FilD(Gk)R ⊗R K ⊂M , is fully faithful.

Grothendieck then observes that, on the other hand, in view of Tate’s
theorem (2.3.1), G is “known” (up to a unique isomorphism) when its Tate
module Tp(GK) is known, therefore raising the question : is there a “more or
less algebraic” way of reconstructing (M,Fil) from the datum of the Galois
module Tp(GK) ? He also proposes to investigate analogues of this question
for cohomology in higher degrees, with F -crystals (coming from crystalline
cohomology of varieties over k) equipped with longer filtrations (coming from
liftings to R). This is the so-called problem of the mysterious functor, that
he discussed in his talks at the Collège de France (but did not mention ex-
plicitly in [38]). As for the original problem (for BT’s), in ([31], V 1.4)
Fontaine explains how to obtain Tp(GK) from (M,Fil), but does not define
the functor in the other direction. This problem, together with its expected
generalizations in higher dimension and the desire to understand its rela-
tion with Hodge-Tate’s decompositions (2.3.2)), was the starting point of
Fontaine’s construction of his “Barsotti-Tate rings” (Bcris, BdR, Bst), and the
true beginning of p-adic Hodge theory.

(vi) Rapoport-Zink moduli spaces. The formal moduli space S in (i) pro-
represents the deformation functor of “naked” BT’s. In the past fifteen years,
variants of this moduli space for BT’s endowed with additional structures
of isogeny type or complex multiplication type have been constructed by
Rapoport-Zink and intensely studied by many other authors. These spaces
play the role of local analogues of Shimura varieties arising from moduli of
abelian varieties with similar additional structures. They have been used by
Harris and Taylor [40] to establish the local Langlands correspondence for
GLn over p-adic fields. A new, simpler proof was recently given by Scholze
[66]. See also [64], [30], [68].

(vii) Traverso’s conjectures. If G is a BT over an algebraically closed
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field k of characteristic p > 0, there exists a positive integer n such that
G is determined up to isomorphism (resp. isogeny) by G(n) (cf. ([71], Th.
3)). The least such n is denoted by nG (resp. bG, which is called the isogeny
cutoff of G). A conjecture of Traverso [72] predicted that the isogeny cutoff
of G satisfies the inequality bG ≤ ddd∨/(d + d∨)e for G of dimension d and
codimension d∨ (= dimG∨), with dd∨ > 0. This conjecture was proved
by Nicole and Vasiu [60]. On the other hand, Traverso conjectured that
nG ≤ min(d, d∨), but recently, Lau, Nicole and Vasiu [52] disproved this
conjecture, giving the correct (sharp) bound b2dd∨/(d + d∨)c. This result
makes a critical use of 4.2.1. Let me also mention related work of Vasiu [74]
and Gabber and Vasiu [32] presenting progress on the search for invariants
and classification of truncated BT’s.

5. Grothendieck’s letter to Barsotti : Newton and Hodge poly-
gons

In 1966-67, during the SGA 6 seminar, Berthelot, Grothendieck and I
would often take a walk after lunch in the woods of the IHÉS. It is in the
course of one of these walks that Grothendieck told us that he had had a
look at Manin’s paper [55] and thought about his classification theorem (cf.
2.2). What he explained to us that day, he was to write it up years later, in
his letter to Barsotti of May 11, 1970 ([39], Appendice).

Grothendieck observes first that, instead of indexing the simple objects
Er,s = Kσ[T ]/(T s − pr) of the category of F -isocrystals on k by pairs of
integers (r, s) in lowest terms, it is better to index them by rational numbers,
i. e. write Er,s = Er/s. He calls λ = r/s the slope of Er,s, a terminology
which he attributes to Barsotti. In this way, Manin’s theorem implies that
any F -isocrystal M admits a canonical (finite) decomposition

(∗) M = ⊕λ∈QMλ,

where Mλ is isoclinic of slope λ, i. e. a direct sum of copies of Eλ. This
decomposition is compatible with tensor products, and, when k is the alge-
braic closure of a perfect field k0 descends to k0. Ordering the slopes of M
in nondecreasing order λ1 ≤ · · · ≤ λn (n = rk(M)), one defines the Newton
polygon Nwt(M) of M as the graph of the piecewise linear function 0 7→ 0,
i ∈ [1, n] 7→ λ1 + · · ·+ λi. If mλ the multiplicity of λ in M (i. e. the number
of times that λ appears in the preceding sequence), λmλ is an integer, in
particular, the breakpoints lie in Z2. When k is the algebraic closure of Fq,
q = pa, then (by a result of Manin), this Newton polygon is the Newton
polygon of the polynomial det(1 − F at,M). As for the relation with BT’s,
Grothendieck notes that the (F -iso)crystals corresponding to BT’s are those
with slopes in the interval [0, 1] (slope 0 (resp. 1) for the ind-étale (resp.
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multiplicative) ones), and that the decomposition (*) can be refined into a
decomposition

(∗∗) M = ⊕i∈ZMi(−i),

where Mi has slopes in [0, 1) and (−i) is the Tate twist, consisting in replacing
F by piF .

Now, the main points in Grothendieck’s letter are :
• the sketch of proof of a specialization theorem for F -crystals
• a conjecture on the specialization of BT’s
• comments on a conjecture of Katz.
I will briefly discuss these points, each of them has had a long posterity.

5.1. The specialization theorem. Roughly speaking, it says that, if M is
an absolute F -crystal on a scheme S of characteristic p > 0, which one can
think of a family of F -crystals Ms parametrized by the points s of S, then
the Newton polygon of Ms (i. e. of Ms for a perfect over field k(s) of k(s))
rises under specialization of s (and the endpoints don’t change). For a more
precise statement and a full proof, see ([49], 2.3.1).

Such F -crystals arise for example from relative crystalline cohomology
groups of proper smooth schemesX/S (which, in view of (**), as Grothendieck
puts it, produces “a whole avalanche of BT’s over k (up to isogeny)”). In
this case a variant (and a refinement) of this specialization theorem - which
is not a formal consequence of it - was given by Crew [19].

5.2. Specialization of BT’s. Grothendieck explains that, in the case of a
BT G over S, of height h and dimension d, with S as in 5.1, the specialization
theorem says that, if G′ = Gs is a specialization of G = Gt (s ∈ {t}), and
(λi) (resp. (λ′i)) (1 ≤ i ≤ h) is the sequence of slopes of G (resp. G′), then
we have

(1)
∑

λi =
∑

λ′i

(both sums being equal to d), and

(2) λ1 ≤ λ′1, λ1 + λ2 ≤ λ′1 + λ′2, · · · ,
∑
1≤i≤j

λi ≤
∑
1≤i≤j

λ′i, · · ·

((1) expressing that both polygons have the same endpoints (0, 0), (h, d)).
He conjectures that, conversely, given a BT G0 = G′ over a perfect field k
of characteristic p > 0, and denoting by S the formal modular variety of G0

(4.2 (i)), with reduction S0 = S ⊗W (k) k, with universal BT G over S0, given
any nondecreasing sequence of rational numbers λi (1 ≤ i ≤ h) between 0
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and 1, the conditions (1) and (2) are sufficient for the existence of a fiber
of G at some point of S0 having this sequence as sequence of slopes. This
conjecture was eventually proven by Oort in 2000 [63].

5.3. Katz’s conjecture. At the end of his letter, Grothendieck says that
his specialization theorem was suggested to him by “a beautiful conjecture
of Katz”, which he recalls and formulates in a greater generality. This is the
following statement :

Conjecture 5.3.1. Let k be a perfect field of characteristic p > 0,
W = W (k), K0 = Frac(W ), X/k a proper and smooth scheme, i ∈ Z,
H i(X/W ) the i-th crystalline cohomology group of X/k, with its σ-linear
endomorphism F . Let Nwti(X) be the Newton polygon of the F -isocrystal
(H i(X/W ) ⊗ K0, F ). Let Hdgi(X) be the Hodge polygon of H i

Hdg(X/k) =

⊕H i−j(X,Ωj
X/k), starting at 0 and having slope j with multiplicity hj,i−j =

dimkH
i−j(X,Ωj

X/k). Then Nwti(X) lies on or above Hdgi(X).

As recalled in ([50], p. 343), such an inequality was proved for the first
time by Dwork, for the middle dimensional primitive cohomology of a pro-
jective smooth hypersurface of degree prime to p ([25], §6). Conjecture 5.3.1
was established first by Mazur for X liftable to W , and then by Ogus in
general ([10], §8), with a refinement when X/k has nice cohomological prop-
erties, namely H∗(X/W ) is torsion-free, and the Hodge to de Rham spectral
sequence of X/k degenerates at E1. See [44] for a survey.

Grothendieck adds that in the case where X/k “lifts to characteristic
zero”, one should have a stronger inequality, involving the Hodge numbers
of the lifted variety. Namely, if X ′/R is a proper and smooth scheme over R,
R a complete discrete valuation ring with residue field k and fraction field K
of characteristic 0, such that X ′ ⊗ k = X, then one can consider the Hodge
numbers h

′j,i−j = dimkH
i−j(X ′K ,Ω

j
X′

K/K
), which satisfy

h
′0,i ≤ h0,i, · · · , h′j,i−j ≤ hj,i−j, · · · ,

so that the Hodge polygon Hdgi(X
′
K), constructed similarly to Hdgi(X) but

with the numbers h
′j,i−j, lies on or above Hdgi(X). Then he proposes :

Conjecture 5.3.2. With the above notations, Nwti(X/k) lies on or
above Hdgi(X

′
K).

Grothendieck says that he has some idea on how to attack 5.3.1, but not
5.3.2 “for the time being”. Actually, 5.3.2 was to follow from the proof of
Fontaine’s conjecture Ccris, which implies that the filtered ϕ-module

((H i(Xk/W ), F ),FiljH i
dR(X ′K/K)),
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where Filj denotes the Hodge filtration, is weakly admissible.

Inequalities 5.3.1 and 5.3.2 have applications to Chevalley-Warning type
congruences on numbers of rational points of varieties over finite fields (or
over discrete valuation rings R as above with k finite). See [44] and [45]
for 5.3.1. As an example of application of 5.3.2, quite recently Berthelot,
Esnault and Rülling used a variant of 5.3.2 (for proper flat schemes having
semistable reduction over k), following from the proof of Fontaine-Jannsen’s
Cst-conjecture, together with several other cohomological techniques (Berth-
elot’s rigid cohomology, Witt vectors cohomology) to prove the following
theorem :

Theorem 5.3.3. ([12]) Let X/R with R as above and k = Fq. Assume :
(i) X regular, and proper and flat over R ;
(ii) XK geometrically connected ;
(iii) H i(XK ,OXK

) = 0 for all i > 0.
Then |Xk(Fqn)| ≡ 1 mod qn for all n ≥ 1.

See the introduction of [12] for a discussion of the analogy of this result
with that of Esnault [26] based on `-adic techniques.

5.4. New viewpoints on slopes. The analogy between the notions of
slopes and Newton polygons for F -crystals and those of slopes and Harder-
Narasimhan filtrations for vector bundles on curves is not fortuitous. There
is a common framework for the two notions, which was recently discovered by
André [1]. Fargues [28] exploited this to construct a Harder-Narasimhan fil-
tration on finite flat commutative group schemes over valuation rings of mixed
characteristics, and similar filtrations play an important role in Fargues-
Fontaine’s work [29] on p-adic Galois representations.

Acknowledgements. I wish to thank Jean-Marc Fontaine, Nick Katz, Bill
Messing, Marc-Hubert Nicole, Peter Scholze, Jean-Pierre Serre, and Weizhe
Zheng for helpful comments on preliminary versions of this text.
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p > 0, Lecture Notes in Math. 407, Springer-Verlag (1974).

[6] P. Berthelot, Altérations de variétés algébriques, Séminaire N. Bour-
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arithmétiques : la conjecture de Mordell, Lucien Szpiro, Astérisque
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