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PLAN

1. Oriented products (Deligne’s tubes)

2. Nearby cycles over general bases

3. Gabber’s finiteness and uniformization theorems

4. Tubular cohomological descent

5. What next ?
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1. ORIENTED PRODUCTS (DELIGNE’S TUBES)

Recall :

• topos = {sheaves on a site}

• f : X → Y : (f∗, f∗)

• point of X : morphism x : Pt→ X

(= fiber functor x∗ : F 7→ Fx)
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Examples

• X = sober topological space,

X = Pt(X)

• X = scheme with étale topology,

Pt(X) = geometric points of X

(= morphisms Spec k → X (k sep. closed))
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Specialization morphisms

f, g : X → Y morphisms of toposes

morphism u : f → g = morphism of functors f∗→ g∗

(⇔ g∗→ f∗)

For s, t ∈ Pt(X), u : t→ s = specialization

from t to s

6



Examples

• X = scheme, Zariski topology , t→ s ⇔ s ∈ {t}

⇔ t ∈ SpecOX,s

• X = scheme, étale topology

t→ s ⇔ t→ X(s) ⇔ X(t)→ X(s)

X(s) = SpecOX,s

OX,s = strict henselization at s
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Oriented products

Given morphisms of toposes

f : X → S, g : Y → S,

construct universal diagram of toposes :

X
←
× SYp1

yytttttttttt p2
%%JJJJJJJJJJ

X

f &&NNNNNNNNNNNNNN Y
gxxqqqqqqqqqqqqqq

S

τ : gp2→ fp1
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X
←
× SY : Deligne’s oriented product

universal property : for any topos T

{ morphisms T → X
←
× SY } =

{ triples (q1 : T → X, q2 : T → Y, t : gq2→ fq1) }

In particular :
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points of X
←
× SY = triples

(point x of X, point y of Y ,

specialisation g(y)→ f(x))
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Defining site and structural maps

X
←
× SY := { sheaves on site C }

objects of C = {(U → V ←W ) above (X → S ← Y )}

(U , V , W objects of defining sites

for X, S, Y )

maps : obvious
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topology defined by covering families of types :

(a) Ui

  A
AA

AA
AA

A

��

U //V Woo

((Ui→ U) covering)

(b) Wi

}}{{
{{

{{
{{

��

U //V Woo

((Wi→W ) covering)

(c) V ′

��

W ′

��

oo

U //

==||||||||

V Woo

(cartesian square)
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presheaf (U → V ←W ) 7→ F (U → V ←W )

= sheaf on C

⇔ F satisfies sheaf condition for (a), (b), and

F (U → V ←W ) ∼−→ F (U → V ′←W ′) for type (c)
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p−1
1 (U) = (U → S ← Y )

p−1
2 (W ) = (X → S ←W )

τ : (gp2)∗F → (fp1)∗F

defined by

F (X → S ← g−1(V )) → F (f−1(V ) → V ← g−1(V )) ←

F (f−1(V )→ S ← Y )
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Examples (étale topology)

• S = scheme ; s→ S = geometric point

s
←
× SS = S(s)

• X = scheme ; Y ⊂ X closed, U = X − Y ⊂ X

Y
←
×XU = punctured (étale) tubular neighborhood

of Y in X

(= Y
←
×X ′U

′ for X ′ étale

neighborhood of Y in X, U ′ = X ′ ×X U)
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• s = Spec k (k = field), X/s,

X
←
× ss = X

• S = strictly local trait, s closed, η generic, Y/s

Y
←
× Sη = { sheaves on Y

with continuous action of Gal(η/η) }

16



2. NEARBY CYCLES OVER GENERAL BASES

S = scheme, étale topology ; Λ = Z/nZ (n invertible

on S)

For schemes X/S, Y/S, universal property of X
←
× SY

gives a morphism of toposes

Ψ = ΨX/S : X ×S Y → X
←
× SY,

Ψ−1(U → V ←W ) = U ×V W
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For Y = S,

RΨ∗ : D+(X,Λ)→ D+(X
←
× SS,Λ)

(denoted also RΨ)

called nearby cycles functor

(Deligne, Laumon ; 1981)
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Example

S = strictly local trait, s closed, η generic,

η = generic geometric

i : Xs→ X, j : Xη → X

(RΨF )|Xs
←
× Sη = i∗Rj∗(F |Xη)

(usual (= SGA 7 XIII) functor RΨ)

19



Stalks

point (x, s← t) of X
←
× SS

(x→ X, s→ S = geom. pts, s← t = specialization)

(RΨF )(x,s←t) = RΓ(X(x) ×S(s)
S(t), F )

X(x) ⊃ X(x) ×S(s)
S(t) ⊃ X(x) ×S(s)

t

(Milnor ball ⊃ Milnor tube ⊃ Milnor fiber)
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Vanishing cycles

p1Ψ = IdX gives map

p∗1→ Ψ∗

and distinguished triangle

p∗1F → RΨF → RΦF →

RΦ = vanishing cycles functor

(for S = strictly local trait,

(RΦF )|Xs
←
× Sη = usual (= SGA 7 XIII) RΦF )
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Constructibility

S noetherian, X/S, Y/S finite type

sheaf of Λ-modules F on X
←
× SY constructible if

X = ∪Xi, Y = ∪Yj (finite disjoint unions) and

F |Xi
←
× SYj locally constant of finite type

{constructible sheaves} = thick subcategory

Db
c(X

←
× SY,Λ) : bounded, constructible cohomology
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Main result

THEOREM (F. Orgogozo, 2005)

S noetherian, X/S finite type, Λ = Z/nZ,

n invertible on S ; F ∈ Db
c(X,Λ)

There exists a modification S′→ S

such that for X ′ = X ×S S′,

RΨX ′/S′(F |X ′) belongs to Db
c(X

′ ←× S′S
′,Λ) and

is base change compatible
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Remarks

• S = trait : recover Deligne’s th. in [SGA 4 1/2,

Th. finitude]

• dim(S) ≥ 2 : in general, RΨF not in Db
c and not

base change compatible :

Example : f : X → S = blow up of origin in the plane,

L = line through origin,

RΨ((Λ)|f−1(L)) moves with L
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• isolated singularities

if bad (= non universal local acyclicity) locus of (f, F )

quasi-finite / S (e. g. F = Λ, f smooth outside Σ

quasi-finite / S),

then RΨF is in Db
c and base change compatible

(no modification of base necessary)
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main ingredient of proof :

de Jong’s th. on plurinodal curves
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3. GABBER’S FINITENESS AND UNIFORMIZA-

TION THEOREMS

Recall :

A ring A is quasi-excellent if A noetherian,

formal fibers of A are geometrically regular, and

for any A′ of finite type over A, Reg(SpecA′) open

A scheme X is quasi-excellent (qe for short)

if X= union of

open affine quasi-excellent schemes

27



Examples

• A complete, local, noetherian ⇒ A qe

• A Dedekind, Frac(A) of char. zero ⇒ A qe

• Y qe, X/Y locally of finite type ⇒ X qe
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THEOREM 3.1 (Gabber, 2005) :

Y noetherian, qe, f : X → Y f. t.,

Λ = Z/nZ, n ≥ 1 invertible on Y ,

F = constructible Λ-module on X

Then :

(a) Rqf∗F constructible ∀q,

(b) ∃N s. t. Rqf∗F = 0 for q ≥ N .
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Remarks :

• (a) + (b) ⇔ Rf∗ : Db
c(X,Λ)→ Db

c(Y,Λ)

• f proper : Y qe, n invertible on Y superfluous

(finiteness th. [SGA 4 XIV])

• char(Y ) = 0 : Artin [SGA 4 XIX]

30



• f = S-morphism, X, Y f. t. /S regular, dim ≤ 1 :

Deligne [SGA 4 1/2, Th. Finitude]

• f = S-morphism, X, Y f. t. /S noetherian

⇒ generic constructibility of Rqf∗F : Deligne [SGA 4

1/2, Th. Finitude]

• qe not needed for q = 0, needed for q > 0
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General idea of proof :

reduce to absolute purity th. (Gabber, 1994)

via cohomological descent
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absolute purity th. ⇒

THEOREM 3.2

X regular, locally noetherian

D =
∑

i∈I Di ⊂ X snc (= strict normal crossings) divi-

sor

j : U = X −D → X

Then :

Rqj∗Λ =


Λ if q = 0

⊕ΛDi
(−1) if q = 1

ΛqR1j∗Λ if q > 1.
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In particular, Rj∗Λ ∈ Db
c(X,Λ)

To prove 3.1 (a), easy reductions ⇒

• enough to show : Rj∗Λ ∈ D+
c (X,Λ) for

j : U → X dense open immersion, X qe

• if de Jong available,

(e. g. /schemes f. t. Z), i. e. can find

π : X ′→ X proper surjective, X ′ regular,

U ′ := π−1(U) complement of strict dnc,
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construct cartesian diagram :

(∗) U.
j. //

��

X.
ε.
��

U
j
//X

with

• ε. proper hypercovering

• Xn regular ∀n

• jn : Un→ Xn = inclusion of

complement of strict dnc ∀n
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cohomological descent for ε. ⇒

Rj∗Λ = Rε.∗Rj.∗Λ

absolute purity ⇒ Rjp∗Λ in Db
c

εp proper⇒ Rqεp∗Rjp∗Λ constructible

spectral sequence (Rqεp∗Rjp∗Λ⇒ Rp+qj∗Λ)

⇒ Rij∗Λ constructible
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Instead of de Jong (not available), use

Gabber’s local uniformization theorem

S a scheme

pspf topology on (schemes loc. f. p. / S) :

generated by :

- proper surjective f. p. morphisms

- Zariski open covers

(pspf = propre, surjectif, présentation finie)

pspf finer than étale
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S noetherian : pspf /S = Voevodsky’s h-topology

= Goodwillie-Lichtenbaum’s ph-topology

S pspf local ⇔ S = SpecV

V valuation ring, Frac(V ) alg. closed
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THEOREM 3.3 (Gabber, 2005)

X noetherian, qe, Y ⊂ X nowhere dense closed subset

Then :

∃ finite family (fi : Xi→ X) (i ∈ I) s. t. :

• (fi) pspf covering

• ∀i, Xi regular, connected

• Yi = f−1
i (Y ) = support of strict dnc (or ∅)

• ∀i, fi generically quasi-finite and

sends maximal pts to maximal pts
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NB. fi not necessarily proper

3.3 = local uniformization theorem

compare with

• Hironaka (/Q)

• de Jong (f. t. /S regular, dim. ≤ 1)

which are both global
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Rough outline of proof

• reduction to X local henselian

• reduction to X local complete :

uses : Artin-Popescu’s th.

+ Gabber’s new formal approximation technique

• by induction on dim(X), proof in local complete case

relies on :

- Gabber’s refined Cohen structure th.

- de Jong’s th. on nodal curves

- log regularity and resolution of toric singularities

(Kato)
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4. TUBULAR COHOMOLOGICAL DESCENT

• enough to show : Rj∗Λ ∈ D+
c (X,Λ) for

j : U → X dense open immersion, X qe

• using uniformization theorem,

construct

U.
j. //

��

X.
ε.
��

U
j
//X

with ε. = pspf hypercovering

(and Xn, jn as above)
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pb : εn no longer proper

• circumvent this by :

- Deligne’s generic constructibility th. ([SGA 4 1/2

Th. fin.])

- Gabber’s hyper base change th. [G2]
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• by standard criterion of constructibility,

have to show :

(P) ∀i ≥ 0, ∀ g : X ′→ X closed irreducible subset,

∃ dense open V ⊂ X ′ s. t. g∗Rij∗Λ|V constructible

• by Gabber’s hyper base change th. (Gabber, 2005)

g∗Rj∗Λ = Rε′.∗g.
∗(Rj.∗Λ)

where g., ε′. defined by cartesian diagram

X ′.
g. //

ε′.��

X.
ε.
��

X ′
g

//X
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Remark

base change by g for εn not OK

as εn non proper

only hyper base change works
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Proof of constructibility (modulo hyper base change)

• by absolute purity,

Kp := gp
∗(Rjp∗Λ) ∈ Db

c(X
′
p,Λ)

• by Deligne’s generic constructibility th.

∃ dense open Vpq ⊂ X ′ s. t.

Rqε′p∗Kp|Vpq constructible

• spectral sequence

Rqε′p∗Kp⇒ g∗Rp+qj∗Λ

implies ∃V satisfying (P)
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Main ingredient for hyper base change :

Tubular cohomological descent
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Idea :

Consider punctured tube

←
U ′ = X ′

←
×XU :

←
U ′p1

��~~
~~

~~
~~ p2

��=
==

==
==

=

X ′

g ""D
DD

DD
DD

D U

j~~||
||

||
||

X

general fact : tubular base change holds :

g∗Rj∗F = Rp1∗p∗2F

for F ∈ D+(U,Λ)
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Remarks

• base change not OK for U ′ = X ′ ×X U !

• tubular base change holds more generally

for oriented product X
←
× SY

with Y/S quasi-compact and quasi-separated
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Similarly, consider simplicial tube

←
U ′. = X ′.

←
×X.U.

and map
←
U ′p1

����
��

��
��

� p2
��:

::
::

::
::

ε.oo
←
U ′.p1

����
��

��
�� p2

��<
<<

<<
<<

<<

X ′

g   B
BB

BB
BB

BB
U

j����
��

��
��

�
X ′.

g. !!B
BB

BB
BB

B
U.

j.~~}}
}}

}}
}}

X
ε.oo X.
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By tubular cohomological descent

Λ←
U ′

= Rε.∗Λ←
U ′.

so hyper base change follows from :

g∗Rj∗Λ = Rp1∗Λ←
U ′

(tubular base change)

= Rp1∗Rε.∗Λ←
U ′.

(tubular cohomological descent)

= Rε.∗Rp1∗Λ←
U ′.

(trivial)

= Rε.∗g∗. Rj.∗ΛX ′.
(tubular base change)
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NB. More general tubular cohomological descent :

• F = Rε.∗ε∗. F , F ∈ D+(
←
U ′,Λ)

• oriented products X
←
× SY , Y/S f. p.

Ingredients for proof :

• classical cohomological descent (pspf case)

• tubular base change (easy)

• cohomological invariance of tubes under blow-ups
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Y ′

��

//Z′
f
��

Y //Z Uoo

``BBBBBBBB

f proper, square cartesian,

Y ⊂ Z, Y ′ ⊂ Z′ closed, U = Z − Y = Z′ − Y ′

giving map of tubes

←
f : T ′ = Y ′

←
× Z′U → T = Y

←
× ZU

Then (cohomological invariance):

F = R
←
f ∗
←
f ∗F F ∈ D+(T,Λ)
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5. WHAT NEXT ?

5.1. Problems in the étale set-up

• More on general nearby cycles

- calculations for specific families,

(e. g. : - semistable reduction along dnc, log smooth

maps

- confluences of semistable reduction and quadratic

singularities (S. Saito, U. Jannsen))
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- discuss iterated monodromies and variations

- compatibility of RΨ with duality ?

- perversity of RΨ ?
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- find applications !

(so far : conjugation of vanishing cycles

in Lefschetz pencils (Gabber-Orgogozo, 2005))

e. g. : revisit Deligne’s approach (1976) to RR pbs

via nearby cycles for families of local pencils ?

(relation with ramification, variation of Swan conduc-

tor, Abbes-K. Kato-T. Saito’s work on χ(X, F ))
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• Investigate cohomology of tubes

(six operations, finiteness, ...)

5.2. Other set-ups and comparison problems

• Complex analytic case

Pb 1: Define oriented product X
←
× SY for maps

X → S, Y → S of complex analytic spaces,
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canonical map

ε : Xan←× SanY an→ X
←
× SY

for X → S, Y → S maps of schemes of f. t. /C

with adjunction map

F → Rε∗ε∗F

being an isomorphism for F ∈ Db
c(X

←
× SY, Z/nZ)

(after possible modification of S ?)
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work in progress (D. Treumann) for

stratified topological analogues

(related to MacPherson’s theory of exit paths)
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Pb 2 : Find common generalization of Orgogozo’s th.

and Sabbah’s th. (1981)

(proper f : X → S

between complex an. spaces

acquires good punctual theory of nearby cycles for

constant sheaves after modification of S)
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Pb 3 : Find de Rham (or D-modules) analogues,

generalize (to higher dimensional bases)

Steenbrink’s formula

RΨC = ω·X0

for X semistable / disc

(log variants in [I-Kato-Nakayama])
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• Rigid analytic case

Define oriented products X
←
× SY for maps

X → S, Y → S of rigid analytic spaces

generalizing Fujiwara’s tubes

(for X closed in S noetherian, Y = S −X),
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get comparison isomorphism

rigid vs étale

as in Pb 1 above

(work in progress : Gabber, Berkovitch)
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