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Lecture 4. The Barr–Beck–Lurie theorem

Last lecture, we introduced monoidal ª-categories Ce � N�∆op�, defined the relative
nerve construction �J � sSet�   �NF �J�� N�J��, and used it to equip ª-categories of
endofunctors C � End�D� with monoidal structures. This allowed us to define monads and
their algebras in an ª-categorical setting.

Today, we will explain Lurie’s higher categorical variant of Barr–Beck’s monadicity the-
orem from Lecture 1. This generalisation is a key tool in constructing equivalences between
higher categories, and will be of great value in our later applications.

4.1. A reflection on adjunctions. We wish to construct monads from adjunctions.
For ordinary categories, this was straightforward: given an an adjunction F � C � D � G

with unit η and counit ϵ, the triple �T � GF, GϵF � TT � T, η � idC � T � evidently satisfies
the axioms of a monad (cf. Definition 1.30 of Lecture 1).

The corresponding construction forª-categories is more complicated, as we must supply
an infinite amount of coherence data to specify a monad.

Adjunctions of ª-categories can be defined in several ways:

a) Most efficiently, we can define an adjunction as a functor F � C � D for which the cor-
responding coCartesian fibrationM� N�∆1� has the property of also being Cartesian.

b) Slightly less efficiently, we could also specify both functors F � C � D and G � D � C.
However, this datum alone is overdetermined. To fix this, we must specify a unit natural
transformation u � idC � GF verifying that F andG are indeed adjoint, which means that

MapD�FX,Y ��MapC�GFX,GY �
uX�
ÐÐ�MapC�X,GY � is a weak equivalence for all X,Y .

c) Even less efficiently, we could also specify two functors F � C � D, G � D � C and two
natural transformations η � idC � GF, ϵ � FG � idD satisfying the natural conditions
for a unit and counit. Again, this quadruple alone would be overdetermined, which we
can fix by also specifying a 2-simplex ∆2

� Fun�C,D�:

F
Fη
> FGF

F

ϵF
∨>

d) . . .

Continuing in this fashion, we obtain infinitely many definitions of what an adjunction
is; one can prove that all these notions are equivalent up to a contractible space of choices.

Exercise 4.1. Given a functor F � C � D as in a� above, construct a functor G � D � C

and a natural transformation u � idC � GF satisfying the confitions specified in b�.
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For most applications, the most economical definition a� is entirely sufficient. However,
the infinitely many coherences required for a monad force us to use the “least” efficient
definition of adjunctions, which we will explain in the following sections.

4.2. The �ª,2�-category �C,D�. Given anª-category C, we have constructed a monoidal
structure End�C�e � N�∆op� on End�C� in Definition 3.11 of the preceeding lecture.

Shifting perspective, we may think of End�C� as a model for the full subcategory �C� of the
�ª,2�-category of �ª,1�-categories and (not necessarily invertible) natural transformations.

To construct monads from adjunctions, we will need a similar description of the full sub-
category �C,D� spanned by two ª-categories C,D. To this end, we proceed in three steps:

a) Define a labelled version ∆op
�C,D�

of ∆op. We have seen that ∆op is modelled by diagrams

�n� � � � Y Y . . . Y � �,

with morphisms corresponding to order-preserving maps sending � to � and � to �.

The objects of ∆op
�C,D�

are given by such diagrams with gaps labelled by either the

symbol C or the symbol D. For example, we have the following object:

� � C Y C Y D Y D Y C Y D � �,

More formally, objects of ∆op
�C,D�

are given by pairs ��n� > ∆op, c � �n� � �C,D��.

Morphisms in ∆op
�C,D�

are order-preserving maps sending � to � and � to �, which have

the additional property that all gaps between two arrows carry the same label:

(1)

� C Y D Y C Y C Y D Y D Y C �

�

∨>

D Y D Y

>

C Y C Y

∨>>
D �

∨ <

b) Define a functor F �∆op
�C,D�

� sSet. On objects, we define

� � c0 Y c1 Y . . . Y cn�1 Y cn � � ( Fun�c0, c1� � . . . � Fun�cn�1, cn�.

On morphisms, this functor is defined by composing functors and inserting the identi-
ties as dictated from the arrows. For example, the morphism (1) above sends an element

�C
F0
Ð� D

F1
Ð� C

F2
Ð� C

F3
Ð� D

F4
Ð� D

F5
Ð� C� to the element �D

idD
ÐÐ� D

F1
Ð� C

idC
ÐÐ� C

F4XF3XF2
ÐÐÐÐÐ� D).

c) Unstraighten. We apply the relative nerve construction introduced in Definition 4.28
of last class to obtain a coCartesian fibration p � End�C,D�e � N�∆op

�C,D�
�.

This construction will allow us access all functors between C and D, and all natural trans-
formation between such functors, in an effective way.

4.3. Adjunction data. We can now keep track of all higher coherence data of adjunctions.
We need the following auxiliary definition:
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Definition 4.2. A morphism ��n�, c�� ��m�, d� is said to be C-inert if any C-label in the
domain ��n�, c� sits in one of the following five configurations:

� C Y . . .

�

∨ <

. . .

. . . Y C Y . . .

. . . �

∨ <

. . .

. . . Y C Y . . .

. . . Y

∨
C Y

∨
. . .

. . . Y C Y . . .

. . . �

∨>

. . . Y C �

. . . �

∨>

Definition 4.3 (Adjunction data). An adjunction datum for a pair of ª-categories �C,D�
consists of a section s � N�∆op

�C,D�
� � End�C,D�e of p � End�C,D�e � N�∆op

�C,D�
� sending

C-inert morphisms to p-coCartesian edges. Write Adj�C,D� for the full subcategory of
FunN�∆op

�C,D�
��N�∆op

�C,D�
�,End�C,D�e� spanned by such sections.

We now unravel the information contained in an adjunction datum N�∆op
�C,D�

�
s
Ð� End�C,D�e.

Y First, define two functors F �� s � � C Y D � � and G �� s � � D Y C � �;
these will serve as left and right adjoint, respectively.

Y Next, define two endofunctors T �� s � � C Y C � � and ι �� s � � D Y D � �;
while T will be the monad induced by the adjunction, ι will just be a version of idD.

Y We obtain a natural transformation idC � T from the following morphism:

� C �

�

<

C Y C �

>

Y We obtain a natural equivalence idC
�

ÐÐ� ι from the following C-inert morphism:

� D �

�

<

D Y D �

>

Y The triangle s � � C Y D Y C � � gives two functors F �
� C � D and G�

� D � C.

Exercise. Use C-inert morphisms to produce equivalences F �
� F , G�

� G, G�F �
� T .

Y The triangle s � � D Y C Y D � � gives functors G��
� D � C and F ��

� C � D.

Exercise. Use C-inert morphisms to produce equivalences F ��
� F , G��

� G, and
find a non-C-inert morphism inducing a natural transformation ϵ � F ��G��

� idD;
this will be the counit.

We have produced functors F,G and natural transformations η � idC � GF , ϵ � FG� idD.
A more elaborate argument, which appears as [Lur07, Lemma 3.2.9], then shows that these
satisfy the axioms of an adjunction between the homotopy categories hC and hD.
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4.4. The Barr–Beck–Lurie theorem. Fix two ª-categories C and D, and consider the
following maximally efficient definition of adjunctions:

Definition 4.4. A functor F � C � D is a left adjoint if the corresponding coCartesian
fibration over ∆1 is also Cartesian. Write Fun��C,D� ` Fun�C,D� for the subcategory
whose objects are left adjoints and whose morphisms are natural equivalences.

It is not hard to show that any adjunction datum s > Adj�C,D� determines a left adjoint
s��C YD��, and we can ask how much information is lost in this process. The following
hard theorem of Lurie (cf. [Lur07, Theorem 3.2.10]) shows that the infinitely many higher
coherences present in an adjunction datum can be added in an essentially unique way:

Theorem 4.5 (Adjunction data from adjunctions). Evaluation gives a trivial Kan fibration

Adj�C,D�� Fun��C,D�

s ( s��C YD��

Now let F � C � D be a left adjoint. Using Theorem 4.5 above, we pick a preimage
s > Adj�C,D� from a contractible space. Write G � s��D Y C�� for the corresponding
right adjoint. Restricting s to the full subcategory N�∆op� � N�∆op

C
� of all diagrams

�� C Y . . . Y C �� labelled only by C gives rise to an algebra object T in End�C�.

Just like in the 1-categorical case discussed in Lecture 1, we can construct a diagram

D
ÇG

> AlgT �C�

C

U

∨G
>

For a formal construction of the functor ÇG, we refer to [Lur07, Section 3.3].
We are finally ready to state the ª-categorical monadicity theorem:

Theorem 4.6 (Barr–Beck–Lurie, crude version). Assume that

(1) D admits and G preserves geometric realisations, i.e. N�∆op�-shaped colimits;
(2) G is conservative, i.e. if G�f� is an equivalence in C, then so is f in D.

Then the functor ÇG � D
�

Ð� AlgT �C� is an equivalence of ª-categories.

In this higher categorical result, geometric realisations play an analogous role to the
reflexive coequalisers appearing in the ordinary crude Barr–Beck theorem.

To give a sharp criterion, we need a higher categorical generalisation of split coequalisers.
To this end, we introduce the following enlargement of the simplex category:

Definition 4.7. The category ∆�ª has objects the finite linearly ordered sets

��1� � � � , �0� � �0� , �1� � �0 @ 1� , �2� � �0 @ 1 @ 2� , . . . .

Morphisms �n�� �m� are given by order-preserving maps �n�8��ª�� �m�8��ª� which
send �ª to �ª; here �ª is defined as the least element.
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Exercise 4.8.

a) Exhibit the simplex category ∆ and the augmented simplex category ∆� as subcate-
gories of ∆�ª.

b) Show that any ∆�ª-indexed diagram in an ordinary category gives a split coequaliser.

Definition 4.9 (Split simplicial objects).

a) A simplicial object X � N�∆op�� C in an ª-category C is split if it extends to N�∆op
�ª�.

b) Given a functor G � D � C, a simplicial object X � N�∆op� � D is said to be G-split if
the simplicial object G XX � N�∆op�� C is split.

Remark 4.10. If X is a split simplicial diagram, then the restriction of X to ∆� is a
colimit diagram; in other words, X���1�� is the geometric realisation of X SN�∆op�.

Theorem 4.11 (Barr–Beck–Lurie, precise version). Given a left adjoint F � C � D as
above, the induced functor D � AlgT �C� is an equivalence if and only if the following
conditions hold:

(1) D admits and G preserves colimits of G-split simplicial diagrams in D;
(2) G is conservative.

In practical applications, �1� is usually much harder to check than �2�. In the next
weeks, we will give several concrete applications of this result.
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