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LECTURE 4. THE BARR—BECK—-LURIE THEOREM

Last lecture, we introduced monoidal co-categories C® — N(AP), defined the relative
nerve construction (J — sSet) ~ (Np(J) - N(J)), and used it to equip oo-categories of
endofunctors C = End(D) with monoidal structures. This allowed us to define monads and
their algebras in an co-categorical setting.

Today, we will explain Lurie’s higher categorical variant of Barr-Beck’s monadicity the-
orem from Lecture 1. This generalisation is a key tool in constructing equivalences between
higher categories, and will be of great value in our later applications.

4.1. A reflection on adjunctions. We wish to construct monads from adjunctions.

For ordinary categories, this was straightforward: given an an adjunction F':C D : G
with unit n and counit €, the triple (T'= GF, Gep : TT - T, n:id¢ — T') evidently satisfies
the axioms of a monad (cf. Definition 1.30 of Lecture 1).

The corresponding construction for co-categories is more complicated, as we must supply
an infinite amount of coherence data to specify a monad.

Adjunctions of co-categories can be defined in several ways:

a) Most efficiently, we can define an adjunction as a functor F' : C - D for which the cor-
responding coCartesian fibration M — N(A') has the property of also being Cartesian.

b) Slightly less efficiently, we could also specify both functors F': C - D and G:D - C.
However, this datum alone is overdetermined. To fix this, we must specify a unit natural
transformation u : ide - GF verifying that F' and G are indeed adjoint, which means that

Mapp(FX,Y) - Map.(GFX,GY) R Map. (X, GY') is a weak equivalence for all X,Y".

c) Even less efficiently, we could also specify two functors F': C - D, G : D — C and two
natural transformations 7 :id¢ — GF, € : FG — idp satisfying the natural conditions
for a unit and counit. Again, this quadruple alone would be overdetermined, which we
can fix by also specifying a 2-simplex A% - Fun(C,D):
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Continuing in this fashion, we obtain infinitely many definitions of what an adjunction
is; one can prove that all these notions are equivalent up to a contractible space of choices.

Exercise 4.1. Given a functor F' : C - D as in a) above, construct a functor G: D — C
and a natural transformation u : ide - GF satisfying the confitions specified in b).
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For most applications, the most economical definition a) is entirely sufficient. However,
the infinitely many coherences required for a monad force us to use the “least” efficient
definition of adjunctions, which we will explain in the following sections.

4.2. The (o0,2)-category {C,D}. Given an oco-category C, we have constructed a monoidal
structure End(C)® - N(A) on End(C) in Definition 3.11 of the preceeding lecture.
Shifting perspective, we may think of End(C) as a model for the full subcategory {C} of the
(00, 2)-category of (o0, 1)-categories and (not necessarily invertible) natural transformations.
To construct monads from adjunctions, we will need a similar description of the full sub-
category {C, D} spanned by two oco-categories C,D. To this end, we proceed in three steps:

a) Define a labelled version A%, . of A°?. We have seen that A% is modelled by diagrams

{¢, D}
Ml=(= o o . o +)
with morphisms corresponding to order-preserving maps sending — to — and + to +.

The objects of A{c D}
symbol C or the symbol D. For example, we have the following object:

are given by such diagrams with gaps labelled by either the

(-C eC o« D e D o C oD +),

(c,p) Are given by pairs ([n] € AP, ¢ : [n] - {C,D}).

Morphisms in A%, (c,p}y e order-preserving maps sending — to — and + to +, which have

More formally, objects of A%

the additional property that all gaps between two arrows carry the same label:

—CODCCD'DC+

g NN

—DeDoe

b) Define a functor F: A, . —sSet. On objects, we define

{¢.D}
(- co®cr o ... ¢ ® ¢, +) + Fun(cg,c1) x...xFun(e,-1,¢,).

On morphisms, this functor is defined by composing functors and inserting the identi-
ties as dictated from the arrows. For example, the morphism (/1)) above sends an element

d d oF30
cp e e p D50 to the element (D 22 D 15 ¢ 1, ¢ Lof80l2, oy
c) Unstraighten. We apply the relative nerve construction introduced in Definition 4.28

of last class to obtain a coCartesian fibration p : End(C, D)® — N(A{c D})

This construction will allow us access all functors between C and D, and all natural trans-
formation between such functors, in an effective way.

4.3. Adjunction data. We can now keep track of all higher coherence data of adjunctions.
We need the following auxiliary definition:
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Definition 4.2. A morphism ([n],c) — ([m],d) is said to be C-inert if any C-label in the
domain ([n],¢) sits in one of the following five configurations:

VoVl N

Definition 4.3 (Adjunction data). An adjunction datum for a pair of co-categories (C,D)
consists of a section s : N(A?QD}) — End(C,D)® of p: End(C,D)® — N(A({)Z,D}) sending
C-inert morphisms to p-coCartesian edges. Write Adj(C,D) for the full subcategory of
FUHN(A‘{’(’; D})(N(A?’é D}), End(C,D)®) spanned by such sections.

We now unravel the information contained in an adjunction datum N(A‘E‘Z D}) > End(C,D)®.

e First, define two functors F:=s( — C e D + JandG:=s( — D e C + );
these will serve as left and right adjoint, respectively.

e Next, define two endofunctors T':==s ( — C ¢ C + )andt:=s( - D e D + );
while T" will be the monad induced by the adjunction, ¢ will just be a version of idp.

e We obtain a natural transformation id¢ — T from the following morphism:

VA

e We obtain a natural equivalence ide — ¢ from the following C-inert morphism:

/N

e The triangles ( — C o D o C + ) gives two functors F':C > D and G': D - C.
Exercise. Use C-inert morphisms to produce equivalences F' ~ F, G' ~G, G'F' ~T.
e The triangles ( — D o C e D + ) gives functors G’ :D - C and F":C - D.

Exercise. Use C-inert morphisms to produce equivalences F”' ~ F, G" ~ G, and
find a non-C-inert morphism inducing a natural transformation € : F”G" — idp;
this will be the counit.

We have produced functors F, G and natural transformations 7 :id¢ - GF, €: FG — idp.
A more elaborate argument, which appears as [Lur(7, Lemma 3.2.9], then shows that these
satisfy the axioms of an adjunction between the homotopy categories hC and hD.
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4.4. The Barr—-Beck—Lurie theorem. Fix two oo-categories C and D, and consider the
following maximally efficient definition of adjunctions:

Definition 4.4. A functor F' : C — D is a left adjoint if the corresponding coCartesian
fibration over Al is also Cartesian. Write Fun’(C,D) c Fun(C,D) for the subcategory
whose objects are left adjoints and whose morphisms are natural equivalences.

It is not hard to show that any adjunction datum s € Adj(C, D) determines a left adjoint
s(—C e D+), and we can ask how much information is lost in this process. The following
hard theorem of Lurie (cf. [Lur07, Theorem 3.2.10]) shows that the infinitely many higher
coherences present in an adjunction datum can be added in an essentially unique way:

Theorem 4.5 (Adjunction data from adjunctions). Evaluation gives a trivial Kan fibration
Adj(C,D) - Fun'(C,D)
s — s(-CeD+)

Now let F': C - D be a left adjoint. Using Theorem [4.5] above, we pick a preimage
s € Adj(C,D) from a contractible space. Write G = s(-D o C+) for the corresponding
right adjoint. Restricting s to the full subcategory N(A) ~ N(AZ") of all diagrams
(- Ce...oC +) labelled only by C gives rise to an algebra object T' in End(C).

Just like in the 1-categorical case discussed in Lecture 1, we can construct a diagram

D% < Alg,(C)

U
x \L
C
For a formal construction of the functor G, we refer to [LurQ7, Section 3.3].
We are finally ready to state the oco-categorical monadicity theorem:
Theorem 4.6 (Barr-Beck-Lurie, crude version). Assume that
(1) D admits and G preserves geometric realisations, i.e. N(A)-shaped colimits;
(2) G is conservative, i.e. if G(f) is an equivalence in C, then so is f in D.
Then the functor G : D 5 Algp(C) is an equivalence of co-categories.
In this higher categorical result, geometric realisations play an analogous role to the
reflexive coequalisers appearing in the ordinary crude Barr—Beck theorem.
To give a sharp criterion, we need a higher categorical generalisation of split coequalisers.

To this end, we introduce the following enlargement of the simplex category:
Definition 4.7. The category A_s has objects the finite linearly ordered sets
[-1]={1}, [0]={0}, [1]={0<1}, [2]={0<1<2}, ....

Morphisms [n] - [m] are given by order-preserving maps [n]u{-oco} - [m]u{-oco} which
send —oo to —oo; here —oo is defined as the least element.



Exercise 4.8.

a) Exhibit the simplex category A and the augmented simplex category A, as subcate-
gories of A_o.

b) Show that any A_e-indexed diagram in an ordinary category gives a split coequaliser.

Definition 4.9 (Split simplicial objects).

a) A simplicial object X : N(A°?) - C in an co-category C is split if it extends to N(A%,).

b) Given a functor G : D — C, a simplicial object X : N(A°) — D is said to be G-split if
the simplicial object G o X : N(A°) - C is split.

Remark 4.10. If X is a split simplicial diagram, then the restriction of X to A, is a
colimit diagram; in other words, X ([~1]) is the geometric realisation of X|x(aer)-

Theorem 4.11 (Barr-Beck—Lurie, precise version). Given a left adjoint F' : C - D as
above, the induced functor D — Alg,(C) is an equivalence if and only if the following
conditions hold:

(1) D admits and G preserves colimits of G-split simplicial diagrams in D;
(2) G is conservative.

In practical applications, (1) is usually much harder to check than (2). In the next
weeks, we will give several concrete applications of this result.
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