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Vector bundles on curves

60 years ago:

[SIR MICHAEL ATIYAH, ICM 1962]

C = P1: All bundles on C are direct sums of line bundles.
C = elliptic curve: [Atiyah, 1957] indecomposable bundles E on C of given rank
and degree are parametrised by C.

How to classify and parametrise bundles on curves of higher genus?
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Stable vector bundles on curves

C smooth projective curve.

E vector bundle on C ⇝

{
rk(E), rank
deg(E), degree

⇝ Z (E) := −deg(E) + i rk(E) ∈ C.

DEFINITION [Mumford, 1962]. E is semistable if, for all sub-bundles F ⊂ E ,

arg(Z (F )) ≤ arg(Z (E)).

PROPERTIES. (i) Moduli spaces, parametrising semistable vector bundles on C of
given rank and degree, exist as projective varieties.
(ii) Any vector bundle E admits a Harder–Narasimhan filtration

0 = E0 ⊂ E1 ⊂ · · · ⊂ Em−1 ⊂ Em = E

such that
Ak := Ek/Ek−1 is semistable, for all k = 1, . . . ,m.
arg(Z (A1)) > · · · > arg(Z (Am)).

APPLICATIONS. (i) Classification of vector bundles.
(ii) Moduli spaces relate theory of curves to higher-dimensional varieties, generalising
the Torelli relation C 7→ Jac(C).
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60 years ago (cont.):

PROJECTIVE INVARIANTS OF PROJECTIVE STRUCTURES 5 2 9 

Here is another example of a stability condition and the resulting quotient 
theorem. Assume the characteristic is 0, and consider, instead of sequences 
of points in Pn, sequences of linear subspaces of any dimension. Thus, if 
Grasskt7l stands for the Grassmannian of ^-dimensional linear subspaces of 
Pn, I ask for orbit spaces of the type (Grassktn)

mjPGL(n). Then, in fact, 
relative to the usual Plücker embedding of the Grassmannian, and to the 
Segre embedding of this product, it turns out that a point x = (LvL2, ...,Lm) 
of (Grasskn)

m
 is stable if and only if: 

For all linear subspaces LczPn, then: 

2 (dim (LPiL<) + l) 
(dimZ+1) 

2 (dim Lt + 1) (n+l) 
i 

Then, by the fundamental theorem, the set of stable points forms an open 
set U, and an orbit space U/PGL(n) exists. 

This result can be applied to the problem of classifying vector bundles 
over a variety in exactly the same way as the result on 0-cycles was applied 
to the problem of classifying line bundles, i.e. Cartier divisor classes. Of 
course, it is well-known that the set of vector bundles even over an algebraic 
curve is not a separated space; in fact, it is not even locally separated, 
because of the "jump" phenomenon noted by Kodaira and Spencer [5]. 
However, again, a basic stability condition avoids all these difficulties. For 
simplicity, let us consider only vector bundles over a fixed-curve C. 

DEFINITION. A vector bundle E is stable if for all sub-bundles F, 

v̂ , ^ v̂ ,̂ .v rank F 

D e g c ^ X D e g c ^ E ) . ^ ^ , 

where cx denotes the first chern class. 
In other words, a vector bundle is stable if all its subbundles are "less 

ample" than itself. To illustrate the stability condition, let me mention 
its simplest properties: 

(i) If ii is a line bundle, then E is stable if and only if E®L is stable; 
moreover, E is stable if and only if Ë is stable. 

(ii) If Ex and E2 are two vector bundles, E1@E2 is never stable. 
(iii) A line bundle is always stable. 
(iv) If a vector bundle E of rank 2 is not stable, then either E is isomor

phic to L±@L2, or there is a unique sub-bundle L for which > holds 
in the definition and E can be canonically described as an extension. 

Then I can prove the following theorem: 

THEOREM. The set of all stable vector bundles of rank r over a fixed curve C 
in characteristic 0 is "naturally" isomorphic to the set of points of a non-
singular quasi-projective variety Vr(C). 

A more complicated example of a stability condition is given by the 
action of PGL(2) on the variety of plane curves of degree n. There seems 
to be no simple general rule describing when a plane curve is stable; however, 
I can prove that if n>3, then at least every non-singular curve is stable. 
For low values of n, the precise answer is given by: 

[DAVID MUMFORD, ICM 1962]
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Bridgeland stability on K3 surfaces

[TOM BRIDGELAND, ICM 2006]

X smooth projective K3 surface, Db(X ) bounded derived category of coherent sheaves
E ∈ Db(X )⇝ v(E) := ch(E) ·

√
tdX ∈ H∗

alg(X ,Z) Mukai vector.

DEFINITION [Bridgeland, 2003]. A Bridgeland stability condition on Db(X ) is a pair
σ = (Z ,A), where

Z : H∗
alg(X ,Z) → C group homomorphism,

(i) Z (E) := Z (v(E)) ∈ H ∪ R<0, for all nonzero E ∈ A
(ii) Harder–Narasimhan filtrations exist in A
(iii) there exists a quadratic form Q on H∗

alg(X ,R) with
• Q is negative definite on KerZR
• Q(E) ≥ 0, for all E semistable

(iv) openness and boundedness for semistable objects.

BRIDGELAND DEFORMATION THEOREM. The set Stab(Db(X )) of stability conditions
has the structure of complex manifold such that the forgetful morphism

Stab(Db(X )) −→ H∗
alg(X ,C)∨, (Z ,A) 7→ Z

is a covering of an (explicitly defined) period domain.
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Mukai’s theory on K3 surfaces

[SHIGERU MUKAI, 1987]

X K3 surface⇝ H∗(X ,Z) = H0 ⊕ H2 ⊕ H4 ⇝ v = (v0, v1, v2) ∈ H∗(X ,Z).
DEFINITION. The Mukai pairing on H∗(X ,Z) is

v2 :=

∫
X
(v1 ∪ v1 − 2 v0 v2) .

THEOREM [Mukai, Kuleshov, O’Grady, Huybrechts, Yoshioka, Toda, B–M]. Assume
v ∈ H∗

alg(X ,Z) is primitive and σ ∈ Stab(Db(X )) is generic with respect to v . Then the
moduli space M := Mσ(v) is non-empty if and only if

2d := v2 + 2 ≥ 0.

In this case, M is a smooth projective hyper-Kähler manifold of dimension 2d , which
comes with a canonical polarization ℓ := ℓσ(v).

PROOF.
Step 1. Deformation to elliptic K3 surfaces⇝ use Atiyah’s result on fibers.
Step 2. Use Fourier–Mukai transforms and wall-crossing.
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Applications

K3 surfaces:

BERTRAM’S DREAM. MMP for Mσ(v) via wall-crossing as σ
varies in Stab(Db(X )) [B–M]

⇒ description of birational geometry (nef cones, birational
models) of hyper-Kähler varieties of K3[n] deformation type.
[MONGARDI, B–HASSETT–TSCHINKEL]

MUKAI’S DREAM. All birational maps between moduli spaces of
sheaves are induced by Fourier–Mukai transforms. [B–M]

MUKAI’S PROGRAM. Reconstruct a generic K3 surface from a primitive curve on it.
[ARBARELLO–BRUNO–SERNESI, FEYZBAKHSH]

Other surfaces:

Bridgeland’s theory works very well for all smooth projective surfaces: stability
conditions can be explicitly constructed [ARCARA–BERTRAM], moduli spaces exist as proper
algebraic spaces. [ABRAMOVICH–POLISHCHUK, TODA, ALPER–HALPERN-LEISTNER–HEINLOTH]

THE PROJECTIVE PLANE. MMP via wall-crossing works also in this case [LI–ZHAO,

ARCARA–BERTRAM–COŞKUN–HUIZENGA–WOOLF] ⇒ applications to DT/GW theory. [BOUSSEAU]
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Higher dimensions

SURFACES. The construction involves tilting to go from Coh(X ) to
A = category of certain two-term complexes:{

E−1 d−→ E0 :
•Coker(d) only has positive slopes in its HN filtration
•Ker(d) only has non-positive slopes in its HN filtration

}
.

THREEFOLDS. The construction is much more involved.
Step 1a. Tilt Coh(X ) as above to get A.
Step 1b. Introduce auxiliary weak notion of tilt-stability on A.
Step 2a. Tilt A to obtain heart B of three-term complexes.
Step 2b. Introduce Bridgeland stability on B.

DIFFICULTIES.
Step 2b depends on a Bogomolov-type conjecture governing the Chern character
of tilt-stable objects in A in Step 1b. [B–M–TODA]

No equivalent of Mukai theory governing non-emptiness of moduli spaces
⇒ difficult to control wall-crossing.
Moduli spaces badly behaved (singular, multiple components, ...).
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Threefolds: successes

Existence.

The Bogomolov-type Conjecture (⇒ existence of Bridgeland stability conditions) is
known for:

Fano threefolds, abelian threefolds, threefolds with nef tangent bundles;
[M, SCHMIDT, CHUNYI LI, BERNARDARA–M–SCHMIDT–ZHAO, PIYARATNE–MACIOCIA, B–M–STELLARI, KOSEKI]

Calabi–Yau cases: quintic threefold, finite quotients of abelian threefolds,
double/triple covers of P3, (2, 4)-complete intersections; [CHUNYI LI, KOSEKI, SHENGXUAN LIU]

alternate constructions for varieties with exceptional collections, products
curve × surface. [YUCHENG LIU]

Applications (of tilt-stability & known cases of conjecture):

degree/genus bounds for curves; [M–SCHMIDT]

DT–theory, higher rank DT–theory. [TODA, OBERDIECK–PIYARATNE–TODA, FEYZBAKHSH–THOMAS]

ALTERNATIVE APPROACH (for three- and higher-dimensional Fano varieties):
Ku(X ) ⊂ Db(X ), the Kuznetsov component of Db(X ).
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The Kuznetsov component of a cubic fourfold

[ALEXANDER KUZNETSOV, ICM 2014]

X ⊂ P5 smooth cubic fourfold.

DEFINITION [Kuznetsov].

Ku(X ) :=
{

E ∈ Db(X ) : Hom•(OX ,E) = Hom•(OX (1),E) = Hom•(OX (2),E) = 0
}
.

PROPERTIES:
admissible subcategory: i : Ku(X ) ↪→ Db(X ) has left and right adjoints i∗, i !

i∗, i ! act quite naturally and geometrically
Calabi–Yau 2-category: Hom(E ,F ) = Hom(F ,E [2])∨

K3 category: CY2 and has a Mukai vector E ∈ Ku(X )⇝ v(E) ∈ H̃alg(Ku(X ),Z),
where H̃(Ku(X ),Z) is a Hodge structure on K3 lattice H∗(K3) [ADDINGTON–THOMAS, PERRY]

deformation theory [KUZNETSOV–MARKUSHEVICH]

Pfaffian cubics: Ku(X ) controlled by Kuznetsov’s Homological Projective Duality.
X Pfaffian ⇒ Ku(X ) ∼= Db(S) for a Mukai genus 8 K3 surface S ⊂ Gr(2, 6).

MAIN CONJECTURE [Kuznetsov]. X is rational ⇔ Ku(X ) ∼= Db(S), S K3 surface.

REMARK. For X very general, Ku(X ) ̸∼= Db(S).
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Bridgeland stability for cubic fourfolds

How to construct stability conditions on Ku(X )?

KEY POINT. Ku(X ) subcategory in a
non-commutative threefold.

Choose line L ⊂ X and project X 99K P3

⇝ fibration XL = BlL(X ) → P3 in conics
⇝ Clifford algebra C on P3

⇝ Ku(X ) ⊂ Db(P3, C0) admissible subcategory.
[KUZNETSOV]

THEOREM [B–Lahoz–M–Stellari].
Tilt-stability exists for the non-commutative threefold (P3, C0).
This restricts to a Bridgeland stability condition on Ku(X ).
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Mukai’s theory for cubic fourfolds

APPROACH. Replace “deformation to elliptic K3” with:
“deformation to Pfaffian cubic” where Ku(X ) = Db(S).

Need: relative notion of a stability condition for a
family of cubic fourfolds.

RESULTS [B-Lahoz-M-Nuer-Perry-Stellari].
Notion of stability conditions for a family of
varieties (or categories).
Exists for cubic fourfolds!
(And all other known examples.)
Comes with relative moduli space of
semistable objects, proper over the base.

MUKAI’S SMOOTHNESS. f : X → C family of cubic fourfolds, c ∈ C, E ∈ Ku(Xc) simple
v(E) algebraic in all fibers ⇒ deformations of E across the family are unobstructed.

THEOREM [BLMNPS]. Assume v ∈ H̃alg(Ku(X ),Z) is primitive and σ ∈ Stab(Ku(X ))
is generic with respect to v . Then M := Mσ(v) is non-empty if and only if

2d := v2 + 2 ≥ 0.

In this case, M is a smooth projective hyper-Kähler manifold of dimension 2d , which
comes with a canonical polarization ℓ := ℓσ(v).
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Applications for cubic fourfolds
Examples: [LI–PERTUSI–ZHAO]

F (X ) = Beauville–Donagi fourfold (Fano variety of lines).
Objects: i∗IL for L ⊂ X line.
Z (X ) = Lehn–Lehn–Sorger–van Straten eightfold.
Objects: i∗IC , for C ⊂ X twisted cubic. Contains X ⊂ Mσ(v) via i∗Ix .
V (X ) = singular O’Grady type Voisin tenfold, twist of Laza–Saccà–Voisin tenfold.
Objects: i∗IE , for E ⊂ X elliptic quintic.

Applications:

THEOREM [Addington–Thomas, BLMNPS].
Ku(X ) ∼= Db(K3) ⇔ X has Hodge-theoretically associated K3 surface S.

(in the sense of Hassett, i.e., H2
prim(S,Z) ⊂ H4

prim(X ,Z))
PROOF. Hassett’s condition ⇔ there exists v ∈ H̃alg(Ku(X ),Z) with v2 = 0 and
(v , ) = Z on H̃alg(Ku(X ),Z)
⇔ Mσ(v) = two-dimensional moduli space with universal family.

TORELLI THEOREM - ALTERNATIVE PROOF:
H4(X )⇝ H̃(Ku(X ))⇝ [MARKMAN, VERBISTKY] F (X ) with Plücker polarisation⇝ [CHARLES] X

CONSTRUCTION OF RATIONAL MAPS from special cubics: [B–BERTRAM–M–PERRY]

E.g., when Z (X ) = S[4], can combine X ⊂ Z (X ) = S[4] 99K S[5] and MMP for S[5]
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Open questions

MODULI SPACES. Projectivity of moduli spaces? Fine for Q-factorial log-terminal
singularities. [B-M, VILLALOBOS-PAZ]

SINGULARITIES. Stability on Db(X ) for X singular?

K3 CATEGORIES. Mukai’s theory for more general K3 categories?
Known for Gushel-Mukai fourfolds. [PERRY–PERTUSI–ZHAO]

THREEFOLDS. The Bogomolov-type inequality for any threefold.
HIGHER DIMENSIONS. Abelian varieties?

RATIONALITY. Constructions or obstructions via Db(X ), Ku(X ), stability?
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