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Vector bundles on curves

60 years ago:

THE GROTHENDIECK RING IN GEOMETRY
AND TOPOLOGY

By M. F. ATIYAH

§ 1. The Grothendieck ring in homotopy theory

I am going to be talking about vector bundles, i.e. fibre bundles with fibre
a vector space and group the linear group. Vector bundles are to the geo-
meter what representations or modules are to the algebraist. In fact the

modern algebraic geometer hardly distinguishes between the two. Now,
B ) B [SIR MICHAEL ATIYAH, ICM 1962]
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60 years ago:

THE GROTHENDIECK RING IN GEOMETRY
AND TOPOLOGY

By M. F. ATIYAH

§ 1. The Grothendieck ring in homotopy theory

I am going to be talking about vector bundles, i.e. fibre bundles with fibre
a vector space and group the linear group. Vector bundles are to the geo-
meter what representations or modules are to the algebraist. In fact the

modern algebraic geometer hardly distinguishes between the two. Now,
B ) B [SIR MICHAEL ATIYAH, ICM 1962]

@ C="P": Allbundles on C are direct sums of line bundles.
@ C = elliptic curve: [Atiyah, 1957] indecomposable bundles E on C of given rank
and degree are parametrised by C.

How to classify and parametrise bundles on curves of higher genus?
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Stable vector bundles on curves

C smooth projective curve.
rk(E), rank

E vector bundle on C
deg(E), degree

60 years ago (cont.):

DEerFNITION. A vector bundle E is stable if for all sub-bundles F,

rank F
Deg c,(F) < Deg CI(E)'W’

where ¢, denotes the first chern class.

In other words, a vector bundle is stable if all its subbundles are “less
ample” than itself. To illustrate the stability condition, let me mention
its simplest properties:

(i) I L is a line bundle, then ¥ is stable if and only if E®L is stable;
moreover, E is stable if and only if  is stable.

(ii) If B, and E, are two vector bundles, B, @ E, is never stable.

(iii) A line bundle is always stable.

(iv) If a vector bundle E of rank 2 is not stable, then either E is isomor-
phic to L; DL, or there is a unique sub-bundle L for which > holds
in the definition and E can be canonically described as an extension.

Then I can prove the following theorem:

TaEOREM. The set of all stable vector bundles of rank r over a fized curve C
in characteristic 0 is “naturally” isomorphic to the set of points of a mon-
singular quasi-projective variety V,(C).
[DAVID MUMFORD, ICM 1962]
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Stable vector bundles on curves
C smooth projective curve.

E vector bundleon C ~

{rk(E), rank Z(E) — —deg(E) + irk(E) cC.

deg(E), degree -

2/192



Stable vector bundles on curves
C smooth projective curve.

E vector bundle on C  ~~ {rk(EL rank

Z(E) := —deg(E itk(E) € C.
deg(E), degree (E) eg(E) + irk(E) €

DEFINITION [Mumford, 1962]. E is semistable if, for all sub-bundles F C E,

arg(Z(F)) < arg(Z(E)).
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Stable vector bundles on curves
C smooth projective curve.

Z(E) :== —deg(E) + itk(E) € C.

E vector bundle on C  ~~ {rk(EL rank

deg(E), degree
DEFINITION [Mumford, 1962]. E is semistable if, for all sub-bundles F C E,
arg(Z(F)) < arg(Z(E)).

PROPERTIES. (i) Moduli spaces, parametrising semistable vector bundles on C of
given rank and degree, exist as projective varieties.
(i) Any vector bundle E admits a Harder—Narasimhan filtration

O=ECEiC---CEn.1CEn=E

such that
@ Ay := Ex/Ex_1 is semistable, forall k =1,...,m.
@ arg(Z(A1)) > -+ > arg(Z(Am)).
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Stable vector bundles on curves
C smooth projective curve.

Z(E) :== —deg(E) + itk(E) € C.

E vector bundle on C  ~~ {rk(EL rank

deg(E), degree
DEFINITION [Mumford, 1962]. E is semistable if, for all sub-bundles F C E,

arg(Z(F)) < arg(Z(E)).

PROPERTIES. (i) Moduli spaces, parametrising semistable vector bundles on C of
given rank and degree, exist as projective varieties.
(i) Any vector bundle E admits a Harder—Narasimhan filtration

O=ECEiC---CEn.1CEn=E

such that
@ Ay := Ex/Ex_1 is semistable, forall k =1,...,m.
@ arg(Z(A1)) > -+ > arg(Z(Am)).

APPLICATIONS. (i) Classification of vector bundles.

(il) Moduli spaces relate theory of curves to higher-dimensional varieties, generalising
the Torelli relation C — Jac(C).
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Bridgeland stability on K3 surfaces

4. STABILITY CONDITIONS

The notion of a stability condition was introduced in [12] as a way to understand
Douglas’ work on m-stability for D-branes in string theory [18]. Here we wish to
emphasise the purely mathematical aspects of this definition. For more on the
connections with string theory see [15].

In the context of the present article stability conditions are relevant for three
reasons. Firstly, the choice of a stability condition picks out classes of stable objects
for which one can hope to form well-behaved moduli spaces. Secondly the space
of all stability conditions Stab(D) allows one to bring geometric methods to bear
on the problem of understanding t-structures on D. Finally, the space Stab(D)
provides a complex manifold on which the group Aut(D) naturally acts.

[Tom BRIDGELAND, ICM 2008]
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X smooth projective K3 surface, D”(X) bounded derived category of coherent sheaves
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o= (Z,A), where

@ Z: H;,(X,Z) — C group homomorphism,
@ A c D®(X) heart of a bounded t-structure

(in particular, A abelian category)
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@ Z: H;,(X,Z) — C group homomorphism, //////////
e O

@ A C D®(X) heart of a bounded t-structure, such that:

(i) Z(E) := Z(v(E)) € HU R, for all nonzero E € A
DEFINITION. E € A is semistable if for all subobjects F C E

arg(Z(F)) < arg(Z(E)).
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(~ existence of moduli spaces of semistable objects in A (rooal)
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X smooth projective K3 surface, D”(X) bounded derived category of coherent sheaves
E € D*(X) ~ V(E) := ch(E) - vtdx € H;1,(X,Z) Mukai vector.

DEFINITION [Bridgeland, 2003]. A Bridgeland stability condition on DP(X) is a pair
o= (Z,A), where

@ Z: H;,(X,Z) — C group homomorphism, //////////
—_—C—

@ A C D®(X) heart of a bounded t-structure, such that:

(i) Z(E) := Z(v(E)) € HU R, for all nonzero E € A
(if) Harder—Narasimhan filtrations exist in A
(iii) there exists a quadratic form Q on H,, (X, R) with
e Q is negative definite on KerZg
e Q(E) > 0, for all E semistable
(iv) openness and boundedness for semistable objects.

BRIDGELAND DEFORMATION THEOREM. The set Stab(D (X)) of stability conditions
has the structure of complex manifold such that the forgetful morphism

Stab(D(X)) — Hig(X,C)Y, (Z,A)—Z

is a covering of an (explicitly defined) period domain.
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Mukai’s theory on K3 surfaces

ON THE MODULI SPACE OF BUNDLES
ON K3 SURFACES, I

By S. MUKAI

IN [12], WE have shown that the moduli space M ¢ of stable
sheaves on a K3 or abelian surface S is smooth and has a natural
symplectic structure. In this article, we shall study M, more
precisely in the case S is of type K3. We shall show that every
compact 2 dimensional component of AIS is a K3 surfacea
isogenous. to S (Definition 1.7 and 1.8) and describe its period
explicitly (Theorem 1.4). As an application of this result, we
shall show that certain Hodge cycles on a product of two K3
"l,,lrfaces are algebraic (Theorem 1.9). As a corollary, we have
that two K3 surfaces with Picard number z 11 are isogeneous in
our sense if and only if their transcendental Hodge structures

Tg and T . are isogenous, i.e., isomorphic over @ (Corollary
1.10).

[SHIGERU MUKAI, 1987]
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Mukai’s theory on K3 surfaces

X K3 surface ~ H*(X,Z) = H* @ H* © H* ~ v = (w, v, v) € H* (X, Z).
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Mukai’s theory on K3 surfaces

X K3 surface ~ H*(X,Z) = H* @ H* © H* ~ v = (w, v, v) € H* (X, Z).
DEFINITION. The Mukai pairing on H* (X, Z) is

e ::/(v1uv1—2vov2).
X

THEOREM [Mukai, Kuleshov, O’Grady, Huybrechts, Yoshioka, Toda, B—-M]. Assume
v € H;,(X,Z) is primitive and o € Stab(D(X)) is generic with respect to v. Then the
moduli space M := M, (v) is non-empty if and only if

2d:=v¥+2>0.

In this case, M is a smooth projective hyper-Kahler manifold of dimension 2d, which
comes with a canonical polarization ¢ := ¢, (v).
PROOF.
Step 1. Deformation to elliptic K3 surfaces ~ use Atiyah’s result on fibers.
Step 2. Use Fourier—-Mukai transforms and wall-crossing.
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Other surfaces:

Bridgeland’s theory works very well for all smooth projective surfaces: stability
conditions can be explicitly constructed iarcama-serrravi, moduli spaces exist as proper
algebraic SPACES. [ABRAMOVICH-POLISHCHUK, TODA, ALPER-HALPERN-LEISTNER—HEINLOTH]

THE PROJECTIVE PLANE. MMP via wall-crossing works also in this case (L-zuso,
ARCARA-BERTRAM—COSKUN—HUIZENGA-WOOLF] => applications to DT/GW theory. [BousSEAU]
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Higher dimensions

SURFACES. The construction involves tilting to go from Coh(X) to
A = category of certain two-term complexes:

—1 d_ o ® Coker(d) only has positive slopes in its HN filtration
E-" = E": L . .
" e Ker(d) only has non-positive slopes in its HN filtration | -
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Higher dimensions

SURFACES. The construction involves tilting to go from Coh(X) to
A = category of certain two-term complexes:

—1 d_ o ® Coker(d) only has positive slopes in its HN filtration
E- S E:
" e Ker(d) only has non-positive slopes in its HN filtration | -

THREEFOLDS. The construction is much more involved.
Step 1a. Tilt Coh(X) as above to get A.
Step 1b. Introduce auxiliary weak notion of tilt-stability on A.
Step 2a. Tilt A to obtain heart B of three-term complexes.
Step 2b. Introduce Bridgeland stability on 5.

DIFFICULTIES.

@ Step 2b depends on a Bogomolov-type conjecture governing the Chern character
of tilt-stable objects in A in Step 1b. (8-u-Toon)

@ No equivalent of Mukai theory governing non-emptiness of moduli spaces
= difficult to control wall-crossing.

@ Moduli spaces badly behaved (singular, multiple components, ...).
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Threefolds: successes

Existence.
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[M, SCHMIDT, CHUNYI LI, BERNARDARA—M-SCHMIDT-ZHAO, PIYARATNE-MACIOCIA, B-M—STELLARI, KOSEKI]
@ Calabi-Yau cases: quintic threefold, finite quotients of abelian threefolds,
dOUble/triple covers of PB, (2, 4)-Complete intersections; [CHUNYI LI, KOSEKI, SHENGXUAN LIU]

@ alternate constructions for varieties with exceptional collections, products
curve x surface. [YUCHENG Liu]

Applications (of tilt-stability & known cases of conjecture):
@ degree/genus bounds for curves; -scrvior
o DT—theory, hlgher rank DT—theory. [TODA, OBERDIECK—PIYARATNE—TODA, FEYZBAKHSH-THOMAS]

ALTERNATIVE APPROACH (for three- and higher-dimensional Fano varieties):
Ku(X) c DP(X), the Kuznetsov component of D(X).
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The Kuznetsov component of a cubic fourfold

Theorem 5.2 ([K10]). Let Y C P be a cubic 4-fold. Then there is a semiorthog-
onal decomposition

D’(coh(Y)) = (e, Oy, Oy (1), 0y (2)),

and its nontrivial component & is a Calabi-Yau category of dimension 2. More-
over, &y is equivalent to the derived category of coherent sheaves on a K3 surface,
at least if Y is a Pfaffian cubic 4-fold, or if Y contains a plane I and a 2-cycle Z
such that deg Z + Z - 11 = 1 mod 2.

To establish this result for Pfaffian cubics one can use HP duality for Gr(2, 6).
The associated K3 is then a linear section of this Grassmannian. For cubics with a
plane a quadratic bundle formula for the projection of Y from the plane II gives the
result. The K3 surface then is the double covering of P? ramified in a sextic curve,
and the cycle Z gives a splitting of the requisite Azumaya algebra on this K3.

For generic Y the category & can be thought of as the derived category of
coherent sheaves on a noncommutative K3 surface. Therefore, any smooth moduli
space of objects in @4 should be hyperkahler, and the Fano scheme of lines can
be realized in this way, see [KMO09).

[ALEXANDER KUZNETSOV, ICM 2014]
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X C P° smooth cubic fourfold.

DEFINITION [Kuznetsov].

Ku(X) := {E € D"(X): Hom*(Ox, E) = Hom*(Ox(1), E) = Hom*(Ox(2), E) = 0} .
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Ku(X) = {E € D*(X): Hom®(Ox, E) = Hom®(Ox(1), E) = Hom®(Ox(2), E) = o} .

PROPERTIES:
@ admissible subcategory: i: Ku(X) — DP(X) has left and right adjoints i*, /'
@ i*,i' act quite naturally and geometrically
@ Calabi—Yau 2-category: Hom(E, F) = Hom(F, E[2])¥
@ K3 category: CY2 and has a Mukai vector E € Ku(X) ~ v(E) € Ha (Ku(X), Z),
where H(Ku(X),Z) is a Hodge structure on K3 lattice H*(K3) (aoomaron-Trowss, Perav]
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DEFINITION [Kuznetsov].
Ku(X) = {E € D*(X): Hom®(Ox, E) = Hom®(Ox(1), E) = Hom®(Ox(2), E) = o} .

PROPERTIES:

@ admissible subcategory: i: Ku(X) — DP(X) has left and right adjoints i*, /'

@ i*,i' act quite naturally and geometrically

@ Calabi—Yau 2-category: Hom(E, F) = Hom(F, E[2])¥

@ K3 category: CY2 and has a Mukai vector E € Ku(X) ~ v(E) € Ha (Ku(X), Z),
where H(Ku(X),Z) is a Hodge structure on K3 lattice H*(K3) (aoomaron-Trowss, Perav]

@ deformation theory (kuznersov-markusnevicn]

@ Pfaffian cubics: Ku(X) controlled by Kuznetsov’'s Homological Projective Duality.
X Pfaffian = Ku(X) = D®(S) for a Mukai genus 8 K3 surface S C Gr(2, 6).

MAIN CONJECTURE [Kuznetsov]. X is rational < Ku(X) = D"(S), S K3 surface.

REMARK. For X very general, Ku(X) % D®(S).
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How to construct stability conditions on Ku(X)?
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~ fibration X, = BI,(X) — P in conics

~~ Clifford algebra C on P*
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Bridgeland stability for cubic fourfolds

How to construct stability conditions on Ku(X)?

KEY POINT. Ku(X) subcategory in a
non-commutative threefold.

Choose line L ¢ X and project X --» P®

~ fibration X, = BI,(X) — P in conics

~~ Clifford algebra C on P*

~ Ku(X) c D"(P?,Co) admissible subcategory.

[KUzNETSOV]

THEOREM [B-Lahoz—M-Stellari].
@ Tilt-stability exists for the non-commutative threefold (%, Cy).
@ This restricts to a Bridgeland stability condition on Ku(X).
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Mukai’s theory for cubic fourfolds
APPROACH. Replace “deformation to elliptic K3” with:
“deformation to Pfaffian cubic” where Ku(X) = D®(S).

Need: relative notion of a stability condition for a
family of cubic fourfolds.
RESULTS [B-Lahoz-M-Nuer-Perry-Stellari]. X

@ Notion of stability conditions for a family of
varieties (or categories).

@ Exists for cubic fourfolds! xe f'
(And all other known examples.)

@ Comes with relative moduli space of C ” —

semistable objects, proper over the base.

MUKAI'S SMOOTHNESS. f: X — C family of cubic fourfolds, ¢ € C, E € Ku(X;) simple
v(E) algebraic in all fibers = deformations of E across the family are unobstructed.

THEOREM [BLMNPS]. Assume v € Hais(Ku(X),Z) is primitive and o € Stab(Ku(X))
is generic with respect to v. Then M := M,(v) is non-empty if and only if

2d:=v¥+2>0.

In this case, M is a smooth projective hyper-Kahler manifold of dimension 2d, which
comes with a canonical polarization ¢ := ¢, (v).
10/12
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Applications for cubic fourfolds
Examples: [LI-PERTUSI-ZHAO]

@ F(X) = Beauville-Donagi fourfold (Fano variety of lines).
Objects: i*1, for L C X line.
@ Z(X) = Lehn-Lehn—Sorger—van Straten eightfold.
Objects: i*Ic, for C C X twisted cubic. Contains X C M, (v) via i*ly.

@ V(X) = singular O’Grady type Voisin tenfold, twist of Laza—Sacca—Voisin tenfold.
Objects: i*Ig, for E C X elliptic quintic.

v
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PROOF. Hassett’s condition < there exists v € Ha (Ku(X),Z) with v2 = 0 and
(v, ) = Z on Hag(Ku(X),Z)
< M, (v) = two-dimensional moduli space with universal family.

TORELLI THEOREM - ALTERNATIVE PROOF:
H4(X) ~ H(ICU(X)) ~~ [MARKMAN, VERBISTKY] F(X) with Plicker pOlarisation ~~> [CHARLES] X

CONSTRUCTION OF RATIONAL MAPS from special cubics: s-szrrrau-u-peray]
E.g., when Z(X) = S™, can combine X c Z(X) = S¥ --» SP® and MMP for St

4
11/12



Open questions

12/12



Open questions

Since the development of derived algebraic geometry by
Grothendieck in the 1960s, the study of algebraic geometry has been
deeply intertwined with the study of sheaves and their cohomology.

In recent years, there has been a grown interest in the study of
derived categories of coherent sheaves on algebraic varieties.

This area of researchand there are many open
questions. -

[OPENAI, 2022]
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SINGULARITIES. Stability on D?(X) for X singular?

K3 CATEGORIES. Mukai’s theory for more general K3 categories?
Known for Gushel-Mukai fourfolds. [PERRY-PERTUSI-ZHAO]

THREEFOLDS. The Bogomolov-type inequality for any threefold.
HIGHER DIMENSIONS. Abelian varieties?

RATIONALITY. Constructions or obstructions via D(X), Ku(X), stability?
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