Recent results on branching Brownian motion on the positive real axis

Pascal Maillard
(Université Paris-Sud (soon Paris-Saclay))

CMAP, Ecole Polytechnique, May 18 2017
Outline

1. Introduction
2. BBM with absorption
3. BBM with absorption, near-critical drift
4. BBM with absorption, critical drift
Branching Brownian motion (BBM)

Picture by Matt Roberts

Definition

- A particle performs standard Brownian motion started at a point $x \in \mathbb{R}$.
- With rate $1/2$, it branches into 2 offspring (can be generalized).
- Each offspring repeats this process independently of the others.

\rightarrow A Brownian motion indexed by a tree.
Why BBM ?

- Discrete counterpart: branching random walk, has lots of applications in diverse domains
 - Generalisation of age-dependent branching processes (Crump–Mode–Jagers process), model for asexual population undergoing mutation (position = fitness)
 - Toy model for log-correlated field, e.g. 2-dimensional Gaussian free field appearing notably in Liouville quantum gravity theory.
 - Used to study random walk in random environment on trees Hu–Shi et al., growth-fragmentation processes Bertoin–Budd–Curien–Kortchemski, loop $O(n)$ model on random quadrangulations Chen–Curien–M., . . .

- Intimate relation with (F-)KPP equation

- With diffusion constant depending on time: also known as Derrida’s CREM spin glass model
$M_t = \text{maximum at time } t.$

LLN (Biggins '77)

Almost surely,

$$M_t / t \to 1, \quad \text{as } t \to \infty.$$
A family of martingales

For every \(\theta \in \mathbb{R} \),

\[
\mathbb{E}[\#\{u \in \mathcal{N}_t : X_u(t) \approx \theta t\}] = e^{\frac{1}{2} t} \mathbb{P}(B_t \approx \theta t) \approx e^{\frac{1}{2} (1-\theta^2) t}.
\]

Martingales:

\[
W_t^{(\theta)} = \sum_{u \in \mathcal{N}_t} e^{\theta X_u(t) - \frac{1}{2} (1+\theta^2) t}
\]

Theorem (Biggins 78)

The martingale \((W_t^{(\theta)})_{t \geq 0}\) is uniformly integrable if and only if \(|\theta| < 1\). In this case, for every \(a, b \in \mathbb{R}, a < b\),

\[
\frac{\#\{u \in \mathcal{N}_t : X_u(t) \in \theta t + [a, b]\}}{\mathbb{E}[\#\{u \in \mathcal{N}_t : X_u(t) \in \theta t + [a, b]\}]} \rightarrow W^{(\theta)} := W^{(\theta)}_{\infty}, \quad \text{a.s. as } t \rightarrow \infty.
\]
Derivative martingale

For \(\theta = 1 \), \(W_t^{(1)} \to 0 \), almost surely as \(t \to \infty \). Derivative martingale:

\[
D_t = -\frac{d}{d\theta} W_t^{(\theta)} \bigg|_{\theta=1} = \sum_{u \in \mathcal{N}_t} (t - X_u(t)) e^{X_u(t)} - t.
\]

Theorem (Lalley–Sellke 87)

Almost surely, \(D_t \) converges as \(t \to \infty \) to a non-degenerate r.v. \(D \).

Theorem (Bramson 83 + Lalley–Sellke 87, Aïdekon 11)

Let \(M_t = \text{maximum at time } t \). Then, conditioned on \(D \), for some constant \(C > 0 \),

\[
M_t - (t - \frac{3}{2} \log t) \Rightarrow \log CD + G,
\]

where \(G \) is a standard Gumbel-distributed random variable.
Absorption at the origin

- Start with one particle at $x \geq 0$.
- Add drift $-\mu$, $\mu \in \mathbb{R}$ to motion of particles.
- Kill particles upon hitting the origin.

Theorem (Kesten 78)

$$\mathbb{P}(\text{survival}) > 0 \iff \mu < 1.$$

Why should we do this?

- Useful for the study of BBM without absorption (e.g., convergence of derivative martingale)
- **Biological interpretation:** natural selection
- Appears in other mathematical models, e.g. infinite bin models Aldous, Mallein–Ramassany
Absorption at the origin, $\mu \geq 1$

Start with one particle at 0, absorb particles at $-x$. $N_x = \text{number of particles absorbed at } -x$. Set

$$\theta_\pm = \mu \pm \sqrt{\mu^2 - 1}.$$

Theorem (Neveu 87, Chauvin 88)

$(N_x)_{x \geq 0}$ is a continuous-time Galton–Watson process. Moreover, almost surely as $x \to \infty$,

- If $\mu > 1$, $e^{-\theta-x}N_x \to W(\theta)$.
- If $\mu = 1$, $xe^{-x}N_x \to D$.

Theorem

As $x \to \infty$,

- $\mu > 1$: $\mathbb{P}(W(-\theta) > x) \sim C(\mu)x^{-\theta+/\theta-}$ Guivarc'h 90, Liu 00
- $\mu = 1$: $\mathbb{P}(D > x) \sim 1/x$ Buraczewski 09, Berestycki–Berestycki–Schweinsberg 10, M. 12
Absorption at the origin, $\mu \geq 1$ (contd.)

$$\theta_{\pm} = \mu \pm \sqrt{\mu^2 - 1}.$$

Theorem

As $x \to \infty$,

- $\mu > 1$: $\mathbb{P}(W^{(\theta-)} > x) \sim C(\mu)x^{-\theta+/\theta-}$ Guivarc’h 90, Liu 00
- $\mu = 1$: $\mathbb{P}(D > x) \sim 1/x$ Buraczewski 09, Berestycki–Berestycki–Schweinsberg 10, M. 12

Theorem (M. 10, Aïdekon–Hu–Zindy 12)

As $n \to \infty$,

- $\mu > 1$: $\mathbb{P}(N_x > n) \sim C(e^{\theta+x} - e^{\theta-x})/n^{-\theta+/\theta-}$.
- $\mu = 1$: $\mathbb{P}(N_x > n) \sim xe^x/(n(\log n)^2)$.
Outline

1. Introduction
2. BBM with absorption
3. BBM with absorption, near-critical drift
4. BBM with absorption, critical drift
Absorption at the origin, $\mu = 1 - \varepsilon$

Few works on $\mu < 1$ (Berestycki–Brunet–Harris–Miloš, Corre). But near-critical case $\mu = 1 - \varepsilon$, $0 < \varepsilon \ll 1$ well understood. Parametrize ε by

$$\varepsilon = \frac{\pi^2}{2L^2} \quad (\varepsilon \to 0 \iff L \to \infty).$$

Theorem (Brunet–Derrida 06, Gantert–Hu–Shi 08)

$$\mathbb{P}_1(\text{survival}) = \exp\left(-(1 + o(1))L\right), \quad L \to \infty.$$
Absorption at the origin, $\mu = 1 - \varepsilon$

Few works on $\mu < 1$ (Berestycki–Brunet–Harris–Miloš, Corre). But near-critical case $\mu = 1 - \varepsilon$, $0 < \varepsilon \ll 1$ well understood. Parametrize ε by

$$\varepsilon = \frac{\pi^2}{2L^2} \quad (\varepsilon \to 0 \iff L \to \infty).$$

Theorem (Brunet–Derrida 06, Gantert–Hu–Shi 08)

$$\mathbb{P}_1(\text{survival}) = \exp \left(- (1 + o(1))L \right), \quad L \to \infty.$$

Theorem (BBS 10)

There exists $C > 0$, such that, as $L \to \infty$,

$$\mathbb{P}_{L+x}(\text{survival}) \to 1 - \phi(x), \quad \phi(x) := \mathbb{E}[\exp(-CDe^x)].$$

and if $x = x(L)$ such that $L - x \to \infty,

$$\mathbb{P}_x(\text{survival}) \sim C(L/\pi) \sin(\pi x/L) e^{x-L}.$$
Define

\[Z_t^L = \sum_{u \in \mathcal{N}_t} L \sin(\pi X_u(t)/L) e^{x-L}. \]

Then \((Z_t^L)_{t \geq 0}\) is (almost) a martingale for BBM with absorption at 0 and at \(L\).

Theorem (BBS 10)

Suppose the initial configurations are such that \(Z_0^L \Rightarrow z_0\) as \(L \to \infty\), and \(L - \max_u X_u(0) \to \infty\). Then \((Z_{L^3t}^L)_{t \geq 0}\) converges as \(L \to \infty\) (wrt fidis) to a continuous-state branching process started at \(z_0\). Moreover, \(\mathbb{P}(\text{BBM survives forever}) \to \mathbb{P}(\text{CSBP started from } z_0 \text{ goes to } \infty)\).

The CSBP in the above theorem is Neveu’s CSBP and has branching mechanism

\[\psi(u) = au + \pi^2 u \log u = a'u + \pi^2 \int_0^\infty (e^{-ux} - 1 + ux1_{x \leq 1}) \frac{dx}{x^2}, \]

for some (implicit) constants \(a, a' \in \mathbb{R}\). In particular, it is supercritical (with \(\infty\) mean).
Theorem (BBS 10)

If \(x = x(L) \) such that \(L - x \to \infty \),

\[
P_x(\text{survival}) \sim \frac{CL}{\pi} \sin\left(\frac{\pi x}{L}\right)e^{x-L}.
\]

Proof: Set \(w(x) := L\sin\left(\frac{\pi x}{L}\right)e^{x-L} \). Start BBM with \(1/w(x) \) particles at \(x \) at time 0. Then

\[
P(\text{survival}) \to P(\text{CSBP started at 1 goes to } \infty) \in (0, 1).
\]

Also, by independence,

\[
1 - P(\text{survival}) = (1 - P_x(\text{survival}))^{1/w(x)} \sim \exp\left(-\frac{P_x(\text{survival})}{w(x)}\right),
\]

and so

\[
P_x(\text{survival}) \sim Cw(x). \]

\[\square\]
Theorem (BBS 10)

There exists $C > 0$, such that, as $L \to \infty$,

$$\mathbb{P}_{L+x}(\text{survival}) \to 1 - \phi(x), \quad \phi(x) = \mathbb{E}[\exp(-CDe^x)].$$

Proof: Wait a long time T (independent of L), so that $L - \max_u X_u(T) \gg 1$. Then using $L \sin(\pi x/L) \sim \pi (L - x)$ for $L - x \ll L$, we get

$$Z_T^L \approx \pi e^x D_T,$$

with $(D_t)_{t \geq 0}$ the derivative martingale of usual BBM. Let first $L \to \infty$ then $T \to \infty$ to get

$$\mathbb{P}_{L+x}(\text{survival}) = 1 - \mathbb{E}[\mathbb{P}_{L+x}(\text{extinction} \mid \mathcal{F}_T)]$$

$$\approx 1 - \mathbb{E}[\mathbb{P}(\text{CSBP started from } \pi e^x D_T \text{ goes to 0})]$$

$$\approx 1 - \mathbb{E}[\exp(-CDe^x)] = 1 - \phi(x). \quad \square$$
BBS 10 convergence to CSBP

Basic idea

Decompose process into **bulk** + **fluctuations** by putting an additional absorbing barrier at L.

- **bulk**: Particles that don’t hit L.
- **fluctuations**: Particles from the moment they hit L.

Then,

- $Z_t^{L,\text{bulk}}$ stays bounded over time scale L^3.
- $Z_t^{L,\text{fluctuations}}$ increases from the contributions of the particles hitting L, an increase being roughly distributed as πD, with D derivative martingale limit.
- Particles hit L with rate $O(L^{-3})$.

Recall: $\Pr(D > x) \sim \frac{1}{x}$, $x \to \infty$. This yields convergence of $(Z_t^{L,L^3})_{t \geq 0}$ to Neveu’s CSBP as $L \to \infty$.

Pascal Maillard
Branching Brownian motion with selection
Basic idea

Decompose process into **bulk** + **fluctuations** by putting an additional absorbing barrier at \(L - A \), where \(A \) is a large constant.

- **bulk**: Particles that don’t hit \(L - A \).
- **fluctuations**: Particles from the moment they hit \(L - A \).

Then,

- \(Z_{t}^{L,\text{bulk}} \) decreases almost deterministically as \(\exp(-At/L^3) \).
- \(Z_{t}^{L,\text{fluctuations}} \) increases from the contributions of the particles hitting \(L \), an increase being roughly distributed as \(\pi e^{-AD} \), with \(D \) derivative martingale limit.
- Particles hit \(L - A \) with rate \(O(e^A/L^3) \).
Basic idea

Decompose process into bulk + fluctuations by putting an additional absorbing barrier at \(L - A \), where \(A \) is a large constant.

- **bulk**: Particles that don’t hit \(L - A \).
- **fluctuations**: Particles from the moment they hit \(L - A \).

Then,

- \(Z^{L, \text{bulk}}_t \) decreases almost deterministically as \(\exp(-At/L^3) \).
- \(Z^{L, \text{fluctuations}}_t \) increases from the contributions of the particles hitting \(L \), an increase being roughly distributed as \(\pi e^{-A} D \), with \(D \) derivative martingale limit.
- Particles hit \(L - A \) with rate \(O(e^A/L^3) \).

Recall: \(\mathbb{P}(D > x) \sim 1/x, \ x \to \infty. \) This yields convergence of \((Z^{L}_{L^3 t})_{t\geq 0} \) to Neveu’s CSBP as \(L \to \infty \).
The basic phenomenological picture of BBM with near-critical drift (bulk + fluctuations) was established in Brunet–Derrida–Mueller–Munier 06.

The techniques in BBS 10 were a key ingredient in the study of BBM with selection of the N right-most particles, $N \gg 1$ (M 16). Relation between parameters: $\log N \approx L$, so $\varepsilon \approx \pi^2 / 2(\log N)^2$.
Outline

1. Introduction
2. BBM with absorption
3. BBM with absorption, near-critical drift
4. BBM with absorption, critical drift
Critical drift $\mu = 1$. Questions

Questions:

- Asymptotic of \mathbb{P}_x(survival until time t)?
- Conditioned on survival until time t, what does the BBM look like?

Note: $t^{1/3}$ scaling reminiscent of results about particles in BBM staying always close to the maximum Faraud–Hu–Shi, Fang–Zeitouni, Roberts.
Critical drift $\mu = 1$. Questions

Questions:

- Asymptotic of $\mathbb{P}_x(\text{survival until time } t)$?
- Conditioned on survival until time t, what does the BBM look like?

Kesten 78:

- Let $L_t = ct^{1/3}$, $c = (3\pi^2/2)^{1/3}$, Fix $x \geq 0$.

$$\mathbb{P}_x(\text{survival until time } t) = xe^{x-L_t+O((\log t)^2)}.$$

- Conditioned on survival until time t, with high probability,

$$\#N_t \leq e^{O(t^{2/9}(\log t)^{2/3})} \quad \text{and} \quad \max_u X_u(t) \leq O(t^{2/9}(\log t)^{2/3}).$$

Note: $t^{1/3}$ scaling reminiscent of results about particles in BBM staying always close to the maximum Faraud–Hu–Shi, Fang–Zeitouni, Roberts.
BBS 12 results

\[L_t = ct^{1/3}, \ c = (3\pi^2/2)^{1/3}, \ w_t(x) = L_t \sin(\pi x/L_t) e^{x-L_t}. \]

Theorem (BBS 12)

\[C_1 \leq \mathbb{P}_{L_t}(\text{survival until time } t) \leq C_2. \]

If \(L_t - x \geq 1, \)

\[C_1 w_t(x) \leq \mathbb{P}_x(\text{survival until time } t) \leq C_2 w_t(x). \]
BBS 12 results

\[L_t = ct^{1/3}, \quad c = (3\pi^2/2)^{1/3}, \quad w_t(x) = L_t \sin(\pi x / L_t) e^{x - L_t}. \]

Theorem (BBS 12)

\[C_1 \leq P_{L_t}(\text{survival until time } t) \leq C_2. \]

If \(L_t - x \geq 1 \),

\[C_1 w_t(x) \leq P_x(\text{survival until time } t) \leq C_2 w_t(x). \]

Theorem (Berestycki–M.–Schweinsberg, in preparation)

There exists \(C > 0 \), such that, as \(t \to \infty \),

\[P_{L_t+x}(\text{survival until time } t) \to 1 - \phi(x), \quad \phi(x) = \mathbb{E}[\exp(-CDe^x)]. \]

and if \(x = x(t) \) such that \(L_t - x \to \infty \),

\[P_x(\text{survival until time } t) \sim (C/\pi) w_t(x) \]
New results

\[L_t = ct^{1/3}, \ c = (3\pi^2/2)^{1/3}, \ \zeta = \text{time of extinction}. \]

Corollary (BMS)

1. For fixed \(x \in \mathbb{R} \), under \(\mathbb{P}_{L_t+x} \), the r.v. \((\zeta - t)/t^{2/3} \) converges in law to \(\frac{3}{c}(G - x - \log CD) \), where \(G \) is a Gumbel-distributed random variable independent of \(D \).

2. Suppose \(L_t - x \to \infty \). Conditionally on \(\zeta > t \), under \(\mathbb{P}_x \), \((\zeta - t)/t^{2/3} \) converges in law to \(\text{Exp}(c/3) \) as \(t \to \infty \).

Reason: For fixed \(s \geq 0 \),

\[L_{t+st^{2/3}} = L_t + \frac{c}{3}s + o(1). \]

This gives as \(t \to \infty \), for fixed \(x \in \mathbb{R} \),

\[\mathbb{P}_{L_t+x}(\zeta \leq t + st^{2/3}) \to \phi(x - \frac{c}{3}s) = \mathbb{E}[e^{-CD(e^{x-(c/3)s})}]. \]
New results (contd.)

$L_t = ct^{1/3}$, $c = (3\pi^2/2)^{1/3}$, $\zeta = \text{time of extinction}$, $M_t = \max_u X_u(t)$.

Theorem (BMS)

1. For fixed $x \in \mathbb{R}$, under $\mathbb{P}_{L_t + x}$, the r.v. $M_t/t^{2/9}$ converges in law to $(3c^2(G - x - \log CD) \vee 0)^{1/3}$, where G is a Gumbel-distributed random variable independent of D.

2. Suppose $L_t - x \to \infty$. Conditionally on $\zeta > t$, under \mathbb{P}_x, $M_t/t^{2/9}$ converges in law to $(3c^2V)^{1/3}$, where $V \sim \text{Exp}(1)$.

Reason: morally, $M_t \approx L_{\zeta - t}$ if $\zeta > t$ (and $M_t = 0$ if $\zeta \leq t$).
New results (contd.)

\[L_t = ct^{1/3}, \quad c = (3\pi^2/2)^{1/3}, \quad \zeta = \text{time of extinction}, \quad M_t = \max_u X_u(t). \]

Theorem (BMS)

1. For fixed \(x \in \mathbb{R} \), under \(\mathbb{P}_{L_t+x} \), the r.v. \(M_t/t^{2/9} \) converges in law to
 \((3c^2(G-x-\log CD) \lor 0)^{1/3} \), where \(G \) is a Gumbel-distributed random variable independent of \(D \).

2. Suppose \(L_t - x \to \infty \). Conditionally on \(\zeta > t \), under \(\mathbb{P}_x \), \(M_t/t^{2/9} \) converges in law to \((3c^2V)^{1/3} \), where \(V \sim \text{Exp}(1) \).

Reason: morally, \(M_t \approx L_{\zeta-t} \) if \(\zeta > t \) (and \(M_t = 0 \) if \(\zeta \leq t \)).

Same result holds with \(M_t \) replaced by \(\log \# \mathcal{N}_t \).
New results (contd.)

- $L_t(s) = L_{t-s} = c(t-s)^{1/3}$.
- $Z_t(s) = \sum_{u \in \mathbb{N}_s} w_{t-s}(X_u(s)) = \sum_{u \in \mathbb{N}_s} L_t(s) \sin(\pi X_u(s)/L_t(s)) e^{X_u(s) - L_t(s)}$.

Theorem (BMS)

Suppose the initial configurations are such that $Z_t(0) \Rightarrow z_0$ as $t \to \infty$, and $L_t - \max_u X_u(0) \to \infty$. Then

- $(Z_t(t(1-e^{-s})))_{s \geq 0}$ converges as $t \to \infty$ (wrt fidis) to the CSBP with branching mechanism $\psi(u) = au + \frac{2}{3} u \log u$ started at z_0.
- $\mathbb{P}(\zeta > t) \to \mathbb{P}(\text{CSBP started from } z_0 \text{ goes to } \infty)$, as $t \to \infty$.
- *Conditioned on $\zeta > t$, $(Z_t(t(1-e^{-s}))_{s \geq 0}$ converges as $t \to \infty$ to the CSBP started at z_0 conditioned to go to ∞.\)
New results (contd.)

- \(L_t(s) = L_{t-s} = c(t - s)^{1/3} \).
- \(Z_t(s) = \sum_{u \in \mathbb{N}_s} w_{t-s}(X_u(s)) = \sum_{u \in \mathbb{N}_s} L_t(s) \sin(\pi X_u(s)/L_t(s))e^{X_u(s) - L_t(s)} \).

Theorem (BMS)

Suppose the initial configurations are such that \(Z_t(0) \Rightarrow z_0 \) as \(t \to \infty \), and \(L_t - \max_u X_u(0) \to \infty \). Then

- \((Z_t(t(1 - e^{-s})))_{s \geq 0}\) converges as \(t \to \infty \) (wrt fidis) to the CSBP with branching mechanism \(\psi(u) = au + \frac{2}{3} u \log u \) started at \(z_0 \).
- \(\mathbb{P}(\zeta > t) \to \mathbb{P}(\text{CSBP started from } z_0 \text{ goes to } \infty) \), as \(t \to \infty \).
- **Conditioned on \(\zeta > t \), \((Z_t(t(1 - e^{-s})))_{s \geq 0}\) converges as \(t \to \infty \) to the CSBP started at \(z_0 \) conditioned to go to \(\infty \).**

Proof inspired by BBS 10 but requiring furthermore precise estimates for density of Brownian motion in curved domains refining those obtained in Roberts 12.
Relation between results

In order to understand the relation between the several results, we use the long-time behavior of Neveu’s CSBP. It grows doubly-exponentially:

Theorem (Neveu 92)

Let \((Y_t)_{t \geq 0}\) be the CSBP with branching mechanism \(\psi(u) = au + bu \log u\), \(a \in \mathbb{R}, b > 0\), starting at \(z_0 > 0\). Then,

\[
\frac{\log Y_t}{e^{bt}} \text{ converges almost surely to a limit } Y.
\]

In particular, almost surely, the process **survives iff** \(Y > 0\). Furthermore, there is \(C = C(a, b)\), such that \(Y - \log Cz_0\) follows the **Gumbel** distribution.
Heuristic: As long as $R_s \approx L_t(s)$, we expect $\log Z_t(s) \approx R_s - L_t(s)$. When does R_s become significantly different from $L_t(s)$?

Answer: With the asymptotic growth of Neveu’s CSBP, can check that $\log Z_t(s) ≪ L_t(s)$ as long as $t - s ≫ t^{2/3}$, hence the turning point is at $s = t - K t^{2/3}$ for K large and one can read off M_t as well as $(\zeta - t)/t^{2/3}$ from $Z_t(s)$ at that point.
Heuristic: As long as $R_s \approx L_t(s)$, we expect $\log Z_t(s) \approx R_s - L_t(s)$. When does R_s become significantly different from $L_t(s)$?

Answer: With the asymptotic growth of Neveu’s CSBP, can check that $\log Z_t(s) \ll L_t(s)$ as long as $t - s \gg t^{2/3}$, hence the turning point is at $s = t - Kt^{2/3}$ for K large and one can read off M_t as well as $(\zeta - t)/t^{2/3}$ from $Z_t(s)$ at that point.
Conclusion

1. We were able to push the techniques from BBS 10 on BBM with near-critical drift to the case of critical drift.

2. Results might be of help for the fine study of other models involving extremal particles of BBM.

Example CREM (Derrida's continuous random energy model): BBM during time $[0, T]$ with time-dependent diffusion constant $2\sigma^2(t/T)$. If σ^2 is strictly decreasing, then (M., Zeitouni 16) there exists a function $m(T)$ and constants $c, c', c'' > 0$, such that

\[
\{\text{maximum at time } T\} - m(T) \Rightarrow \text{mixture of Gumbel},
\]

with $m(T) = cT - c'T^{1/3} - c'' \log T + O(1)$.

Removing the $O(1)$ term would require an analysis similar to the one performed here.
We were able to push the techniques from BBS 10 on BBM with near-critical drift to the case of critical drift.

Results might be of help for the fine study of other models involving extremal particles of BBM.

Example CREM (Derrida's continuous random energy model): BBM during time $[0, T]$ with time-dependent diffusion constant $2\sigma^2(t/T)$. If σ^2 is strictly decreasing, then (M., Zeitouni 16) there exists a function $m(T)$ and constants $c, c', c'' > 0$, such that

$$\{\text{maximum at time } T\} - m(T) \Rightarrow \text{mixture of Gumbel},$$

with

$$m(T) = cT - c'T^{1/3} - c'' \log T + O(1).$$

Removing the $O(1)$ term would require an analysis similar to the one performed here.