Twisting Property (T) and the Baum-Connes morphism by a non-unitary representation

Maria-Paula Gomez-Aparicio, Université de Paris Sud-XI, Orsay

Topics in Noncommutative Geometry Buenos Aires, Argentina August 2010

Plan

1 Property (T)

- Kazhdan's property (T)
- C*-algebraic caracterisation of (T)
- The case of non-unitary representations : Twisted property (T)

2 Twisted Baum-Connes morphism

- The Baum-Connes conjecture
- Twisted Baum-Connes morphism

3 $R_F(G)$ acts on $K^{top}(G)$

Let *G* be a locally compact (σ -compact) group and *dg* be the Haar mesure on *G*.

- (π, H) is a unitary representation of *G* if $\pi : G \to \mathcal{U}(H)$ is a strongly continuous group morphism i.e $\forall \xi \in H, g \mapsto \pi(g)\xi$ is continuous.
- (π, H) is irreducible if the only close subspaces of H which are G-invariant are {0} and H.

Example

The trivial representation

$$egin{array}{rcl} {\sf I}_G\colon &G& o& {\cal U}(\mathbb{C})\,\simeq \mathbb{S}^1\ &&&&&1 \end{array}$$

The left regular representation

$$\left\{egin{array}{ll} \lambda_G\colon G o \mathcal{U}(L^2(G))\ \lambda_G(g)(f)(t)=f(g^{-1}t), \end{array}
ight.$$
 for $f\in L^2(G)$ and $g,t\in G.$

Let (π, H_{π}) and (σ, H_{σ}) two unitary representations of *G*.

• π and σ are (unitarily) equivalent, $\pi \simeq \sigma$, if

 $\exists T: H_{\pi} \to H_{\sigma}$ isomorphism such that $\forall g \in G, \ \pi(g)T = T\sigma(g).$

• π is contained in σ , $\pi \subset \sigma$, if

 $\exists H' \subset H_{\sigma}, \quad \text{closed and } G\text{-invariant such that} \quad \pi \simeq \sigma_{|H'}.$

• π is weakly contained in σ , $\pi \prec \sigma$, if $\forall \xi \in H_{\pi}$, $\|\xi\| = 1$, $\forall K \subset G$ compact, $\forall \varepsilon > 0$, $\exists \eta_1, ..., \eta_n \in H_{\sigma}$, such that

$$|\langle \pi(g) \xi, \xi
angle - \sum_{i=1}^n \langle \sigma(g) \eta_i, \eta_i
angle| < arepsilon, \quad orall g \in \mathcal{K}.$$

Example

■ $1_G \subset \pi$ if and only if, $\exists \xi \in H_{\pi}$ non trivial, *G*-invariant.

■ We can show $1_G \prec \pi$ if and only if, π almost has non trivial invariant vectors, ie. $\forall \varepsilon > 0$, $K \subset G$ compact $\exists \xi \in H_{\pi}$, $\|\xi\| = 1$ such that

$$\|\pi(g)\xi-\xi\|$$

Consider the unitary dual of G,

 $\widehat{G} = \{$ equivalent classes of unitary irreducible representations of $G\}$

endowed with the Fell topology :

If
$$S \subset \widehat{G}$$
 and $\pi \in \widehat{G}$. Then, $\pi \in \overline{S}$ if $\pi \prec S$.

Example

If G is abelian, G
= {equivalent classes of χ : G→ S¹} and the Fell topology is the topology of uniform convergence on compacts subset of G.

Definition (Kazhdan'67)

G has property (T) if 1_G is isolated in \widehat{G} .

Wang '75,

- *G* has property (T), if and only if, every unitary finite dimensional representation of *G* is isolated in \widehat{G} .
- G has (T) if and only if, for all unitary representation π of G,

$$1_G \prec \pi \quad \Rightarrow \quad 1_G \subset \pi.$$

Example

- If G is compact then G has property (T). In this case, the Fell topology on G is the discrete topology.
- If *G* is a noncompact amenable group then *G* doesn't has (T).
- **R** and \mathbb{Z} don't have (T).

Theorem (Kazhdan'67, Delaroche-Kirilov'68, Kostant'75,)

- If G is a real connected simple Lie group with finite center and $\operatorname{rank}_{\mathbb{R}} G \ge 2$, then G has property (T). In rank 1.
- Sp(n, 1), $n \ge 2$ and $F_{4(-20)}$ have (T),
- SO(n, 1) and SU(n, 1), for $n \ge 2$, don't have (T).

Theorem (Kazhdan'67, Wang '75)

- If G has property (T), then $G/\overline{[G,G]}$ is compact.
- If Γ is a discrete group with property (T), then Γ is finitely generated.
- If Γ is a lattice in G, then

G has property (T) $\Leftrightarrow \Gamma$ has property (T).

Example

- **1** $SL_n(\mathbb{R}), n \ge 3$ has property (T).
- 2 $SL_n(\mathbb{Z})$, $n \ge 3$ has property (T).
- **3** The free group with *n* generators \mathbb{F}_n doesn't have property (T).
- 4 SL₂(ℤ) doesn't have property (T) (because 𝔽₂ is of finite index in SL₂(ℤ)), neither do SL₂(ℝ).

C^* -algebraic caracterisation of (T)

Let $C_c(G)$ be the space of continuous compactly supported functions on *G*. Then every unitary (π, H) of *G* can be extended to a representation of $C_c(G)$

$$\pi: C_c(G)
ightarrow \mathcal{L}(H)$$
 $f \mapsto \pi(f) = \int_G f(g) \pi(g) dg.$

Definition

The maximal C^* -algebra associated to G, $C^*(G)$, is the completion of $C_c(G)$ for the norm :

$$\|f\|_{C^{*}(G)} = \sup_{(\pi,H_{\pi}) \text{ unitary }} \|\pi(f)\|_{\mathcal{L}(H_{\pi})}$$

Every unitary representation of G extends to a rep. of $C^*(G)$.

Examples

If G is an abelian group, then $C^*(G) = C_0(\widehat{G})$. In particular,

$$C^*(\mathbb{Z}) = C(\mathbb{S}^1).$$

Theorem (Akemann-Walter '81)

The following properties are equivalent :

- 1 G has property (T)
- 2 $\exists p_G \in C^*(G)$ such that

$$p_G^2 = p_G$$
 and $\begin{cases} \pi(p_G) = 0, & \forall \pi \in \widehat{G} \setminus \{1_G\} \\ 1_G(p_G) = 1 \end{cases}$

Remark : For all (σ, H_{σ}) unitary representation of G, $\sigma(\rho_{G})$ is the orthogonal projection on $H_{\sigma}^{G} = \{\xi \in H_{\sigma} \mid \sigma(g)\xi = \xi \quad \forall g \in G\}.$

In general,

$$((\pi, \mathcal{H}_{\pi}) \in \widehat{G} \text{ isolated }) \longmapsto p_{\pi} \in \mathcal{C}^{*}(G) \text{ s.t. } p_{\pi}^{2} = p_{\pi}, \text{ and } \begin{cases} \pi(\rho_{\pi}) = \mathrm{Id}_{\mathrm{H}_{\pi}} \\ \sigma(\rho_{\pi}) = 0, \text{if } \sigma
eq \pi \end{cases}$$

Hence, if *G* has property (T) and ρ is an unitary finite dimensional irreducible representation of *G* :

 $\rho \mapsto \rho \in C^*(G)$ and $C^*(G) = I \oplus \operatorname{End}(V)$,

where *I* is a closed bilateral ideal.

Question : What if p is non-unitary?

For example $SL_n(\mathbb{R})$, $n \ge 3$ has lots of non-unitary finite dimensional representations

Example : Standard representation ρ : $SL_n(\mathbb{R}) \to GL_n(\mathbb{C})$.

Twisted group algebras

Let $\rho : G \rightarrow Aut(V)$ be a finite dimensional representation of *G*, and *V* endowed with an hermitian structure.

Definition (G. '07)

The maximal twisted group algebra $\mathcal{A}^{\rho}(G)$ is the completion of $C_{c}(G)$ for the norm given by :

$$\|f\|_{\mathscr{A}^{p}(G)} = \sup_{(\pi,\mathcal{H}_{\pi})unitaire} \|\rho \otimes \pi(f)\|_{\mathcal{L}(V \otimes \mathcal{H}_{\pi})}$$

Remarks:

- $\mathcal{A}^{\rho}(G)$ is a Banach algebra.
- If ρ is unitary then $\mathcal{A}^{\rho}(G) = C^{*}(G)$.
- If G is compact, then $\mathcal{A}^{\rho}(G) = C^{*}(G)$.

Examples

Let $G = \mathbb{Z}$ and let $\lambda_1, \lambda_2 \in \mathbb{C}^*$ such that $|\lambda_1| < |\lambda_2|$. Let,

$$\rho_i : \mathbb{Z} \to \mathbb{C}^*$$
 $1 \mapsto \lambda_i,$

for i = 1, 2 be two characters of \mathbb{Z} . Denote,

$$\mathbb{S}^{\mathbf{p}_i} := \{ z \in \mathbb{C} \mid |z| = |\lambda_i| \},$$

then,

1
$$\mathcal{A}^{\rho_i}(\mathbb{Z}) = \mathcal{C}(\mathbb{S}^{\rho_i}),$$

2 $\mathcal{A}^{\rho_1 \oplus \rho_2}(\mathbb{Z}) = \mathcal{H}ol(\{z \in \mathbb{C} \mid |\lambda_1| < |z| < |\lambda_2|\}).$

Twisted property (T)

Suppose that ρ is irreducible.

Definition (G. '07)

G has property (T) twisted by ρ (denoted by $(T \otimes \rho)$) if $\exists p_{\rho} \in \mathcal{A}^{\rho}(G)$ such that

$$p_{\rho}^2 = p_{\rho}$$
 and $\begin{cases} (\rho \otimes \pi)(p_{\rho}) = 0, & \forall \pi \in \widehat{G} \setminus \{1_G\} \\ \rho(p_{\rho}) = Id_V \end{cases}$

If *G* has $(T \otimes \rho)$ then for all unitary (σ, H) , $(\rho \otimes \sigma)(p_{\rho})$ is the orthogonal projection on $V \otimes H^{G}$.

$$G$$
 has $(T \otimes \rho) \iff \mathcal{A}^{\rho}(G) = \ker(\rho) \oplus \operatorname{End}(V),$

then, ρ is isolated among representations of the form $\rho \otimes \pi$, where π runs over the irreducible unitary representations of *G*.

Results:

Theorem (G. '07)

If G has $(T \otimes \rho)$ then G has (T).

For many Lie groups we have some kind of "converse" :

Theorem (G. '07)

If G is a simple connected real Lie group such that $\operatorname{rank}_{\mathbb{R}} G \ge 2$ or if G is locally isomorphic to $\operatorname{Sp}(n, 1)$, for $n \ge 2$, or $F_{4(-20)}$ then G has property $(T \otimes \rho)$, for every irreducible finite dimensional representation ρ .

Idea : Use the fact that simple Lie groups satisfying (T) verify a stronger property : uniform decay of matrix coefficients of unitary representations not containing 1_G (Result of Cowling).

Theorem (G '07)

If Γ is a cocompact lattice in a group G having property $(T \otimes \rho)$ then Γ has property $(T \otimes \rho|_{\Gamma})$.

Some other works on the strengthening of property (T)

- Lafforgue '07,
- Bader-Furman-Gelander-Monod '07,
- Fisher-Hichtman.

The Baum-Connes morphism

Definition

The reduce C^* -algebra of G, $C^*_r(G)$, is the completion of $C_c(G)$ for the norm given by :

$$||f||_{C^*_r(G)} = ||\lambda_G(f)||_{\mathcal{L}(L^2(G))}.$$

The Baum-Connes conjecture predicts the *K*-theory of $C_r^*(G)$.

More precisely, for a locally compact group G, Baum, Connes and Higson have constructed an assembly map

 $\mu_r: \mathcal{K}^{\mathrm{top}}(G) \to \mathcal{K}(\mathcal{C}^*_r(G)),$

where

- *K*^{top}(*G*) is a "topological object" associated to *G* : the equivariant K-homology with compact support of the universal classifying space EG for proper G-actions;
- $K(C_r^*(G))$ is an "analytic object" : the K-theory of the reduced C^* -algebra associated to G.
- ▶ Injectivity of $\mu_r \Rightarrow \bullet$ Novikov conjecture
- Surjectivity of $\mu_r \Rightarrow \begin{cases} \bullet \text{Kadison-Kaplansky conjecture} \\ \bullet \text{Discrete series classification} \end{cases}$

Baum-Connes conjecture :

 μ_r is an isomorphism for all locally compact group G.

Maria Paula Gomez-Aparicio, Paris Sud-XI ()

Can we do the same with $C^*(G)$?

The left regular representation $\lambda_G : G \to \mathcal{U}(L^2(G))$ induces a C^* -morphism $\lambda_G : C^*(G) \to C^*_r(G)$ that is equal to the identity on $C_c(G)$. Then there is a morphism

$$ilde{\mu}: {\sf K}^{
m top}({\sf G}) o {\sf K}({\sf C}^*({\sf G}))$$

such that

is commutative.

Suppose *G* is not compact and has property (T). Let $p_G \in C^*(G)$ such that $\forall (\sigma, H)$ unitary, $\sigma(p_G)$ is the projection on H^G . Then

$$\lambda_G(p_G) = 0$$
 because $L^2(G)^G = 0$,

and λ_G is not injective.

- In this case, if μ_r is bijective then $\tilde{\mu}$ is not surjective.
- For a long time, all the proofs known of the Baum-Connes conjecture implied that μ̃ (and so λ_G) is an isomorphism, so they are not valid for property (T) groups.
- Baum-Connes is also about distinguishing $K(C^*(G))$ and $K(C^*_r(G))$.

Example

- amenable groups (Kasparov),
- SL₂(\mathbb{R}), SO(n,1), SU(n,1), and more generally all a-T-menable groups (Julg-Kasparov, Higson-Kasparov).

Today, many property (T) groups are known to verify the Baum-Connes conjecture :

- real semi-simple Lie groups (Wassermann, Lafforgue),
- cocompact lattices in Sp(n, 1), $n \ge 2$, in $F_{4,(-20)}$, in $SL_3(\mathbb{R})$, $SL_3(\mathbb{C})$, in $SL_3(\mathbb{H})$, in $E_{6(-26)}$ (Chatterji, Jolissaint, Lafforgue).

Remark : The conjecture is not known for $SL_3(\mathbb{Z})$.

Twisted Baum-Connes map

Let ρ be a (non-unitary) finite dimensional representation of G.

Definition

The twisted reduced group algebra $\mathcal{A}_{r}^{\rho}(G)$ is the completion of $C_{c}(G)$ by the norm given by

$$\|f\|_{\mathscr{A}^{p}_{r}(G)} = \|(\rho \otimes \lambda_{G})(f)\|_{\mathscr{L}(V \otimes L^{2}(G))},$$

where $\lambda_G : G \to L^2(G)$ is the left regular representation of *G*.

Construction (G '08)

There is a twisted Baum-Connes morphism

$$\mu^{
ho}_r: {\mathcal K}^{
m top}({\mathcal G}) o {\mathcal K}({\mathcal A}^{
ho}_r({\mathcal G})),$$

which coincides with μ_r when ρ is unitary.

► Using Lafforgue's KK^{ban}.

Important ingredients :

- Define twisted crossed products $A \rtimes_r^{\rho} G$, for $A \neq G^*$ -algebra, such that $\mathbb{C} \rtimes_r^{\rho} G = \mathcal{A}_r^{\rho}(G)$.
- **2** For A and B two G-C^{*}-algebras, we have a descent morphism

$$j_{r,\rho}: \mathit{KK}_G(A,B)
ightarrow \mathit{KK}^{\mathrm{ban}}(A
times_r^{
ho} G, B
times_r^{
ho} G)$$

3 For X proper G-compact space, let $[p] \in K_0(C_0(X) \rtimes G)$ be the Mishchenko element (ie. the classe of $p \in C_c(G, C_0(X))$, $p(g)(x) := \sqrt{c(x)c(g^{-1}x)}$, where $c \in C_c(X, \mathbb{R}^+)$, such that $\int_G c(g^{-1}x)dg = 1, \forall x \in X$).

Passing to the inductive limit we get :

$$\mu^{
ho}_r: {\mathcal K}^{
m top}(G) o {\mathcal K}({\mathcal A}^{
ho}_r(G)).$$

Theorem (G '08)

If G is one of the following groups :

- an amenable group, or more generally, an a-T-menable group (e.g. : $SL_2(\mathbb{R})$, SO(n,1), SU(n,1)),
- a real semi-simple Lie group (e.g. $SL_n(\mathbb{R})$ for $n \ge 2$),
- a cocompact lattice in Sp(n, 1), $n \ge 2$, or in $F_{4(-20)}$, or in $SL_3(\mathbb{R})$, in $SL_3(\mathbb{C})$, in $SL_3(\mathbb{H})$, in $E_{6(-26)}$,

then μ_r^{ρ} is an isomorphism.

Proposition (G'08)

If Γ is a discret group and ρ is such that $\sum_{\gamma\in\Gamma}\frac{1}{\|\rho(\gamma)\|}$ converges, then

$$\mathcal{A}^{\rho}_{r}(\Gamma) \subset \ell^{1}(\Gamma) \subset \mathcal{C}^{*}_{r}(\Gamma).$$

Remark

Bost's conjecture : μ_{ℓ1} : K^{top}(Γ) → K(ℓ¹(Γ)) is an isomorphism, is true for Γ = SL₃(ℤ).

Question : Do all twisted group algebras $\mathcal{A}_r^{\rho}(G)$ have the same *K*-theory for all ρ ?

Theorem (Bost '90)

If $G = \mathbb{Z}$ and $\rho_i : 1 \mapsto \lambda_i$ for i = 1, 2 and $|\lambda_1| < 1 < |\lambda_2|$ then, the restriction map

$$i: \mathcal{A}_r^{\rho_1\oplus\rho_2}(G) \to C_r^*(G),$$

induces an isomorphism in K-theory.

$R_F(G)$ acts on $K^{top}(G)$

For *G* a locally compact group, we denote by $R_F(G)$ the set of finite dimensional representations of *G*.

If G is a compact group, then $K^{\text{top}}(G) = R(G)$, and we have a map

$$egin{aligned} &\mathcal{R}_F(G) o \operatorname{End}(\mathcal{R}(G)) \ &&
ho \mapsto \left(egin{aligned} &\Upsilon_
ho: \mathcal{R}(G) & \longrightarrow \mathcal{R}(G) \ & \sigma &\longmapsto
ho \otimes \sigma. \end{array}
ight) \end{aligned}$$

In the general case,

$$\mathcal{K}^{\mathrm{top}}(G) = \lim_{\to} \mathcal{K}\mathcal{K}_G(\mathcal{C}_0(X), \mathbb{C}),$$

where X is a proper G-space such that X/G is compact.

$R_F(G)$ acts on $K^{top}(G)$

Let $(\rho, V) \in R_F(G)$ and X a proper G-compact space. The trivial vector bundle

$$\begin{array}{ccc} \mathcal{V} := & X \times V \\ & & & \\$$

Then

$$[\mathcal{V}] := [C_0(X, \mathcal{V})] \in \mathit{KK}_G(C_0(X), C_0(X))$$

and taking the Kasparov's product by $[\mathcal{V}]$:

$$egin{aligned} & extsf{KK}_Gig(C_0(X),C_0(X)ig) imes extsf{KK}_Gig(C_0(X),\mathbb{C}ig) o extsf{KK}_Gig(C_0(X),\mathbb{C}ig)\ & ig([\mathcal{V}],lphaig) o [\mathcal{V}]\otimes_{C_0(X)}lpha, \end{aligned}$$

we get a morphism

$$KK_G(C_0(X),\mathbb{C}) \xrightarrow{[\mathcal{V}]\otimes.} KK_G(C_0(X),\mathbb{C})$$

Hence passing to the inductive limit we get,

 $\Upsilon_{
ho}: {\it K}^{
m top}({\it G})
ightarrow {\it K}^{
m top}({\it G}),$

which coincides with the tensor product of representations if G is compact. On the other hand,

$$egin{aligned} & C_c(G) o C_c(G) \otimes \operatorname{End}(V) \ & f \mapsto ig(g \mapsto f(g) \otimes
ho(g) ig), \end{aligned}$$

can be extended to a continuous map

$$\tau_{\rho}: \mathcal{A}^{\rho}_{r}(G) \to C^{*}_{r}(G) \otimes \operatorname{End}(V),$$

and, by Morita equivalence :

$$au_{
ho,*}: \mathcal{K}(\mathcal{A}^{
ho}_r(G)) o \mathcal{K}(\mathcal{C}^*_r(G)).$$

Theorem (G'08)

The following diagramm

is commutative.