K-homological finiteness for hyperbolic groups

Bogdan Nica

Wuhan · June 2014

Overview

 $\Gamma : hyperbolic group ~~ C_r^* \Gamma : C^*-algebra of the group Γ$ $\partial \Gamma : boundary of Γ ~~ C(\partial Γ) × Γ : C^*-algebra of the action Γ ~ <math>\partial Γ$

Strong finiteness property in K-homology for $C_r^*\Gamma$ and $C(\partial\Gamma) \rtimes \Gamma$

Hyperbolic groups ("rank-1") : most tractable with respect to Geometric Group Theory → Noncommutative Geometry groups / group actions → corresponding C*-algebras Lattices in higher rank : least tractable

C*-algebra of a group / group-action

• *G* : discrete countable group

 $C_r^* G$: norm-closure of $\mathbb{C}G$ under λ

 $\mathbb{C}G: \text{group algebra} \{ \sum a_g g: a_g \in \mathbb{C} \}, \qquad (ag)(a'g') = aa'gg' \\ \lambda: \text{left regular representation of } \mathbb{C}G \text{ on } \ell^2G$

• *G* : discrete countable group $\land \Omega$: compact Hausdorff space

 $C(\Omega) \rtimes_{\mathrm{r}} G$: norm-closure of $C(\Omega) \rtimes_{\mathrm{alg}} G$ under **any** λ_{μ}

 $C(\Omega) \rtimes_{\text{alg}} G$: algebra $\{\sum \phi_g g: \phi_g \in C(\Omega)\}, (\phi g)(\phi'g') = \phi(g.\phi') gg' \lambda_{\mu}$: left regular representation of $C(\Omega) \rtimes_{\text{alg}} G$ on $\ell^2(G, L^2(\Omega, \mu))$ where μ Borel probability measure on Ω with full support

・ロト・日本・日本・日本・日本・今日・

Hyperbolic groups

(Gromov) hyperbolicity is a coarse notion of negative curvature space X: geodesic triangles are uniformly thin group Γ : Γ acts geometrically on a hyperbolic space X

several **geometric models** X for a given Γ , possibly a preferred one

examples of hyperbolic groups

- × virtually cyclic groups (elementary) (X: a point or a line)
- free groups (X: a tree)
- uniform lattices in SO(*n*, 1), SU(*n*, 1), Sp(*n*, 1) $(X : \mathbb{H}^n_{\mathbb{R}}, \mathbb{H}^n_{\mathbb{C}}, \mathbb{H}^n_{\mathbb{H}})$
- C'(1/6) small cancellation groups (X : a Cayley graph)

A short history of $C_r^*\Gamma$

F : free group	
• Conjecture: $C_r^* \mathbb{F}$ has no nontrivial idempoten	ts (Kadison ~1965)
• $C_r^* \mathbb{F}$ simple, unique trace	(Powers 1975)
• F Rapid Decay (& a-T-menable)	(HAAGERUP 1978)
• K-theory of $C_r^* \mathbb{F} \iff Kadison Conjecture$)	(Pimsner - Voiculescu 1980)
Foundations, early 1980's CONNES: Noncommutative Geometry, much attentic 	on to $C_r^* G$

- e.g. *Baum Connes Conjecture* on the K-theory of C_r^{*} G
- GROMOV: hyperbolic groups, early Geometric Group Theory

Γ : hyperbolic group		
• $C_r^*\Gamma$ simple, unique trace for Γ torsion-free	(de la Harpe 1983)	
 Γ Rapid Decay 	(Jolissaint, de la Harpe 1989)	
Baum - Connes Conjecture	(LAFFORGUE, MINEYEV - YU 2002)	
• Kadison Conjecture	(Puschnigg 2002)	२ ९(

(T), a-T, and beyond

G is **a-T-menable** : some isometric action of *G* on a Hilbert space is proper (GROMOV / HAAGERUP)

G has **property** (**T**) : every isometric action of *G* on a Hilbert space has bounded orbits (Serre / Kazhdan)

•	among	hyperb	olic gr	oups, b	oth a-T	and (T)	

- free groups (Haagerup 1978)
- uniform lattices in SO(n, 1), SU(n, 1), Sp(n, 1) (Vershik +, Kostant ~1970)
- · C'(1/6) small cancellation groups
- higher rank lattices have (T)

(KAZHDAN 1967, ...)

(WISE 2004)

590

(T), a-T, and beyond

Theorem (Yu 2005, N. 2013)

Let Γ be hyperbolic. Then Γ admits a proper isometric action on an L^p -space for *p* large enough.

- $-\operatorname{Yu}: \ell^p(\Gamma \times \Gamma)$
- $-\mathrm{N.}: L^p(\partial\Gamma \times \partial\Gamma, \nu_{\mathrm{BM}})$

key analytic fact: $\partial\Gamma$ has "polynomial growth" (*Ahlfors regularity*) *p* : metric dimension of $\partial\Gamma$

Theorem (BADER - GELANDER - FURMAN - MONOD 2007)

Let *G* be a lattice in higher rank. Then every isometric action of *G* on an L^p -space has bounded orbits.

Next: a rank-1/higher rank finiteness contrast for group C*-algebras

K-homological finiteness

Theorem (Emerson - N. 2013)

Let Γ be one of the following:

- · a free group,
- a torsion-free uniform lattice in SO(n, 1) or SU(n, 1),
- a torsion-free C'(1/6) group with #gen = 1 + #rel.

Then every K-homology class for $C_r^*\Gamma$ is *p*-summable over $\mathbb{C}\Gamma$ for $p \gg 1$.

(vaguely akin to L^p -finiteness for actions)

Theorem (Puschnigg 2011)

Let *G* be a lattice in higher rank. Then no (non-zero) K-homology class for $C_r^* G$ is finitely summable over $\mathbb{C}G$.

(formally related to lack of L^p -finiteness for actions)

K-homology

- a cohomology theory for C*-algebras, formally dual to K-theory
- more analytically flavoured, notion of finiteness / summability

A: unital C*-algebra

Definition (ATIYAH, KASPAROV, CONNES)

An odd / even **Fredholm module** (π, T) for *A* consists of $\cdot \pi : A \to \mathcal{B}(H)$ representation of *A* on a Hilbert space *H* $\cdot T \in \mathcal{B}(H)$ projection / unitary mod $\mathcal{K}(H)$ such that $[T, \pi(a)] \in \mathcal{K}(H)$ for all *a* in *A*

 (π, T) is a *p*-summable Fredholm module if $\cdot T \in \mathscr{B}(H)$ projection / unitary mod $\mathscr{L}^{p}(H)$ such that $[T, \pi(a)] \in \mathscr{L}^{p}(H)$ for all *a* in a dense subalgebra of *A*

 $K^*(A) = \{ \text{Fredholm modules } \} / \sim$

~ : unitary equivalence, operator homotopy, degenerates

Uniform summability in K-homology

CLASSICAL FACT. Let *M* be a compact smooth manifold. Then the K-homology of C(M) is **uniformly summable**: every class has a representative which is *p*-summable over $C^{\infty}(M)$ for $p > \dim M$

Theorem (EMERSON - N. 2013)

Let Γ be torsion-free hyperbolic. Then

- $\gamma K^1(\mathbb{C}^*_{\mathbf{r}}\Gamma)$ is uniformly summable over $\mathbb{C}\Gamma$;
- $\gamma K^0(C_r^*\Gamma)$ is uniformly summable over $\mathbb{C}\Gamma$, for $\chi(\Gamma) = 0$ or 'good' γ .

· in general $\gamma \neq 1$ (Skandalis), but $\gamma = 1$ for Γ a-T-menable (Higson - Kasparov), e.g. free groups, uniform lattices in SO(*n*, 1) or SU(*n*, 1), *C*'(1/6) group

· concrete γ models for free groups, lattices in SO(*n*, 1) or SU(*n*, 1)

 \cdot *structural* theorem vs. previous sporadic examples

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The role of the boundary

 \cdot summability for K-homology of $C_r^*\Gamma$ comes from the boundary!

 \cdot first, we deal with the C*-algebra of the boundary action:

Theorem (EMERSON - N. 2013)

Let Γ be torsion-free hyperbolic. Then the K-homology of $C(\partial\Gamma) \rtimes \Gamma$ is uniformly summable.

 \cdot then we apply the following 'Gysin sequence' in K-homology

Theorem (Emerson - N. 2013)

Let Γ be torsion-free hyperbolic. Then there is an exact sequence:

$$0 \longrightarrow K_{1}(B\Gamma) \longrightarrow K^{0}(C(\partial\Gamma) \rtimes \Gamma) \xrightarrow{i^{*}} \gamma K^{0}(C_{r}^{*}\Gamma) \longrightarrow K_{0}(B\Gamma)$$
$$K^{1}(C(\partial\Gamma) \rtimes \Gamma) \xrightarrow{i^{*}} \gamma K^{1}(C_{r}^{*}\Gamma) \longrightarrow 0$$

$C(\partial\Gamma) \rtimes \Gamma$

Let Γ be torsion-free hyperbolic. Then the K-homology of $C(\partial \Gamma) \rtimes \Gamma$ is uniformly summable.

• $C(\partial\Gamma) \rtimes \Gamma$ nuclear, purely infinite simple – since $\Gamma \curvearrowright \partial\Gamma$ amenable, minimal & convergence (Adams 1994, Anantharaman-Delaroche 1997, Laca - Spielberg 1996)

• for Γ torsion-free, $C(\partial\Gamma) \rtimes \Gamma$ satisfies Poincaré duality

$$K_*(C(\partial\Gamma) \rtimes \Gamma) \simeq K^{*+1}(C(\partial\Gamma) \rtimes \Gamma)$$

via cup-cap products with 'fundamental classes' $_{({\tt EMERSON}\ 2003)}$

similarity with Cuntz - Krieger C*-algebras O_A

Visual structure

• $\partial \Gamma$ is a topological object, but Fredholm modules require *analysis*

• geometric models for Γ have homeomorphic boundaries at infinity $\rightsquigarrow \partial \Gamma$ canonical compact Hausdorff space, e.g.

• Γ free group $\partial \Gamma$: a Cantor set

· Γ uniform lattice in SO(*n*, 1) $\partial \Gamma : S^{n-1}$

• **any** concrete realization of $\partial \Gamma$ as ∂X , *X* a geometric model for Γ , carries metric - measure structure coming from within *X*:

– a scale of Hölder equivalent *visual metrics* on ∂X

- their associated Hausdorff measures, equivalent visual measures

• key fact: visual metric/measure structure has 'polynomial growth'

 $\mu(r\text{-ball}) \asymp r^{\text{hdim}(\partial X, d)}$

for μ visual measure, *d* visual metric on ∂X

(Coornaert 1993)

Visual dimension

our summability results use a notion of **metric dimension** for ∂X :

visdim $\partial X = \inf \{ \operatorname{hdim} (\partial X, d) : d \text{ visual metric on } \partial X \}$

when attained, finer summability for Fredholm modules

'Cantor' Example X tree, ∂X topologically a Cantor set visdim $\partial X = 0$, not attained

'Carnot' Example $X = \mathbb{H}_{K}^{n}, \partial X$ topologically S^{kn-1} (k = 1, 2, 4) visdim $\partial X = kn + k - 2$, attained by Carnot metric

Is $\inf \{ \operatorname{visdim} \partial X : X \text{ geometric model for } \Gamma \}$ an invariant for Γ ?

Basic Fredholm module

 Γ : hyperbolic group, X : geometric model for Γ

 μ : visual probability measure on ∂X

 λ_{μ} : regular representation of $C(\partial\Gamma) \rtimes \Gamma$ on $\ell^{2}(\Gamma, L^{2}(\partial X, \mu))$

 $P_{\ell^2\Gamma}$: projection of $\ell^2(\Gamma, L^2(\partial X, \mu))$ onto $\ell^2\Gamma$

 $\left(\lambda_{\mu},P_{\ell^{2}\Gamma}
ight)$

- an odd Fredholm module for $C(\partial \Gamma) \rtimes \Gamma$,
- *p*-summable for every $p > \max\{2, \operatorname{visdim} \partial X\}$,
- represents the Poincaré dual of $[1] \in K_0(C(\partial \Gamma) \rtimes \Gamma)$.

· Fredholmness due to $\Gamma \curvearrowright \partial X$ convergence (topological dynamics)

· summability relies on Ahlfors regularity

 \cdot the K-homology class of $(\lambda_{\mu}, P_{\ell^2\Gamma})$ independent of μ and X

• K-homology class of $(\lambda_{\mu}, P_{\ell^2 \Gamma})$ vanishes iff $\chi(\Gamma) = \pm 1$; it has infinite order iff $\chi(\Gamma) = 0$ (Γ torsion-free)

Representing K-homology

by Poincaré duality, twisting the basic Fredholm module by K-theory of $C(\partial\Gamma) \rtimes \Gamma$ exhausts K-homology of $C(\partial\Gamma) \rtimes \Gamma$:

Let Γ torsion-free hyperbolic. Then:

• every class in $K^1(C(\partial\Gamma) \rtimes \Gamma)$ has a representative of the form

 $(\lambda_{\mu}, P_{\ell^{2}\Gamma}\rho_{\mu}(e)P_{\ell^{2}\Gamma}), \quad e \text{ projection in } C(\partial\Gamma) \rtimes \Gamma,$

and $e \in C(\partial \Gamma) \rtimes \Gamma$ can be chosen so that the Fredholm module is *p*-summable for every $p > \max\{2, \operatorname{visdim} \partial X\}$.

• every class in $K^0(C(\partial\Gamma) \rtimes \Gamma)$ has a representative of the form

 $(\lambda_{\mu}, P_{\ell^{2}\Gamma}\rho_{\mu}(u)P_{\ell^{2}\Gamma} + (1 - P_{\ell^{2}\Gamma})), \quad u \text{ unitary in } C(\partial\Gamma) \rtimes \Gamma,$

and $u \in C(\partial \Gamma) \rtimes \Gamma$ can be chosen so that the Fredholm module is *p*-summable for every $p > \max\{2, \operatorname{visdim} \partial X\}$.

Summary

Let Γ be torsion-free hyperbolic. Then every K-homology class for $C(\partial\Gamma) \rtimes \Gamma$ is *p*-summable for each $p > \max\{2, \operatorname{visdim} \partial X\}$, where *X* is any geometric model for Γ .

The same is true for $C_r^*\Gamma$ under further assumptions.

Examples

• Let Γ be a torsion-free uniform lattice in $\text{Isom}(\mathbb{H}_K^n)$. Then every K-homology class for $C(S^{kn-1}) \rtimes \Gamma$ is $(kn + k - 2)^+$ -summable over $\text{Lip}(S^{kn-1}) \rtimes_{\text{alg}} \Gamma$, where S^{kn-1} carries the Carnot metric

• Let Γ be a torsion-free uniform lattice in SO(*n*, 1) / SU(*n*, 1). Then every K-homology class for $C_r^*\Gamma$ is n^+ -summable / $(2n)^+$ -summable over $\mathbb{C}\Gamma$.

caveat: slightly weaker for $\mathbb{H}^2_{\mathbb{R}}$

Questions

Let Γ be a hyperbolic group.

- Is the K-homology of $C_r^*\Gamma$ uniformly summable over $\mathbb{C}\Gamma$?
- Does γ act as the identity on the K-homology of $C_r^* \Gamma$?