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Lefschetz number

M : a compact triangulable topological space
f : M →M : a continuous map.

The Lefschetz number of f is given by

L(f) =
∑
i≥0

(−1)iTr [f∗,i : Hi(M,R)→ Hi(M,R)] .

Example

If f = id, then L(f) = χ(M).

Theorem (Lefschetz)

If L(f) 6= 0, then f has a fixed point.



Lefschetz number and Dirac type operators

M : closed oriented manifold, even dimension;

G = Isom(M). Fix g ∈ G.

Consider the de Rham operator on M (G-invariant):

D± = d+ d∗ : C∞(M,Λev/odM)→ C∞(M,Λod/evM).

Observation:

L(g) = Tr(g : kerD+ → kerD+)− Tr(g : kerD− → kerD−).

Definition

For a Dirac type operator D on M . The Lefschetz number is
given by the equivariant index

L(g,D) = Tr(gPkerD+)− Tr(gPkerD−).



Lefschetz number and Dirac type operators

M : closed oriented manifold, even dimension;

G = Isom(M). Fix g ∈ G.

Consider the de Rham operator on M (G-invariant):

D± = d+ d∗ : C∞(M,Λev/odM)→ C∞(M,Λod/evM).

Observation:

L(g) = Tr(g : kerD+ → kerD+)− Tr(g : kerD− → kerD−).

Definition

For a Dirac type operator D on M . The Lefschetz number is
given by the equivariant index

L(g,D) = Tr(gPkerD+)− Tr(gPkerD−).



Lefschetz number and Dirac type operators

M : closed oriented manifold, even dimension;

G = Isom(M). Fix g ∈ G.

Consider the de Rham operator on M (G-invariant):

D± = d+ d∗ : C∞(M,Λev/odM)→ C∞(M,Λod/evM).

Observation:

L(g) = Tr(g : kerD+ → kerD+)− Tr(g : kerD− → kerD−).

Definition

For a Dirac type operator D on M . The Lefschetz number is
given by the equivariant index

L(g,D) = Tr(gPkerD+)− Tr(gPkerD−).



Lefschetz number and Dirac type operators

M : closed oriented manifold, even dimension;

G = Isom(M). Fix g ∈ G.

Consider the de Rham operator on M (G-invariant):

D± = d+ d∗ : C∞(M,Λev/odM)→ C∞(M,Λod/evM).

Observation:

L(g) = Tr(g : kerD+ → kerD+)− Tr(g : kerD− → kerD−).

Definition

For a Dirac type operator D on M . The Lefschetz number is
given by the equivariant index

L(g,D) = Tr(gPkerD+)− Tr(gPkerD−).



Lefschetz fixed point formula

Theorem (Atiyah-Segal-Singer)

Let D : C∞(M,E)→ C∞(M,E) be a Dirac type operator on M
(dimension n). Then

L(g,D) = Tr(gPkerD+)− Tr(gPkerD−)

=
∑
m≤n

∫
Mg

(m)

(2π)dimn/2

(2πi)m/2
TM (

Â(Mg)chG(g,E/S)

det1/2(1− gN exp(−RN ))
)|dx0|

where Mg
(m) is the component of Mg of dimension m , S is the

spinor bundle (locally exists).

Remark

When g = e, the Lefschetz number is the Fredholm index:

L(g,D) = indD.



Set up

G : locally compact group;

X : complete Riemannian manifold;

E : G-equivariant complex vector bundles over X;

Gy X properly, cocompactly and isometrically.

An order 0 properly supported elliptic operator

F : C∞c (X,E)→ C∞c (X,E)

commutes with action of G.

A cut-off function exists for proper cocompact actions. A
non-negative function c ∈ C∞c (X) is a cut-off function if∫

G
c(g−1x)dg = 1 ∀x ∈ X.
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L2-index

F : L2(X,E+)→ L2(X,E−): G-invariant elliptic operator:

k±: Kernel of the G-invariant operator PkerF± :

k±(x, y) = k±(gx, gy) ∀x, y ∈ X, g ∈ G.

dimG kerF± := trG(PkerF±) =

∫
X
c(x)Tr[k±(x, x)]dx.

Definition (L2-index)

L2-indF := dimG kerF+ − dimG kerF−

=trG(PkerF+)− trG(PkerF−) ∈ R.
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L2-index formula

Theorem (HW)

F : G-invariant elliptic operator. Then

L2-indF =

∫
TX

c(x)ch(σF )π∗Td(TX ⊗ C).

Here ch(σF ) and Td(TX ⊗ C) are as defined in the
Atiyah-Singer index theorem (G-equivariant).

Remark

Nonvanishing of L2-indD ⇒ Existence of L2-solution.

de Rham operator d+ d∗: L2-harmonic forms.
∂̄-operator: Modular forms.

When G is a semi-simple real Lie group, L2-indD is related
to the multiplicity of discrete series of G.



L2-index formula

Theorem (HW)

F : G-invariant elliptic operator. Then

L2-indF =

∫
TX

c(x)ch(σF )π∗Td(TX ⊗ C).

Here ch(σF ) and Td(TX ⊗ C) are as defined in the
Atiyah-Singer index theorem (G-equivariant).

Remark

Nonvanishing of L2-indD ⇒ Existence of L2-solution.

de Rham operator d+ d∗: L2-harmonic forms.
∂̄-operator: Modular forms.

When G is a semi-simple real Lie group, L2-indD is related
to the multiplicity of discrete series of G.



L2-index formula

Theorem (HW)

F : G-invariant elliptic operator. Then

L2-indF =

∫
TX

c(x)ch(σF )π∗Td(TX ⊗ C).

Here ch(σF ) and Td(TX ⊗ C) are as defined in the
Atiyah-Singer index theorem (G-equivariant).

Remark

Nonvanishing of L2-indD ⇒ Existence of L2-solution.

de Rham operator d+ d∗: L2-harmonic forms.
∂̄-operator: Modular forms.

When G is a semi-simple real Lie group, L2-indD is related
to the multiplicity of discrete series of G.



L2-index formula

Theorem (HW)

F : G-invariant elliptic operator. Then

L2-indF =

∫
TX

c(x)ch(σF )π∗Td(TX ⊗ C).

Here ch(σF ) and Td(TX ⊗ C) are as defined in the
Atiyah-Singer index theorem (G-equivariant).

Remark

Nonvanishing of L2-indD ⇒ Existence of L2-solution.

de Rham operator d+ d∗: L2-harmonic forms.
∂̄-operator: Modular forms.

When G is a semi-simple real Lie group, L2-indD is related
to the multiplicity of discrete series of G.



L2-Lefschetz number

From index to L2-index:

Tr(PkerD±) to TrG(PkerD±);

From Lefschetz number to the L2 version:

Tr(gPkerD±) to TrG(gPkerD±)

does not make sense.

Assume in addition that D is a Dirac type operator and G is
discrete. The L2-Lefschetz number is given by

L(g,D)L2 = TrG

∑
h∈(g)

hPkerD+

− TrG

∑
h∈(g)

hPkerD−

 .
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Remark

The sum in the definition is absolutely convergent to a
finite real number.

When X compact and G finite, we have

L(g,D)L2 =
1

|ZG(g)|
L(g,D)

When X is not compact, L(g,D)L2 is a replacement for the
Lefschetz number/equivariant index.
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L2-Lefschetz fixed point formula

Theorem (BW-HW)

The L2-Lefschetz number of a G-invariant Dirac type operator
D on X is given by

L(g,D)L2 =
∑
m≤n

∫
Xg

(m)

c(g)(x)
Â(Xg)chg(V )

det(1− geRNg/2πi)
1
2

,

where c(g)(x) is a cut-off function on Xg with respect to ZG(g)
action.

Remark

L(e,D)L2 = L2-indD.
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K-theoretic interpretation

The localised (g)-trace on L1(G) is given by

τ (g) : L1(G)→ C :
∑
h∈G

αhh 7→
∑
h∈(g)

αh.

τ
(g)
∗ : K0(L1(G))→ R.

Theorem (BW-HW)

Let µ : K∗G(C0(X))→ K∗(L
1(G)) where IndD = µ[D] be the

higher index. Then

L(g,D)L2 = τ
(g)
∗ (IndD).



Quotient orbifold

G : discrete group; X : complete Riemannian manifold.

Gy X properly ⇒ X is locally homeomorphic to

G×Gi U := G× U
/
{(gh, u) ∼ (g, h−1u)}

where Gi is a finite subgroup and Ui is an open Gi-module.

X := [G\X] is an orbifold with local charts {(Ui, Gi, πi)}.

Inertia orbifold of X (extended quotient of X by G):

IX ={(h, x) ∈ G×X : hx = x}/(ghg−1, gx) ∼ (h, x)

=
⊔

(g)⊂G

X(g).

X(e) = X = G\X X(g) = ZG(g)\Xg.
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L2-Lefschetz numbers and orbifold index

Discrete Gy X properly, cocompactly and isometrically.

D (resp. D): elliptic operator on X (resp. X = [G\X]);

Kawasaki’s orbifold index formula: indD is an orbifold integral
over IX.

The L2-Lefschetz numbers L(g,D)L2 :

Provide a refined interpretation of orbifold index:

indD =
∑

(g)∈CG

L(g,D)L2 ;

Detect the fixed points of g on X.

If G acts freely,

indD = L(e,D)L2 = L2-indD (Atiyah’s L2-index).
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Formal degree and multiplicity

G: semisimple Lie group; K : maximal compact; rk(G) = rk(K);

(σ, Vσ) : square integrable representation of G

cx,y = 〈x, σ(·)y〉 ∈ L2(G),∀x, y ∈ Vσ.

Then [σ] ∈ K0(C∗r (G)).

dσ = ‖cx,x‖−2
L2(G)

: formal degree of σ ∈ Ĝt.

Γ: discrete subgroup, vol(Γ\G) <∞;

mσ: multiplicity of σ in the right reg. repr. R of G in L2(Γ\G):

L2(Γ\G) = [⊕σ∈Ĝd
mσVσ]⊕ L2

c(Γ\G).

[σ] ∈ K0(C∗r (G))
R∗ // K0(K(Vσ)) 3 mσ.



Formal degree and multiplicity

G: semisimple Lie group; K : maximal compact; rk(G) = rk(K);

(σ, Vσ) : square integrable representation of G

cx,y = 〈x, σ(·)y〉 ∈ L2(G),∀x, y ∈ Vσ.

Then [σ] ∈ K0(C∗r (G)).

dσ = ‖cx,x‖−2
L2(G)

: formal degree of σ ∈ Ĝt.
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mσVσ]⊕ L2

c(Γ\G).

[σ] ∈ K0(C∗r (G))
R∗ // K0(K(Vσ)) 3 mσ.
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A geometric method in representation

When Γ is discrete, cocompact in G, construct a geometric
operator on M = G/K for σ:

σ ∈ Ĝt ⇒ [σ] ∈ K∗(C∗r (G)) ∼= R(H) 3 [W ].

S : spin K-module; E := S ⊗W ; E = G×K E homogeneous
vector bundle; Construct Dirac operators associated to σ:

D :L2(M, E+)→ L2(M, E−);

D :L2(Γ\M, E+)→ L2(Γ\M, E−);

Then
dσ = L2-indGD mσ = indΓD.
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A special case

Set up: M = G/K; Γ: discrete, cocompact, torsion free in G:

[D] ∈ K0
G(C0(M)) //

IndG

��

K0
Γ(C0(M))

IndΓ

��
[σ] ∈ K0(C∗r (G)) //

τ
(e)
∗
��

K0(C∗r (Γ))

ρ∗
��

dσ = L2-indGD ∈ R
vol(Γ\G) // Z 3 indΓD = mσ

where ρ is the trivial representation of Γ and mσ is the image
under K0(C∗r (G))→ K0(C∗r (Γ))→ Z

Observation:

mσ = indΓD = vol(Γ\G)[L2-indGD] = vol(Γ\G)dσ.
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A remark on representation theory

When Γ is a discrete cocompact subgroup of G, the multiplicity
mσ = indΓD and formal degree dσ = L2-indGD are related as

indΓD =
∑

(γ)∈CΓ

L(γ,D)L2

=vol(Γ\G)[L2-indGD] + correction terms.

The “correction terms” are obtained from finite quotient
singularities and recognised by L2-Lefschetz numbers
L(γ,D)L2 , where e 6= g ∈ Γ.

There is a 1-to-1 correspondence between L(γ,D)L2 and
the orbital integrals on the geometric side of Selberg trace
formula for the regular representation of G on L2(Γ\G)
and for some test function.
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