On an L^{2}-Lefschetz fixed point formula

Hang Wang

School of Mathematical Sciences
The University of Adelaide

9 June, 2014

Outline

- L^{2}-Lefschetz numbers.
- Applications to orbifolds with quotient singularities and to representation theory.

Outline

- L^{2}-Lefschetz numbers.
- Applications to orbifolds with quotient singularities and to representation theory.

Reference

- L^{2}-index formula for proper cocompact group actions, arXiv:1106.4542.
- (with Bai-Ling Wang) Localized index and L^{2}-Lefschetz fixed formula for orbifolds. arXiv:1307.2088.

Lefschetz number

M : a compact triangulable topological space $f: M \rightarrow M:$ a continuous map.

The Lefschetz number of f is given by

$$
L(f)=\sum_{i \geq 0}(-1)^{i} \operatorname{Tr}\left[f_{*, i}: H_{i}(M, \mathbb{R}) \rightarrow H_{i}(M, \mathbb{R})\right]
$$

Example
If $f=i d$, then $L(f)=\chi(M)$.

Theorem (Lefschetz)
If $L(f) \neq 0$, then f has a fixed point.

Lefschetz number and Dirac type operators

M : closed oriented manifold, even dimension;
$G=\operatorname{Isom}(M) . \operatorname{Fix} g \in G$.

Lefschetz number and Dirac type operators

M : closed oriented manifold, even dimension;
$G=\operatorname{Isom}(M)$. Fix $g \in G$.
Consider the de Rham operator on M (G-invariant):

$$
D^{ \pm}=d+d^{*}: C^{\infty}\left(M, \Lambda^{e v / o d} M\right) \rightarrow C^{\infty}\left(M, \Lambda^{o d / e v} M\right)
$$

Lefschetz number and Dirac type operators

M : closed oriented manifold, even dimension;
$G=\operatorname{Isom}(M)$. Fix $g \in G$.
Consider the de Rham operator on M (G-invariant):

$$
D^{ \pm}=d+d^{*}: C^{\infty}\left(M, \Lambda^{e v / o d} M\right) \rightarrow C^{\infty}\left(M, \Lambda^{o d / e v} M\right)
$$

Observation:

$$
L(g)=\operatorname{Tr}\left(g: \operatorname{ker} D^{+} \rightarrow \operatorname{ker} D^{+}\right)-\operatorname{Tr}\left(g: \operatorname{ker} D^{-} \rightarrow \operatorname{ker} D^{-}\right)
$$

Lefschetz number and Dirac type operators

M : closed oriented manifold, even dimension;
$G=\operatorname{Isom}(M) . \operatorname{Fix} g \in G$.
Consider the de Rham operator on M (G-invariant):

$$
D^{ \pm}=d+d^{*}: C^{\infty}\left(M, \Lambda^{e v / o d} M\right) \rightarrow C^{\infty}\left(M, \Lambda^{o d / e v} M\right)
$$

Observation:

$$
L(g)=\operatorname{Tr}\left(g: \operatorname{ker} D^{+} \rightarrow \operatorname{ker} D^{+}\right)-\operatorname{Tr}\left(g: \operatorname{ker} D^{-} \rightarrow \operatorname{ker} D^{-}\right)
$$

Definition
For a Dirac type operator D on M. The Lefschetz number is given by the equivariant index

$$
L(g, D)=\operatorname{Tr}\left(g P_{\text {ker } D^{+}}\right)-\operatorname{Tr}\left(g P_{\text {ker } D^{-}}\right)
$$

Lefschetz fixed point formula

Theorem (Atiyah-Segal-Singer)
Let $D: C^{\infty}(M, E) \rightarrow C^{\infty}(M, E)$ be a Dirac type operator on M (dimension n). Then

$$
\begin{aligned}
& L(g, D)=\operatorname{Tr}\left(g P_{\text {ker } D^{+}}\right)-\operatorname{Tr}\left(g P_{\text {ker } D^{-}}\right) \\
= & \sum_{m \leq n} \int_{M_{(m)}^{g}} \frac{(2 \pi)^{\operatorname{dim} n / 2}}{(2 \pi i)^{m / 2}} T_{M}\left(\frac{\hat{A}\left(M^{g}\right) \operatorname{ch}_{G}(g, E / S)}{\operatorname{det}^{1 / 2}\left(1-g^{N} \exp \left(-R^{N}\right)\right)}\right)\left|d x_{0}\right|
\end{aligned}
$$

where $M_{(m)}^{g}$ is the component of M^{g} of dimension m, S is the spinor bundle (locally exists).

Remark
When $g=e$, the Lefschetz number is the Fredholm index:

$$
L(g, D)=\operatorname{ind} D .
$$

Set up

G : locally compact group;
X : complete Riemannian manifold;
$E: G$-equivariant complex vector bundles over X;

Set up

G : locally compact group;
X : complete Riemannian manifold;
$E: G$-equivariant complex vector bundles over X;

- $G \curvearrowright X$ properly, cocompactly and isometrically.

Set up

G : locally compact group;
X : complete Riemannian manifold;
$E: G$-equivariant complex vector bundles over X;

- $G \curvearrowright X$ properly, cocompactly and isometrically.
- An order 0 properly supported elliptic operator

$$
F: C_{c}^{\infty}(X, E) \rightarrow C_{c}^{\infty}(X, E)
$$

commutes with action of G.

Set up

G : locally compact group;
X : complete Riemannian manifold;
$E: G$-equivariant complex vector bundles over X;

- $G \curvearrowright X$ properly, cocompactly and isometrically.
- An order 0 properly supported elliptic operator

$$
F: C_{c}^{\infty}(X, E) \rightarrow C_{c}^{\infty}(X, E)
$$

commutes with action of G.

- A cut-off function exists for proper cocompact actions. A non-negative function $c \in C_{c}^{\infty}(X)$ is a cut-off function if

$$
\int_{G} c\left(g^{-1} x\right) \mathrm{d} g=1 \quad \forall x \in X
$$

L^{2}-index

$F: L^{2}\left(X, E_{+}\right) \rightarrow L^{2}\left(X, E_{-}\right): G$-invariant elliptic operator:

L^{2}-index

$F: L^{2}\left(X, E_{+}\right) \rightarrow L^{2}\left(X, E_{-}\right): G$-invariant elliptic operator:
$k_{ \pm}$: Kernel of the G-invariant operator $P_{\text {ker } F^{ \pm}}$:

$$
k_{ \pm}(x, y)=k_{ \pm}(g x, g y) \quad \forall x, y \in X, g \in G
$$

L^{2}-index

$F: L^{2}\left(X, E_{+}\right) \rightarrow L^{2}\left(X, E_{-}\right): G$-invariant elliptic operator:
$k_{ \pm}$: Kernel of the G-invariant operator $P_{\text {ker } F^{ \pm}}$:

$$
k_{ \pm}(x, y)=k_{ \pm}(g x, g y) \quad \forall x, y \in X, g \in G
$$

$$
\operatorname{dim}_{G} \operatorname{ker} F^{ \pm}:=\operatorname{tr}_{G}\left(P_{\text {ker } F^{ \pm}}\right)=\int_{X} c(x) \operatorname{Tr}\left[k_{ \pm}(x, x)\right] d x
$$

L^{2}-index

$F: L^{2}\left(X, E_{+}\right) \rightarrow L^{2}\left(X, E_{-}\right): G$-invariant elliptic operator:
$k_{ \pm}$: Kernel of the G-invariant operator $P_{\text {ker } F^{ \pm}}$:

$$
\begin{gathered}
k_{ \pm}(x, y)=k_{ \pm}(g x, g y) \quad \forall x, y \in X, g \in G . \\
\operatorname{dim}_{G} \operatorname{ker} F^{ \pm}:=\operatorname{tr}_{G}\left(P_{\text {ker } F^{ \pm}}\right)=\int_{X} c(x) \operatorname{Tr}\left[k_{ \pm}(x, x)\right] d x
\end{gathered}
$$

Definition $\left(L^{2}\right.$-index)

$$
\begin{aligned}
\mathrm{L}^{2}-\operatorname{ind} F & :=\operatorname{dim}_{G} \operatorname{ker} F^{+}-\operatorname{dim}_{G} \operatorname{ker} F^{-} \\
& =\operatorname{tr}_{G}\left(P_{\operatorname{ker} F^{+}}\right)-\operatorname{tr}_{G}\left(P_{\operatorname{ker} F^{-}}\right) \in \mathbb{R} .
\end{aligned}
$$

L^{2}-index formula

Theorem (HW)

F: G-invariant elliptic operator. Then

$$
L^{2}-\operatorname{ind} F=\int_{T X} c(x) \operatorname{ch}\left(\sigma_{F}\right) \pi^{*} \operatorname{Td}(T X \otimes \mathbb{C})
$$

Here $\operatorname{ch}\left(\sigma_{F}\right)$ and $\operatorname{Td}(T X \otimes \mathbb{C})$ are as defined in the Atiyah-Singer index theorem (G-equivariant).

L^{2}-index formula

Theorem (HW)

F : G-invariant elliptic operator. Then

$$
L^{2}-\operatorname{ind} F=\int_{T X} c(x) \operatorname{ch}\left(\sigma_{F}\right) \pi^{*} \operatorname{Td}(T X \otimes \mathbb{C})
$$

Here $\operatorname{ch}\left(\sigma_{F}\right)$ and $\operatorname{Td}(T X \otimes \mathbb{C})$ are as defined in the Atiyah-Singer index theorem (G-equivariant).

Remark

- Nonvanishing of L^{2}-ind $D \Rightarrow$ Existence of L^{2}-solution.

L^{2}-index formula

Theorem (HW)
F : G-invariant elliptic operator. Then

$$
L^{2}-\operatorname{ind} F=\int_{T X} c(x) \operatorname{ch}\left(\sigma_{F}\right) \pi^{*} \operatorname{Td}(T X \otimes \mathbb{C})
$$

Here $\operatorname{ch}\left(\sigma_{F}\right)$ and $\operatorname{Td}(T X \otimes \mathbb{C})$ are as defined in the Atiyah-Singer index theorem (G-equivariant).

Remark

- Nonvanishing of L^{2}-ind $D \Rightarrow$ Existence of L^{2}-solution.
- de Rham operator $d+d^{*}: L^{2}$-harmonic forms.
- $\bar{\partial}$-operator: Modular forms.

L^{2}-index formula

Theorem (HW)
F : G-invariant elliptic operator. Then

$$
L^{2}-\operatorname{ind} F=\int_{T X} c(x) \operatorname{ch}\left(\sigma_{F}\right) \pi^{*} \operatorname{Td}(T X \otimes \mathbb{C})
$$

Here $\operatorname{ch}\left(\sigma_{F}\right)$ and $\operatorname{Td}(T X \otimes \mathbb{C})$ are as defined in the Atiyah-Singer index theorem (G-equivariant).

Remark

- Nonvanishing of L^{2}-ind $D \Rightarrow$ Existence of L^{2}-solution.
- de Rham operator $d+d^{*}: L^{2}$-harmonic forms.
- $\bar{\partial}$-operator: Modular forms.
- When G is a semi-simple real Lie group, $L^{2}-\operatorname{ind} D$ is related to the multiplicity of discrete series of G.

L^{2}-Lefschetz number

From index to L^{2}-index:

$$
\operatorname{Tr}\left(P_{\text {ker } D^{ \pm}}\right) \text {to } \operatorname{Tr}_{G}\left(P_{\text {ker } D^{ \pm}}\right) ;
$$

L^{2}-Lefschetz number

From index to L^{2}-index:

$$
\operatorname{Tr}\left(P_{\text {ker } D^{ \pm}}\right) \text {to } \operatorname{Tr}_{G}\left(P_{\text {ker } D^{ \pm}}\right) ;
$$

From Lefschetz number to the L^{2} version:

$$
\operatorname{Tr}\left(g P_{\text {ker } D^{ \pm}}\right) \text {to } \operatorname{Tr}_{G}\left(g P_{\operatorname{ker} D^{ \pm}}\right)
$$

does not make sense.

L^{2}-Lefschetz number

From index to L^{2}-index:

$$
\operatorname{Tr}\left(P_{\text {ker } D^{ \pm}}\right) \text {to } \operatorname{Tr}_{G}\left(P_{\text {ker } D^{ \pm}}\right) ;
$$

From Lefschetz number to the L^{2} version:

$$
\operatorname{Tr}\left(g P_{\text {ker } D^{ \pm}}\right) \text {to } \operatorname{Tr}_{G}\left(g P_{\text {ker } D^{ \pm}}\right)
$$

does not make sense.
Assume in addition that D is a Dirac type operator and G is discrete. The L^{2}-Lefschetz number is given by

$$
L(g, D)_{L^{2}}=\operatorname{Tr}_{G}\left(\sum_{h \in(g)} h P_{\mathrm{ker} D^{+}}\right)-\operatorname{Tr}_{G}\left(\sum_{h \in(g)} h P_{\mathrm{ker} D^{-}}\right)
$$

Remark

- The sum in the definition is absolutely convergent to a finite real number.

Remark

- The sum in the definition is absolutely convergent to a finite real number.
- When X compact and G finite, we have

$$
L(g, D)_{L^{2}}=\frac{1}{\left|Z_{G}(g)\right|} L(g, D)
$$

Remark

- The sum in the definition is absolutely convergent to a finite real number.
- When X compact and G finite, we have

$$
L(g, D)_{L^{2}}=\frac{1}{\left|Z_{G}(g)\right|} L(g, D)
$$

- When X is not compact, $L(g, D)_{L^{2}}$ is a replacement for the Lefschetz number/equivariant index.

L^{2}-Lefschetz fixed point formula

Theorem (BW-HW)
The L^{2}-Lefschetz number of a G-invariant Dirac type operator D on X is given by

$$
L(g, D)_{L^{2}}=\sum_{m \leq n} \int_{X_{(m)}^{g}} c^{(g)}(x) \frac{\hat{A}\left(X^{g}\right) \operatorname{ch}_{g}(V)}{\operatorname{det}\left(1-g e^{\left.R_{\mathcal{N}^{g} / 2 \pi i}\right)^{\frac{1}{2}}}\right.},
$$

where $c^{(g)}(x)$ is a cut-off function on X^{g} with respect to $Z_{G}(g)$ action.

L^{2}-Lefschetz fixed point formula

Theorem (BW-HW)
The L^{2}-Lefschetz number of a G-invariant Dirac type operator D on X is given by

$$
L(g, D)_{L^{2}}=\sum_{m \leq n} \int_{X_{(m)}^{g}} c^{(g)}(x) \frac{\hat{A}\left(X^{g}\right) \operatorname{ch}_{g}(V)}{\operatorname{det}\left(1-g e^{\left.R_{\mathcal{N}^{g} / 2 \pi i}\right)^{\frac{1}{2}}}\right.},
$$

where $c^{(g)}(x)$ is a cut-off function on X^{g} with respect to $Z_{G}(g)$ action.

Remark

$$
L(e, D)_{L^{2}}=L^{2}-\operatorname{ind} D
$$

K-theoretic interpretation

The localised (g)-trace on $L^{1}(G)$ is given by

$$
\begin{aligned}
& \tau^{(g)}: L^{1}(G) \rightarrow \mathbb{C}: \sum_{h \in G} \alpha_{h} h \mapsto \sum_{h \in(g)} \alpha_{h} \\
& \tau_{*}^{(g)}: K_{0}\left(L^{1}(G)\right) \rightarrow \mathbb{R}
\end{aligned}
$$

Theorem (BW-HW)
Let $\mu: K_{G}^{*}\left(C_{0}(X)\right) \rightarrow K_{*}\left(L^{1}(G)\right)$ where $\operatorname{Ind} D=\mu[D]$ be the higher index. Then

$$
L(g, D)_{L^{2}}=\tau_{*}^{(g)}(\operatorname{Ind} D)
$$

Quotient orbifold

G : discrete group; X : complete Riemannian manifold.

Quotient orbifold

G : discrete group; X : complete Riemannian manifold.

- $G \curvearrowright X$ properly $\Rightarrow X$ is locally homeomorphic to

$$
G \times_{G_{i}} U:=G \times U /\left\{(g h, u) \sim\left(g, h^{-1} u\right)\right\}
$$

where G_{i} is a finite subgroup and U_{i} is an open G_{i}-module.

Quotient orbifold

G : discrete group; X : complete Riemannian manifold.

- $G \curvearrowright X$ properly $\Rightarrow X$ is locally homeomorphic to

$$
G \times_{G_{i}} U:=G \times U /\left\{(g h, u) \sim\left(g, h^{-1} u\right)\right\}
$$

where G_{i} is a finite subgroup and U_{i} is an open G_{i}-module.

- $\mathfrak{X}:=[G \backslash X]$ is an orbifold with local charts $\left\{\left(U_{i}, G_{i}, \pi_{i}\right)\right\}$.

Quotient orbifold

G : discrete group; X : complete Riemannian manifold.

- $G \curvearrowright X$ properly $\Rightarrow X$ is locally homeomorphic to

$$
G \times_{G_{i}} U:=G \times U /\left\{(g h, u) \sim\left(g, h^{-1} u\right)\right\}
$$

where G_{i} is a finite subgroup and U_{i} is an open G_{i}-module.

- $\mathfrak{X}:=[G \backslash X]$ is an orbifold with local charts $\left\{\left(U_{i}, G_{i}, \pi_{i}\right)\right\}$.

Inertia orbifold of \mathfrak{X} (extended quotient of X by G):

$$
\begin{aligned}
I \mathfrak{X} & =\{(h, x) \in G \times X: h x=x\} /\left(g h g^{-1}, g x\right) \sim(h, x) \\
& =\bigsqcup_{(g) \subset G} \mathfrak{X}_{(g)} .
\end{aligned}
$$

Quotient orbifold

$G:$ discrete group; X : complete Riemannian manifold.

- $G \curvearrowright X$ properly $\Rightarrow X$ is locally homeomorphic to

$$
G \times{ }_{G_{i}} U:=G \times U /\left\{(g h, u) \sim\left(g, h^{-1} u\right)\right\}
$$

where G_{i} is a finite subgroup and U_{i} is an open G_{i}-module.

- $\mathfrak{X}:=[G \backslash X]$ is an orbifold with local charts $\left\{\left(U_{i}, G_{i}, \pi_{i}\right)\right\}$.

Inertia orbifold of \mathfrak{X} (extended quotient of X by G):

$$
\begin{aligned}
I \mathfrak{X}= & \{(h, x) \in G \times X: h x=x\} /\left(g h g^{-1}, g x\right) \sim(h, x) \\
= & \bigsqcup_{(g) \subset G} \mathfrak{X}_{(g)} . \\
& \mathfrak{X}_{(e)}=\mathfrak{X}=G \backslash X \quad \mathfrak{X}_{(g)}=Z_{G}(g) \backslash X^{g} .
\end{aligned}
$$

L^{2}-Lefschetz numbers and orbifold index

Discrete $G \curvearrowright X$ properly, cocompactly and isometrically.
$D($ resp. $\bar{D})$: elliptic operator on X (resp. $\mathfrak{X}=[G \backslash X]$);

L^{2}-Lefschetz numbers and orbifold index

Discrete $G \curvearrowright X$ properly, cocompactly and isometrically.
$D($ resp. $\bar{D})$: elliptic operator on X (resp. $\mathfrak{X}=[G \backslash X]$);
Kawasaki's orbifold index formula: ind \bar{D} is an orbifold integral over $I \mathfrak{X}$.

The L^{2}-Lefschetz numbers $L(g, D)_{L^{2}}$:

- Provide a refined interpretation of orbifold index:

$$
\operatorname{ind} \bar{D}=\sum_{(g) \in C_{G}} L(g, D)_{L^{2}}
$$

L^{2}-Lefschetz numbers and orbifold index

Discrete $G \curvearrowright X$ properly, cocompactly and isometrically.
$D($ resp. $\bar{D})$: elliptic operator on X (resp. $\mathfrak{X}=[G \backslash X]$);
Kawasaki's orbifold index formula: ind \bar{D} is an orbifold integral over $I \mathfrak{X}$.

The L^{2}-Lefschetz numbers $L(g, D)_{L^{2}}$:

- Provide a refined interpretation of orbifold index:

$$
\operatorname{ind} \bar{D}=\sum_{(g) \in C_{G}} L(g, D)_{L^{2}}
$$

- Detect the fixed points of g on X.

L^{2}-Lefschetz numbers and orbifold index

Discrete $G \curvearrowright X$ properly, cocompactly and isometrically.
$D($ resp. $\bar{D})$: elliptic operator on X (resp. $\mathfrak{X}=[G \backslash X]$);
Kawasaki's orbifold index formula: ind \bar{D} is an orbifold integral over $I \mathfrak{X}$.

The L^{2}-Lefschetz numbers $L(g, D)_{L^{2}}$:

- Provide a refined interpretation of orbifold index:

$$
\operatorname{ind} \bar{D}=\sum_{(g) \in C_{G}} L(g, D)_{L^{2}}
$$

- Detect the fixed points of g on X.
- If G acts freely,

$$
\operatorname{ind} \bar{D}=L(e, D)_{L^{2}}=L^{2} \text {-ind } D \quad\left(\text { Atiyah's } L^{2} \text {-index }\right) .
$$

Formal degree and multiplicity
G : semisimple Lie group; K : maximal compact; $\operatorname{rk}(G)=\operatorname{rk}(K)$;

Formal degree and multiplicity

G : semisimple Lie group; K : maximal compact; $\operatorname{rk}(G)=\operatorname{rk}(K)$;
$\left(\sigma, V_{\sigma}\right)$: square integrable representation of G

$$
c_{x, y}=\langle x, \sigma(\cdot) y\rangle \in L^{2}(G), \forall x, y \in V_{\sigma} .
$$

Formal degree and multiplicity

G : semisimple Lie group; K : maximal compact; $\operatorname{rk}(G)=\operatorname{rk}(K)$;
$\left(\sigma, V_{\sigma}\right)$: square integrable representation of G

$$
c_{x, y}=\langle x, \sigma(\cdot) y\rangle \in L^{2}(G), \forall x, y \in V_{\sigma} .
$$

Then $[\sigma] \in K_{0}\left(C_{r}^{*}(G)\right)$.

Formal degree and multiplicity

G : semisimple Lie group; K : maximal compact; $\operatorname{rk}(G)=\operatorname{rk}(K)$;
$\left(\sigma, V_{\sigma}\right)$: square integrable representation of G

$$
c_{x, y}=\langle x, \sigma(\cdot) y\rangle \in L^{2}(G), \forall x, y \in V_{\sigma} .
$$

Then $[\sigma] \in K_{0}\left(C_{r}^{*}(G)\right)$.
$d_{\sigma}=\left\|c_{x, x}\right\|_{L^{2}(G)}^{-2}$: formal degree of $\sigma \in \hat{G}_{t}$.

Formal degree and multiplicity

G : semisimple Lie group; K : maximal compact; $\operatorname{rk}(G)=\operatorname{rk}(K)$;
$\left(\sigma, V_{\sigma}\right)$: square integrable representation of G

$$
c_{x, y}=\langle x, \sigma(\cdot) y\rangle \in L^{2}(G), \forall x, y \in V_{\sigma} .
$$

Then $[\sigma] \in K_{0}\left(C_{r}^{*}(G)\right)$.
$d_{\sigma}=\left\|c_{x, x}\right\|_{L^{2}(G)}^{-2}$: formal degree of $\sigma \in \hat{G}_{t}$.
Γ : discrete subgroup, $\operatorname{vol}(\Gamma \backslash G)<\infty ;$

Formal degree and multiplicity

G : semisimple Lie group; K : maximal compact; $\operatorname{rk}(G)=\operatorname{rk}(K)$;
$\left(\sigma, V_{\sigma}\right)$: square integrable representation of G

$$
c_{x, y}=\langle x, \sigma(\cdot) y\rangle \in L^{2}(G), \forall x, y \in V_{\sigma} .
$$

Then $[\sigma] \in K_{0}\left(C_{r}^{*}(G)\right)$.
$d_{\sigma}=\left\|c_{x, x}\right\|_{L^{2}(G)}^{-2}$: formal degree of $\sigma \in \hat{G}_{t}$.
Γ : discrete subgroup, $\operatorname{vol}(\Gamma \backslash G)<\infty$;
m_{σ} : multiplicity of σ in the right reg. repr. R of G in $L^{2}(\Gamma \backslash G)$:

Formal degree and multiplicity

G : semisimple Lie group; K : maximal compact; $\mathrm{rk}(G)=\mathrm{rk}(K)$;
$\left(\sigma, V_{\sigma}\right)$: square integrable representation of G

$$
c_{x, y}=\langle x, \sigma(\cdot) y\rangle \in L^{2}(G), \forall x, y \in V_{\sigma} .
$$

Then $[\sigma] \in K_{0}\left(C_{r}^{*}(G)\right)$.
$d_{\sigma}=\left\|c_{x, x}\right\|_{L^{2}(G)}^{-2}$: formal degree of $\sigma \in \hat{G}_{t}$.
Γ : discrete subgroup, $\operatorname{vol}(\Gamma \backslash G)<\infty$;
m_{σ} : multiplicity of σ in the right reg. repr. R of G in $L^{2}(\Gamma \backslash G)$:

$$
L^{2}(\Gamma \backslash G)=\left[\oplus_{\sigma \in \hat{G}_{d}} m_{\sigma} V_{\sigma}\right] \oplus L_{c}^{2}(\Gamma \backslash G) .
$$

Formal degree and multiplicity

G : semisimple Lie group; K : maximal compact; $\mathrm{rk}(G)=\mathrm{rk}(K)$;
$\left(\sigma, V_{\sigma}\right)$: square integrable representation of G

$$
c_{x, y}=\langle x, \sigma(\cdot) y\rangle \in L^{2}(G), \forall x, y \in V_{\sigma} .
$$

Then $[\sigma] \in K_{0}\left(C_{r}^{*}(G)\right)$.
$d_{\sigma}=\left\|c_{x, x}\right\|_{L^{2}(G)}^{-2}$: formal degree of $\sigma \in \hat{G}_{t}$.
Γ : discrete subgroup, $\operatorname{vol}(\Gamma \backslash G)<\infty$;
m_{σ} : multiplicity of σ in the right reg. repr. R of G in $L^{2}(\Gamma \backslash G)$:

$$
\begin{gathered}
L^{2}(\Gamma \backslash G)=\left[\oplus_{\sigma \in \hat{G}_{d}} m_{\sigma} V_{\sigma}\right] \oplus L_{c}^{2}(\Gamma \backslash G) . \\
{[\sigma] \in K_{0}\left(C_{r}^{*}(G)\right) \xrightarrow{R_{*}} K_{0}\left(\mathcal{K}\left(V_{\sigma}\right)\right) \ni m_{\sigma} .}
\end{gathered}
$$

A geometric method in representation

When Γ is discrete, cocompact in G, construct a geometric operator on $M=G / K$ for σ :

A geometric method in representation

When Γ is discrete, cocompact in G, construct a geometric operator on $M=G / K$ for σ :

$$
\sigma \in \hat{G}_{t} \Rightarrow[\sigma] \in K_{*}\left(C_{r}^{*}(G)\right) \cong R(H) \ni[W] .
$$

A geometric method in representation

When Γ is discrete, cocompact in G, construct a geometric operator on $M=G / K$ for σ :

$$
\sigma \in \hat{G}_{t} \Rightarrow[\sigma] \in K_{*}\left(C_{r}^{*}(G)\right) \cong R(H) \ni[W] .
$$

S : spin K-module; $E:=S \otimes W ; \mathcal{E}=G \times_{K} E$ homogeneous vector bundle;

A geometric method in representation

When Γ is discrete, cocompact in G, construct a geometric operator on $M=G / K$ for σ :

$$
\sigma \in \hat{G}_{t} \Rightarrow[\sigma] \in K_{*}\left(C_{r}^{*}(G)\right) \cong R(H) \ni[W] .
$$

S : spin K-module; $E:=S \otimes W ; \mathcal{E}=G \times_{K} E$ homogeneous vector bundle; Construct Dirac operators associated to σ :

$$
\begin{aligned}
& D: L^{2}\left(M, \mathcal{E}_{+}\right) \rightarrow L^{2}\left(M, \mathcal{E}_{-}\right) \\
& \bar{D}: L^{2}\left(\Gamma \backslash M, \mathcal{E}_{+}\right) \rightarrow L^{2}\left(\Gamma \backslash M, \mathcal{E}_{-}\right)
\end{aligned}
$$

A geometric method in representation

When Γ is discrete, cocompact in G, construct a geometric operator on $M=G / K$ for σ :

$$
\sigma \in \hat{G}_{t} \Rightarrow[\sigma] \in K_{*}\left(C_{r}^{*}(G)\right) \cong R(H) \ni[W] .
$$

S : spin K-module; $E:=S \otimes W ; \mathcal{E}=G \times_{K} E$ homogeneous vector bundle; Construct Dirac operators associated to σ :

$$
\begin{aligned}
& D: L^{2}\left(M, \mathcal{E}_{+}\right) \rightarrow L^{2}\left(M, \mathcal{E}_{-}\right) \\
& \bar{D}: L^{2}\left(\Gamma \backslash M, \mathcal{E}_{+}\right) \rightarrow L^{2}\left(\Gamma \backslash M, \mathcal{E}_{-}\right)
\end{aligned}
$$

Then

$$
d_{\sigma}=L^{2}-\operatorname{ind}_{G} D \quad m_{\sigma}=\operatorname{ind}_{\Gamma} \bar{D}
$$

A special case

Set up: $M=G / K ; \Gamma$: discrete, cocompact, torsion free in G :

A special case

Set up: $M=G / K ; \Gamma$: discrete, cocompact, torsion free in G :

$$
[D] \in K_{G}^{0}\left(C_{0}(M)\right) \longrightarrow K_{\Gamma}^{0}\left(C_{0}(M)\right)
$$

$$
\downarrow \operatorname{Ind}_{G} \quad \downarrow \operatorname{Ind}_{\Gamma}
$$

$$
[\sigma] \in K_{0}\left(C_{r}^{*}(G)\right) \longrightarrow K_{0}\left(C_{r}^{*}(\Gamma)\right)
$$

$$
d_{\sigma}=L^{2}-\operatorname{ind}_{G} D \in \mathbb{R} \xrightarrow[\tau_{*}^{(e)}]{\text { vol(} \Gamma \backslash G)} \underset{\longrightarrow}{\mathbb{Z}} \ni \operatorname{ind}_{\Gamma} \overline{\rho_{*}}=m_{\sigma}
$$

where ρ is the trivial representation of Γ and m_{σ} is the image under $K_{0}\left(C_{r}^{*}(G)\right) \rightarrow K_{0}\left(C_{r}^{*}(\Gamma)\right) \rightarrow \mathbb{Z}$

A special case

Set up: $M=G / K ; \Gamma$: discrete, cocompact, torsion free in G :

$$
[D] \in K_{G}^{0}\left(C_{0}(M)\right) \longrightarrow K_{\Gamma}^{0}\left(C_{0}(M)\right)
$$

$$
\downarrow \operatorname{Ind}_{G} \quad \downarrow \operatorname{Ind}_{\Gamma}
$$

$$
[\sigma] \in K_{0}\left(C_{r}^{*}(G)\right) \longrightarrow K_{0}\left(C_{r}^{*}(\Gamma)\right)
$$

$$
d_{\sigma}=L^{2}-\operatorname{ind}_{G} D \in \mathbb{R} \xrightarrow[\tau_{*}^{(e)}]{\text { vol(} \Gamma \backslash G)} \underset{\longrightarrow}{\mathbb{Z}} \ni \operatorname{ind}_{\Gamma} \overline{\rho_{*}}=m_{\sigma}
$$

where ρ is the trivial representation of Γ and m_{σ} is the image under $K_{0}\left(C_{r}^{*}(G)\right) \rightarrow K_{0}\left(C_{r}^{*}(\Gamma)\right) \rightarrow \mathbb{Z}$

Observation:

$$
m_{\sigma}=\operatorname{ind}_{\Gamma} \bar{D}=\operatorname{vol}(\Gamma \backslash G)\left[L^{2}-\operatorname{ind}_{G} D\right] \cdot=\operatorname{vol}(\Gamma \backslash G) d_{\sigma} \cdot \bar{\equiv},
$$

A remark on representation theory

When Γ is a discrete cocompact subgroup of G, the multiplicity $m_{\sigma}=\operatorname{ind}_{\Gamma} \bar{D}$ and formal degree $d_{\sigma}=L^{2}-\operatorname{ind}_{G} D$ are related as

$$
\begin{aligned}
\operatorname{ind}_{\Gamma} \bar{D} & =\sum_{(\gamma) \in C_{\Gamma}} L(\gamma, D)_{L^{2}} \\
& =\operatorname{vol}(\Gamma \backslash G)\left[L^{2}-\operatorname{ind}_{G} D\right]+\text { correction terms. }
\end{aligned}
$$

A remark on representation theory

When Γ is a discrete cocompact subgroup of G, the multiplicity $m_{\sigma}=\operatorname{ind}_{\Gamma} \bar{D}$ and formal degree $d_{\sigma}=L^{2}-\operatorname{ind}_{G} D$ are related as

$$
\begin{aligned}
\operatorname{ind}_{\Gamma} \bar{D} & =\sum_{(\gamma) \in C_{\Gamma}} L(\gamma, D)_{L^{2}} \\
& =\operatorname{vol}(\Gamma \backslash G)\left[L^{2}-\operatorname{ind}_{G} D\right]+\text { correction terms. }
\end{aligned}
$$

- The "correction terms" are obtained from finite quotient singularities and recognised by L^{2}-Lefschetz numbers $L(\gamma, D)_{L^{2}}$, where $e \neq g \in \Gamma$.

A remark on representation theory

When Γ is a discrete cocompact subgroup of G, the multiplicity $m_{\sigma}=\operatorname{ind}_{\Gamma} \bar{D}$ and formal degree $d_{\sigma}=L^{2}-\operatorname{ind}_{G} D$ are related as

$$
\begin{aligned}
\operatorname{ind}_{\Gamma} \bar{D} & =\sum_{(\gamma) \in C_{\Gamma}} L(\gamma, D)_{L^{2}} \\
& =\operatorname{vol}(\Gamma \backslash G)\left[L^{2}-\operatorname{ind}_{G} D\right]+\text { correction terms. }
\end{aligned}
$$

- The "correction terms" are obtained from finite quotient singularities and recognised by L^{2}-Lefschetz numbers $L(\gamma, D)_{L^{2}}$, where $e \neq g \in \Gamma$.
- There is a 1-to-1 correspondence between $L(\gamma, D)_{L^{2}}$ and the orbital integrals on the geometric side of Selberg trace formula for the regular representation of G on $L^{2}(\Gamma \backslash G)$ and for some test function.

