Persistent Approximation Property for controlled K-theory and large scale geometry

(jointwork with G. Yu)

H. Oyono Oyono

June 17, 2014

International Conference on Banach methods in Noncommutative Geometry

Wuhan University, P.R. China, June 8-13, 2014

Operator propagation

- Let X be a proper metric space (i.e closed balls are compact) and let $\pi: C_0(X) \to \mathcal{L}(\mathcal{H})$ be a representation of $C_0(X)$ on a Hilbert space \mathcal{H} .
- Example : $\mathcal{H} = L^2(\mu, X)$ for μ Borelian measure on X and π the pointwise multiplication.

Definition

• If T is an operator of $\mathcal{L}(\mathcal{H})$, then Supp T is the complementary of the open subset of $X \times X$

$$\{(x,y) \in X \times X \text{ such that } \exists f \text{ and } g \in C_c(X) \text{ such that}$$

 $f(x) \neq 0, \ g(y) \neq 0 \text{ and } \pi(f) \cdot T \cdot \pi(g) = 0\}$

- T has propagation less than r if $d(x, y) \le r$ for all (x, y) in Supp T.
- if such r exists we say that T has finite propagation (less than r).

Propagation and indices

- Let D be an elliptic differential operator on a compact manifold M.
- Let *Q* be a parametrix for *D*.
- Then $S_0 := Id QD$ and $S_1 := Id DQ$ are smooth kernel operators on $M \times M$:

0

$$P_D = egin{pmatrix} S_0^2 & S_0(Id + S_0)Q \ S_1D & Id - S_1^2 \end{pmatrix}$$

is an idempotent with coefficients in smooth kernel operators on $M \times M$ and we can choose Q such that P_D has arbitrary small propagation.

D is a Fredholm operator and

$$\operatorname{Ind} D=[P]-\left[\begin{pmatrix}0&0\\0&\operatorname{Id}\end{pmatrix}\right]\in K_0(\mathcal{K}(L^2(M))\cong\mathbb{Z}.$$

• How can we keep track of the propagation and have homotopy invariance?

Quasi-projections

Definition (Quasi-projection)

If X is a proper metric space and $\pi: C_0(X) \to \mathcal{L}(\mathcal{H})$ is a representation of $C_0(X)$ on a Hilbert space \mathcal{H} , $0 < \varepsilon < 1/4$ (control) and r > 0 (propagation). Then q in $\mathcal{L}(\mathcal{H})$ is an ε -r-projection if

- $q = q^*$;
- $\|q^2-q\|<\varepsilon$;
- q has propagation less than r.
- If q is an ε -r-projection, then its spectrum has a gap around 1/2.
- Hence there exists $\kappa : \operatorname{Sp} q \to \{0, 1\}$ continuous and such that $\kappa(t) = 0$ if t < 1/2 and $\kappa(t) = 1$ if t > 1/2.
- By continuous functional calculus, $\kappa(q)$ is a projection such that $||\kappa(q) q|| < 2\varepsilon$;

Quasi-projections and indices

• Let D be a differential elliptic operator on a manifold, let Q be a parametrix. Set $S_0 := Id - QD$ and $S_1 := Id - DQ$ and

$$P_D = egin{pmatrix} S_0^2 & S_0(Id + S_0)Q \ S_1D & Id - {S_1}^2 \end{pmatrix}$$
 the idempotent with coefficients in

smooth kernel operators that gives the index. Then

$$((2P_D^*-1)(2P_D-1)+1)^{1/2}P_D((2P_D^*-1)(2P_D-1)+1)^{-1/2}$$

is a projection conjugated to the idempotent P_D ;

• Choosing $Q = Q_{\varepsilon,r}$ with propagation small enought and approximating

 $((2P_D^*-1)(2P_D-1)+1)^{1/2}P_D((2P_D^*-1)(2P_D-1)+1)^{-1/2}$ using a power serie, we can for all $0<\varepsilon<1/4$ and r>0, construct a ε -r-projection $q_D^{\varepsilon,r}$ such that $\kappa(q_D^{\varepsilon,r})$ is canonically conjugated to P_D and hence

$$\operatorname{Ind} D = \left[\kappa(q_D^{\varepsilon,r})\right] - \left[\begin{pmatrix} 0 & 0 \\ 0 & Id \end{pmatrix}\right]$$

in $K_0(\mathcal{K}(L^2(M)) \cong \mathbb{Z}$ (recall that $\kappa(q_D^{\varepsilon,r})$ is the spectral proj. of $q_D^{\varepsilon,r}$).

Higher Indices

The receptacles of higher indices of elliptic differential operators are K-theory of C^* -algebras which encode the (large scale) geometry of the underlying spaces.

Example

- Group C*-algebra of a discrete group Γ: higher indices for equivariant elliptic differential operators on cocompact covering space with group Γ;
- Crossed product C*-algebras: higher indices for longitudinally elliptic differential operators;
- Roe algebras: higher indices for elliptic differential operators on complete noncompact Riemannian manifolds.

These algebras are endowed with a propagation structure arising from the geometric structure. Differential operators are local and these higher indices can be defined using ε -r-projections.

Aim: find obstructions for *K*-theory elements to be realized as higher indices.

The framework: Filtered algebras

Definition

A filtered C^* -algebra A is a C^* -algebra equipped with a family $(A_r)_{r>0}$ of closed linear subspaces:

- $A_r \subset A_{r'}$ if $r \leqslant r'$;
- \bullet A_r is closed under involution;
- \bullet $A_r \cdot A_{r'} \subset A_{r+r'}$;
- the subalgebra $\bigcup_{r>0} A_r$ is dense in A.
- If A is unital, we also require that the identity 1 is an element of A_r for every positive number r.
- The elements of A_r are said to have propagation less than r.

Examples

- $\mathcal{K}(L^2(X,\mu))$ for X a metric space and μ probability measure on X. More generally $A \otimes \mathcal{K}(L^2(X,\mu))$ for A is a C^* -algebra.
- Roe algebras:
 - ightharpoonup proper discrete metric space, \mathcal{H} separable Hilbert space
 - ▶ $C[\Sigma]_r$: space of locally compact operators on $\ell^2(\Sigma) \otimes \mathcal{H}$ (i.e T satisfies fT and Tf compact for all $f \in C_c(\Sigma)$) and with propagation less than r.
 - ► The Roe algebra of Σ is $C^*(\Sigma) = \overline{\bigcup_{r>0} C[\Sigma]_r} \subset \mathcal{L}(\ell^2(\Sigma) \otimes \mathcal{H})$ (filtered by $(C[\Sigma]_r)_{r>0}$).
- C*-algebras of groups and cross-products:
 - If Γ is a discrete finitely generated group equipped with a word metric. Set

$$\mathbb{C}[\Gamma]_r = \{x \in \mathbb{C}[\Gamma] \text{ with support in } B(e,r)\}.$$

Then $C^*_{red}(\Gamma)$ and $C^*_{max}(\Gamma)$ are filtered by $(\mathbb{C}[\Gamma]_r)_{r>0}$.

► More generally, if Γ acts on a *A* by automorphisms, then $A \rtimes_{red} \Gamma$ and $A \rtimes_{max} \Gamma$ are filtered C^* -algebras.

Almost projections and almost unitaries

Let $A = (A_r)_{r>0}$ be a unital filtered C^* -algebra, r>0 (propagation) and $0 < \varepsilon < 1/4$ (control):

- $p \in A_r$ is a ε -r-projection if $p \in A_r$, $p = p^*$ and $||p^2 p|| < \varepsilon$.
- a ε -r projection p gives rise by functional calculus to a projection $\kappa(p)$ such that $\|p \kappa(p)\| < 2\varepsilon$.
- $u \in A_r$ is a ε -r-unitary if $u \in A_r$, $||u^* \cdot u 1|| < \varepsilon$ and $||u \cdot u^* 1|| < \varepsilon$.
- any ε -r-unitary is invertible.

Remark

- if q is a ε -r-projection of A, there exists h an ε -r-projection of $C([0,1], M_2(A))$ such that $h(0) = I_2$ and h(1) = diag(q, 1-q);
- if u and v are ε -r-unitaries in A, there exists W a 3ε -2r-unitary of $C([0,1], M_2(A))$ such that W(0) = diag(u,v) and W(1) = diag(uv,1).

Notations

- $P^{\varepsilon,r}(A)$ is the set of ε -r-projections of A.
- $U^{\varepsilon,r}(A)$ is the set of ε -r-unitaries of A.
- $\mathsf{P}_{\infty}^{\varepsilon,r}(A) = \bigcup_{n \in \mathbb{N}} \mathsf{P}^{\varepsilon,r}(M_n(A))$ for $\mathsf{P}^{\varepsilon,r}(M_n(A)) \hookrightarrow \mathsf{P}^{\varepsilon,r}(M_{n+1}(A)); x \mapsto \mathsf{diag}(x,0).$
- $U_{\infty}^{\varepsilon,r}(A) = \bigcup_{n \in \mathbb{N}} U^{\varepsilon,r}(M_n(A))$ for $U^{\varepsilon,r}(M_n(A)) \hookrightarrow U^{\varepsilon,r}(M_{n+1}(A))$; $x \mapsto \text{diag}(x,1)$.

Quantitative *K*-groups

Define for a unital C^* -algebra A, r > 0 and $0 < \varepsilon < 1/4$ the (stably)-homotopy equivalence relations on $\mathsf{P}_{\infty}^{\varepsilon,r}(A) \times \mathbb{N}$ and $\mathsf{U}_{\infty}^{\varepsilon,r}(A)$ (recall that $\mathsf{P}_{\infty}^{\varepsilon,r}(A) = \bigcup_{n \in \mathbb{N}} \mathsf{P}^{\varepsilon,r}(M_n(A))$ and $\mathsf{U}_{\infty}^{\varepsilon,r}(A) = \bigcup_{n \in \mathbb{N}} \mathsf{U}^{\varepsilon,r}(M_n(A))$):

- $(p, l) \sim (q, l')$ if there exists $k \in \mathbb{N}$ and $h \in P^{\varepsilon, r}_{\infty}(C([0, 1], A))$ s.t $h(0) = \operatorname{diag}(p, l_{k+l'})$ and $h(1) = \operatorname{diag}(q, l_{k+l})$.
- $u \sim v$ if there exists $h \in U_{\infty}^{3\varepsilon,2r}(C([0,1],A))$ s.t h(0) = u and h(1) = v.

Definition

- $lackbox{0} \ K_0^{\varepsilon,r}(A) = \mathsf{P}^{\varepsilon,r}(A)/\sim and \, [p,I]_{\varepsilon,r} \, is \, the \, class \, of \, (p,I) \, mod. \, \sim;$
- ② $K_1^{\varepsilon,r}(A) = U^{\varepsilon,r}(A)/\sim and [u]_{\varepsilon,r}$ is the class of u mod. \sim .
 - $K_0^{\varepsilon,r}(A)$ is an abelian group for $[p, I]_{\varepsilon,r} + [p', I']_{\varepsilon,r} = [\operatorname{diag}(p, p'), I + I']_{\varepsilon,r};$
 - $K_1^{\varepsilon,r}(A)$ is an abelian group for $[u]_{\varepsilon,r} + [v]_{\varepsilon,r} = [\operatorname{diag}(u,v)]_{\varepsilon,r}$.

The non-unital case

Lemma

$$K_0^{\varepsilon,r}(\mathbb{C})\stackrel{\cong}{\to} \mathbb{Z}; [p,l]_{\varepsilon,r}\mapsto \operatorname{rank} \kappa(p)-l; K_1^{\varepsilon,r}(\mathbb{C})\cong \{0\}.$$

Definition

If A is a non unital filtered C^* -algebra and \tilde{A} the unitarization of A,

- ullet $K_0^{arepsilon,r}(A)=\ker:\ K_0^{arepsilon,r}(ilde{A}) o K_0^{arepsilon,r}(\mathbb{C})\cong\mathbb{Z};$
- $K_1^{\varepsilon,r}(A) = K_1^{\varepsilon,r}(\tilde{A});$

Definition

If A and B are filtered C^* -algebras with respect to $(A_r)_{r>0}$ and $(B_r)_{r>0}$, a homomorphism $f: A \to B$ is filtered if $f(A_r) \subset B_r$.

- A filtered $f: A \to B$ induces $f_*^{\varepsilon,r}: K_*^{\varepsilon,r}(A) \to K_*^{\varepsilon,r}(B)$;
- $A \hookrightarrow A \otimes \mathcal{K}((\ell^2(\mathbb{N})))$; $a \mapsto a \otimes e_{1,1}$ induces the Morita equivalence

$$K_*^{\varepsilon,r}(A)\stackrel{\cong}{\to} K_*^{\varepsilon,r}(A\otimes\mathcal{K}(\ell^2(\mathbb{N}))).$$

Structure homomorphisms

For any filtered C^* -algebra A, $0 < \varepsilon \le \varepsilon' < 1/4$ and $0 < r \le r'$, we have natural (compatible) structure homomorphisms

- $\bullet \ \iota_0^{\varepsilon,r}: K_0^{\varepsilon,r}(A) \longrightarrow K_0(A); \ [p,I]_{\varepsilon,r} \mapsto [\kappa(p)] [I_I];$
- $\iota_1^{\varepsilon,r}: K_1^{\varepsilon,r}(A) \longrightarrow K_1(A); [u]_{\varepsilon,r} \mapsto [u]; (\varepsilon r unitaries are invertible);$
- $\bullet \ \iota_*^{\varepsilon,r} = \iota_0^{\varepsilon,r} \oplus \iota_1^{\varepsilon,r};$
- $\iota_0^{\varepsilon,\varepsilon',r,r'}: K_0^{\varepsilon,r}(A) \longrightarrow K_0^{\varepsilon',r'}(A); [p,l]_{\varepsilon,r} \mapsto [p,l]_{\varepsilon',r'};$
- $\iota_1^{\varepsilon,\varepsilon',r,r'}: K_1^{\varepsilon,r}(A) \longrightarrow K_1^{\varepsilon',r'}(A); [u]_{\varepsilon,r} \mapsto [u]_{\varepsilon',r'}.$
- $\bullet \ \iota_*^{\varepsilon,\varepsilon',r,r'} = \iota_0^{\varepsilon,\varepsilon',r,r'} \oplus \iota_1^{\varepsilon,\varepsilon',r,r'}.$

For any $\varepsilon \in (0, 1/4)$ and any projection p (resp. unitary u) in A, there exists r > 0 and q (resp. v) an ε -r-projection (resp. an ε -r-unitary) of A such that $\kappa(q)$ and p are closed and hence homotopic projections (resp. u et v are homotopic invertibles)

Consequence

For every $\varepsilon \in (0, 1/4)$ and $y \in K_*(A)$, there exists r and x in $K_*^{\varepsilon, r}(A)$ such that $\iota_*^{\varepsilon, r}(x) = y$.

Controlled index map

- Recall that if D is an elliptic differential operator on a compact manifold M, then for every $0 < \varepsilon < 1/4$ and r > 0, there exists $q_D^{\varepsilon,r}$ a ε -r-projection in $\mathcal{K}(L^2(M))$ s.t. Ind $D = \left[\kappa(q_D^{\varepsilon,r})\right] \left[\begin{pmatrix} 0 & 0 \\ 0 & ld \end{pmatrix}\right]$;
- We can define in this way a controlled index $\operatorname{Ind}^{\varepsilon,r} D = [q_D^{\varepsilon,r}, 1]$ in $K_0^{\varepsilon,r}(\mathcal{K}(L^2(M)))$ such that $\operatorname{Ind} D = \iota_0^{\varepsilon,r}(\operatorname{Ind}^{\varepsilon,r} D)$;

More generally, we have:

Lemma

Let X be a cpct metric space, then for any $0 < \varepsilon < 1/4$ and any r > 0, there exists a controlled index map $\operatorname{Ind}_{X,*}^{\varepsilon,r}: K_*(X) \to K_*^{\varepsilon,r}(\mathcal{K}(L^2(X)))$ s.t

- the composition

$$K_0(X) \longrightarrow K_0^{\varepsilon,r}(\mathcal{K}(L^2(X))) \xrightarrow{\iota_0^{\varepsilon,r}} K_0(\mathcal{K}(L^2(X))) \cong \mathbb{Z}$$

is the index map.

Behaviour for small propagation

Theorem

Let X be a finite simplicial complex equipped with a metric. Then there exists $0 < \varepsilon_0 < 1/4$ such that the following holds :

For every $0 < \varepsilon < \varepsilon_0$, there exists $r_0 > 0$ such that for any $0 < r < r_0$ then

$$\mathsf{Ind}_{X,*}^{arepsilon,r}: K_*(X) o K_*^{arepsilon,r}(\mathcal{K}(L^2(X)))$$

is an isomorphism.

Under this identification the usual index map $\operatorname{Ind}_X:K_0(X)\to\mathbb{Z}$ is given by

$$\iota_0^{\varepsilon,r}: K_0^{\varepsilon,r}(\mathcal{K}(L^2(X))) \longrightarrow \mathbb{Z}; [p,l]_{\varepsilon,r} \mapsto \operatorname{rang} \kappa(p) - l.$$

Persistent Approximation Property

Recall that for every $\varepsilon \in (0, 1/4)$ and $y \in K_*(A)$, there exist r and x in $K_*^{\varepsilon,r}(A)$ s.t $\iota_*^{\varepsilon,r}(x) = y$. How faithfull this approximation is?

Lemma

For any ε small enough, any r > 0 and any x in $K_*^{\varepsilon,r}(A)$ s.t $\iota_*^{\varepsilon,r}(x) = 0$ then there exists $r' \geqslant r$ such that $\iota_*^{\varepsilon,\lambda\varepsilon,r,r'}(x) = 0$ in $K_*^{\lambda\varepsilon,r'}(A)$ for some universal $\lambda \geqslant 1$.

Does r' depend on x?

Definition (Persistent Approximation Property)

For A a filtered C*-algebra and positive numbers ε , ε' , r and r' such that $0 < \varepsilon \leqslant \varepsilon' < 1/4$ and $0 < r \leqslant r'$, define :

 $\mathcal{PA}_*(A, \varepsilon, \varepsilon', r, r')$: for any $x \in K_*^{\varepsilon, r}(A)$, then $\iota_*^{\varepsilon, r}(x) = 0$ in $K_*(A)$ implies that $\iota_*^{\varepsilon, \varepsilon', r, r'}(x) = 0$ in $K_*^{\varepsilon', r'}(A)$.

Persistent Approximation Property

 $\mathcal{PA}_*(A, \varepsilon, \varepsilon', r, r')$: for any $x \in K_*^{\varepsilon, r}(A)$, then $\iota_*^{\varepsilon, r}(x) = 0$ in $K_*(A)$ implies that $\iota_*^{\varepsilon, \varepsilon', r, r'}(x) = 0$ in $K_*^{\varepsilon', r'}(A)$

is equivalent to:

the restriction of $\iota_*^{\varepsilon',r'}: K_*^{\varepsilon',r'}(A) \longrightarrow K_*(A)$ to $\iota_*^{\varepsilon,\varepsilon',r,r'}(K_*^{\varepsilon,r}(A))$ is one-to-one.

Example

If $A = \mathcal{K}(\ell^2(\Sigma))$ for Σ discrete metric set.

- $\mathcal{P}A_0(A, \varepsilon, \varepsilon', r, r')$ holds if for any ε -r-projections q and q' in $\mathcal{K}(\ell^2(\Sigma)\otimes\mathcal{H})$ such that rang $\kappa(q)=\operatorname{rang}\kappa(q')$, then q and q' are homotopic ε' -r'-projections up to stabilization.
- $\mathcal{PA}_1(A, \varepsilon, \varepsilon', r, r')$ holds if any ε -r-unitary in $\mathcal{K}(\ell^2(\Sigma) \otimes \mathcal{H}) + \mathbb{C}Id)$ is homotopic to Id as a ε' -r'-unitary.

Examples

Definition (Universal example for proper actions)

A locally compact space Z is a universal example for proper actions of Γ if for any locally compact space X provided with a proper action of Γ , there exists $f: X \to Z$ continuous and equivariant, and any two such maps are equivariantly homotopic.

Every group admits a universal example for proper actions.

Theorem

Let Γ be a finitely generated discrete group. Assume that

- Γ satisfies the Baum-Connes conjecture with coefficients;
- Γ has a cocompact universal example for proper action;

Then for a universal $\lambda > 1$, any $\varepsilon \in (0, \frac{1}{4\lambda})$ and any r > 0, there exists r' > r such that $\mathcal{PA}_*(A \rtimes_{red} \Gamma, \varepsilon, \lambda \varepsilon, r, r')$ holds for any Γ - C^* -algebra A.

Examples: Γ hyperbolic, Γ Haagerup with cocompact universal example.

The geometric case

Observation: we can identify $C_0(\Gamma) \rtimes \Gamma$ as a filtered C^* -algebra to $\mathcal{K}(\ell^2(\Gamma))$ and (recall that $\kappa(q)$ is the spectral projection affiliated to q) $\iota_0^{\varepsilon,r}: K_0^{\varepsilon,r}(\mathcal{K}(\ell^2(\Gamma)) \to K_0(\mathcal{K}(\ell^2(\Gamma))) \cong \mathbb{Z}: [q,l]_{\varepsilon,r} \mapsto \operatorname{rang} \kappa(q) - l$.

Corollary

Let Γ be a finitely generated discrete group. Assume that

- Γ satisfies the Baum-Connes conjecture with coefficients;
- Γ has a cocompact universal example for proper action.

Then for a universal $\lambda > 1$, any $\varepsilon \in (0, \frac{1}{4\lambda})$ and any r > 0, there exists r' > r such that $\mathcal{PA}_*(A \otimes \mathcal{K}(\ell^2(\Gamma)), \varepsilon, \lambda \varepsilon, r, r')$ holds for any C^* -algebra A.

- The Gromov group does not satisfy the conclusion of the corollary.
- This statement is purely geometric.

Coarse geometry

Let (Σ, d) be a proper discrete metric space;

- Σ has bounded geometry if for all r > 0, there exists an integer N such that any ball of radius r has cardinal less than N (example : $|\Gamma|$, the underlying metric space of a finitely generated group Γ equipped with any word metric);
- Let (Σ', d') be another proper discrete metric space. A map $f: \Sigma \to \Sigma'$ is coarse if
 - ▶ f is proprer ;
 - ▶ $\forall r > 0, \exists s > 0$ such that $d(x, y) < r \Rightarrow d'(f(x), f(y)) < s$;
- A coarse map $f: \Sigma \to \Sigma'$ is a coarse equivalence if there is a coarse map $g: \Sigma' \to \Sigma$ and M > 0 such that $d(f \circ g(y), y) < M$ and $d(g \circ f(x), x) < M \quad \forall x \in X$ and $\forall y \in Y$.

The geometrical Persistent Approximation Property

Definition

Let (Σ, d) a proper discrete metric space. We say that Σ satisfies the geometrical Persistent Approximation Property if there exists $\lambda > 1$ such that for any $0 < \varepsilon \leqslant \frac{1}{4\lambda}$ and any r > 0, there exists r' > r and $\varepsilon' \in [\varepsilon, 1/4)$ such that $\mathcal{PA}_*(A \otimes \mathcal{K}(\ell^2(\Sigma)), \varepsilon, \varepsilon', r, r')$ holds for any C^* -algebra A.

Remark

The geometrical Persistent Approximation Property is invariant under coarse equivalence.

Example

If Γ (finitely generated) satisfies the Baum-Connes conjecture with coefficients and admits a cocompact universal example for proper action, then $|\Gamma|$ satisfies the geometrical Persistent Approximation Property.

Uniform coarse contractibility property

Let (Σ, d) be a discrete metric space with bounded geometry. Recall that the Rips complex of degree r is the set $P_r(\Sigma)$ of probability measures on Σ with support of diameter less than r (notice that $P_r(\Sigma) \subset P_{r'}(\Sigma)$ if $r \leqslant r'$).

Definition

 Σ has the uniform coarse contractibility property if for any r > 0, there exists r' > r such that every compact subset in $P_r(\Sigma)$ lies in a contractible compact subset of $P_{r'}(\Sigma)$.

Remark

This is the topological counterpart of the Persistent Approximation Property!

Example : Σ Gromov hyperbolic.

Coarse embedding in a Hilbert space

Definition

 Σ coarsely embeds in a Hilbert space $\mathcal H$ if there exists $f:\Sigma \to \mathcal H$ s.t: for all R>0, there exists S>0 s.t $d(x,y)< R\Rightarrow \|f(x)-f(y)\|< S$ and $\|f(x)-f(y)\|< R\Rightarrow d(x,y)< S$.

Examples: Σ Gromov hyperbolic, Γ amenable group, exact, linear...

Theorem

Let Σ be a discrete metric space with bounded geometry. Assume that

- Σ coarsely embeds in a Hilbert space;
- Σ satisfies the uniform coarse contractibility property.

Then Σ satisfies the geometrical Persistent Approximation Property.

Persistence approximation property and homotopy groups

- For A a unital C^* -algebras, we set $U_{\infty}(A) = \bigcup_{n \in \mathbb{N}} U_n(A)$ for $U_n(A) \hookrightarrow U_{n+1}(A)$; $x \mapsto \operatorname{diag}(x, 1)$ and $GL_{\infty}(A) = \bigcup_{n \in \mathbb{N}} GL_n(A)$ for $GL_n(A) \hookrightarrow GL_{n+1}(A)$; $x \mapsto \operatorname{diag}(x, 1)$.
- Recall that $U_n(\mathbb{C})$ and $GL_n(\mathbb{C})$ (and therefore $U_\infty(\mathbb{C})$ and $GL_\infty(\mathbb{C})$) are homotopy equivalent. Hence $\pi_k(U_\infty(\mathbb{C})) = \pi_k(GL_\infty(\mathbb{C}))$ for all integer k;
- Bott Periodicity : $\pi_{2k}(U_{\infty}(\mathbb{C})) = \{0\}$ and $\pi_{2k+1}(U_{\infty}(\mathbb{C})) \cong \mathbb{Z}$.

For any finite set X, any $0 < \varepsilon \le \varepsilon' < 1/4$ and $0 < r \le r'$, the inclusions

$$U_{\infty}^{\varepsilon,r}(\mathcal{K}(\ell^2(X))\subseteq U_{\infty}^{\varepsilon',r'}(\mathcal{K}(\ell^2(X))\subseteq GL_{\infty}(\mathcal{K}(\ell^2(X))\cong GL_{\infty}(\mathbb{C}))$$

gives rise for any integer k to

$$\bullet \ \jmath_k^{\varepsilon,\varepsilon',r,r'}: \pi_k(U^{\varepsilon,r}_\infty(\mathcal{K}(\ell^2(X)))) \to \pi_k(U^{\varepsilon',r'}_\infty(\mathcal{K}(\ell^2(X))))$$

$$\bullet \ \jmath_k^{\varepsilon,r}: \pi_k(U_{\infty}^{\varepsilon,r}(\mathcal{K}(\ell^2(X)))) \to \pi_k(GL_{\infty}(\mathbb{C})))$$

such that $j_k^{\varepsilon',r'} \circ j_k^{\varepsilon,\varepsilon',r,r'} = j_k^{\varepsilon,r}$.

Persistence approximation property and π_k

Definition

For \mathcal{F} a family of finite metric spaces and k integer consider: $\mathcal{P}A_k(\mathcal{F}, \varepsilon, \varepsilon', r, r')$: for any X in \mathcal{F} and any $x \in \pi_k(U^{\varepsilon,r}_\infty(\mathcal{K}(\ell^2(X))))$, then $j_k^{\varepsilon,r}(x) = 0$ in $\pi_k(GL_\infty(\mathbb{C}))$ implies that $j_k^{\varepsilon,\varepsilon',r,r'}(x) = 0$ in $\pi_k(U^{\varepsilon,r}_\infty(\mathcal{K}(\ell^2(X))))$.

Theorem

Let \mathcal{F} be a family of finite metric spaces. Then for some $\varepsilon_0 > 0$ (independent on \mathcal{F}) the following assertions are equivalent:

- of for any integer k, any $\varepsilon > \varepsilon_0$ and any r > 0, there exists $\varepsilon' > \varepsilon$ and r' > r such that $\mathcal{P}A_k(\mathcal{F}, \varepsilon, \varepsilon', r, r')$ holds;
- of for k = 0, 1, any $\varepsilon > \varepsilon_0$ and any r > 0, there exists $\varepsilon' > \varepsilon$ and r' > r such that $\mathcal{PA}_k(\mathcal{F}, \varepsilon, \varepsilon', r, r')$ holds;
- of for any $\varepsilon > \varepsilon_0$ and any r > 0, there exists $\varepsilon' > \varepsilon$ and r' > r such that $\mathcal{PA}_*(\mathcal{K}(\ell^2(X)), \varepsilon, \varepsilon', r, r')$ holds for any X in \mathcal{F} ;

Applications

- If \mathcal{F} is a family of finite δ -hyperbolic spaces for some fixed δ , then for any integer k, any $\varepsilon > \varepsilon_0$ and any r > 0, there exists $\varepsilon' > \varepsilon$ and r' > r such that $\mathcal{PA}_k(\mathcal{F}, \varepsilon, \varepsilon', r, r')$ holds;
- If \mathcal{F} is the family of a finite subsets of a finitely generated group Γ and with some conditions on Rlps complexes, then Baum-Connes conjecture with coefficients for Γ implies that for any integer k, any $\varepsilon > \varepsilon_0$ and any r > 0, there exists $\varepsilon' > \varepsilon$ and r' > r such that $\mathcal{PA}_k(\mathcal{F}, \varepsilon, \varepsilon', r, r')$ holds.