Towards Strong Banach (T) for higher rank Lie groups

Mikael de la Salle

Wuhan, 10/06/2014

Mikael de la Salle ()

Strong Banach (T)

-Wuhan, 10/06/2014 1 / 18

< 67 ▶

Table of contents

1 Motivation 1: non-embeddability of expanders

- 2 Motivation 2: fixed points for affine isometric actions
- 3 Strong Banach property (T)

4 Proofs

5 Open problems

3

イロト イヨト イヨト

Motivation 1: (non) coarse embeddability of expanders

Consider

- S a finite generating subset of SL(3, Z) (e.g. elementary matrices $Id + e_{i,j}, i \neq j \in \{1, 2, 3\}$).
- X_n graph with vertices $SL(3, \mathbb{Z}/nZ)$ and an edge between *a* and *b* is $a^{-1}b \in S \mod n$.
- Then (Kazhdan-Margulis) $(X_n)_{n\geq 0}$ is an *expander*.

Question

What are the Banach spaces X that contain coarsely $(X_n)_{n\geq 1}$?

イロト 不得下 イヨト イヨト

Motivation 1: (non) coarse embeddability of expanders

Consider

- S a finite generating subset of SL(3, Z) (e.g. elementary matrices $\text{Id} + e_{i,j}, i \neq j \in \{1, 2, 3\}$).
- X_n graph with vertices $SL(3, \mathbb{Z}/nZ)$ and an edge between *a* and *b* is $a^{-1}b \in S \mod n$.
- Then (Kazhdan-Margulis) $(X_n)_{n\geq 0}$ is an expander.

Question

What are the Banach spaces X that contain coarsely $(X_n)_{n\geq 1}$?

Recall this means there exists $\rho: \mathbf{N} \to \mathbf{R}_+$ increasing with $\lim_n \rho(n) = \infty$ and 1-Lipschitz functions $f_n: X_n \to X$ such that for all n

$$\rho(d_n(x,y)) \leq \|f_n(x) - f_n(y)\|_X \text{ for all } x, y \in X_n.$$

What are the Banach spaces that contain coarsely $(X_n)_n$?

• ℓ^{∞} (obvious) and hence X with trivial cotype (Maurey-Pisier).

- ∢ 🗇 እ

What are the Banach spaces that contain coarsely $(X_n)_n$?

- ℓ^{∞} (obvious) and hence X with trivial cotype (Maurey-Pisier).
- Not Hilbert spaces (Gromov) and Not θ -Hilbertian spaces.

What are the Banach spaces that contain coarsely $(X_n)_n$?

- ℓ^{∞} (obvious) and hence X with trivial cotype (Maurey-Pisier).
- Not Hilbert spaces (Gromov) and Not θ-Hilbertian spaces.
- for SL(3, Z) replaced by a lattice in SL(3, Q_p): Not in a space with type > 1 (Lafforgue, see also Liao). New results (for SL(3, Z/nZ)):

What are the Banach spaces that contain coarsely $(X_n)_n$?

- ℓ^{∞} (obvious) and hence X with trivial cotype (Maurey-Pisier).
- Not Hilbert spaces (Gromov) and Not θ-Hilbertian spaces.
- for SL(3, Z) replaced by a lattice in SL(3, Q_p): Not in a space with type > 1 (Lafforgue, see also Liao). New results (for SL(3, Z/nZ)):
- Not a space X_0 for which $\exists \beta < 1/4$, C s.t. $d_n(X_0) \leq C n^{\beta}$ where

 $d_n(X_0) = \sup\{d(Y, \ell_n^2), Y \subset X_0 \text{ of dimension } n\}.$

- 3

イロト 不得下 イヨト イヨト

What are the Banach spaces that contain coarsely $(X_n)_n$?

- ℓ^{∞} (obvious) and hence X with trivial cotype (Maurey-Pisier).
- Not Hilbert spaces (Gromov) and Not θ-Hilbertian spaces.
- for SL(3, Z) replaced by a lattice in SL(3, Q_p): Not in a space with type > 1 (Lafforgue, see also Liao). New results (for SL(3, Z/nZ)):
- Not a space X_0 for which $\exists eta < 1/4$, C s.t. $d_n(X_0) \leq C n^{eta}$ where

 $d_n(X_0) = \sup\{d(Y, \ell_n^2), Y \subset X_0 \text{ of dimension } n\}.$

• Not (a subquotient of) $X_{\theta} = [X_0, X_1]_{\theta}$ with $\theta < 1$ and X_1 arbitrary.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Table of contents

Motivation 1: non-embeddability of expanders

2 Motivation 2: fixed points for affine isometric actions

3 Strong Banach property (T)

4 Proofs

5 Open problems

3

X Banach space, $Aff(X) = \{ \text{ affine isometries of } X \}.$

Definition

A (locally compact) group G has (F_X) if every (continuous) $\sigma: G \to Aff(X)$ has a fixed point $(=x \in X \text{ s.t. } \sigma(g)x = x \ \forall g \in G)$.

< < p>< < p>

X Banach space, $Aff(X) = \{ \text{ affine isometries of } X \}.$

Definition

A (locally compact) group G has (F_X) if every (continuous) $\sigma: G \to Aff(X)$ has a fixed point $(=x \in X \text{ s.t. } \sigma(g)x = x \ \forall g \in G)$.

Example: G has $(F_{\ell^2}) \Leftrightarrow G$ has $(T) \Leftrightarrow G$ has (F_{L^p}) for some (or all) $1 \le p \le 2$ (Delorme-Guichardet+Bader-Furman-Gelander-Monod).

イロト 不得下 イヨト イヨト

X Banach space, $Aff(X) = \{ affine isometries of X \}.$

Definition

A (locally compact) group G has (F_X) if every (continuous) $\sigma: G \to Aff(X)$ has a fixed point $(=x \in X \text{ s.t. } \sigma(g)x = x \ \forall g \in G)$.

Example: G has $(F_{\ell^2}) \Leftrightarrow G$ has $(T) \Leftrightarrow G$ has (F_{L^p}) for some (or all) $1 \le p \le 2$ (Delorme-Guichardet+Bader-Furman-Gelander-Monod).

If Γ is a hyperbolic group, $\exists p < \infty$ such that $\Gamma \notin (F_{\ell^p})$ (Bourdon-Pajot).

イロト イポト イヨト イヨト 二日

X Banach space, $Aff(X) = \{ affine isometries of X \}.$

Definition

A (locally compact) group G has (F_X) if every (continuous) $\sigma: G \to Aff(X)$ has a fixed point $(=x \in X \text{ s.t. } \sigma(g)x = x \ \forall g \in G)$.

Example: G has $(F_{\ell^2}) \Leftrightarrow G$ has $(T) \Leftrightarrow G$ has (F_{L^p}) for some (or all) $1 \le p \le 2$ (Delorme-Guichardet+Bader-Furman-Gelander-Monod).

If Γ is a hyperbolic group, $\exists p < \infty$ such that $\Gamma \notin (\mathsf{F}_{\ell^p})$ (Bourdon-Pajot).

Conjecture (BFGM)

Higher rank alebraic groups and their lattices have (F_X) for every superreflexive X.

X Banach space, $Aff(X) = \{ \text{ affine isometries of } X \}.$

Definition

A (locally compact) group G has (F_X) if every (continuous) $\sigma: G \to Aff(X)$ has a fixed point $(=x \in X \text{ s.t. } \sigma(g)x = x \forall g \in G)$.

Example: G has $(F_{\ell^2}) \Leftrightarrow G$ has $(T) \Leftrightarrow G$ has (F_{L^p}) for some (or all) $1 \le p \le 2$ (Delorme-Guichardet+Bader-Furman-Gelander-Monod).

If Γ is a hyperbolic group, $\exists p < \infty$ such that $\Gamma \notin (\mathsf{F}_{\ell^p})$ (Bourdon-Pajot).

Conjecture (BFGM)

Higher rank alebraic groups and their lattices have (F_X) for every superreflexive X.

(Lafforgue, Liao) the conjecture holds for non-archimedean fields (eg \mathbf{Q}_p). Main open case: SL(3, **R**), SL(3, **Z**).

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

X Banach space, $Aff(X) = \{ \text{ affine isometries of } X \}.$

Definition

A (locally compact) group G has (F_X) if every (continuous) $\sigma: G \to Aff(X)$ has a fixed point $(=x \in X \text{ s.t. } \sigma(g)x = x \ \forall g \in G)$.

 $\begin{array}{ll} \mbox{Example:} \ G \ \mbox{has} \ ({\sf F}_{\ell^2}) \Leftrightarrow G \ \mbox{has} \ ({\sf T}) \Leftrightarrow G \ \mbox{has} \ ({\sf F}_{L^p}) \ \mbox{for some (or all)} \\ 1 \leq p \leq 2 \ \mbox{(Delorme-Guichardet+Bader-Furman-Gelander-Monod)}. \end{array}$

If Γ is a hyperbolic group, $\exists p < \infty$ such that $\Gamma \notin (\mathsf{F}_{\ell^p})$ (Bourdon-Pajot).

Conjecture (BFGM)

Higher rank alebraic groups and their lattices have (F_X) for every superreflexive X.

(Lafforgue, Liao) the conjecture holds for non-archimedean fields (eg \mathbf{Q}_p). **New result**: for SL(3, **R**) and SL(3, **Z**), the conjecture holds for the Banach spaces X_{θ} as previously.

6 / 18

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Table of contents

Motivation 1: non-embeddability of expanders

2 Motivation 2: fixed points for affine isometric actions

Strong Banach property (T)

4 Proofs

5 Open problems

3

How are these two questions related?

3

イロト イヨト イヨト イヨト

- 2

イロト イポト イヨト イヨト

Definition of Banach (T) (Lafforgue)

G has (T_X) if there exists m_n (compactly supported symmetric) probability measures on *G* such that for every (continuous) linear isometric representation of *G* on *X*, $\pi(m_n)$ converges in the norm topology of B(X) to a projection on $X^{\pi} = \{x \in X, \pi(g)x = x \forall g \in G\}.$

(Lafforgue) Γ has $(\mathsf{T}_{\ell^2(\mathbf{N};X)}) \Rightarrow$ the expanders coming from Γ do not coarsely embed in X.

Definition of Banach (T) (Lafforgue)

G has (T_X) if there exists m_n (compactly supported symmetric) probability measures on *G* such that for every (continuous) linear isometric representation of *G* on *X*, $\pi(m_n)$ converges in the norm topology of B(X) to a projection on $X^{\pi} = \{x \in X, \pi(g)x = x \forall g \in G\}.$

(Lafforgue) Γ has $(\mathsf{T}_{\ell^2(\mathbf{N};X)}) \Rightarrow$ the expanders coming from Γ do not coarsely embed in X.

To define a stronger form, take $\ell: G \to \mathbf{N}$ the word-lenfth function associated to a compact generating set in G.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Definition of Banach (T) (Lafforgue)

G has (T_X) if there exists m_n (compactly supported symmetric) probability measures on *G* such that for every (continuous) linear isometric representation of *G* on *X*, $\pi(m_n)$ converges in the norm topology of B(X) to a projection on $X^{\pi} = \{x \in X, \pi(g)x = x \forall g \in G\}.$

(Lafforgue) Γ has $(\mathsf{T}_{\ell^2(\mathbf{N};X)}) \Rightarrow$ the expanders coming from Γ do not coarsely embed in X.

To define a stronger form, take $\ell: G \to \mathbf{N}$ the word-lenfth function associated to a compact generating set in G.

Definition of Strong Banach (T) (Lafforgue)

G has Strong (T_X) if there exists m_n (c.s. symm.) prob. measures on *G* and s > 0 such that for every (continuous) linear representation of *G* on *X* with $\sup_g e^{-s\ell(g)} < \infty$, $\pi(m_n)$ converges in the norm topology of B(X) to a projection on X^{π} .

• Γ has $(T_{\ell^2(X)}) \Rightarrow$ expanders not coarsely embed in X.

(日) (周) (三) (三)

- 34

- Γ has $(\mathsf{T}_{\ell^2(X)}) \Rightarrow$ expanders not coarsely embed in X.
- G has Strong $(\mathsf{T}_{X \oplus \mathsf{C}}) \Rightarrow G$ has (F_X) .

イロト イポト イヨト イヨト 二日

- Γ has $(\mathsf{T}_{\ell^2(X)}) \Rightarrow$ expanders not coarsely embed in X.
- G has Strong $(\mathsf{T}_{X \oplus \mathbf{C}}) \Rightarrow G$ has (F_X) .
- If $\Gamma \subset G$ (cocompact) lattice. G has (Strong) $(\mathsf{T}_{L^2(G/\Gamma;X)}) \Rightarrow \Gamma$ has (Strong) (T_X) .

- Γ has $(T_{\ell^2(X)}) \Rightarrow$ expanders not coarsely embed in X.
- G has Strong $(\mathsf{T}_{X \oplus \mathsf{C}}) \Rightarrow G$ has (F_X) .
- If $\Gamma \subset G$ (cocompact) lattice. G has (Strong) $(\mathsf{T}_{L^2(G/\Gamma;X)}) \Rightarrow \Gamma$ has (Strong) (T_X) .

Examples:

- Hyperbolic groups do not have Strong (T_{ℓ^2}) .
- $SL(3, \mathbf{R})$ has Strong (T_H) for Hilbert spaces H.
- $SL(3, \mathbf{Q}_p)$ has Strong (T_X) for every X with type > 1.
- (Liao) same result for G higher rank group on a nonarchimedean field.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Main results

Theorem (dlS) SL(3, **R**) has Strong (T_X) for every $X \in \mathcal{E}_4$.

Theorem (de Laat-dlS)

G connected simple Lie group of rank_R \geq 2. SL(3, **R**) has Strong (T_X) for every $X \in \mathcal{E}_{10}$.

where for $2 < r < \infty$, \mathcal{E}_r is the smallest set of Banach spaces such that

- $d_n(X_0) = O(n^{\beta})$ for some $\beta < 1/r \Rightarrow X_0 \in \mathcal{E}_r$.
- X is isomorphic to (a subquotient) of $[X_0, X_1]_{\theta}$ with $\theta < 1 \Rightarrow X_0 \in \mathcal{E}_r$.

- 3

10 / 18

イロト 不得下 イヨト イヨト

The family of Banach spaces \mathcal{E}_r

What is known about d_n :

- $d_n(X) \le n^{1/2}$ always, with equality if $X = \ell_n^1$ and hence if X has trivial type.
- (Milman-Wolfson) if X has type > 1, $d_n(X) = o(n^{1/2})$.
- (Koenig-Retherford-Tomczak-Jaegermann) if X has type p and cotype q,

$$d_n(X) \leq C n^{1/p-1/q}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

The family of Banach spaces \mathcal{E}_r

What is known about $d_n \mathcal{E}_r$:

- $d_n(X) \le n^{1/2}$ always, with equality if $X = \ell_n^1$ and hence if X has trivial type.
- (Milman-Wolfson) if X has type > 1, $d_n(X) = o(n^{1/2})$.
- (Koenig-Retherford-Tomczak-Jaegermann) if X has type p and cotype q,

$$d_n(X) \leq C n^{1/p-1/q}$$

- every space in \mathcal{E}_r has type > 1.
- (Pisier-Xu) for every $r < \infty$, \mathcal{E}_r contains non-superreflexive spaces.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

The family of Banach spaces \mathcal{E}_r

What is known about $d_n \mathcal{E}_r$:

- $d_n(X) \le n^{1/2}$ always, with equality if $X = \ell_n^1$ and hence if X has trivial type.
- (Milman-Wolfson) if X has type > 1, $d_n(X) = o(n^{1/2})$.
- (Koenig-Retherford-Tomczak-Jaegermann) if X has type p and cotype q,

$$d_n(X) \leq C n^{1/p-1/q}$$

• every space in \mathcal{E}_r has type > 1.

• (Pisier-Xu) for every $r < \infty$, \mathcal{E}_r contains non-superreflexive spaces.

Open questions:

Does \mathcal{E}_r depend on r?

Does $\cup_{r>2} \mathcal{E}_r$ contain all spaces with type > 1? All superreflexive spaces?

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Table of contents

- Motivation 1: non-embeddability of expanders
- 2 Motivation 2: fixed points for affine isometric actions
- 3 Strong Banach property (T)

Open problems

3

イロト イヨト イヨト イヨト

Banach-space representations of $U = \begin{pmatrix} 1 & 0 \\ 0 & SO(2) \end{pmatrix} \subset K = SO(3)$

If $\pi: SO(3) \to GL(X)$ is an isometric representation of SO(3). A *U-biinvariant coefficient of* π is a map

 $c(k) = \langle \pi(k)\xi, \eta \rangle$

for $\xi \in X$, $\eta \in X^*$ *U*-invariant unit vectors.

Banach-space representations of $U = \begin{pmatrix} 1 & 0 \\ 0 & SO(2) \end{pmatrix} \subset K = SO(3)$

If $\pi: SO(3) \to GL(X)$ is an isometric representation of SO(3). A *U-biinvariant coefficient of* π is a map

 $c(k) = \langle \pi(k)\xi, \eta \rangle$

for $\xi \in X$, $\eta \in X^*$ *U*-invariant unit vectors. Goal: find C > 0, $\alpha > 0$ such that

$$|c(k_0) - c(k_\delta)| \le C |\delta|^s$$
 where $k_\theta = \begin{pmatrix} R_{\pi/2+\delta} & 0\\ 0 & 1 \end{pmatrix}$. (1)

13 / 18

Banach-space representations of $U = \begin{pmatrix} 1 & 0 \\ 0 & \mathrm{SO}(2) \end{pmatrix} \subset K = \mathrm{SO}(3)$

If $\pi: SO(3) \to GL(X)$ is an isometric representation of SO(3). A U-biinvariant coefficient of π is a map

 $c(k) = \langle \pi(k)\xi, \eta \rangle$

for $\xi \in X$, $\eta \in X^*$ *U*-invariant unit vectors. Goal: find C > 0. $\alpha > 0$ such that

$$|c(k_0) - c(k_\delta)| \le C |\delta|^s$$
 where $k_\theta = \begin{pmatrix} R_{\pi/2+\delta} & 0\\ 0 & 1 \end{pmatrix}$. (1)

(1) for every $\pi : SO(3) \to GL(X)$ implies that $SL(3, \mathbf{R})$ has Strong (T_X) . Lafforgue proved (1) for $X = \ell^2$ with s = 1/2.

13 / 18

Reduction

Enough to prove

$$\|T_0 - T_\delta\|_{L^2(K;X) \to L^2(K;X)}$$

where $T_\delta f(k) = \iint_{U \times U} f(kuk_\delta u') dudu'$.
Knowing
 $\|T_0 - T_\delta\|_{L^2(K) \to L^2(K)} \le C\sqrt{|\delta|}.$

Let A: $L^2(\Omega) \to L^2(\Omega)$ an operator of small norm ε . Under what condition on X can we say $||A_X|| := ||A||_{L^2(\Omega;X) \to L^2(\Omega;X)} << 1$?

Let $A: L^{2}(\Omega) \to L^{2}(\Omega)$ an operator of small norm ε . Under what condition on X can we say $||A_{X}|| := ||A||_{L^{2}(\Omega;X) \to L^{2}(\Omega;X)} << 1$? In general (Kwapien), $||A_{X}|| < \infty \Rightarrow X \simeq$ a Hilbert space!

Let $A: L^{2}(\Omega) \to L^{2}(\Omega)$ an operator of small norm ε . Under what condition on X can we say $||A_{X}|| := ||A||_{L^{2}(\Omega;X) \to L^{2}(\Omega;X)} << 1$? In general (Kwapien), $||A_{X}|| < \infty \Rightarrow X \simeq$ a Hilbert space! \longrightarrow Assume moreover $||A_{\ell^{\infty}}|| = 1$ (implies $||A_{X}|| \le 1$ for all X).

Let $A: L^{2}(\Omega) \to L^{2}(\Omega)$ an operator of small norm ε . Under what condition on X can we say $||A_{X}|| := ||A||_{L^{2}(\Omega;X) \to L^{2}(\Omega;X)} << 1$?

In general (Kwapien), $||A_X|| < \infty \Rightarrow X \simeq$ a Hilbert space! \longrightarrow Assume moreover $||A_{\ell^{\infty}}|| = 1$ (implies $||A_X|| \le 1$ for all X).

In general (Pisier) the existence of $\theta > 0$ such that $||A_X|| \le C\varepsilon^{\theta}$ implies X superreflexive (θ -Hilbertian).

Let $A: L^2(\Omega) \to L^2(\Omega)$ an operator of small norm ε . Under what condition on X can we say $||A_X|| := ||A||_{L^2(\Omega;X) \to L^2(\Omega;X)} << 1$?

In general (Kwapien), $||A_X|| < \infty \Rightarrow X \simeq$ a Hilbert space! \longrightarrow Assume moreover $||A_{\ell^{\infty}}|| = 1$ (implies $||A_X|| \le 1$ for all X).

In general (Pisier) the existence of $\theta > 0$ such that $||A_X|| \le C\varepsilon^{\theta}$ implies X superreflexive (θ -Hilbertian).

Conclusion: we have to find some specific properties of the operators $T_0 - T_{\delta}$.

Let $A: L^2(\Omega) \to L^2(\Omega)$ an operator of small norm ε . Under what condition on X can we say $||A_X|| := ||A||_{L^2(\Omega;X) \to L^2(\Omega;X)} << 1$?

In general (Kwapien), $||A_X|| < \infty \Rightarrow X \simeq$ a Hilbert space! \longrightarrow Assume moreover $||A_{\ell^{\infty}}|| = 1$ (implies $||A_X|| \le 1$ for all X).

In general (Pisier) the existence of $\theta > 0$ such that $||A_X|| \le C\varepsilon^{\theta}$ implies X superreflexive (θ -Hilbertian).

Conclusion: we have to find some specific properties of the operators $T_0 - T_{\delta}$.

This property is *p*-summability!

Schatten classes and geometry of Banach spaces

The inequality (1) for $X \in \mathcal{E}_4$ follows from two facts :

```
Lemma (Lafforgue-dlS 2011)
```

For every p > 4 there is a constant C_p such that

$$||T_0 - T_\delta||_{S^p(L^2K)} \le C_p |\delta|^{1/2 - 2/p}.$$

Proposition (Pietsch, Pisier, ? dlS ?) If $A \in S^p(L^2\Omega)$ and $d_n(X) \leq Cn^\beta$ for $\beta < 1/p$ then $\|A\|_{L^2(\Omega;X) \to L^2(\Omega;X)} \leq C' \|A\|_{S^p}.$

- 3

16 / 18

- 4 同 6 4 日 6 4 日 6

Table of contents

- Motivation 1: non-embeddability of expanders
- 2 Motivation 2: fixed points for affine isometric actions
- 3 Strong Banach property (T)
- 4 Proofs

3

• Does Strong (T) pass to non cocompact lattices? What about $SL(3, \mathbf{Z})$?

- 3

- Does Strong (T) pass to non cocompact lattices? What about $\mathrm{SL}(3,\boldsymbol{Z})?$
- Does \mathcal{E}_r depend on r?

- 3

- Does Strong (T) pass to non cocompact lattices? What about $SL(3, \mathbf{Z})$?
- Does \mathcal{E}_r depend on r?
- Is ∪_{r>2} *E_r* equal to all spaces with type > 1. Does it contain all superreflexive spaces? (⇔ old open problem from the 1970's).

- Does Strong (T) pass to non cocompact lattices? What about $SL(3, \mathbf{Z})$?
- Does \mathcal{E}_r depend on r?
- Is ∪_{r>2} *E_r* equal to all spaces with type > 1. Does it contain all superreflexive spaces? (⇔ old open problem from the 1970's).
- How to prove $||T_O T_\delta||_{L^2(K;X) \to L^2(K;X)} \le C|\delta|^s$ for every X of type > 1?

- Does Strong (T) pass to non cocompact lattices? What about $SL(3, \mathbf{Z})$?
- Does \mathcal{E}_r depend on r?
- Is $\cup_{r>2} \mathcal{E}_r$ equal to all spaces with type > 1. Does it contain all superreflexive spaces? (\Leftrightarrow old open problem from the 1970's).
- How to prove $||T_O T_\delta||_{L^2(K;X) \to L^2(K;X)} \le C|\delta|^s$ for every X of type > 1?

Thank you!