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Populärvetenskaplig sammanfattning

Studiet av dynamiska system grundar sig i att förstå det långsiktiga beteendet hos ett
system som fortskrider i tiden, enligt vissa för systemet specifika regler. Dynamiska system
uppkommer naturligt inom olika vetenskapliga discipliner, exempelvis då man vill studera
planeternas rörelse, ta fram väderprognoser, eller förstå hur ett virus sprider sig i samhället.

För att studera dessa naturliga system behöver man matematiska modeller. Dessa modeller
är naturligt parametriserade och det är därför av intresse att inte enbart studera ett specifikt
dynamiskt system, utan en parametriserad familj av dynamiska system. En viktig fråga man
kan ställa är hur robusta dessa system är, eller med andra ord, hur dynamiken förändras vid
små störningar av parametrarna. Fastän modellerna man tar fram ofta är förenklade, och
parameterberoendet väldigt explicit, uppkommer teoretiskt intressanta och mycket icke-
triviala problem. Av betydande intresse är interaktionen mellan tamt beteende och kaotiskt
beteende. I parameterrummet är dessa två skilda företeelser ofta komplext sammanvävda.

I denna avhandling studeras små störningar av kaotiska system. Dessa system kommer
att beskrivas av funktioner på intervallet och på Riemannsfären. Systemen vi studerar
har kritiska punkter, det vill säga punkter där funktionens derivata är lika med noll. Hur
dynamiken för dessa specifika punkter ter sig visar sig ha stor betydelse för den globala
dynamiken. En viktig aspekt är rekurrent beteende: med vilken hastighet återkommer de
kritiska punkterna till varandra under iteration? Avhandlingen bygger vidare på tidigare väl
etablerade resultat, och det centrala temat är just dessa frågeställningar angående rekurrens
och dess konsekvenser.
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Introduction and summary





Chapter 1

Introduction

This introductory chapter gives a brief overview of the theory and results on which the
scientific papers of this thesis are based upon. It is divided into five sections as follows.
We begin by introducing what a dynamical system is, and some of the most fundamental
notions. The second section is devoted to the real quadratic family, which is the system
studied in Paper I, and which is one of the most well studied families of dynamical systems.
In Paper II and Paper III we study the dynamics of rational functions on the Riemann
sphere, and this topic is briefly introduced in the third section. In the fourth section we
discuss the Collet–Eckmann condition and some of its variants. These are conditions of
non-hyperbolicity and they play a central role in the thesis. In the final section we give a
schematic outline of the Benedicks–Carleson techniques, which are the foundational tools
used in Paper I and Paper II.

These sections below are by nomeans complete in terms of their scope, andmany important
results andnotions are left out. Rather, the goal is to give theminimal informationneeded to
motivate the problems studied in Paper I–III. Relevant references will be given throughout
the text, but for the more general theory of interval dynamics and complex (rational)
dynamics, we refer to [dMvS93,Dev92] and [CG93,Mil06,Bea91], respectively.

1 Some notions in dynamical systems

In this thesis we are concerned with the study of discrete dynamical systems. At its core this
constitutes a set𝑋 of points and a mapping 𝑓 ∶ 𝑋 → 𝑋. The set𝑋 is usually referred to as
the state space (or phase space), with each 𝑥 ∈ 𝑋 representing a specific state of the system.
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The mapping 𝑓 is the evolution mapping which determines the future of the system, taking
state 𝑥 to its future state 𝑓(𝑥). One of the main objectives when studying a dynamical
system is to understand its long term behaviour: given a state 𝑥 ∈ 𝑋, how does its orbit

𝑥, 𝑓(𝑥), 𝑓(𝑓(𝑥)), … , 𝑓𝑛(𝑥), …

distribute in state space? Here and elsewhere, 𝑓𝑛 always denotes the 𝑛th iterate of 𝑓. That
is, 𝑓0 = id and 𝑓𝑛 = 𝑓 ∘ 𝑓𝑛−1, with 𝑛 ≥ 1 an integer.

More generally, given one or more parameters 𝜆 belonging to some parameter space, one
can consider a family of dynamical systems 𝑓𝜆 ∶ 𝑋 → 𝑋. In this setting it is of interest
to understand how certain behaviours of the system are affected by small changes of the
parameter value.

The above questions are of course too general to answer if no structure on𝑋 nor regularity
on 𝑓 are imposed. In this thesis we study the so-called real quadratic family

𝑥 ↦ 𝑥2 + 𝑎 = 𝑄𝑎(𝑥),

acting on the real line, and more general rational functions

𝑧 ↦
𝑎𝑑𝑧

𝑑 + 𝑎𝑑−1𝑧
𝑑−1 + ⋯ + 𝑎0

𝑏𝑑𝑧𝑑 + 𝑏𝑑−1𝑧𝑑−1 + ⋯ + 𝑏0
= 𝑅(𝑧),

acting on the Riemann sphere. The quadratic family can be seen as a ‘toy model’ for the
more general study of rational maps, but has also been used in, for instance, biological
modelling [May76]. Nevertheless, already in this analytically simple family of dynamical
systems one finds very rich dynamics.

To understand the dynamics of a function 𝑓 such as above, acting on some appropriate
space, it is important to look for points which are left invariant under the action of 𝑓, and
to study the local behaviour of 𝑓 near these points. Such points are called fixed points, and
per definition they solve the equation 𝑓(𝑥) = 𝑥. More generally, one can look for so-called
periodic points. A point 𝑥 is a periodic point of 𝑓 if there exists an integer 𝑘 > 0 such that

𝑥 ↦ 𝑓(𝑥) ↦ 𝑓2(𝑥) ↦ ⋯ ↦ 𝑓𝑘(𝑥) = 𝑥.

Such an above orbit is usually referred to as a cycle, and if 𝑘 > 0 is the least integer such that
the above holds, then 𝑘 is called the length of the cycle. A cycle of length 𝑘 is classified as

• attracting if |(𝑓𝑘)′(𝑥)| < 1,
• repelling if |(𝑓𝑘)′(𝑥)| > 1,
• neutral if |(𝑓𝑘)′(𝑥)| = 1.
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These names are very suggestive: nearby points get closer to the cycle under iteration if
the cycle is attracting, get further away if the cycle is repelling, and in the neutral case both
instances may occur.

Another important notion is that of critical points. A point 𝑥 is a critical point of 𝑓 if the
derivative of 𝑓 at 𝑥 vanishes, i.e. critical points are the solutions to the equation 𝑓′(𝑥) = 0.
From now on we denote the set of critical points of 𝑓 by Crit(𝑓). It turns out that the
behaviour of the critical orbit(s) is of great importance to the global dynamics, and we give
some motivation to this claim in the following sections.

The results of this thesis are in one way or another concerned with the notion of critical
recurrence. In Paper I we investigate the real quadratic family and prove a theorem regarding
the rate of recurrence of the critical point to itself. This extends a previous result, and com-
pletes the picture of so-called polynomial recurrence. In Paper II and Paper III we consider
rational functions. Here we do not prove any results regarding the rate of recurrence, rather
we investigate some of the consequences when the critical points are allowed to approach
each other only at a slow rate.

2 The real quadratic family

Aquadratic polynomial acting on the real line is from an analytic point of view the simplest
non-linear dynamical system one can study. Let 𝑥 ↦ 𝐴𝑥2 + 𝐵𝑥 + 𝐶 = 𝑝(𝑥) be a quadratic
polynomial with real coefficients 𝐴 ≠ 0, 𝐵, and 𝐶. Conjugating this polynomial with
𝑥 ↦ 𝐴𝑥we get themonic quadratic polynomial 𝑥 ↦ 𝑥2+𝐵𝑥+𝐴𝐶, and further conjugating
with𝑥 ↦ 𝑥+𝐵/2, i.e. translating the critical point to the origin, we endupwith the so-called
real quadratic family

𝑥 ↦ 𝑥2 + 𝑎 = 𝑄𝑎(𝑥),

with 𝑎 = 𝐵/2 − 𝐵2/4 + 𝐴𝐶 being the parameter. Given a real parameter 𝑎, going the other
way arounddoes not determine a unique quadratic polynomial. Rather, each 𝑎 corresponds
to a conjugacy class. In this thesis we are concerned with the recurrent behaviour of the
critical orbit. To motivate this study, and also settle some notation, let us first briefly
mention some of the major results regarding this family of dynamical systems.

To understand the dynamics of𝑄𝑎 for different values of 𝑎, understanding the behaviour
of the critical orbit is of interest, as can be understood from the following result.

Proposition 2.1. For each parameter 𝑎 there can exist at most one (finite) attracting cycle
for the corresponding quadratic map𝑄𝑎. Moreover, if an attracting cycle exists, the orbit of
the critical point 𝑥 = 0 will accumulate along this cycle.
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As a first step towards understanding the behaviour of the iterations of the critical point,
we allow ourselves to restrict the parameter interval.

Proposition 2.2. If 𝑎 does not belong to the interval [−2, 1/4], then𝑄𝑛
𝑎(0) tends to infinity

as 𝑛 tends to infinity. On the other hand, if 𝑎 belongs to [−2, 1/4] then there exists an interval
𝐼𝑎 ⊂ [−2, 2], containing the critical point, such that𝑄𝑎(𝐼𝑎) ⊂ 𝐼𝑎.

To begin the study of the qualitative behaviour of the real quadratic family, the following
proposition can be checked by hand.

Proposition 2.3. For the quadratic family𝑄𝑎:

(1) For 𝑎 = 1/4, there is a single fixed point that is neutral.

(2) For −3/4 < 𝑎 < 1/4, there is an attracting fixed point.

(3) For 𝑎 = −3/4, the attracting fixed point given in (2) becomes neutral.

(4) For −5/4 < 𝑎 < −3/4, there is an attracting cycle of length two.

Hence, for parameter values in the interval (−5/4, 1/4], the dynamics is rather trivial. In
fact, for such a parameter, almost every point of 𝐼𝑎 (with respect to Lebesgue measure) will
tend to the attracting fixed point, or 2-cycle, under iteration. To calculate attracting cycles
by hand soon becomes impractical, and onemust rely onmore qualitative and sophisticated
techniques. The transition from an attracting fixed point to an attracting 2-cycle is an
example of a so-called period-doubling bifurcation. By plotting the iterations of the critical
point for different values of 𝑎, this period-doubling bifurcation can be illustrated as in
Figure 1.1. Here one sees, going from right to left, the transition from an attracting fixed
point to an attracting 2-cycle, from an attracting 2-cycle to an attracting 4-cycle, and so on.
At the parameter value 𝑎 = −1.401… (the so-called Feigenbaum point), we see a sudden
change in the behaviour of the orbit of the critical point. Namely, the orbit does not seem
to be attracted to any cycle. This motivates the following definition.

Definition 2.4. A parameter 𝑐 ∈ [−2, 1/4] is called a regular parameter if 𝑥 ↦ 𝑥2 + 𝑐 has
an attracting cycle, and otherwise it is called a nonregular parameter. The set of regular
parameters is denotedℛ, and the set of nonregular parameters is denoted𝒩ℛ.

It is customary to call the corresponding function𝑄𝑎 regular (or nonregular) if the para-
meter 𝑎 is regular (or nonregular). Looking at the bifurcation diagram of Figure 1.1, the
‘white windows’ correspond to regular parameters, while the ‘black lines’ correspond to
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nonregular parameters. To understand these two sets of parameters, and how they are
intertwined, has been a central topic of study during the last couple of decades.

2.0 1.5 1.0 0.5 0.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Figure 1.1: Bifurcation diagram for 𝑥 ↦ 𝑥2 + 𝑎, 𝑎 ∈ [−2, 1/4].

When studying a parameterised family of dynamical systems, one is often interested in
whether some specific property holds on a positive measure set of parameters. In the case
of the quadratic family, the natural measure on the parameter interval is the Lebesgue
measure (which we from now on denote by Leb). For instance, it is obvious that the set
of regular parameters has positive measure since the interval (−3/4, 1/4) is contained in
ℛ. Moreover, it is not difficult to show that the set of parameters having neutral cycles
constitute only a set of measure zero. More difficult is the question about the measure
of the set of nonregular parameters. In 1981, M. Jakobson [Jak81] initiated the study of
nonregular parameters by proving that there exists a set Δ𝐽 of positive measure such that
for each 𝑎 ∈ Δ𝐽 there exists an absolutely continuous (with respect to Lebesgue) invariant
probability measure (acip) for the corresponding quadratic function 𝑄𝑎. This in turn
implies that the Lebesgue measure of𝒩ℛ is positive, since for a regular parameter any
finite invariant measure is necessarily singular with respect to Lebesgue measure, being the
sum of point measures along the attracting cycle. We make the following definition for
this subset of the nonregular parameters.
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Definition 2.5. A parameter 𝑎 ∈ [−2, 1/4] is called a stochastic parameter if 𝑥 ↦ 𝑥2 + 𝑎
has an absolutely continuous (with respect to Lebesgue) invariant probability measure.
The set of stochastic parameters is denoted 𝒮.

We recall that the measure 𝜇 is acip with respect to the function 𝑓 if it is a probability
measure and if, for every measurable set𝐴, 𝜇(𝑓−1(𝐴)) = 𝜇(𝐴) and

𝜇(𝐴) = ∫
𝛢

𝑑𝜇
𝑑Leb𝑑Leb,

with 𝑑𝜇/𝑑Leb denoting the so-called Radon-Nikodým derivative.

Having an acip is one characterisation of being nonregular. Other characterisations can be
formulated in terms of the derivative along the critical orbit. Indeed, since for a regular
map the critical orbit accumulates on the attracting cycle, the condition

lim inf𝑛→∞ |(𝑄𝑛
𝑎)

′(𝑎)| > 0

clearly implies 𝑎 being nonregular. However this condition is not necessary: in [Bru94]
examples of parameters 𝑎 are provided such that 𝑥 ↦ 𝑥2 + 𝑎 has no attracting or neutral
cycles, but lim inf𝑛→∞ |(𝑄

𝑛
𝑎)

′(𝑎)| = 0. Instead, let us denote by 𝜒−(𝑎) the so-called lower
Lyapunov exponent

𝜒−(𝑎) = lim inf𝑛→∞

log |(𝑄𝑛
𝑎)

′(𝑎)|
𝑛 .

It turns out that the condition 𝜒−(𝑎) ≥ 0 is the correct one to consider, since it is not only
sufficient for 𝑎 to be nonregular, but also necessary [NS98,LPS16].

Focusing on a similar condition as the above,M. Benedicks and L. Carleson [BC85] proved
in the early 1980s that there exists a setΔ𝛣𝐶 of positive measure such that, for each 𝑎 ∈ Δ𝛣𝐶,
the derivative along the critical orbit grows at least subexponentially:

lim inf𝑛→∞

log |(𝑄𝑛
𝑎)

′(𝑎)|
√𝑛 > 0.

Moreover, for each 𝑎 ∈ Δ𝛣𝐶, the corresponding quadratic map has an acip. In the sub-
sequent paper [BC91], working with the so-called Hénon family, Benedicks and Carleson
improved this growth condition and showed that it is in fact exponential. This condition
of having exponential growth of the derivative along the critical orbit is called the Collet–
Eckmann condition, and itwas first introducedbyP.Collet and J. P. Eckmann [CE83,CE80]
where they used this condition to prove the abundance of functions with chaotic dynamics
within certain families of dynamical systems. The Collet–Eckmann condition, and some
of its variants, are further discussed in Section 4 below. For the quadratic family, we make
the following definition.
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Definition 2.6. A parameter 𝑎 ∈ [−2, 1/4] is called a Collet–Eckmann parameter if the
corresponding quadratic map satisfies the Collet–Eckmann condition

lim inf𝑛→∞

log |(𝑄𝑛
𝑎)

′(𝑎)|
𝑛 > 0.

The set of Collet–Eckmann parameters is denoted 𝒞ℰ.

The techniques developed in [BC85,BC91] are of great importance in the field of dynamical
systems, and are also central to this thesis. We come back to these in Section 5.

It turns out that both the property of being stochastic, and that of being Collet–Eckmann,
are typical within the real quadratic family, namely

Leb𝒩ℛ = Leb𝒮 = Leb𝒞ℰ .

That the stochastic parameters are typical within nonregular parameters was proved by
M. Lyubich [Lyu02], following the work in [Lyu00,MN00]. That the Collet–Eckmann
parameters are typical within nonregular parameters was proved by A. Avila andC. G.Mor-
eira [AM05]. For this reason, one can consider both of these conditions as good character-
isations of being nonregular.

Considering the set of regular parameters, one can with an application of the inverse
function theorem show that this set is open, i.e. small changes in the parameter value of
a regular map do not alter the existence of an attracting cycle. A much deeper result is
that these parameters form a dense set in [−2, 1/4]. This result, known as the real Fatou
conjecture, was proved by J. Graczyk and G. Świątek [GS97,GS98b], and independently by
Lyubich [Lyu97]. This genericity result was later extended to the class of real polynomials
of arbitrary fixed degree, by O. Kozlovski, W. Shen, and S. van Strien [KSvS07]. With the
characterisation of nonregular maps, and the density of regular maps, one can say that
from a qualitative point of view, the real quadratic family is well-understood.

Considering the orbit of the critical point, we know from Proposition 2.1 that if 𝑎 is a
regular parameter, then its orbit accumulates on the attracting cycle. If 𝑎 on the other
hand is a nonregular parameter then, by definition, there can be no accumulation on an
attracting cycle, and we are left with two possible cases:

either lim inf𝑛→∞ |𝑄𝑛
𝑎(0)| > 0 or lim inf𝑛→∞ |𝑄𝑛

𝑎(0)| = 0.

The first case is known as theMisiurewicz case, and it implies that there exists 𝛿 = 𝛿(𝑎) > 0
such that |𝑄𝑛

𝑎(0)| > 𝛿 for all 𝑛 ≥ 1. It was conjectured by M. Misiurewicz in the early
1980s that these parameters constitute only a set of measure zero, and this conjecture was
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proved to be true by D. Sands [San98]. Hence for a typical nonregular parameter the
second case holds, and we simply call this the recurrent case. In this recurrent case, it is
natural to ask at what rate the critical point returns to itself or, more precisely, what are the
correct conditions on 𝛿𝑛 that guarantee

|𝑄𝑛
𝑎(0)| < 𝛿𝑛 for infinitely many 𝑛. (1.1)

It was conjectured by Y. Sinai that in the recurrent case, the critical point typically returns
with exponent 1. This can be formulated as, for almost every nonregular parameter 𝑎,

lim sup
𝑛→∞

− log |𝑄𝑛
𝑎(0)|

log 𝑛 = 1.

This conjecture was indeed proved to be true by Avila andMoreira [AM05]. Another way
to phrase this result is as follows: for almost every nonregular parameter 𝑎, the set of 𝑛 such
that |𝑄𝑛

𝑎(0)| < 1/𝑛𝜃 is finite if 𝜃 > 1, and infinite if 𝜃 < 1. This result motivated Paper I,
namely to study the case of the critical exponent 𝜃 = 1.

3 Rational dynamics

The study of iterations of rational maps on the Riemann sphere ℂ̂ was first initiated by
P. Fatou [Fat19,Fat20a,Fat20b] andG. Julia [Jul18] around the 1920s. With the emergence
of computers with better power of computation, this theory got more popular in the 1980s,
much due to themany beautiful pictures. Let us briefly introduce the fundamental notions
of rational dynamics.

We consider rational functions of one complex variable 𝑧 belonging to theRiemann sphere
ℂ̂. The Riemann sphere is the complex plane together with the abstract ‘point at infinity’.
Through stereographic projection, ℂ̂ is identified with the usual euclidean sphere inℝ3,
and by pulling back the euclidean metric | ⋅ | this provides us with the so-called chordal
metric 𝜎. For points 𝑧 and 𝑤 in the plane the distance between them with respect to the
chordal metric is

𝜎(𝑧, 𝑤) = 2|𝑧 − 𝑤|
√1 + |𝑧|2√1 + |𝑤|2

,

and if 𝑤 = ∞ then
𝜎(𝑧, ∞) = lim𝑤→∞ 𝜎(𝑧, 𝑤) =

2
√1 + |𝑧|2

.

Instead of the chordal metric one can also consider the equivalent so-called spherical metric
𝜎0, which is defined as

𝜎0(𝑧, 𝑤) = inf𝛾 ∫
𝛾

|𝑑𝑡|
1 + |𝑡|2

,
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where the infimum is taken over all continuous curves 𝛾 joining 𝑧 and 𝑤.

Each rational function can be represented as the quotient of two polynomials

𝑧 ↦
𝑎𝑑𝑧

𝑑 + 𝑎𝑑−1𝑧
𝑑−1 + ⋯ + 𝑎0

𝑏𝑑𝑧𝑑 + 𝑏𝑑−1𝑧𝑑−1 + ⋯ + 𝑏0
= 𝑃(𝑧)
𝑄(𝑧) = 𝑅(𝑧),

with 𝑎𝑖 and 𝑏𝑖 belonging toℂ. We always assume that the𝑃 and𝑄 donot share any common
factors, and if not both 𝑎𝑑 and 𝑏𝑑 are equal to 0, we say that the degree of R deg(𝑅) is equal
to 𝑑. Thus, a rational map of degree 𝑑 is a 𝑑-to-1 covering of the Riemann sphere onto
itself. The spherical derivative of 𝑧 ↦ 𝑅(𝑧) is defined as

𝐷𝑅(𝑧) = 𝑅′(𝑧) 1 + |𝑧|2

1 + |𝑅(𝑧)|2
,

and we notice that it satisfies the chain rule.

The parameter space of rational maps (of a fixed degree 𝑑) is more complicated than that of
the interval. We can assume that either 𝑎𝑑 = 1 or 𝑏𝑑 = 1, thus the parameter space of rational
maps of degree 𝑑 is a (2𝑑 + 1)-dimensional complex manifold, and also a subspace of the
projective space ℂℙ2𝑑+1. On each of the two charts corresponding to 𝑎𝑑 = 1 and 𝑏𝑑 = 1,
respectively, the Lebesgue measures are mutually absolutely continuous. The Lebesgue
measures on each chart are also mutually absolutely continuous to the induced Fubini-
Study measure onℂℙ2𝑑+1. In Paper II we use a special normalisation of rational functions
of degree 𝑑, due to G. Levin [Lev14]. We identify two rational functions of degree 𝑑 as
being equal if they are conjugated by aMöbius transformation. Up to equivalence, we then
consider the space of rational functions (of degree 𝑑) with exactly 𝑝′ different critical points
𝑐1, 𝑐2, … , 𝑐𝑝′ , with corresponding multiplicities 𝑝′ = (𝑚1, 𝑚2, … , 𝑚𝑝′). Within this space,
which we denote byΛ𝑑,𝑝′ , critical points move analytically with respect to the parameter.
In particular, if all critical points are simple, i.e. 𝑝′ = (1, 1, … , 1), thenΛ𝑑,𝑝′ is locally equal
to the entire parameter space.

An early and important step in the theory of rational dynamics was made by Fatou and
Julia when they described a decomposition of the Riemann sphere into two invariant sets
with respect to a rational function, namely the Fatou set and its complement, the Julia
set. The Fatou set of a rational map 𝑅 is denotedℱ(𝑅) and is by definition the domain of
normality: for each 𝑧 ∈ ℱ(𝑅) there exists a neighbourhood𝑈, containing 𝑧, such that the
set of consecutive iterates of 𝑅 restricted to𝑈 forms a normal family. That is to say, there
exists an increasing sequence 𝑛𝑘 such that 𝑓

𝑛𝑘|𝑈 converges locally uniformly on compact
subsets of 𝑈, with respect to the spherical metric. Intuitively, nearby points belonging
to the Fatou set share similar limiting behaviour, and for this reason the dynamics on the
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Fatou set is considered stable. From the definition, it follows that the Fatou set is open,
hence the Julia set is compact. We denote the Julia set by𝒥(𝑅). Using Montel’s theorem,
one can prove that the Julia set is equal to the closure of the repelling cycles. Hence, nearby
points belonging to the Julia set will repel each other, and one speaks of chaotic dynamics.
On the Julia set, it therefore makes sense to talk about Lyapunov exponents, invariant
measures, and so on.

The dynamics in the Fatou set for a rational function is well understood, and for complete-
ness we state the following classification result. A component𝑈 of the Fatou setℱ(𝑅) is
called fixed if 𝑅(𝑈) = 𝑈, periodic if 𝑅𝑘(𝑈) = 𝑈 for some 𝑘 > 0, and pre-periodic if 𝑅𝑙(𝑈)
is periodic for some 𝑙 > 0. That these are the only possibilities was proved by D. Sulli-
van [Sul85]: a component𝑈 of the Fatou set of a rational map is either fixed, periodic,
or pre-periodic. This result by Sullivan, which is often called Sullivan’s no-wandering-
domain theorem, is a milestone in rational dynamics, and introduced the new idea of using
quasiconformal mappings in dynamics.

Assuming𝑈 to be a fixed component, the dynamics can be classified as follows.

Proposition 3.1. Let𝑈 be a fixed component of the Fatou set of a rational function. Then
one of the following alternatives is true.

(1) 𝑈 contains an attracting fixed point for which all points in𝑈 converge to under iteration,

(2) 𝜕𝑈 contains a neutral fixed point for which all point in𝑈 converge to under iteration,

(3) 𝑈 is either conformally equivalent to the disk or an annulus, and the dynamics is conjug-
ated to a euclidean rotation.

In case (2) above, the neutral fixed point, say 𝑧 = 𝑅(𝑧), is in fact a so-called parabolic
fixed point. By definition this means that𝐷𝑅(𝑧) = 𝑒𝑖𝑝/𝑞, with 𝑝 and 𝑞 being integers. If
𝑈 is of type (3), it is called a Siegel disk if it is conformally equivalent to the disk, and a
Herman ring if it is conformally equivalent to an annulus. The rotation angle is, in either
case, irrational. Proposition 3.1 can be naturally generalised to periodic components by
considering a suitable iterate of the rational map.

Let us now begin to consider the dynamics on the Julia set. It is illustrative to consider the
most simple function, namely a complex quadratic one

𝑧 ↦ 𝑧2 + 𝑎 = 𝑃𝑎(𝑧),

with 𝑎 ∈ ℂ. The following result tells us that the behaviour of the critical point has direct
consequences for the geometry of the Julia set.

12



Proposition 3.2. If 𝑃𝑛
𝑎 (0) tends to infinity as 𝑛 tends to infinity, then the Julia set𝒥(𝑃𝑎) is

totally disconnected. Otherwise it is connected.

The above resultmotivates the definition of the so-called connectedness locus, which is the set
consisting of those parameters 𝑎 for which𝒥(𝑃𝑎) is connected. In the case of the (complex)
quadratic family this set is usually called theMandelbrot set, after B. Mandelbrot [Man80]
who was the first to obtain high quality pictures of it (see also [BM81]). We denote the
Mandelbrot set byℳ, and from Proposition 2.2 we know thatℳ intersects the real line
in [−2, 1/4]. Moreover we have the following result.

Proposition 3.3. ℳ is a closed simply connected subset of the disk {|𝑎| ≤ 2}, and consists of
precisely those 𝑎 such that 𝑃𝑛

𝑎 (0) ≤ 2 for all 𝑛 ≥ 0.

Figure 1.2 provides a picture of the Mandelbrot set, and we notice the close connection
with the bifurcation diagram of Figure 1.1. Indeed, the parameter values for which period
doubling bifurcation occurs are precisely those parameters in the Mandelbrot set lying on
the real axis connecting the components.

2.0 1.5 1.0 0.5 0.0 0.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

Figure 1.2: Connectedness locus for 𝑧 ↦ 𝑧2 + 𝑐.

In the rational setting there is no analogue of Proposition 3.2, however the behaviour of the
critical orbits are equally important for the global dynamics. The following result resembles
that of Proposition 2.1.
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Proposition 3.4. For each attracting cycle of a rational function of degree 𝑑 ≥ 2 there is at
least one critical point whose orbit accumulates on this cycle. The number of critical points
(counting multiplicity) is at most 2𝑑 − 2, hence there are at most 2𝑑 − 2 attracting cycles.

In order to understand the dynamics on the Julia set, the following definition is of central
importance. We notice the resemblance with Definition 2.5.

Definition 3.5. A rational function 𝑧 ↦ 𝑅(𝑧) is called hyperbolic if every critical point
belongs to the Fatou setℱ(𝑅) and is attracted to an attracting cycle. Otherwise it is called
non-hyperbolic.

Being hyperbolic is equivalent to the existence of a metric, smoothly equivalent to the
spherical metric in a neighbourhood of the Julia set, for which𝑅 is expanding. If we assume
that∞ ∉ 𝒥(𝑅), then this is equivalent to the existence of 𝐶 > 0 and 𝛾 > 0 such that

|(𝑅𝑛)′(𝑧)| ≥ 𝐶𝑒𝛾𝑛

for all 𝑧 ∈ 𝒥(𝑅) and 𝑛 ≥ 1. (This latter notion of expanding on the Julia set is in fact the
usual definition of being hyperbolic, and our definition can be proved to be equivalent.)

One of the great open conjectures in the field of rational dynamics is the so-calledHyperbol-
icity conjecture: the set of hyperbolic rational maps form an (open) dense set in parameter
space. Even in the case of the quadratic family 𝑧 ↦ 𝑧2 + 𝑎 it is not yet known whether the
set of (complex) parameters 𝑎 forms an open dense set (this is the so-called Fatou conjecture).

4 The Collet–Eckmann conditions

As mentioned earlier, the Collet–Eckmann condition was first introduced by Collet and
Eckmann [CE83,CE80] in their study of certain real families of dynamical systems, and
was used to prove the abundance of acip’s.

The Collet–Eckmann condition has proven to be very fruitful to consider also in the
rational setting, although things naturally become more complex. We give the following
definition.

Definition 4.1. A rational function𝑅without parabolic cycles is said to satisfy the Collet–
Eckmann condition (CE) if there exist 𝐶 > 0 and 𝛾 > 0 such that, for each critical point 𝑐
in the Julia set of 𝑅,

|𝐷𝑅𝑛(𝑅(𝑐))| ≥ 𝐶𝑒𝛾𝑛,

for all 𝑛 ≥ 0.
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The requirement of no parabolic cycles is a technical one since, for instance, one usually
wants uniform expansion outside a neighbourhood of the critical points in the Julia set.
From now on we denote by Crit′(𝑅) the set of critical points in the Julia set of 𝑅, i.e.
Crit′(𝑅) = Crit(𝑅) ∩ 𝒥(𝑅).

The study of rational Collet–Eckmann maps was initiated by F. Przytycki [Prz96,Prz98].
For instance, in [Prz96] it is proved that if𝒥(𝑅) ≠ ℂ̂, then Leb𝒥(𝑅) = 0, i.e. for a rational
Collet–Eckmann map, either the Julia set is the entire sphere, or it has measure zero.
Moreover, by assuming an extra condition byM. Tsujii, namely that the average distance of
𝑅𝑛(Crit′) toCrit′ is not too small, it was also proved that theHausdorff dimension of𝒥(𝑅)
is strictly less than 2 (provided𝒥(𝑅) ≠ ℂ̂, of course). Later, Graczyk and Smirnov [GS98a]
proved, among other things, that rational Collet–Eckmann maps can have no rotation
domains, and the Fatou components are Hölder domains. (Using a result by P. Jones and
N. Makarov [JM95], this latter property implies that, for a rational Collet–Eckmann map
with at least one fully invariant Fatou component, the Hausdorff dimension of its Julia set
is strictly less than 2.)

That rational Collet–Eckmann maps are interesting from a measure point of view was
established by M. Aspenberg [Asp04, Asp13] in his doctoral thesis: the set of Collet–
Eckmannmaps has positive (Lebesgue)measure in the parameter space of rational functions
of any fixed degree𝑑 ≥ 2. Moreover, using the results of Przytycki [Prz96], andGraczyk and
Smirnov [GS98a], these maps described by Aspenberg also support acip’s. The existence of
a positive measure set of rational maps having acip’s was first proved byM. Rees [Ree86].

Considering the recurrent nature of rational functions, Aspenberg [Asp09] furthermore
proved that the set of rational Misiurewicz functions of any fixed degree 𝑑 ≥ 2 constitutes
only a set of measure zero in the parameter space. Therefore, analogous to the case of real
quadratic functions, the critical points belonging to the Julia set of a typical non-hyperbolic
rational function are recurrent. Results regarding the rate of recurrence of the critical points
for non-hyperbolic rational functions are more sparse than in the real quadratic setting.
In the quadratic (and even unicritical) setting 𝑧 ↦ 𝑧2 + 𝑎 = 𝑃𝑎(𝑧), the Collet–Eckmann
parameters are known to constitute only a set of measure zero [ALS11]. However, Graczyk
and Świątek [GS00] proved that for a typical parameter with respect to harmonic measure
on the boundary of the Mandelbrot set, the Collet–Eckmann condition is satisfied (see
also [Smi00]). Moreover, they proved in [GS15] that the Lyapunov exponent 𝜒(𝑎) exists:
for a typical parameter 𝑎 ∈ 𝜕ℳwith respect to harmonic measure,

𝜒(𝑎) = lim𝑛→∞

log |(𝑃𝑎)
′(𝑎)|

𝑛 = log 2.

This in turn immediately gives us a recurrence result: for every 𝛼 > 0 there exists a constant

15



𝐶 = 𝐶(𝛼) > 0 such that
|𝑃𝑛
𝑎 (0)| ≥ 𝐶𝑒−𝛼𝑛,

for all 𝑛 ≥ 1. For a rational function, we make the following definition.

Definition 4.2. A rational function 𝑅 of degree 𝑑 ≥ 2 is said to satisfy the slow recurrence
condition (SR) if for every 𝛼 > 0 there exists𝐶 = 𝐶(𝛼) > 0 such that, for every critical point
𝑐 ∈ Crit′(𝑅),

dist(𝑅𝑛(𝑐),Crit′) ≥ 𝐶𝑒−𝛼𝑛,

for all 𝑛 ≥ 1.

Not much is known about the measure of rational functions satisfying the slow recur-
rence condition, however it is conjectured to be satisfied for almost every rational Collet–
Eckmann map. We should also mention that, to the author’s knowledge, no results exist
regarding the typical rate of recurrence in the rational setting, i.e. for what 𝛿𝑛 do we have,
given 𝑐 ∈ Crit′,

dist(𝑅𝑛(𝑐),Crit′) < 𝛿𝑛

for infinitely many 𝑛? We do believe, however, that the techniques of Paper I can be carried
over to the rational setting.

Focusing on this slow recurrence condition, Aspenberg [Asp21] recently proved the follow-
ing consequence. Let 𝑅 be a rational Collet–Eckmann map of degree 𝑑 ≥ 2, satisfying the
slow recurrence condition, and such that𝒥(𝑅) = ℂ̂. Then 𝑅 is a Lebesgue density point
of rational Collet–Eckmann maps of degree 𝑑 within the space Λ𝑑,𝑝′ . In particular, this
generalises the results in [Asp04,Asp13]. Motivated by this result, together withAspenberg
and W. Cui, in Paper II we consider functions as above but with𝒥(𝑅) ≠ ℂ̂, and prove
that these are density points of hyperbolic maps. In particular, assuming that almost every
rational Collet–Eckmann map satisfies the slow recurrence condition, then almost every
Collet–Eckmann map has its Julia set equal to the Riemann sphere.

Let us finish this section with discussing some other closely related conditions of non-
hyperbolicity. Already in [CE83,CE80], a conditionnowknownas the second (or backward)
Collet–Eckmann condition was considered. The definition in the rational setting is as
follows.

Definition 4.3. A rational map 𝑅 of degree 𝑑 ≥ 2 is said to satisfy the second Collet–Eck-
mann condition (CE2) if there exist constants 𝐶2 > 1 and 𝛾2 > 0 such that, for every 𝑛 ≥ 1
and every 𝑤 ∈ 𝑅−𝑛(𝑐), for 𝑐 ∈ Crit′(𝑅) not in the forward orbit of other critical points,

|𝐷𝑅𝑛(𝑤)| ≥ 𝐶2𝑒
𝛾2𝑛.

16



Graczyk and Smirnov [GS98a] proved that CE and CE2 are equivalent in the unicritical
setting 𝑧 ↦ 𝑧𝑑 + 𝑎. In Paper I and Paper II, this condition is utilised to prove strong
expansion results outside a neighbourhood of the critical point(s).

In their studyof the geometry ofCollet–Eckmann Julia sets, Przytycki andS.Rohde [PR98]
formulated the following condition.

Definition 4.4. A rational map 𝑅 of degree 𝑑 ≥ 2 is said to satisfy the topological Collet–
Eckmann condition (TCE) if there exist𝑀 ≥ 0, 𝑃 ≥ 0 and 𝑟 > 0 such that for every
𝑧 ∈ 𝒥(𝑅) there exists a strictly increasing sequence of positive integers 𝑛𝑗, 𝑗 = 1, 2, …, such
that 𝑛𝑗 ≤ 𝑃𝑗 and, for each 𝑗,

# {𝑘 ∶ 0 ≤ 𝑘 < 𝑛𝑗,Comp𝑅𝑘(𝑧) 𝑅
−(𝑛𝑗−𝑘) (𝐵(𝑅𝑛𝑗(𝑧), 𝑟)) ∩ Crit ≠ ∅} ≤ 𝑀.

Here in the above definition, Comp𝑤 denotes the connected component containing 𝑤.
Since the above condition is formulated in topological terms, it is invariant under topolo-
gical conjugacy. One of the more useful properties of the topological Collet–Eckmann
condition is its many equivalent formulations [PRLS03,PRL07,RL10]. In particular, CE
and CE2 independently imply TCE.

Much work has been done to understand the relationships between these three character-
isations of non-hyperbolicity. Przytycki, Smirnov, and J. Rivera-Letelier [PRLS03] made
an extensive study and proved, among other things, that these conditions are equivalent
within the family of unicritical functions 𝑧 ↦ 𝑧𝑑 + 𝑎. In Paper III, we observe yet another
consequence of the slow recurrence condition, namely that within the family of slowly
recurrent rational maps of degree 𝑑 ≥ 2, all of these conditions are equivalent. Since there
are known examples where CE does not imply CE2, CE2 does not imply CE, and TCE
does not imply CE or CE2, this shows that the slow recurrence condition is in some sense
essential for equivalence to hold.

5 The Benedicks–Carleson techniques

In their seminal papers, Benedicks and Carleson [BC85,BC91] developed techniques to
prove the abundance of Collet–Eckmann real quadratic functions, and the existence of
acip’s. However, this machinery of theirs is far reaching, as can be realised by the many
papers utilising it. In fact, it is the foundational tool used in Paper I and Paper II of this
thesis. In this section we try to provide a schematic outline of these parameter exclusion
techniques.
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At its core, these techniques constitute a technical induction argument, with the Collet–
Eckmann condition being the driving force. For the sake of explanation, let 𝑓 = 𝑓0 be
the so-called unperturbed map, acting on some space𝑋. We ask of this map to satisfy the
Collet–Eckmann condition: there exist constants 𝐶 > 0 and 𝛾 > 0 such that, for all critical
points 𝑐 of 𝑓 belonging to𝒥(𝑓),

|(𝑓𝑛)′(𝑓(𝑐))| ≥ 𝐶𝑒𝛾𝑛,

for all 𝑛 ≥ 0.

For 𝑎 in some subset Δ = Δ0 of the parameter space, we let 𝑓𝑎 denote a perturbation of
𝑓. The goal is to show that for a large (or small) set of parameters, the corresponding
perturbations 𝑓𝑎 share similar properties as the unperturbed map.

To this end, suppose that 𝑓 only has one critical point 𝑐 = 𝑐(0), and that the corresponding
perturbation 𝑓𝑎 only has one critical point 𝑐(𝑎). In fact, let us assume a normalisation so
that 𝑐(𝑎) = 0 for all 𝑎 ∈ Δ. We will iterate the critical point simultaneously for different
parameters, and we let 𝜉𝑛 ∶ Δ ↦ 𝑋 denote the function 𝑎 ↦ 𝜉𝑛(𝑎) = 𝑓𝑛

𝑎 (0).

If Δ is chosen sufficiently small then, up to some large time 𝑁, the Collet–Eckmann
condition is inherited by all perturbations. In particular, as long as the derivatives of
𝑓𝛮
𝑎 and 𝑓𝛮

𝑏 , evaluated at their corresponding critical values, are comparable, the Collet–
Eckmann condition gives expansion of the image. This property of having comparable
derivatives is called distortion. At some time𝑚1 ≥ 𝑁, the image ofΔwill come very close to,
and might even cover, the critical point. At this stage one makes a partition: Δ = ⋃𝑘 Δ1,𝑘.
This partition is made so that on each partition element Δ1,𝑘, we have good distortion
control. Each of the partition elements will then be iterated individually until the same
situation occurs. That is to say, the partition element Δ1 = Δ1,𝑘, for instance, will be
iterated until at some time𝑚2 ≥ 𝑚1 its image 𝜉𝑚2

(Δ1) gets close to the critical point. At
this stage we once again make a partition Δ1 = ⋃𝑘 Δ2,𝑘, and the procedure continuous
indefinitely.

At each stage of partitioning, one might have to discard parameters that belong to partition
elements that come too close to the critical point. The reason for this is to make sure that
not too much derivative is lost, hence ensuring a Collet–Eckmann condition for future
iterates. This approach rate condition is usually referred to as the basic assumption: for all
𝑎 ∈ Δwe ask that

dist (𝑓𝑛
𝑎 (0), 0) ≥ 𝛿𝑛,

for all 𝑛 ≥ 1, and for some suitable sequence 𝛿𝑛.
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Even though some derivative is lost when returning close to the critical point, much (but
not all) of what was lost will be recovered during the so called bound period. Indeed, the
Collet–Eckmann condition is a standing induction assumption, and for some time after
the partition, the future iterates will stay close to the past iterates. Using this fact, one can
show that during this bound period, derivative from the past iterates will be inherited by
the future iterates.

In order to estimate what is left in parameter space after each partition stage, one needs
to be able to compare the parameter derivative of 𝜉𝑛 with the phase derivative of 𝑓𝑛−1

𝑎 .
This kind of comparison is called transversality. Assuming good distortion estimates, and
good transversality estimates, the measure of what is left in parameter space after infinitely
long time is essentially determined by whether the sequence 𝛿𝑛 in the basic assumption is
summable or not.
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Chapter 2

Summary of results

Paper I

In this paper we study the real quadratic family

𝑥 ↦ 𝑥2 + 𝑎 = 𝑄𝑎(𝑥),

acting on 𝑋 = [−2, 2], and with parameter 𝑎 ∈ [−2, 1/4]. Our goal is to investigate the
typical recurrence rate of the critical point 𝑥 = 0 to itself, when 𝑎 is a nonregular parameter,
i.e. when 𝑎 is such that 𝑥 ↦ 𝑥2 + 𝑎 has no attracting cycle. With typical recurrence rate we
mean a sequence 𝛿𝑛 such that, for almost every nonregular parameter 𝑎,

|𝑄𝑛
𝑎(0)| < 𝛿𝑛

holds true for infinitely many 𝑛. Without loss of generality we may assume 𝑎 ∈ [−2, −1],
and for such parameters we instead study the equivalent family

𝑥 ↦ 1 − 𝑎𝑥2 = 𝐹(𝑥; 𝑎),

acting on𝑋 = [−1, 1], and with parameter 𝑎 ∈ [1, 2].

A. Avila and C. G. Moreira [AM05] proved two important results regarding the real
quadratic family. The first result states that almost every nonregular parameter satisfies the
Collet–Eckmann condition. The second result concerns recurrence, and states that for
almost every nonregular parameter 𝑎

lim sup
𝑛→∞

− log |𝐹𝑛(0; 𝑎)|
log 𝑛 = 1.
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Introducing the set Λ(𝛿𝑛) = {𝑎 ∈ 𝒩ℛ ∶ |𝐹𝑛(0; 𝑎)| < 𝛿𝑛 for infinitely many 𝑛} the above
equality can be rephrased as

LebΛ(𝑛−𝜃) = {
Leb𝒩ℛ if 𝜃 < 1,
0 if 𝜃 > 1.

The above lim sup-result is strong and gives us both a typical recurrence rate, namely
𝛿𝑛 = 𝑛−(1−𝜖) for any 𝜖 > 0, but also a typical approach rate: for almost every nonregular
parameter 𝑎 and 𝜖 > 0 there exists a constant 𝐶 = 𝐶(𝑎, 𝜖) such that

|𝐹𝑛(0; 𝑎)| ≥ 𝐶
𝑛1+𝜖

for all 𝑛 ≥ 1.

What the lim sup cannot see, though, is the sharpness of the exponent, i.e. the case of 𝜖 = 0,
and to investigate this is the main concern of Paper I.

Let us call a sequence 𝛿𝑛 admissible if there exists a constant𝐾 > 0 and an exponent 𝜎 ≥ 0
such that

𝛿𝑛 ≥
𝐾
𝑛𝜎 for all 𝑛 ≥ 1.

In Paper I we prove the following result. There exists 𝜏 ∈ (0, 1) such that if 𝛿𝑛 is admissible
and

∑
𝛿𝑛

log 𝑛𝜏
(log∗ 𝑛)3 = ∞,

then LebΛ(𝛿𝑛) = Leb𝒩ℛ. Here log∗ is the so-called iterated logarithm, and it is defined
as

log∗ 𝑥 = {
1 if 𝑥 ≤ 1,
1 + log∗ log 𝑥 if 𝑥 > 1.

In particular, log∗ grows slower than any log𝑗 = log ∘ log𝑗−1, 𝑗 ≥ 0. Therefore as a direct
corollary we find that

LebΛ(𝑛−1) = Leb𝒩ℛ,

thus covering the missing case of 𝜃 = 1.

The proof utilises the Benedicks–Carleson techniques [BC85,BC91], together with more
recent developments [Asp21,Lev14]. Themain innovation of this paper is the introduction
of unbounded distortion estimates.
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Paper II

We consider slowly recurrent rational functions of a fixed degree and whose Julia set is not
equal to the entire sphere. By assuming that the critical points approach each other only at
a slow rate, i.e. by assuming the so-called slow recurrence condition, we prove that these
functions can be approximated in a strong sense by hyperbolic functions.

Let us call two rational functions equivalent if they are conjugated by aMöbius transforma-
tion. In the parameter space of rational functions of a fixed degree𝑑 ≥ 2, letΛ𝑑,𝑝′ denote the
subspace of rational functions, up to equivalence, with exactly 𝑝′ critical points 𝑐1, 𝑐2, … , 𝑐𝑝′ ,
and with corresponding multiplicities 𝑝′ = (𝑚1, 𝑚2, … , 𝑚𝑝′). Within this subspace, critical
points do not split, and move analytically with the parameter. In this paper, we look at
small perturbation of 𝑅 = 𝑅0 ∈ Λ𝑑,𝑝′ , where 𝑅 satisfies the Collet–Eckmann condition,
and𝒥(𝑅) ≠ ℂ̂. Moreover, 𝑅 also satisfies the slow recurrence condition: for any 𝛼 > 0
there exists 𝐶 > 0 such that, for every 𝑐 ∈ Crit′,

dist (𝑅𝑛(𝑐),Crit′) ≥ 𝐶𝑒−𝛼𝑛,

for all 𝑛 ≥ 1. In Paper II we prove that such a rational function is a Lebesgue density point
of hyperbolic functions (withinΛ𝑑,⏞𝑝′). Moreover, if all critical points are simple, then such
a function is a Lebesgue density point of hyperbolic functions in the entire space of rational
functions of degree 𝑑.

To prove the above result, we utilise the parameter exclusion techniques developed by
Benedicks and Carleson [BC85,BC91], together with its evolvement in the rational set-
ting by Aspenberg [Asp04, Asp13, Asp09, Asp21], and strong transversality results by
Levin [Lev14]. In fact, Aspenberg [Asp21] recently proved a contrasting result. Namely, if
𝑅 ∈ Λ𝑑,𝑝′ satisfies the Collet–Eckmann condition, if𝒥(𝑅) = ℂ̂, and if 𝑅 satisfies the slow
recurrence condition, then it is a Lebesgue density point of Collet–Eckmann functions
(withinΛ𝑑,𝑝′).

The techniques used in Paper II are similar to those in [Asp21]. We begin with a small
parameter square centred at𝑅, and our goal is for this square to reach to so-called large scale.
Since𝒥(𝑅) ≠ ℂ̂, the measure of the Julia set𝒥(𝑅) is equal to zero [Prz96]. Therefore,
upon reaching the large scale, a large portion of our square will correspond to parameters
whose critical points lie in the Fatou set. We show that the large scale is reached under
bounded transversality, and bounded distortion, and the conclusion is that in parameter
space, most parameters correspond to hyperbolic maps, hence our density result.
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Paper III

In Paper III we consider rational functions acting on the Riemann sphere ℂ̂, and the
relationships between the Collet–Eckmann condition (CE), the second Collet–Eckmann
condition (CE2), and the topological Collet–Eckmann condition (TCE). Much work has
been made investigating these conditions. In particular it is known that CE or CE2 implies
TCE, whereas to any other possible implication there are known counterexamples. In the
unicritical, on the other hand, all of these conditions are equivalent. (See [PRLS03] and
references therein.)

In this paper we observe that within the family of slowly recurrent rational functions, all
of the above conditions are equivalent. Moreover these conditions are invariant under
topological conjugation. The proofs in this paper are short, even though the results on
which they are based upon require technical machinery. Indeed, the techniques are those
of shrinking neighbourhoods as developed by Przytycki [Prz98], and used by Graczyk and
Smirnov [GS98a].
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Critical recurrence in the real quadratic family

Mats Bylund

Abstract

We study recurrence in the real quadratic family and give a sufficient condition on
the recurrence rate (𝛿𝑛) of the critical orbit such that, for almost every nonregular
parameter 𝑎, the set of 𝑛 such that |𝐹𝑛(0; 𝑎)| < 𝛿𝑛 is infinite. In particular, when
𝛿𝑛 = 𝑛−1, this extends an earlier result by Avila andMoreira.

1 Introduction

1.1 Regular and nonregular parameters

Given a real parameter 𝑎, we let 𝑥 ↦ 1 − 𝑎𝑥2 = 𝐹(𝑥; 𝑎) denote the corresponding real
quadratic map. We will study the recurrent behaviour of the critical point 𝑥 = 0 when
the parameter belongs to the interval [0, 2]. For such a choice of parameter there exists an
invariant interval 𝐼𝑎 ⊂ [−1, 1], i.e.

𝐹(𝐼𝑎; 𝑎) ⊂ 𝐼𝑎,

containing the critical point 𝑥 = 0. The parameter interval is naturally divided into a
regular (ℛ) and nonregular (𝒩ℛ) part

[0, 2] = ℛ∪𝒩ℛ,

with𝑎 ∈ ℛbeing such that𝑥 ↦ 1−𝑎𝑥2 has an attractive cycle, and𝒩ℛ = [0, 2]∖ℛ. These
two sets turn out to be intertwined in an intricate manner, and this has led to an extensive
study of the real quadratic family. We briefly mention some of the more fundamental
results, and refer to [Lyu00b] for an overview.

The regular maps are from a dynamic point of view well behaved, with almost every point,
including the critical point, tending to the attractive cycle. This set of parameters, which
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with an application of the inverse function theorem is seen to be open, constitutes a large
portion of [0, 2]. The celebrated genericity result, known as the real Fatou conjecture, was
settled independently by Graczyk–Świątek [GS97] and Lyubich [Lyu97]: ℛ is (open and)
dense. This has later been extended to real polynomials of arbitrary degree by Kozlovski–
Shen–van Strien [KSvS07], solving the second part of the eleventh problem of Smale
[Sma98]. The corresponding result for complex quadratic maps, the Fatou conjecture, is
still to this day open.

The nonregular maps, in contrast to the regular ones, exhibit chaotic behaviour. In [Jak81]
Jakobson showed the abundance of stochastic maps, proving that the set of parameters
𝑎 ∈ 𝒮 for which the corresponding quadratic map has an absolutely continuous (with
respect to Lebesgue) invariant measure (a.c.i.m), is of positive Lebesgue measure. This
showed that, from a probabilistic point of view, nonregular maps are not negligible: for a
regular map, any (finite) a.c.i.m is necessarily singular with respect to Lebesgue measure.

Chaotic dynamics is often associated with the notion of sensitive dependence on initial
conditions. A compelling way to capture this property was introduced by Collet and
Eckmann in [CE80] where they studied certain maps of the interval having expansion
along the critical orbit, proving abundance of chaotic behaviour. This condition is now
known as the Collet–Eckmann condition, and for a real quadratic map it states that

lim inf𝑛→∞

log |𝜕𝑥𝐹
𝑛(1; 𝑎)|
𝑛 > 0. (1)

Focusing on this condition, Benedicks and Carleson gave in their seminal papers [BC85,
BC91] another proof of Jakobson’s theorem by proving the stronger result that the set 𝒞ℰ
of Collet–Eckmann parameters is of positive measure. As a matter of fact, subexponential
increase of the derivative along the critical orbit is enough to imply the existence of an
a.c.i.m, but the stronger Collet-Eckmann condition implies, and is sometimes equivalent
with, ergodic properties such as exponential decay of correlations [KN92,You92,NS98],
and stochastic stability [BV96]. For a survey on the role of the Collet–Eckmann condition
in one-dimensional dynamics, we refer to [Ś01].

Further investigating the stochastic behaviour of nonregular maps, supported by the results
in [Lyu00a,MN00], Lyubich [Lyu02] established the following famous dichotomy: almost
all real quadraticmaps are either regular or stochastic. Thus it turned out that the stochastic
behaviour described by Jakobson is in fact typical for a nonregular map. In [AM05]
Avila and Moreira later proved the strong result that expansion along the critical orbit
is no exception either: almost all nonregular maps are Collet–Eckmann. Thus a typical
nonregular map have excellent ergodic properties.
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1.2 Recurrence and Theorem A

In this paper we will study recurrence of the critical orbit to the critical point, for a typical
nonregular (stochastic, Collet–Eckmann) real quadratic map. For this reason we introduce
the following set.

Definition 1.1 (Recurrence Set). Given a sequence (𝛿𝑛)
∞
𝑛=1 of real numbers, we define the

recurrence set as

Λ(𝛿𝑛) = {𝑎 ∈ 𝒩ℛ ∶ |𝐹𝑛(0; 𝑎)| < 𝛿𝑛 for finitely many 𝑛}.

In [AM05] Avila andMoreira also established the following recurrence result, proving a
conjecture of Sinai: for almost every nonregular parameter 𝑎

lim sup
𝑛→∞

− log |𝐹𝑛(0; 𝑎)|
log 𝑛 = 1.

Another way to state this result is as follows: for almost every nonregular parameter 𝑎, the
set of 𝑛 such that |𝐹𝑛(0; 𝑎)| < 𝑛−𝜃 is finite if 𝜃 > 1 and infinite if 𝜃 < 1. In terms of the
above defined recurrence set, this result translates to

LebΛ(𝑛−𝜃) = {
Leb𝒩ℛ if 𝜃 > 1,
0 if 𝜃 < 1.

In [GS14], as a special case, a new proof of the positive measure case in the above stated
result was obtained, together with a new proof that almost every nonregular map is Collet–
Eckmann. In this paper we will give a new proof of the measure zero case, and in particular
wewill fill in themissing case of 𝜃 = 1, thus completing thepicture of polynomial recurrence.
Our result will be restricted to the following class of recurrence rates.

Definition 1.2. Anonincreasing sequence (𝛿𝑛) of positive real numbers is called admissible
if there exists a constant 0 ≤ 𝑒 < ∞, and an integer𝑁 ≥ 1, such that

𝛿𝑛 ≥
1
𝑛𝑒

(𝑛 ≥ 𝑁).

The following is the main result of this paper.

Theorem A. There exists 𝜏 ∈ (0, 1) such that if (𝛿𝑛) is admissible and

∑
𝛿𝑛

log 𝑛𝜏
(log∗ 𝑛)3 = ∞,

then Leb(Λ(𝛿𝑛) ∩ 𝒞ℰ) = 0.
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Here log∗ denotes to so-called iterated logarithm, which is defined recursively as

log∗ 𝑥 = {
0 if 𝑥 ≤ 1,
1 + log∗ log 𝑥 if 𝑥 > 1.

That is, log∗ 𝑥 is the number of times one has to iteratively apply the logarithm to 𝑥 in
order for the result to be less than or equal to 1. In particular, log∗ grows slower than
log𝑗 = log ∘ log𝑗−1, for any 𝑗 ≥ 1.

Theorem A, together with the fact that almost every nonregular real quadratic map is
Collet–Eckmann, clearly implies

Corollary 1.3. LebΛ(𝑛−1) = 0.

Remark 1.4. In fact, one can conclude the stronger statement

LebΛ(1/(𝑛 log log 𝑛)) = 0.

At this moment we do not get any result for when 𝛿𝑛 = 1/(𝑛 log 𝑛), and this would be
interesting to investigate further.

One of the key points in the proof of Theorem A is the introduction of unbounded
distortion estimates; this differs from the classical Benedicks–Carleson techniques.

Acknowledgement. This project has been carried out under supervision of Magnus Aspenberg as
part of my doctoral thesis. I am very grateful toMagnus for proposing this problem, for his support,
and for many valuable discussions and ideas. I express gratitude to my co-supervisor Tomas Persson
for helpful comments and remarks. I would also like to thank Viviane Baladi for communicating
useful references, and I thankMichael Benedicks for interesting discussions. Finally I thank the
referee whose careful reading and comments helped improve the manuscript.

2 Reduction and outline of proof

2.1 Some definitions and Theorem B

We reduce the proof of Theorem A to that of Theorem B, stated below. For this we begin
with some suitable definitions.

It will be convenient to explicitly express the constant in the Collet–Eckmann condition
(1), and for this reason we agree on the following definition.
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Definition 2.1. Given 𝛾, 𝐶 > 0we call a parameter 𝑎 (𝛾, 𝐶)-Collet–Eckmann if

|𝜕𝑥𝐹
𝑛(1; 𝑎)| ≥ 𝐶𝑒𝛾𝑛 (𝑛 ≥ 0).

The set of all (𝛾, 𝐶)-Collet–Eckmann parameters is denoted 𝒞ℰ(𝛾, 𝐶).

Our parameter exclusion will be carried out on intervals centred at Collet–Eckmann pa-
rameters satisfying the following recurrence assumption.

Definition 2.2. ACollet–Eckmann parameter 𝑎 is said to have polynomial recurrence (PR)
if there exist constants𝐾 = 𝐾(𝑎) > 0 and 𝜎 = 𝜎(𝑎) ≥ 0 such that

|𝐹𝑛(0; 𝑎)| ≥ 𝐾
𝑛𝜎 (𝑛 ≥ 1).

The set of all PR-parameters is denoted𝒫ℛ.

Finally, we consider parameters for which the corresponding quadratic maps satisfy the
reversed recurrence condition after some fixed time𝑁 ≥ 1:

Λ𝛮(𝛿𝑛) = {𝑎 ∈ 𝒩ℛ ∶ |𝐹𝑛(0; 𝑎)| ≥ 𝛿𝑛 for all 𝑛 ≥ 𝑁}.

Clearly we have that
Λ(𝛿𝑛) = ⋃

𝛮≥1
Λ𝛮(𝛿𝑛).

Theorem A will be deduced from

Theorem B. There exists 𝜏 ∈ (0, 1) such that if (𝛿𝑛) is admissible and

∑
𝛿𝑛

log 𝑛𝜏
(log∗ 𝑛)3 = ∞,

then for all𝑁 ≥ 1, 𝛾 > 0, 𝐶 > 0, and for all 𝑎 ∈ 𝒫ℛ, there exists an interval 𝜔𝑎 centred at 𝑎
such that

Leb(Λ𝛮(𝛿𝑛) ∩ 𝒞ℰ(𝛾, 𝐶) ∩ 𝜔𝑎) = 0.

2.2 Proof of Theorem A

Using Theorem B, Theorem A is proved by a standard covering argument. Since 𝜔𝑎 is
centred at 𝑎, so is the smaller interval 𝜔′𝑎 = 𝜔𝑎/5. By Vitali covering lemma there exists a
countable collection (𝑎𝑗) of PR-parameters such that

𝒫ℛ ⊂ ⋃
𝑎∈𝒫ℛ

𝜔′𝑎 ⊂
∞
⋃
𝑗=1

𝜔𝑎𝑗 .
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It now follows directly that

Leb(Λ𝛮(𝛿𝑛) ∩ 𝒞ℰ(𝛾, 𝐶) ∩ 𝒫ℛ) ≤
∞
∑
𝑗=1

Leb(Λ𝛮(𝛿𝑛) ∩ 𝒞ℰ(𝛾, 𝐶) ∩ 𝜔𝑎𝑗) = 0,

and therefore

Leb(Λ(𝛿𝑛) ∩ 𝒞ℰ ∩𝒫ℛ) ≤ ∑
𝛮,𝑘,𝑙≥1

Leb(Λ𝛮(𝛿𝑛) ∩ 𝒞ℰ(𝑘
−1 log 2, 𝑙−1) ∩ 𝒫ℛ)

= 0.

Finally, we notice thatΛ(𝛿𝑛) ∩𝒞ℰ ⊂ 𝒫ℛ; indeed this is clearly the case since (𝛿𝑛) is assumed
to be admissible.

Remark 2.3. With the introduction of the set𝒫ℛ we are avoiding the use of previous
recurrence results (e.g. Avila–Moreira) in order to prove Theorem A, by (a priori) allowing
𝒫ℛ to be a set of measure zero. In either case, the statement of Theorem A is true.

2.3 Outline of proof of Theorem B

The proof of TheoremBwill rely on the classical parameter exclusion techniques developed
by Benedicks and Carleson [BC85, BC91], complemented with more recent results. In
particular we allow for perturbation around a parameter in more general position than
𝑎 = 2. In contrast to the usual application of these techniques, our goal here is the show
that what remains after excluding parameters is a set of zero Lebesgue measure. One of the
key points in our approach is the introduction of unbounded distortion estimates.

We will carefully study the returns of the critical orbit, simultaneously for maps corre-
sponding to parameters in a suitable interval 𝜔 ⊂ [0, 2], to a small and fixed interval
(−𝛿, 𝛿) = (−𝑒−Δ, 𝑒−Δ). (In fact, we will assume that 𝜔 ⊂ [1, 2] since [0, 1] ∖ {3/4} ⊂ ℛ,
with 𝑎 = 3/4 being a parabolic parameter.) These returns to (−𝛿, 𝛿) will be classified as
either inessential, essential, escape, or complete. Per definition of a complete return, we
return close enough to 𝑥 = 0 to be able to remove a large portion of (−𝛿𝑛, 𝛿𝑛) in phase
space. To estimate what is removed in parameter space, we need distortion estimates. This
will be achieved by i) enforcing a (𝛾, 𝐶)-Collet–Eckmann condition, and ii) continuously
making suitable partitions in phase space: (−𝛿, 𝛿) is subdivided into partition elements
𝐼𝑟 = (𝑒−𝑟−1, 𝑒−𝑟) for 𝑟 > 0, and 𝐼𝑟 = −𝐼−𝑟 for 𝑟 < 0. Furthermore, each 𝐼𝑟 is subdivided
into 𝑟2 smaller intervals 𝐼𝑟𝑙 ⊂ 𝐼𝑟, of equal length |𝐼𝑟|/𝑟

2. After partitioning, we consider
iterations of each partition element individually, and the proof of Theorem B will be one
by induction.
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We make a few comments on the summability condition appearing in the statement of
Theorem A and Theorem B. In order to prove our result we need to estimate howmuch is
removed at a complete return, but also how long time it takes from one complete return to
the next. The factor 𝜏(log

∗ 𝑛)3 is connected to the estimate of what is removed at complete
returns, and more specifically it is connected to distortion; as will be seen, our distortion
estimates are unbounded. The factor (log 𝑛)−1 is directly connected to the time between
two complete returns: if 𝑛 is the index of a complete return, it will take ≲ log 𝑛 iterations
until we reach the next complete return.

In the next section we prove a couple of preliminary lemmas, and confirm the existence of
a suitable start-up interval 𝜔𝑎 centred at 𝑎 ∈ 𝒫ℛ, for which the parameter exclusion will be
carried out. After that, the induction step will be proved, and an estimate for the measure
ofΛ𝛮(𝛿𝑛) ∩ 𝒞ℰ(𝛾, 𝐶) ∩ 𝜔𝑎 will be given.

3 Preliminary Lemmas

In this section we establish three important lemmas that will be used in the induction step.
These are derived from Lemma 2.6, Lemma 2.10, and Lemma 3.1 in [Asp21], respectively,
where they are proved in the more general setting of a complex rational map.

3.1 Outside Expansion Lemma

The first result we will need is the following version of the classical Mañé Hyperbolicity
Theorem (see [dMvS93], for instance).

Lemma 3.1 (Outside Expansion). Given a Collet–Eckmann parameter 𝑎0 there exist con-
stants 𝛾𝛭, 𝐶𝛭 > 0 such that, for all 𝛿 > 0 sufficiently small, there is a constant 𝜖𝛭 = 𝜖𝛭(𝛿) > 0
such that, for all 𝑎 ∈ (𝑎0 − 𝜖𝛭, 𝑎0 + 𝜖𝛭), if

𝑥, 𝐹(𝑥; 𝑎), 𝐹2(𝑥; 𝑎), … , 𝐹𝑛−1(𝑥; 𝑎) ∉ (−𝛿, 𝛿),

then
|𝜕𝑥𝐹

𝑛(𝑥; 𝑎)| ≥ 𝛿𝐶𝛭𝑒𝛾𝛭𝑛.

Furthermore, if we also have that 𝐹𝑛(𝑥; 𝑎) ∈ (−2𝛿, 2𝛿), then

|𝜕𝑥𝐹
𝑛(𝑥; 𝑎)| ≥ 𝐶𝛭𝑒𝛾𝛭𝑛.
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A similar lemma for the quadratic family can be found in [BBS15] and [Tsu93], for instance.
The version stated here allows for 𝛿-independence at a more shallow return to the interval
(−2𝛿, 2𝛿). To get this kind of annular result constitutes aminormodification of Lemma 4.1
in [Tsu93]. We refer to Lemma 2.6 in [Asp21] and the proof therein, however, for a proof
of the above result. This proof is based on Przytycki’s telescope lemma (see [Prz90] and
also [PRLS03]). In contrast to the techniques in [Tsu93], in the case of the quadratic
family, no recurrence assumption is needed.

3.2 Phase-parameter distortion

If 𝑡 ↦ 𝐹(𝑥; 𝑎 + 𝑡) is a family of (analytic) perturbations of (𝑥; 𝑎) ↦ 𝐹(𝑥; 𝑎) at 𝑎, we may
expand each such perturbation as

𝐹(𝑥; 𝑎 + 𝑡) = 𝐹(𝑥; 𝑎) + 𝑡𝜕𝑎𝐹(𝑥; 𝑎) + higher order terms,

and it is easy to verify that

𝜕𝑎𝐹
𝑛(𝑥; 𝑎)

𝜕𝑥𝐹𝑛−1(𝐹(𝑥; 𝑎); 𝑎)
=

𝜕𝑎𝐹
𝑛−1(𝑥; 𝑎)

𝜕𝑥𝐹𝑛−2(𝐹(𝑥; 𝑎); 𝑎)
+
𝜕𝑎𝐹(𝐹

𝑛−1(𝑥; 𝑎); 𝑎)
𝜕𝑥𝐹𝑛−1(𝐹(𝑥; 𝑎); 𝑎)

.

Our concern is with the quadratic family 𝑥 ↦ 1−𝑎𝑥2 = 𝐹(𝑥; 𝑎), with 𝑎 being the parameter
value. In particular we are interested in the critical orbit of each such member, and to this
end we introduce the functions 𝑎 ↦ 𝜉𝑗(𝑎) = 𝐹𝑗(0; 𝑎), for 𝑗 ≥ 0. In view of our notation
and the above relationship, we see that

𝜕𝑎𝐹
𝑛(0; 𝑎)

𝜕𝑥𝐹𝑛−1(1; 𝑎)
=

𝑛−1
∑
𝑘=0

𝜕𝑎𝐹(𝜉𝑘(𝑎); 𝑎)
𝜕𝑥𝐹𝑘(1; 𝑎)

.

Throughout the proof of Theorem B it will be of importance to be able to compare phase
and parameter derivatives. Under the assumption of exponential increase of the phase
derivative along the critical orbit, this can be done, as is formulated in the following lemma.
The proof is that of Lemma 2.10 in [Asp21].

Lemma 3.2 (Phase-Parameter Distortion). Let 𝑎0 be (𝛾0, 𝐶0)-Collet–Eckmann, 𝛾𝛵 ∈ (0, 𝛾0),
𝐶𝛵 ∈ (0, 𝐶0), and 𝐴 ∈ (0, 1). There exist 𝑇,𝑁𝛵, 𝜖𝛵 > 0 such that if 𝑎 ∈ (𝑎0 − 𝜖𝛵, 𝑎0 + 𝜖𝛵)
satisfies

|𝜕𝑥𝐹
𝑗(1; 𝑎)| ≥ 𝐶𝛵𝑒

𝛾𝛵𝑗 (𝑗 = 1, 2, … ,𝑁𝛵, … 𝑛 − 1),

for some 𝑛 − 1 ≥ 𝑁𝛵, then

(1 − 𝐴)𝑇 ≤ ∣
𝜕𝑎𝐹

𝑛(0; 𝑎)
𝜕𝑥𝐹𝑛−1(1; 𝑎)

∣ ≤ (1 + 𝐴)𝑇.
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Proof. According to Theorem 3 in [Tsu00] (see also Theorem 1 in [Lev14])

lim
𝑗→∞

𝜕𝑎𝐹
𝑗(0; 𝑎0)

𝜕𝑥𝐹𝑗−1(1; 𝑎0)
=

∞
∑
𝑘=0

𝜕𝑎𝐹(𝜉𝑘(𝑎0); 𝑎0)
𝜕𝑥𝐹𝑘(1; 𝑎0)

= 𝑇 ∈ ℝ>0.

Let𝑁𝛵 > 0 be large enough so that

∣
∞
∑
𝑘=𝛮𝛵

𝜕𝑎𝐹(𝜉𝑘(𝑎0); 𝑎0)
𝜕𝑥𝐹𝑘(1; 𝑎0)

∣ ≤
∞
∑
𝑘=𝛮𝛵

1
𝐶0𝑒𝛾0𝑘

≤
∞
∑
𝑘=𝛮𝛵

1
𝐶𝛵𝑒𝛾𝛵𝑘

≤ 1
3𝐴𝑇.

Since 𝑎 ↦ 𝜕𝑎𝐹(𝜉𝑘(𝑎); 𝑎)/𝜕𝑥𝐹
𝑘(1; 𝑎) is continuous there exists 𝜖𝛵 > 0 such that given

𝑎 ∈ (𝑎0 − 𝜖𝛵, 𝑎0 + 𝜖𝛵)

∣
𝛮𝛵−1

∑
𝑘=0

𝜕𝑎𝐹(𝜉𝑘(𝑎); 𝑎)
𝜕𝑥𝐹(1; 𝑎)

− 𝑇∣ ≤ 1
2𝐴𝑇.

Assuming 𝑥 ↦ 1 − 𝑎𝑥2 to be (𝛾𝛵, 𝐶𝛵)-Collet–Eckmann up to time 𝑛 > 𝑁𝛵, the result now
follows since

∣
𝑛
∑
𝑘=0

𝜕𝑎𝐹(𝜉𝑘(𝑎); 𝑎)
𝜕𝑥𝐹𝑘(1; 𝑎)

− 𝑇∣ ≤ 𝐴𝑇.

Remark 3.3. The quotient (1 + 𝐴)/(1 − 𝐴) = 𝐷𝛢 can be chosen arbitrarily close to 1 by
increasing𝑁𝛵 and decreasing 𝜖𝛵.

3.3 Start-up Lemma

With the above two lemmas we now prove the existence of a suitable interval in parameter
space on which the parameter exclusion will be carried out.

Given an admissible sequence (𝛿𝑛), let𝑁𝛢 be the integer inDefinition 1.2. Fix𝑁𝛣 ≥ 1, 𝛾𝛣 > 0,
and 𝐶𝛣 > 0, and let 𝑎0 be a PR-parameter satisfying a (𝛾0, 𝐶0)-Collet–Eckmann condition.
In Lemma 3.2 we make the choice

𝛾𝛵 = min(𝛾𝛣, 𝛾0, 𝛾𝛭)/20 and 𝐶𝛵 = min(𝐶𝛣, 𝐶0)/3.

Furthermore let

𝛾 = min(𝛾𝛣, 𝛾0, 𝛾𝛭)/2 and 𝐶 = min(𝐶𝛣, 𝐶0)/2,

and let𝑚−1 = max(𝑁𝛢, 𝑁𝛣, 𝑁𝛵).
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Lemma 3.4 (Start-up Lemma). There exist an interval 𝜔0 = (𝑎0 − 𝜖, 𝑎0 + 𝜖), an integer
𝑚0 ≥ 𝑚−1, and a constant 𝑆 = 𝜖1𝛿 such that

(i) 𝜉𝑚0
∶ 𝜔0 → [−1, 1] is injective, and

|𝜉𝑚0
(𝜔0)| ≥ {

𝑒−𝑟/𝑟2 if 𝜉𝑚0
(𝜔0) ∩ 𝐼𝑟 ≠ ∅,

𝑆 if 𝜉𝑚0
∩ (−𝛿, 𝛿) = ∅.

(ii) Each 𝑎 ∈ 𝜔0 is (𝛾, 𝐶)-Collet–Eckmann up to time𝑚0:

|𝜕𝑥𝐹
𝑗(1; 𝑎)| ≥ 𝐶𝑒𝛾𝑗 (𝑗 = 0, 1, … ,𝑚0 − 1).

(iii) Each 𝑎 ∈ 𝜔0 enjoys polynomial recurrence up to time𝑚0: there exist absolute constants
𝐾 > 0 and 𝜎 ≥ 0 such that for 𝑎 ∈ 𝜔0

|𝜉𝑗(𝑎)| ≥
𝐾
𝑗𝜎 (𝑗 = 1, 2, … ,𝑚0 − 1).

Proof. Given 𝑥, 𝑦 ∈ 𝜉𝑗(𝜔0), 𝑗 ≥ 1, consider the following distance condition

|𝑥 − 𝑦| ≤ {
𝑒−𝑟/𝑟2 if 𝜉𝑗(𝜔0) ∩ 𝐼𝑟 ≠ ∅,
𝑆 = 𝜖1𝛿 if 𝜉𝑗(𝜔0) ∩ (−𝛿, 𝛿) = ∅.

(2)

By making 𝜖 smaller, we may assume that (2) is satisfied up to time 𝑚−1. Moreover, we
make sure that 𝜖 is small enough to comply with Lemma 3.2. Whenever (2) is satisfied,
phase derivatives are comparable as follows

1
𝐶1

≤ ∣
𝜕𝑥𝐹(𝑥; 𝑎)
𝜕𝑥𝐹(𝑦; 𝑏)

∣ ≤ 𝐶1, (3)

with 𝐶1 > 1 a constant. This can be seen through the following estimate

∣
𝜕𝑥𝐹(𝑥; 𝑎)
𝜕𝑥𝐹(𝑦; 𝑏)

∣ = ∣−2𝑎𝑥−2𝑏𝑦 ∣ ≤
𝑎0 + 𝜖
𝑎0 − 𝜖

(∣
𝑥 − 𝑦
𝑦 ∣ + 1) .

If we are outside (−𝛿, 𝛿) then
∣
𝑥 − 𝑦
𝑦 ∣ ≤ 𝑆

𝛿 = 𝜖1,

and if we are hitting 𝐼𝑟 with largest possible 𝑟,

∣
𝑥 − 𝑦
𝑦 ∣ ≤ 𝑒−𝑟

𝑟2
1

𝑒−(𝑟+1)
= 𝑒
𝑟2

≤ 𝑒
Δ2 .
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By making sure that 𝜖, 𝜖1, and 𝛿 are small enough, 𝐶1 can be made as close to 1 as we want.
In particular, we make 𝐶1 close enough to 1 so that

𝐶−𝑗
1 𝐶0𝑒

𝛾0𝑗 ≥ 𝐶𝑒𝛾𝑗 (𝑗 ≥ 0). (4)

As long as the distance condition (2) is satisfied, we will have good expansion along the
critical orbits. Indeed by (3) and (4) it follows that, given 𝑎 ∈ 𝜔0,

|𝜕𝑥𝐹
𝑗(1; 𝑎)| ≥ 𝐶−𝑗

1 |𝜕𝑥𝐹
𝑗(1; 𝑎0)|

≥ 𝐶−𝑗
1 𝐶0𝑒

𝛾0𝑗

≥ 𝐶𝑒𝛾𝑗 (𝑗 ≥ 0 such that (2) is satisfied).

This tells us that, during the time for which (2) is satisfied, every 𝑎 ∈ 𝜔0 is such that the
corresponding map is (𝛾, 𝐶)-Collet–Eckmann. In particular, since 𝛾 > 𝛾𝛵 and 𝐶 > 𝐶𝛵, we
can apply Lemma 3.2, and together with the mean value theorem we have that

|𝜉𝑗(𝜔0)| = |𝜕𝑎𝐹
𝑗(0; 𝑎′)||𝜔0|

≥ (1 − 𝐴)𝑇|𝜕𝑥𝐹
𝑗−1(1; 𝑎′)||𝜔0|

≥ (1 − 𝐴)𝑇𝐶𝑒𝛾(𝑗−1)|𝜔0|.

Our interval is thus expanding, and we let𝑚0 = 𝑗, with 𝑗 ≥ 𝑚−1 the smallest integer for
which (2) is no longer satisfied. This proves statements (i) and (ii).

To prove statement (iii), let𝐾0 > 0 and 𝜎0 ≥ 0 be the constants associated to 𝑎0 for which

|𝜉𝑗(𝑎0)| ≥
𝐾0
𝑗𝜎0 (𝑗 ≥ 1).

In view of (2), when we hit (−𝛿, 𝛿) at some time 𝑗 < 𝑚0,

|𝜉𝑗(𝑎)| ≥ |𝜉𝑗(𝑎0)| − |𝜉𝑗(𝜔0)| ≥ |𝜉𝑗(𝑎0)| −
𝑒−𝑟

𝑟2
.

Here, 𝑟 is such that
𝑒−𝑟−1 ≤ |𝜉𝑗(𝑎0)|,

and therefore, given 𝛿 small enough,

|𝜉𝑗(𝑎)| ≥ |𝜉𝑗(𝑎0)| (1 −
𝑒
Δ2 ) ≥

𝐾0/2
𝑗𝜎0 (𝑗 = 1, 2, … ,𝑚0 − 1).
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Remark 3.5. By making 𝛿 small enough so that 1/Δ2 < 𝜖1, 𝑆 will be larger than any
partition element 𝐼𝑟𝑙 ⊂ (−𝛿, 𝛿). This 𝑆 is usually referred to as the large scale.

SinceΛ𝛮𝛣(𝛿𝑛) ⊂ Λ𝑚0
(𝛿𝑛), Theorem B follows if

Leb (Λ𝑚0
(𝛿𝑛) ∩ 𝒞ℰ(𝛾𝛣, 𝐶𝛣) ∩ 𝜔0) = 0.

4 Induction Step

4.1 Initial iterates

Let 𝜔0 = Δ0 be the start-up interval obtained in Lemma 3.4. Iterating this interval under 𝜉
and successively excluding parameters that do not satisfy the recurrence condition, or the
Collet–Eckmann condition, we will inductively define a nested sequenceΔ0 ⊃ Δ1 ⊃ ⋯ ⊃
Δ𝑘 ⊃ ⋯ of sets of parameters satisfying

Λ𝑚0
(𝛿𝑛) ∩ 𝒞ℰ(𝛾𝛣, 𝐶𝛣) ∩ 𝜔0 ⊂ Δ∞ =

∞
⋂
𝑘=0

Δ𝑘,

and our goal is to estimate the Lebesgue measure of Δ∞. This will require a careful analysis
of the so-called returns to (−𝛿, 𝛿), and we will distinguish between four types of returns:
inessential, essential, escape, and complete. At the 𝑘th complete return, we will be in the
position of excluding parameters and form the partition that will make up the setΔ𝑘. Below
wewill describe the iterations from the 𝑘th complete return to the (𝑘+1)th complete return,
hence the forming of Δ𝑘+1. Before indicating the partition, and giving a definition of the
different returns, we begin with considering the first initial iterates of 𝜉𝑚0

(𝜔0).

If 𝜉𝑚0
(𝜔0) ∩ (−𝛿, 𝛿) ≠ ∅, then we have reached a return and we proceed accordingly as is

described below. If this is not the case, then we are in the situation

𝜉𝑚0
(𝜔0) ∩ (−𝛿, 𝛿) = ∅ and |𝜉𝑚0

(𝜔0)| ≥ 𝑆,

with 𝑆 larger than any partition element 𝐼𝑟𝑙 ⊂ (−𝛿, 𝛿) (see Remark 3.5). Since the length
of the image is bounded from below, there is an integer 𝑛∗ = 𝑛∗(𝑆) such that for some
smallest 𝑛 ≤ 𝑛∗ we have

𝜉𝑚0+𝑛(𝜔0) ∩ (−𝛿, 𝛿) ≠ ∅.

In this case, 𝑚0 + 𝑛 is the index of the first return. We claim that, if 𝑚0 is large enough,
we can assume good derivative up to time𝑚0 + 𝑛. To realise this, consider for 𝑗 < 𝑛 the
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distortion quotient

∣
𝜕𝑥𝐹

𝑚0+𝑗(1; 𝑎)
𝜕𝑥𝐹𝑚0+𝑗(1; 𝑏)

∣ = ∣
𝜕𝑥𝐹

𝑚0−1(1; 𝑎)
𝜕𝑥𝐹𝑚0−1(1; 𝑏)

∣ ∣
𝜕𝑥𝐹

𝑗+1(𝜉𝑚0
(𝑎); 𝑎)

𝜕𝑥𝐹𝑗+1(𝜉𝑚0
(𝑏); 𝑏)

∣ .

Since the distance conditions (2) are satisfied up to time𝑚0 − 1, the first factor in the above
right hand side is bounded from above by the constant𝐶𝑚0−1

1 , with𝐶1 > 1 being very close
to 1 (see (3)). Furthermore, since 𝑗 < 𝑛 < 𝑛∗(𝑆), and since we by assumption are iterating
outside (−𝛿, 𝛿), the second factor in the above right hand side is bounded from above by
some positive constant 𝐶𝑆,𝛿 dependent on 𝑆 and 𝛿.

If there is no parameter 𝑎′ ∈ 𝜔0 such that |𝜕𝑥𝐹
𝑚0+𝑗(1; 𝑎′)| ≥ 𝐶𝛣𝑒

𝛾𝛣(𝑚0+𝑗) then we have
already reached our desired result. If on the other hand there is such a parameter 𝑎′ then
for all 𝑎 ∈ 𝜔0 it follows from the above distortion estimate and our choice of 𝛾 that

|𝜕𝑥𝐹
𝑚0+𝑗(1; 𝑎)| ≥

𝐶𝛣𝑒
𝛾𝛣(𝑚0+𝑗)

𝐶𝑚0−1
1 𝐶𝑆,𝛿

≥ 𝐶𝑒𝛾(𝑚0+𝑗),

provided𝑚0 is large enough. We conclude that

|𝜕𝑥𝐹
𝑗(1; 𝑎)| ≥ 𝐶𝑒𝛾𝑗 (𝑎 ∈ 𝜔0, 𝑗 = 0, 1, … ,𝑚0 + 𝑛 − 1). (5)

In the case we have to iterate 𝜉𝑚0
(𝜔0) further to hit (−𝛿, 𝛿)we still let𝑚0 denote the index

of the first return.

4.2 The partition

At the (𝑘 + 1)th step in our process of excluding parameters,Δ𝑘 consists of disjoint intervals
𝜔𝑟𝑙𝑘 , and for each such interval there is an associated time𝑚𝑟𝑙

𝑘 for which either 𝜉𝑚𝑟𝑙
𝑘
(𝜔𝑟𝑙𝑘 ) =

𝐼𝑟𝑙 ⊂ (−4𝛿, 4𝛿), or 𝜉𝑚𝑟𝑙
𝑘
(𝜔𝑟𝑙𝑘 ) is mapped onto ±(𝛿, 𝑥), with |𝑥− 𝛿| ≥ 3𝛿. We iterate each such

interval individually, and let𝑚𝑟𝑙
𝑘+1 be the time for which 𝜉𝑚𝑟𝑙

𝑘+1
(𝜔𝑟𝑙𝑘 ) hits deep enough for

us to be able to remove a significant portion of (−𝛿𝑚𝑟𝑙
𝑘+1
, 𝛿𝑚𝑟𝑙

𝑘+1
) in phase space, and let 𝐸𝑟𝑙

𝑘
denote the corresponding set that is removed in parameter space. We now form the set
�̂�𝑟𝑙𝑘 ⊂ Δ𝑘+1 and make the partition

�̂�𝑟𝑙𝑘 = 𝜔𝑟𝑙𝑘 ∖ 𝐸𝑟𝑙
𝑘 = (⋃

𝑟′,𝑙′
𝜔𝑟

′𝑙′
𝑘+1) ∪ 𝑇𝑘+1 = 𝑁𝑘+1 ∪ 𝑇𝑘+1.

Here, each 𝜔𝑟
′𝑙′

𝑘+1 ⊂ 𝑁𝑘+1 is such that 𝜉𝑚𝑟𝑙
𝑘+1
(𝜔𝑟

′𝑙′
𝑘+1) = 𝐼𝑟′𝑙′ ⊂ (−4𝛿, 4𝛿), and 𝑇𝑘+1 consists of (at

most) two intervals whose image under 𝜉𝑚𝑟𝑙
𝑘+1

is ±(𝛿, 𝑥), with |𝑥 − 𝛿| ≥ 3𝛿.
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Remark 4.1. At most four intervals 𝜔𝑟
′𝑙′

𝑘+1 ⊂ 𝑁𝑘+1 will be mapped onto an interval slightly
larger than 𝐼𝑟′𝑙′ , i.e.

𝐼𝑟′𝑙′ ⊂ 𝜉𝑚𝑟𝑙
𝑘+1
(𝜔𝑟

′𝑙′
𝑘+1) ⊂ 𝐼𝑟′𝑙′ ∪ 𝐼𝑟″𝑙″ ,

with 𝐼𝑟′𝑙′ and 𝐼𝑟″𝑙″ adjacent partition elements.

Remark 4.2. At essential returns and escape returns we will, if possible, make a partial
partition. To these partitioned parameter intervals we associate a complete return time even
though nothing is removed at these times. This is described in more detail in sections 4.8
and 4.9.

Remark 4.3. Notice that our way of partitioning differs slightly from the original one
considered in [BC85], since here we do not continue to iterate what is mapped outside of
(−𝛿, 𝛿), but instead stop and make a partition.

4.3 The different returns to (−𝛿, 𝛿)

At time𝑚𝑟𝑙
𝑘+1 we say that𝜔

𝑟𝑙
𝑘 has reached the (𝑘+1)th complete return to (−𝛿, 𝛿). In between

the two complete returns of index 𝑚𝑟𝑙
𝑘 and 𝑚𝑟𝑙

𝑘+1 we might have returns which are not
complete. Given a return at time 𝑛 > 𝑚𝑟𝑙

𝑘 , we classify it as follows.

i) If 𝜉𝑛(𝜔
𝑟𝑙
𝑘 ) ⊂ 𝐼𝑟′𝑙′ ∪ 𝐼𝑟″𝑙″ , with 𝐼𝑟′𝑙′ and 𝐼𝑟″𝑙″ adjacent partition elements (𝑟′ ≥ 𝑟″), and if

|𝜉𝑛(𝜔
𝑟𝑙
𝑘 )| < |𝐼𝑟′𝑙′|, we call this an inessential return. The interval 𝐼𝑟′𝑙′ ∪ 𝐼𝑟″𝑙″ is called the

host interval.

ii) If the return is not inessential, it is called an essential return. The outer most partition
element 𝐼𝑟 contained in the image is called the essential interval.

iii) If 𝜉𝑛(𝜔
𝑟𝑙
𝑘 ) ∩ (−𝛿, 𝛿) ≠ ∅ and |𝜉𝑛(𝜔

𝑟𝑙
𝑘 ) ∖ (−𝛿, 𝛿)| ≥ 3𝛿, we call this an escape return. The

interval 𝜉𝑛(𝜔
𝑟𝑙
𝑘 ) ∖ (−𝛿, 𝛿) is called the escape interval.

iv) Finally, if a return satisfies 𝜉𝑛(𝜔
𝑟𝑙
𝑘 ) ∩ (−𝛿𝑛/3, 𝛿𝑛/3) ≠ ∅, it is called a complete return.

We use these terms exclusively, that is, an inessential return is not essential, an essential
return is not an escape, and an escape return is not complete.

Given 𝜔𝑟𝑙𝑘 ⊂ Δ𝑘 we want to find an upper bound for the index of the next complete return.
In the worst case scenario we encounter all of the above kind of returns, in the order

complete → inessential → essential → escape → complete.

Given such behaviour, we show below that there is an absolute constant 𝜅 > 0 such that
the index of the (𝑘 + 1)th complete return satisfies𝑚𝑟𝑙

𝑘+1 ≤ 𝑚𝑟𝑙
𝑘 + 𝜅 log𝑚𝑟𝑙

𝑘 .
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4.4 Induction assumptions

Up until the start time𝑚0 we do not want to assume anything regarding recurrence with
respect to our recurrence rate (𝛿𝑛). Since the perturbation is made around a PR-parameter
𝑎0, we do however have the following polynomial recurrence to rely on (Lemma 3.4):

(PR) |𝐹𝑗(0; 𝑎)| ≥ 𝐾/𝑗𝜎 for all 𝑎 ∈ 𝜔𝑟𝑙𝑘 and 𝑗 = 1, 2, … ,𝑚0 − 1.

After𝑚0 we start excluding parameters according to the following basic assumption:

(BA) |𝐹𝑗(0; 𝑎)| ≥ 𝛿𝑗/3 for all 𝑎 ∈ 𝜔
𝑟𝑙
𝑘 and 𝑗 = 𝑚0, 𝑚0 + 1, … ,𝑚𝑟𝑙

𝑘 .

Since our sequence 𝛿𝑗 is assumed to be admissible, we will frequently use the fact that
𝛿𝑗/3 ≥ 1/(3𝑗𝑒).

From (5) we know that every 𝑎 ∈ 𝜔𝑟𝑙𝑘 is (𝛾, 𝐶)-Collet–Eckmann up to time𝑚0, and this
condition is strong enough to ensure phase-parameter distortion (Lemma 3.2). We will
continue to assume this condition at complete returns, but in between two complete
returns we will allow the exponent to drop slightly due to the loss of derivative when
returning close to the critical point 𝑥 = 0. We define the basic exponent conditions as
follows:

(BE)(1) |𝜕𝑥𝐹
𝑚𝑟𝑙
𝑘 −1(1; 𝑎)| ≥ 𝐶𝑒𝛾(𝑚

𝑟𝑙
𝑘 −1) for all 𝑎 ∈ 𝜔𝑟𝑙𝑘 .

(BE)(2) |𝜕𝑥𝐹
𝑗(1; 𝑎)| ≥ 𝐶𝑒(𝛾/3)𝑗 for all 𝑎 ∈ 𝜔𝑟𝑙𝑘 and 𝑗 = 0, 1, … ,𝑚𝑟𝑙

𝑘 − 1.

Assuming (BA) and (BE)(1,2) for 𝑎 ∈ 𝜔𝑟𝑙𝑘 ⊂ Δ𝑘, we will prove it for 𝑎
′ ∈ 𝜔𝑟

′𝑙′
𝑘+1 ⊂ Δ𝑘+1 ⊂ Δ𝑘.

Before considering the iteration of 𝜔𝑟𝑙𝑘 , we define the bound period and the free period, and
prove some useful lemmas connected to them. For technical reasons these lemmas will be
proved using the following weaker assumption on the derivative. Given a time 𝑛 ≥ 𝑚𝑟𝑙

𝑘 we
consider the following condition:

(BE)(3) |𝜕𝑥𝐹
𝑗(1; 𝑎)| ≥ 𝐶𝑒(𝛾/9)𝑗 for all 𝑎 ∈ 𝜔𝑟𝑙𝑘 and 𝑗 = 0, 1, … , 𝑛 − 1.

Notice that 𝛾/9 > 𝛾𝛵, hence we will be able to apply Lemma 3.2 at all times.

To rid ourselves of cumbersome notation we drop the indices from this point on and write
𝜔 = 𝜔𝑟𝑙𝑘 , and𝑚 = 𝑚𝑟𝑙

𝑘 .
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4.5 The bound and free periods

Assuming we are in the situation of a return for which 𝜉𝑛(𝜔) ⊂ 𝐼𝑟+1 ∪ 𝐼𝑟 ∪ 𝐼𝑟−1 ⊂ (−4𝛿, 4𝛿),
we are relatively close to the critical point, and therefore the next iterates 𝜉𝑛+𝑗(𝜔)will closely
resemble those of 𝜉𝑗(𝜔). We quantify this and define the bound period associated to this
return as the maximal 𝑝 such that

(BC) |𝜉𝜈(𝑎) − 𝐹
𝜈(𝜂; 𝑎)| ≤ |𝜉𝜈(𝑎)|/(10𝜈

2) for 𝜈 = 1, 2, … , 𝑝

holds for all 𝑎 ∈ 𝜔, and all 𝜂 ∈ (0, 𝑒−|𝑟−1|). We refer to (BC) as the binding condition.

Remark 4.4. In the proof of Lemma 4.12 we will refer to pointwise binding, meaning
that for a given parameter 𝑎 we associate a bound period 𝑝 = 𝑝(𝑎) according to when
(BC) breaks for this specific parameter. We notice that the conclusions of Lemma 4.5 and
Lemma 4.6 below are still true if we only consider iterations of one specific parameter.

The bound period is of central importance, and we establish some results connected to it
(compare with [BC85]). An important fact is that during this period the derivatives are
comparable in the following sense.

Lemma4.5 (Bounddistortion). Let𝑛 be the index of a return forwhich𝜉𝑛(𝜔) ⊂ 𝐼𝑟+1∪𝐼𝑟∪𝐼𝑟−1,
and let 𝑝 be the bound period. Then, for all 𝑎 ∈ 𝜔 and 𝜂 ∈ (0, 𝑒−|𝑟−1|),

1
2 ≤ ∣

𝜕𝑥𝐹
𝑗(1 − 𝑎𝜂2; 𝑎)
𝜕𝑥𝐹𝑗(1; 𝑎)

∣ ≤ 2 (𝑗 = 1, 2, … , 𝑝).

Proof. It is enough to prove that

∣
𝜕𝑥𝐹

𝑗(1 − 𝑎𝜂2; 𝑎)
𝜕𝑥𝐹𝑗(1; 𝑎)

− 1∣ ≤ 1
2 . (6)

The quotient can be expressed as

𝜕𝑥𝐹
𝑗(1 − 𝑎𝜂2; 𝑎)
𝜕𝑥𝐹𝑗(1; 𝑎)

=
𝑗

∏
𝜈=1

(
𝐹𝜈(𝜂; 𝑎) − 𝜉𝜈(𝑎)

𝜉𝜈(𝑎)
+ 1) ,

and applying the elementary inequality

∣
𝑗

∏
𝜈=1

(𝑢𝑛 + 1) − 1∣ ≤ exp (
𝑗

∑
𝜈=1

|𝑢𝑛|) − 1,
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valid for complex 𝑢𝑛, (6) now follows since
𝑗

∑
𝜈=1

|𝐹𝜈(𝜂; 𝑎) − 𝜉𝜈(𝑎)|
|𝜉𝜈(𝑎)|

≤ 1
10

𝑗

∑
𝜈=1

1
𝜈2

≤ log 32 .

The next result gives us an estimate of the length of the bound period. As will be seen, if
(BA) and (BE)(3) are assumed up to time 𝑛 ≥ 𝑚 = 𝑚𝑟𝑙

𝑘 , the bound period is never longer
than 𝑛, and we are therefore allowed to use the induction assumptions during this period.
In particular, in view of the above distortion result and (BE)(3), we inherit expansion along
the critical orbit during the bound period; making sure𝑚0 is large enough, and using (BA)
together with the assumption that (𝛿𝑛) is admissible, we have

|𝜕𝑥𝐹
𝑛+𝑗(1; 𝑎)| = 2𝑎|𝜉𝑛(𝑎)||𝜕𝑥𝐹

𝑛−1(1; 𝑎)||𝜕𝑥𝐹
𝑗(1 − 𝑎𝜉𝑛(𝑎)

2; 𝑎)|

≥ 2
3𝑛𝑒

𝐶2𝑒(𝛾/9)(𝑛+𝑗−1)

= 2
3𝐶

2𝑒−𝛾/9 exp {(
𝛾
9 −

𝑒 log 𝑛
𝑛 + 𝑗 ) (𝑛 + 𝑗)}

≥ 𝐶𝛵𝑒
𝛾𝛵(𝑛+𝑗) (𝑗 = 0, 1, … , 𝑝). (7)

This above estimate is an a priori one, and will allow us to use Lemma 3.2 in the proof of
Lemma 4.10.

Lemma 4.6 (Bound Length). Let 𝑛 be the index of a return such that 𝜉𝑛(𝜔) ⊂ 𝐼𝑟+1 ∪𝐼𝑟 ∪𝐼𝑟−1,
and suppose that (BA) and (BE)(3) are satisfied up to time 𝑛. Then there exists a constant
𝜅1 > 0 such that the corresponding bound period satisfy

𝜅−11 𝑟 ≤ 𝑝 ≤ 𝜅1𝑟. (8)

Proof. By the mean value theorem and Lemma 4.5 we have that

|𝜉𝑗(𝑎) − 𝐹
𝑗(𝜂; 𝑎)| = |𝐹𝑗−1(1; 𝑎) − 𝐹𝑗−1(1 − 𝑎𝜂2; 𝑎)|

= 𝑎𝜂2|𝜕𝑥𝐹
𝑗−1(1 − 𝑎𝜂′2; 𝑎)| (9)

≥
𝑎𝜂2

2 |𝜕𝑥𝐹
𝑗−1(1; 𝑎)|,

as long as 𝑗 ≤ 𝑝. (Here, 0 < 𝜂′ < 𝜂.) Furthermore, as long as we also have 𝑗 ≤ (log 𝑛)2, say,
we can use the induction assumptions: using (BE)(3) we find that

1
2𝑒

−2(𝑟+1)𝐶𝑒(𝛾/9)(𝑗−1) ≤
𝑎𝜂2

2 |𝜕𝑥𝐹
𝑗−1(1; 𝑎)| ≤

|𝜉𝑗(𝑎)|
10𝑗2

≤ 1.
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Taking the logarithm, using (BA), and making sure that𝑚0 is large enough, we therefore
have

𝑗 ≤ 1 + 9
𝛾 (2𝑟 + 2 + log 2 − log𝐶) ≲ 𝑟 ≲ log 𝑛 ≤ (log 𝑛)2,

as long as 𝑗 ≤ 𝑝 and 𝑗 ≤ (log 𝑛)2. This tells us that 𝑗 ≤ 𝑝must break before 𝑗 ≤ (log 𝑛)2;
in particular there is a constant 𝜅1 > 0 such that 𝑝 ≤ 𝜅1𝑟.

For the lower bound consider 𝑗 = 𝑝 + 1 and the equality (9). With 𝑎 ∈ 𝜔 being the
parameter for which the inequality in the binding condition is reversed, using Lemma 4.5
we find that

|𝜉𝑝+1(𝑎)|
10(𝑝 + 1)2

≤ |𝜉𝑝+1(𝑎) − 𝐹
𝑝+1(𝜂; 𝑎)| ≤ 4𝑒−2𝑟|𝜕𝑥𝐹

𝑝(1; 𝑎)| ≤ 4𝑒−2𝑟4𝑝.

Using the upper bound for 𝑝we know that (BA) (or (PR)) is valid at time 𝑝 + 1, hence

|𝜉𝑝+1(𝑎)|
10(𝑝 + 1)2

≥ 1
30(𝑝 + 1)2+�̂�

,

where �̂� = max(𝑒, 𝜎). Therefore

1
30(𝑝 + 1)2+�̂�

≤ 4𝑒−2𝑟4𝑝,

and taking the logarithm proves the lower bound.

Remark 4.7. Notice that the lower bound is true without assuming the upper bound
(which in our proof requires (BE)(3) at time 𝑛) as long as we assume (BA) to hold at time
𝑝 + 1.

The next result will concern the growth of 𝜉𝑛(𝜔) during the bound period.

Lemma 4.8 (Bound Growth). Let 𝑛 be the index of a return such that 𝜉𝑛(𝜔) ⊂ 𝐼 with
𝐼𝑟𝑙 ⊂ 𝐼 ⊂ 𝐼𝑟+1 ∪ 𝐼𝑟 ∪ 𝐼𝑟−1, and suppose that (BA) and (BE)(3) are satisfied up to time 𝑛. Then
there exists a constant 𝜅2 > 0 such that

|𝜉𝑛+𝑝+1(𝜔)| ≥
1
𝑟𝜅2

|𝜉𝑛(𝜔)|
|𝐼| .
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Proof. DenoteΩ = 𝜉𝑛+𝑝+1(𝜔) and notice that for any two given parameters 𝑎, 𝑏 ∈ 𝜔 we
have

|Ω| ≥ |𝐹𝑛+𝑝+1(0; 𝑎) − 𝐹𝑛+𝑝+1(0; 𝑏)|
= |𝐹𝑝+1(𝜉𝑛(𝑎); 𝑎) − 𝐹

𝑝+1(𝜉𝑛(𝑏); 𝑏)|
≥ |𝐹𝑝+1(𝜉𝑛(𝑎); 𝑎) − 𝐹

𝑝+1(𝜉𝑛(𝑏); 𝑎)|
− |𝐹𝑝+1(𝜉𝑛(𝑏); 𝑎) − 𝐹

𝑝+1(𝜉𝑛(𝑏); 𝑏)|. (10)

Due to exponential increase of the phase derivative along the critical orbit, the dependence
on parameter is inessential in the following sense:

|𝐹𝑝+1(𝜉𝑛(𝑏); 𝑎) − 𝐹
𝑝+1(𝜉𝑛(𝑏); 𝑏)| ≤ 𝑒−(𝛾/18)𝑛|𝜉𝑛(𝜔)|. (11)

To realise this, first notice that we have the following (somewhat crude) estimate for the
parameter derivative:

|𝜕𝑎𝐹
𝑗(𝑥; 𝑎)| ≤ 5𝑗 (𝑗 = 1, 2, … ).

Indeed, |𝜕𝑎𝐹(𝑥; 𝑎)| ≤ 1 < 5, and by induction

|𝜕𝑎𝐹
𝑗+1(𝑥; 𝑎)| = |𝜕𝑎(1 − 𝑎𝐹

𝑗(𝑥; 𝑎)2)|
= | − 𝐹𝑗(𝑥; 𝑎)2 − 2𝑎𝐹𝑗(𝑥; 𝑎)𝜕𝑎𝐹

𝑗(𝑥; 𝑎)|
≤ 1 + 4 ⋅ 5𝑗

≤ 5𝑗+1.

Using the mean value theorem twice, Lemma 3.2 and (BE)(3) we find that

|𝐹𝑝+1(𝜉𝑛(𝑏); 𝑎) − 𝐹
𝑝+1(𝜉𝑛(𝑏); 𝑏)| ≤ [(1 − 𝐴)𝑇]−15𝑝+1𝐶−1𝑒−(𝛾/9)(𝑛−1)|𝜉𝑛(𝜔)|.

In view of (8) and (BA), making𝑚0 larger if needed, the inequality (11) can be achieved.

Assume now that at time 𝑝 + 1 (BC) is broken for parameter 𝑎, and let 𝑏 be an endpoint of
𝜔 such that

|𝜉𝑛(𝑎) − 𝜉𝑛(𝑏)| ≥
|𝜉𝑛(𝜔)|

2 .

Continuing the estimate of |Ω|, using (11), we find that

|Ω| ≥ |𝐹𝑝(1 − 𝑎𝜉𝑛(𝑎)
2; 𝑎) − 𝐹𝑝(1 − 𝑎𝜉𝑛(𝑏)

2; 𝑎)|
− |𝐹𝑝+1(𝜉𝑛(𝑏); 𝑎) − 𝐹

𝑝+1(𝜉𝑛(𝑏); 𝑏)|

≥ (𝑎|𝜉𝑛(𝑎) + 𝜉𝑛(𝑏)||𝜕𝑥𝐹
𝑝(1 − 𝑎𝜉𝑛(𝑎

′)2; 𝑎)| − 2𝑒−(𝛾/18)𝑛)
|𝜉𝑛(𝜔)|

2

≥ (2𝑎𝑒−𝑟|𝜕𝑥𝐹
𝑝(1 − 𝑎𝜉𝑛(𝑎

′)2; 𝑎)| − 2𝑒−(𝛾/18)𝑛)
|𝜉𝑛(𝜔)|

2 . (12)
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Using Lemma 4.5 twice and the equality in (9) (with 𝑝+ 1 instead of 𝑝) together with (BC)
(now reversed inequality) we continue the estimate in (12) to find that

|Ω| ≥ (2𝑎𝑒−𝑟 1
4𝑎𝜂2

|𝜉𝑝+1(𝑎)|
10(𝑝 + 1)2

− 2𝑒−(𝛾/18)𝑛)
|𝜉𝑛(𝜔)|

2

≥ (𝑒𝑟
|𝜉𝑝+1(𝑎)|
20(𝑝 + 1)2

− 2𝑒−(𝛾/18)𝑛)
|𝜉𝑛(𝜔)|

2 . (13)

In either case of 𝑝 ≤ 𝑚0 or 𝑝 > 𝑚0 we have that (using (BA), (PR), and the assumption
that our recurrence rate is admissible)

|𝜉𝑝+1(𝑎)|
(𝑝 + 1)2

≥ 𝐾
3(𝑝 + 1)2+�̂�

,

where �̂� = max(𝑒, 𝜎). We can make sure that the second term in the parenthesis in (13) is
always less than a fraction, say 1/2, of the first term and therefore, using (BC), (8), and that
𝑒𝑟 ≥ 1/(2𝑟2|𝐼|), we finish the estimate as follows

|Ω| ≥ 𝐾
240

1
(𝑝 + 1)2+�̂�

|𝜉𝑛(𝜔)|𝑒
𝑟

≥ 𝐾
480

1
𝑟2(𝑝 + 1)2+�̂�

|𝜉𝑛(𝜔)|
|𝐼|

≥ 𝐾
480(2𝜅1)2+�̂�

1
𝑟4+�̂�

|𝜉𝑛(𝜔)|
|𝐼|

≥ 1
𝑟𝜅2

|𝜉𝑛(𝜔)|
|𝐼| , (14)

where we can choose 𝜅2 = 5 + �̂� as long as 𝛿 is sufficiently small.

Remark 4.9. Using the lower bound for 𝑝, the upper bound

|𝜉𝑛+𝑝+1(𝜔)| ≤
1
𝑟
|𝜉𝑛(𝜔)|
|𝐼|

can be proved similarly.

This finishes the analysis of the bound period, and we continue with describing the free
period. A free period will always follow a bound period, and during this period we will
be iterating outside (−𝛿, 𝛿). We let 𝐿 denote the length of this period, i.e. 𝐿 is the smallest
integer for which

𝜉𝑛+𝑝+𝐿(𝜔) ∩ (−𝛿, 𝛿) ≠ ∅.

The following lemma gives an upper bound for the length of the free period, following the
bound period of a complete return, or an essential return.
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Lemma 4.10 (Free length). Let 𝜉𝑛(𝜔) ⊂ 𝐼𝑟+1 ∪ 𝐼𝑟 ∪ 𝐼𝑟−1 with 𝑛 being the index of a complete
return or an essential return, and suppose that (BA) and (BE)(3) are satisfied up to time 𝑛.
Let 𝑝 be the associated bound period, and let 𝐿 be the free period. Then there exists a constant
𝜅3 > 0 such that

𝐿 ≤ 𝜅3𝑟.

Proof. Assuming 𝑗 ≤ 𝐿 and 𝑗 ≤ (log 𝑛)2, similar calculations as in the proof of Lemma 4.8
gives us parameter independence (see (11) and notice that from (7) we are allowed to apply
Lemma 3.2); using Lemma 4.8 and Lemma 3.1 we find that

2 ≥ |𝜉𝑛+𝑝+𝑗(𝜔)| ≥
𝛿𝐶𝛭
2 𝑒𝛾𝛭(𝑗−1) 1

𝑟𝜅2 .

Taking the logarithm, using (BA), and making sure that𝑚0 is large enough, we therefore
have

𝑗 ≤ 1 + 1
𝛾𝛭

(𝜅2 log 𝑟 + Δ + log 4 − log𝐶𝛭) ≲ 𝑟 ≲ log 𝑛 < 1
2(log 𝑛)

2,

as long as 𝑗 ≤ 𝐿 and 𝑗 ≤ (log 𝑛)2. This tells us that 𝑗 ≤ 𝐿must break before 𝑗 ≤ (log 𝑛)2; in
particular there is a constant 𝜅3 > 0 such that 𝐿 ≤ 𝜅3𝑟.

Remark 4.11. If the return 𝜉𝑛+𝑝+𝐿(𝜔) is inessential or essential, then there is no dependence
on 𝛿 in the growth factor; more generally, if the prerequisites of Lemma 4.8 are satisfied,
then

|𝜉𝑛+𝑝+𝐿(𝜔)| ≥
𝐶𝛭
2 𝑒𝛾𝛭(𝐿−1) 1

𝑟𝜅2
|𝜉𝑛(𝜔)|
|𝐼| .

Before considering iterations of𝜔 = 𝜔𝑟𝑙𝑘 ⊂ Δ𝑘 from𝑚 = 𝑚𝑟𝑙
𝑘 to𝑚𝑟𝑙

𝑘+1, wemake the following
observation that as long as (BA) is assumed in a time window [𝑛, 2𝑛], the derivative will
not drop too much.

Lemma 4.12. Suppose that 𝑎 is a parameter such that

|𝜕𝑥𝐹
𝑗(1; 𝑎)| ≥ 𝐶𝑒𝛾

′𝑗 (𝑗 = 0, 1, … , 𝑛 − 1), (15)

with 𝛾′ ≥ 𝛾/3. Then, if (BA) is satisfied up to time 2𝑛, we have

|𝜕𝑥𝐹
𝑛+𝑗(1; 𝑎)| ≥ 𝐶𝑒(𝛾

′/3)(𝑛+𝑗) (𝑗 = 0, 1, … , 𝑛 − 1).

In other words, if (BA) and (BE)(1) [(BE)(2)] are satisfied up to time 𝑛 then (BE)(2) [(BE)(3)]
is satisfied up to time 2𝑛, as long as (BA) is.
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Proof. The proof is based on the fact that we trivially have no loss of derivative during the
bound and free periods. Indeed suppose 𝜉𝑛′(𝑎) ∼ 𝑒−𝑟, with 𝑛′ ≥ 𝑛 and let 𝑝 be the bound
period (here we use pointwise binding, see Remark 4.4), and 𝐿 the free period. Moreover
we assume that 𝑛′ + 𝑝 + 𝐿 < 2𝑛; in particular this implies 𝑝 < 𝑛 and we can use (15) during
this period. Introducing𝐷𝑝 = |𝜕𝑥𝐹

𝑝(1; 𝑎)| and using similar calculations as in Lemma 4.8
(e.g. the equality in (9) and reversed inequality in (BC)) we find that

𝑒−2𝑟𝐷𝑝 ≳ 𝑎𝜂2|𝜕𝑥𝐹
𝑝(1 − 𝑎𝜂2; 𝑎)| ≥

|𝜉𝑝+1(𝑎)|
10(𝑝 + 1)2

≳ 1
(𝑝 + 1)2+�̂�

,

where we used (BA) (or (PR)). Since 𝑝 < 𝑛we are free to use (15) and therefore the above
inequalities yield

𝑒−𝑟𝐷𝑝 ≳ 𝐷1/2
𝑝

1
√(𝑝 + 1)2+�̂�

≳ 𝑒(𝛾
′/2)𝑝

√(𝑝 + 1)2+�̂�
≥ 𝐶−1

𝛭 ,

provided 𝛿 is small enough. Here in the last inequality we used the lower bound in (8) (see
Remark 4.7). Assuming 𝜉𝑛′+𝑝+𝐿(𝑎) is a return (and that 𝑛

′ + 𝑝 + 𝐿 < 2𝑛), we therefore have

|𝜕𝑥𝐹
𝑝+𝐿(𝜉𝑛′(𝑎); 𝑎)| ≥ 2𝑎|𝜉𝑛′(𝑎)||𝜕𝑥𝐹

𝑝(1 − 𝑎𝜉𝑛′(𝑎)
2; 𝑎)||𝜕𝑥𝐹

𝐿−1(𝜉𝑛′+𝑝+1(𝑎); 𝑎)|

≳ 𝑒−𝑟𝐷𝑝𝐶𝛭𝑒𝛾𝛭(𝐿−1)

≥ 1.

We conclude that the combination of a return, a bound period, and a free period does not
decrease the derivative.

Let us now follow a parameter 𝑎 satisfying (15) and (BA) up to time 2𝑛. If the iterates
𝜉𝑛+𝑗(𝑎) are always outside (−𝛿, 𝛿) then

|𝜕𝑥𝐹
𝑛+𝑗(1; 𝑎)| = |𝜕𝑥𝐹

𝑛−1(1; 𝑎)||𝜕𝑥𝐹
𝑗+1(𝜉𝑛(𝑎); 𝑎)|

≥ 𝐶𝑒𝛾
′(𝑛−1)𝛿𝐶𝛭𝑒𝛾𝛭(𝑗+1)

≥ 𝐶𝑒(𝛾
′/3)(𝑛+𝑗)𝛿𝐶𝛭𝑒(2𝛾

′/3)(𝑛+𝑗)

≥ 𝐶𝑒(𝛾
′/3)(𝑛+𝑗) (𝑗 = 0, 1, … , 𝑛 − 1),

provided𝑚0 is big enough.

Otherwise, the worst case is if we have a short free period followed by a return, a bound
period, a free period, and so on, and which ends with a return together with a short bound
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period. In this case, using the above argument, the estimate is as follows:

|𝜕𝑥𝐹
𝑛+𝑗(1; 𝑎)| ≥ |𝜕𝑥𝐹

𝑛−1(1; 𝑎)| ⋅ 𝐶𝛭 ⋅ 1 ⋅ 1 ⋯ 1 ⋅ 2𝑎|𝜉𝑛+𝑗(𝑎)| ⋅ 𝐶

≥ 𝐶𝑒𝛾
′(𝑛−1)𝐶𝛭𝐶2𝑎

𝛿𝑛+𝑗
3

≥ 𝐶𝑒(𝛾
′/3)(𝑛+𝑗)𝐶𝛭𝐶 2

3𝑎𝑒
(𝛾′/3)𝑛−𝑒 log(2𝑛)

≥ 𝐶𝑒(𝛾
′/3)(𝑛+𝑗) (𝑗 = 0, 1, … , 𝑛 − 1),

provided𝑚0 is big enough. This proves the lemma.

4.6 From the 𝑘th complete return to the first inessential return

If 𝜔 ⊂ 𝑇𝑘 then we have already reached an escape situation and proceed accordingly as is
described below in the section about escape. We therefore assume 𝜔 ⊂ 𝑁𝑘 and 𝜉𝑚(𝜔) =
𝐼𝑟0𝑙 ⊂ (−4𝛿, 4𝛿).

If it happens that for some 𝑗 ≤ 𝑝

𝜉𝑚+𝑗(𝜔) ∩ (−𝛿𝑚+𝑗/3, 𝛿𝑚+𝑗/3) ≠ ∅,

then we stop and consider this return complete. If not, we notice that 𝜉𝑚+𝑝(𝜔) can not be
a return, unless it is escape or complete; indeed we would otherwise have |𝜉𝑚+𝑝+1(𝜔)| <
|𝜉𝑚+𝑝(𝜔)|, due to the fact that we return close to the critical point, thus contradicting
the definition of the bound period. We therefore assume that 𝜉𝑚+𝑝(𝜔) does not intersect
(−𝛿, 𝛿).

Up until the next return we will therefore experience an orbit outside of (−𝛿, 𝛿), i.e. we will
be in a free period. After the free period, our return is either inessential, essential, escape,
or complete. In the next section we consider the situation of an inessential return.

4.7 From the first inessential return to the first essential return

Let 𝑖1 = 𝑚 + 𝑝0 + 𝐿0 denote the index of the first inessential return to (−𝛿, 𝛿). We will keep
iterating 𝜉𝑖1(𝜔) until we once again return. If this next return is again inessential, we denote
its index by 𝑖2 = 𝑖1 + 𝑝1 + 𝐿1, where 𝑝1 and 𝐿1 are the associated bound period and free
period, respectively. Continuing like this, let 𝑖𝑗 be the index of the 𝑗

th inessential return.

The following lemma gives an upper bound for the total time spent doing inessential
returns (compare with Lemma 2.3 in [BC91]).
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Lemma 4.13 (Inessential Length). Let 𝜉𝑛(𝜔) ⊂ 𝐼𝑟+1 ∪ 𝐼𝑟 ∪ 𝐼𝑟−1 with 𝑛 being the index of a
complete return or an essential return, and suppose that (BA) and (BE)(2) are satisfied up to
time 𝑛. Then there exists a constant 𝜅4 > 0 such that the total time 𝑜 spent doing inessential
returns satisfy

𝑜 ≤ 𝜅4𝑟.

Proof. Let 𝑖1 = 𝑛 + 𝑝 + 𝐿 be the index of the first inessential return, i.e. 𝜉𝑖1(𝜔) ⊂ 𝐼𝑟1 , with 𝐼𝑟1
being the host interval. From Lemma 4.6 and Lemma 4.10, together with (BA), we have
that

𝑖1 = 𝑛 + 𝑝 + 𝐿 ≤ 𝑛 + (𝜅1 + 𝜅3)𝑟 ≤ 2𝑛,

provided𝑚0 is large enough. We can therefore apply Lemma4.12 and conclude that (BE)(3)
is satisfied at time 𝑖1. To this first inessential return we associate a bound period of length
𝑝1 (satisfying 𝑝1 ≤ 𝜅1𝑟1 due to the fact that (BE)(3) is satisfied time 𝑖1) and a free period
of length 𝐿1. We let 𝑖2 = 𝑖1 + 𝑝1 + 𝐿1 denote the index of the second inessential return.
Continuing like this, we denote by 𝑖𝑗 = 𝑖𝑗−1 + 𝑝𝑗−1 + 𝐿𝑗−1 the index of the 𝑗

th inessential
return. With 𝑜𝑗 denoting the total time spent doing inessential returns up to time 𝑖𝑗, we
have that 𝑜𝑗 = 𝑖𝑗 − 𝑖1 = ∑𝑗−1

𝑘=1(𝑝𝑘 + 𝐿𝑘). Suppose that the return with index 𝑖𝑠 is the first
that is not inessential. We estimate 𝑜 = 𝑜𝑠 as follows. Suppose that 𝑜𝑗 is as above and that
𝑝𝑘 ≤ 𝜅1𝑟𝑘 for 𝑘 = 1, 2, … , 𝑗 − 1. Using Remark 4.11 we find that

|𝜉𝑖𝑘+1(𝜔)|
|𝜉𝑖𝑘(𝜔)|

≥
𝐶𝛭𝑒𝛾𝛭(𝐿𝑘−1)

2𝑟𝜅2𝑘 |𝐼𝑟𝑘|
≥
𝐶𝛭
2
𝑒𝛾𝛭(𝐿𝑘−1)+𝑟𝑘

𝑟𝜅2𝑘
, (16)

and therefore

2 ≥ |𝜉𝑖𝑗(𝜔)| = |𝜉𝑖1(𝜔)|
𝑗−1

∏
𝑘=1

|𝜉𝑖𝑘+1(𝜔)|
|𝜉𝑖𝑘(𝜔)|

≥
𝛿𝐶𝛭𝑒𝛾𝛭
2𝑟𝜅2

𝑗−1

∏
𝑘=1

𝐶𝛭
2
𝑒𝛾𝛭(𝐿𝑘−1)+𝑟𝑘

𝑟𝜅2𝑘
. (17)

Here the 𝛿 is added to make sure that the estimate also holds for the last free orbit, when
the return can be escape or complete. This gives us a rather poor estimate, but since 𝑝 ≲ 𝑟
it is good enough.

Taking the logarithm of (17) we find that
𝑗−1

∑
𝑘=1

(log𝐶𝛭 − log 2 + 𝛾𝛭(𝐿𝑘 − 1) + 𝑟𝑘 − 𝜅2 log 𝑟𝑘) ≤ 𝜅2 log 𝑟 + Δ + const. .

Provided 𝛿 is small enoughwe have 𝑟𝑘 ≥ 4𝜅2 log 𝑟𝑘 and 𝑟𝑘 ≥ − log 𝛿 > −2(log𝐶𝛭+𝛾𝛭+log 2).
Therefore, using 𝑝𝑘 ≤ 𝜅1𝑟𝑘, we find that

𝑜𝑗 = 𝑖𝑗 − 𝑖1 =
𝑗−1

∑
𝑘=1

(𝑝𝑘 + 𝐿𝑘) ≤ 𝜅4𝑟,
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with 𝜅4 being an absolute constant. In particular

𝑖𝑗 = 𝑖1 + 𝑜𝑗 ≤ 2𝑛,

and therefore (BE)(3) is still valid at time 𝑖𝑗. Consequently the associated bound period
satisfies 𝑝𝑗 ≤ 𝜅1𝑟𝑗, and the above argument can therefore be repeated. With this we conclude
that 𝑜𝑠 ≤ 𝜅4𝑟.

We proceed in the next section with describing the situation if our return is assumed to be
essential.

4.8 From the first essential return to the first escape return

With 𝑛1 denoting the index of the first essential return, we are in the following situation

𝜉𝑛1(𝜔) ∩ 𝐼𝑟𝑙 ≠ ∅, |𝜉𝑛1(𝜔)| ≥ |𝐼𝑟𝑙|,

and 𝜉𝑛1(𝜔) ⊂ (−4𝛿, 4𝛿) ∖ (−𝛿𝑛1/3, 𝛿𝑛1/3),

for some 𝑟, 𝑙. At this point, in order not to lose too much distortion, we will make a
partition of as much as possible, and keep iterating what is left. That is, we will consider
iterations of larger partition elements 𝐼𝑟 = (𝑒−𝑟−1, 𝑒−𝑟) ⊂ (−4𝛿, 4𝛿), and we establish an
upper bound for the number of essential returns needed to reach an escape return or a
complete return.

LetΩ1 = 𝜉𝑛1(𝜔) and let 𝐼1 = 𝐼𝑟1 ⊂ Ω1, for smallest such 𝑟1. (In fact, we extend 𝐼1 to the
closest endpoint ofΩ1, and therefore have 𝐼1 ⊂ 𝐼𝑟1 ∪ 𝐼𝑟1−1.) If there is no such 𝑟, we instead
let 𝐼1 = Ω1. Moreover, let 𝜔1 be the interval in parameter space for which 𝜉𝑛1(𝜔

1) = 𝐼1.
The interval 𝐼1 is referred to as the essential interval, and this is the interval we will iterate.
If �̂� = 𝜔 ∖ 𝜔1 is nonempty we make a partition

�̂� = ⋃
𝑟,𝑙
𝜔𝑟𝑙 ⊂ Δ𝑘+1,

where each 𝜔𝑟𝑙 is such that 𝐼𝑟𝑙 ⊂ 𝜉𝑛1(𝜔
𝑟𝑙) = 𝐼𝑟𝑙 ∪ 𝐼𝑟′𝑙′ ⊂ (−4𝛿, 4𝛿). (If there is not enough

left for a partition, we extend 𝐼1 further so that 𝐼1 ⊂ 𝐼𝑟1+1 ∪ 𝐼𝑟1 ∪ 𝐼𝑟1−1.) Notice that, since the
intervals 𝐼𝑟 are dyadic, the proportion of what remains after partitioning satisfies

|𝐼1|
|Ω1|

≥ 1 − 1
𝑒 ≥

1
2 . (18)
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We associate for each partitioned parameter interval 𝜔𝑟𝑙 the complete return time 𝑛1 (even
though nothing is removed from these intervals). From the conclusions made in the
previous sections we know that

𝑛1 = 𝑚 + 𝑝0 + 𝐿0 + 𝑜0 ≤ 𝑚 + (𝜅1 + 𝜅3 + 𝜅4)𝑟0 ≤ 2𝑚,

provided 𝑚0 is large enough. In particular Lemma 4.12 tells us that (BE)(2) is satisfied
up to time 𝑛1 for all 𝑎 ∈ 𝜔. At this step, to make sure that (BE)(1) is satisfied for our
partitioned parameter intervals 𝜔𝑟𝑙 ⊂ Δ𝑘+1, we make the following rule (compare with the
initial iterates at the beginning of the induction step). If there is no 𝑎′ ∈ 𝜔 such that

|𝜕𝑥𝐹
𝑛1−1(1; 𝑎′)| ≥ 𝐶𝛣𝑒

𝛾𝛣(𝑛1−1),

then we remove the entire interval. If there is such a parameter, on the other hand, using
Lemma 5.1 we have that

|𝜕𝑥𝐹
𝑛1−1(1; 𝑎)| ≥ 𝐷−(log∗𝑚)2

1 |𝜕𝑥𝐹
𝑛1−1(1; 𝑎′)|

≥ 𝐶𝛣 exp {(𝛾𝛣 −
(log∗𝑚)2

𝑛1 − 1
log𝐷1) (𝑛1 − 1)}

≥ 𝐶𝑒𝛾(𝑛1−1),

provided𝑚0 is large enough.

With the above rules applied at each essential return to come, we nowdescribe the iterations.
Since 𝜉𝑚(𝜔) = 𝐼𝑟0𝑙, using Lemma 4.8 we know that the length ofΩ1 satisfies

|Ω1| ≥
𝐶𝛭𝑒𝛾𝛭
2

1
𝑟𝜅20

≥ 1
𝑟𝜅2+10

.

Notice that since 𝑒−𝑟1+1 ≥ |Ω1| we have that 𝑟1 ≤ 2𝜅2 log 𝑟0. Iterating 𝐼1 with the same
rules as before, we will eventually reach a second noninessential return, and if this return is
essential we denote its index by 𝑛2. This index constitutes the addition of a bound period,
a free period, and an inessential period: 𝑛2 = 𝑛1 + 𝑝1 + 𝐿1 + 𝑜1. Similarly as before, we let
Ω2 = 𝜉𝑛2(𝜔

1), and let 𝐼2 ⊂ Ω2 denote the essential interval ofΩ2. Let 𝜔
2 ⊂ 𝜔1 be such that

𝜉𝑛2(𝜔
2) = 𝐼2, and make a complete partition of 𝜔1 ∖ 𝜔2. By applying Lemma 4.8 again, we

find that
|Ω2| ≥

1
𝑟𝜅2+11

≥ 1
(2𝜅2 log 𝑟0)𝜅2+1

.

If we have yet to reach an escape return or a complete return, let 𝑛𝑗 be the index of the 𝑗
th

essential return, and realise that we are in the following situation

𝜉𝑛𝑗(𝜔
𝑗) = 𝐼𝑗 ⊂ Ω𝑗 = 𝜉𝑛𝑗(𝜔

𝑗−1) and |Ω𝑗| ≥
1

𝑟𝜅2+1𝑗−1

. (19)
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Introducing the function 𝑟 ↦ 2𝜅2 log 𝑟 = 𝜑(𝑟), we see from the above that 𝑟𝑗 ≤ 𝜑𝑗(𝑟0).
The orbit 𝜑𝑗(𝑟0)will tend to the attracting fixed point �̂� = −2𝜅2𝑊(−1/(2𝜅2)), where𝑊
is the Lambert𝑊 function. The following simple lemma gives an upper bound for the
number of essential returns needed to reach an escape return or a complete return.

Lemma 4.14. Let 𝜑(𝑟) = 2𝜅2 log 𝑟, and let 𝑠 = 𝑠(𝑟) be the integer defined by

log𝑠 𝑟 ≤ 2𝜅2 ≤ log𝑠−1 𝑟.

Then
𝜑𝑠(𝑟) ≤ 12𝜅22 .

Proof. Using the fact that 3 ≤ 2𝜅2 ≤ log𝑗 𝑟, for 𝑗 = 0, 1, … , 𝑠 − 1, it is straightforward to
check that

𝜑𝑗(𝑟) ≤ 6𝜅2 log𝑗 𝑟. (20)

Therefore

𝜑𝑠(𝑟) ≤ 2𝜅2 log (6𝜅2 log𝑠−1 𝑟) = 2𝜅2 (log 3 + log 2𝜅2 + log𝑠 𝑟) ≤ 12𝜅22 .

Given 𝑠 = 𝑠(𝑟0) as in the above lemma we have that 𝑟𝑠 ≤ 𝜑𝑠(𝑟0) ≤ 12𝜅22 . By making sure 𝛿 is
small enough we therefore conclude that

|Ω𝑠+1| ≥
1

(12𝜅22)
𝜅2+1

≥ 4𝛿.

To express 𝑠 in terms of 𝑟0 we introduce the so-called iterated logarithm, which is defined
recursively as

log∗ 𝑥 = {
0 if 𝑥 ≤ 1,
1 + log∗ log 𝑥 if 𝑥 > 1.

That is, log∗ 𝑥 is the number of times one has to apply to logarithm to 𝑥 in order for the
result to be less than or equal to one.

Since 𝑠 satisfies log𝑠 𝑟0 ≤ 2𝜅2 ≤ log𝑠−1 𝑟0 and since 2𝜅2 > 1, we have

𝑠 ≤ log∗ 𝑟0 ≤ log∗𝑚. (21)
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We finish by giving an upper bound for the index of the first escape return (or (𝑘 + 1)th

complete return), i.e. we wish to estimate

𝑛𝑠+1 = 𝑚 +
𝑠
∑
𝑗=0

(𝑝𝑗 + 𝐿𝑗 + 𝑜𝑗) .

From Lemma 4.6, Lemma 4.10, and Lemma 4.13, we have that

𝑝𝑗 ≤ 𝜅1𝑟𝑗, 𝐿𝑗 ≤ 𝜅3𝑟𝑗, and 𝑜𝑗 ≤ 𝜅4𝑟𝑗.

Together with the inequalities 𝑟𝑗 ≤ 𝜑𝑗(𝑟0) and (20), we find that

𝑠
∑
𝑗=0

(𝑝𝑗 + 𝐿𝑗 + 𝑜𝑗) ≲ 𝑟0 +
𝑠
∑
𝑗=1

𝜑𝑗(𝑟0)

≲ 𝑟0 +
𝑠
∑
𝑗=1

log𝑗 𝑟0

≲ 𝑟0.

Using (BA) we conclude that 𝑛𝑠+1 − 𝑚 ≲ log𝑚, provided𝑚0 is large enough.

4.9 From the first escape return to the (𝑘 + 1)th complete return

Keeping the notation from the previous section,Ω𝑠+1 = 𝜉𝑛𝑠+1(𝜔
𝑠) is the first escape return,

satisfying

Ω𝑠+1 ∩ (−𝛿, 𝛿) ≠ ∅, Ω𝑠+1 ∩ (−𝛿𝑛𝑠/3, 𝛿𝑛𝑠/3) = ∅,

and |Ω𝑠+1 ∖ (−𝛿, 𝛿)| ≥ 3𝛿.

We will keep iterating 𝜔𝑠 until we get a complete return, and we show below that this must
happen within finite (uniform) time. In order to not run into problems with distortion we
will, as in the case of essential returns, whenever possible make a partition of everything
that is mapped inside of (−𝛿, 𝛿), and the corresponding parameter intervals will be a part
of Δ𝑘+1; i.e. at time 𝑛𝑠+1+𝑗 = 𝑛𝑠+1 + 𝑗 let 𝐼𝑠+1+𝑗 = Ω𝑠+1+𝑗 ∖ (Ω𝑠+1+𝑗 ∩ (−𝛿, 𝛿)), let 𝜔

𝑠+1+𝑗 be
such that 𝜉𝑛𝑠+1+𝑗(𝜔

𝑠+1+𝑗) = 𝐼𝑠+1+𝑗, and make a partition of 𝜔𝑠+𝑗 ∖ 𝜔𝑠+1+𝑗. As in the case of
essential returns, we associate to each partitioned parameter interval the complete time
𝑛𝑠+1+𝑗, and as before we make sure that at these times (BE)(1) is satisfied.

Let 𝜔𝑒 = 𝜔𝐿 ∪ 𝜔𝛭 ∪ 𝜔𝑅 be the disjoint union of parameter intervals for which

𝜉𝑛𝑠+1(𝜔𝐿) = (𝛿, 2𝛿), 𝜉𝑛𝑠+1(𝜔𝛭) = (2𝛿, 3𝛿), and 𝜉𝑛𝑠+1(𝜔𝑅) = (3𝛿, 4𝛿).
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Clearly it is enough to show that 𝜔𝑒 reaches a complete return within finite time. Let 𝑡∗ be
the smallest integer for which

𝐶𝛭𝑒𝛾𝛭𝑡∗ ≥ 4.

If 𝛿 is small enough, and if |𝜔0| = 2𝜖 is small enough, we can make sure that

𝜉𝑛𝑠+1+𝑗(𝜔𝑒) ∩ (−2𝛿, 2𝛿) = ∅ (1 ≤ 𝑗 ≤ 𝑡∗).

Suppose that, for some 𝑗 ≥ 𝑡∗, 𝜉𝑛𝑠+1+𝑗(𝜔𝑒) ∩ (−𝛿, 𝛿) ≠ ∅, and that this return is not complete.
Assuming that 𝜔𝐿 returns we can not have 𝜉𝑛𝑠+1+𝑗(𝜔𝐿) ⊂ (−2𝛿, 2𝛿). Indeed, if this was the
case, then (using Lemma 3.1 and parameter independence)

|𝜉𝑛𝑠+1+𝑗(𝜔𝐿)| > 2|𝜉𝑛𝑠+1(𝜔𝐿)| > 2𝛿,

contradicting the return not being complete. We conclude that after partitioning what
is mapped inside of (−𝛿, 𝛿), what is left is of size at least 𝛿, and we are back to the original
setting. In particular, 𝜔𝛭 did not return to (−𝛿, 𝛿). Repeating this argument, 𝜔𝐿 and 𝜔𝑅
will return, but 𝜔𝛭 will stay outside of (−𝛿, 𝛿). (Here we abuse the notation: if 𝜔𝐿 returns
we update it so that it maps onto (𝛿, 2𝛿), and similarly if 𝜔𝑅 returns.) Due to Lemma 3.1
we therefore have

2 ≥ |𝜉𝑛𝑠+1+𝑗(𝜔𝛭)| ≳ |𝜉𝑛𝑠+1(𝜔𝛭)|𝛿𝐶𝛭𝑒𝛾𝛭𝑗 ≥ 𝛿2𝐶𝛭𝑒𝛾𝛭𝑗 (𝑗 ≥ 0),

and clearly we must reach a complete return after 𝑗 = 𝑡 iterations, with

𝑡 ≲
2Δ − log𝐶𝛭

𝛾𝛭
.

With this we conclude that if𝑚0 is large enough then there exists a constant 𝜅 > 0 such that

𝑚𝑟𝑙
𝑘+1 ≤ 𝑚𝑟𝑙

𝑘 + 𝜅 log𝑚𝑟𝑙
𝑘 . (22)

We finish by estimating how much of Ω𝑠+1+𝑗 is being partitioned at each iteration. By
definition of an escape return we have that |Ω𝑠+1| ≥ 3𝛿, and since it takes a long time for
𝜔𝑒 to return, the following estimate is valid:

|𝐼𝑠+1+𝑗|
|Ω𝑠+1+𝑗|

≥
|Ω𝑠+1+𝑗| − 𝛿
|Ω𝑠+1+𝑗|

≥ 1 − 1
3 = 2

3 . (23)
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4.10 Parameter exclusion

We are finally in the position to estimate how much of 𝜔 is being removed at the next
complete return. Up until the first free return, nothing is removed (unless we have a bound
return, for which we either remove nothing, or remove enough to consider the return
complete). Let 𝐸 be what is removed in parameter space, and write 𝜔 = 𝜔0. Taking into
account what we partition in between𝑚𝑘 and𝑚𝑘+1 we have that

|𝐸|
|𝜔0|

= |𝐸|
|𝜔𝑠+𝑡|

𝑡−1
∏
𝜈=0

|𝜔𝑠+1+𝜈|
|𝜔𝑠+𝜈|

𝑠−1
∏
𝜈=0

|𝜔1+𝜈|
|𝜔𝜈|

Using the the mean value theorem we find that for each factor in the above expression

|𝜔𝑗|
|𝜔𝑗−1|

=
|𝑎𝑗 − 𝑏𝑗|

|𝑎𝑗−1 − 𝑏𝑗−1|

=
|𝑎𝑗 − 𝑏𝑗|

|𝜉𝑛𝑗(𝑎𝑗) − 𝜉𝑛𝑗(𝑏𝑗)|

|𝜉𝑛𝑗(𝑎𝑗−1) − 𝜉𝑛𝑗(𝑏𝑗−1)|

|𝑎𝑗−1 − 𝑏𝑗−1|

|𝜉𝑛𝑗(𝑎𝑗) − 𝜉𝑛𝑗(𝑏𝑗)|

|𝜉𝑛𝑗(𝑎𝑗−1) − 𝜉𝑛𝑗(𝑏𝑗−1)|

= 1
|𝜕𝑎𝜉𝑛𝑗(𝑐𝑗)|

|𝜕𝑎𝜉𝑛𝑗(𝑐𝑗−1)|
|𝐼𝑗|
|Ω𝑗|

=
|𝜕𝑥𝐹

𝑛𝑗−1(1; 𝑐𝑗)|
|𝜕𝑎𝜉𝑛𝑗(𝑐𝑗)|

|𝜕𝑎𝜉𝑛𝑗(𝑐𝑗−1)|

|𝜕𝑥𝐹
𝑛𝑗−1(1; 𝑐𝑗−1)|

|𝜕𝑥𝐹
𝑛𝑗−1(1; 𝑐𝑗−1)|

|𝜕𝑥𝐹
𝑛𝑗−1(1; 𝑐𝑗)|

|𝐼𝑗|
|Ω𝑗|

.

Making use of Lemma 3.2 and Lemma 5.1, we find that

|𝜔𝑗|
|𝜔𝑗−1|

∶
|𝐼𝑗|
|Ω𝑗|

∼ 𝐷𝛢𝐷
(log∗𝑚𝑘)

2

1 ,

and therefore, using (21), (18), and (23), there is, provided𝑚0 is large enough, an absolute
constant 0 < 𝜏 < 1 such that

|𝐸|
|𝜔0|

≥
(𝛿𝑚𝑘+1

/3)
1 (13𝐷

−1
𝛢 𝐷−(log∗𝑚𝑘)

2

1 )
𝑡+log∗𝑚𝑘

≥ 𝛿𝑚𝑘+1
𝜏(log

∗𝑚𝑘+1)
3
.

In particular, for the remaining interval �̂� = 𝜔 ∖ 𝐸we have that

|�̂�| ≤ |𝜔|(1 − 𝛿𝑚𝑘+1
𝜏(log

∗𝑚𝑘+1)
3
). (24)

5 Main Distortion Lemma

Before giving a proof of Theorem B, we give a proof of the much important distortion
lemma that, together with Lemma 3.2, allow us to restore derivative and to estimate what
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is removed in parameter space at the (𝑘 + 1)th complete return. The proof is similar to that
of Lemma 5 in [BC85], with the main difference being how we proceed at essential returns.
As will be seen, our estimate is unbounded.

If not otherwise stated, the notation is consistent with that of the induction step. Recall
that

Δ𝑘 = 𝑁𝑘 ∪ 𝑇𝑘,

with 𝜔𝑘 ⊂ 𝑁𝑘 being mapped onto some 𝐼𝑟𝑙 ⊂ (−4𝛿, 4𝛿), and 𝜔𝑘 ⊂ 𝑇𝑘 being mapped onto an
interval ±(𝛿, 𝑥)with |𝑥 − 𝛿| ≥ 3𝛿. Moreover, we let𝑚𝑘+1(𝑎, 𝑏) denote the largest time for
which parameters 𝑎, 𝑏 ∈ 𝜔𝑘 belong to the same parameter interval 𝜔𝑗

𝑘 ⊂ 𝜔𝑘, e.g. if 𝑎, 𝑏 ∈ 𝜔
𝑗
𝑘

then𝑚𝑘+1(𝑎, 𝑏) ≥ 𝑛𝑗+1.

Lemma 5.1 (Main Distortion Lemma). Let 𝜔𝑘 ⊂ Δ𝑘, and let 𝑚𝑘 be the index of the 𝑘
th

complete return. There exists a constant 𝐷1 > 1 such that, for 𝑎, 𝑏 ∈ 𝜔𝑘 and 𝑗 < 𝑚𝑘+1 =
𝑚𝑘+1(𝑎, 𝑏),

|𝜕𝑥𝐹
𝑗(1; 𝑎)|

|𝜕𝑥𝐹𝑗(1; 𝑏)|
≤ 𝐷(log∗𝑚𝑘)

2

1 .

Proof. Using the chain rule and the elementary inequality 𝑥 + 1 ≤ 𝑒𝑥 we have

|𝜕𝑥𝐹
𝑗(1; 𝑎)|

|𝜕𝑥𝐹𝑗(1; 𝑏)|
=

𝑗−1

∏
𝜈=0

|𝜕𝑥𝐹(𝐹
𝜈(1; 𝑎); 𝑎)|

|𝜕𝑥𝐹(𝐹𝜈(1; 𝑏); 𝑏)|

= (𝑎𝑏)
𝑗 𝑗

∏
𝜈=1

|𝜉𝜈(𝑎)|
|𝜉𝜈(𝑏)|

≤ (𝑎𝑏)
𝑗 𝑗

∏
𝜈=1

(
|𝜉𝜈(𝑎) − 𝜉𝜈(𝑏)|

|𝜉𝜈(𝑏)|
+ 1)

≤ (𝑎𝑏)
𝑗
exp (

𝑗

∑
𝜈=1

|𝜉𝜈(𝑎) − 𝜉𝜈(𝑏)|
|𝜉𝜈(𝑏)|

) .

We claim that the first factor in the above expression can be made arbitrarily close to 1. To
see this, notice that

(𝑎𝑏)
𝑗
≤ (1 + |𝜔𝑘|)

𝑗 .

Using (BE)(1) and Lemma 3.2 we have that |𝜔𝑘| ≲ 𝑒−𝛾𝑚𝑘 , and for𝑚0 large enough we have
from (22) that 𝑗 < 𝑚𝑘+1 ≤ 𝑚𝑘 + 𝜅 log𝑚𝑘 ≤ 2𝑚𝑘; therefore

(1 + |𝜔𝑘|)
𝑗 ≤ (1 + 𝑒−(𝛾/2)𝑚𝑘)2𝑚𝑘 .

Since
(1 + 𝑒−(𝛾/2)𝑚𝑘)2𝑚𝑘 ≤ (1 + 𝑒−(𝛾/2)𝑚0)2𝑚0 → 1 as 𝑚0 → ∞,
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making𝑚0 larger if needed proves the claim. It is therefore enough to only consider the
sum

Σ =
𝑚𝑘+1−1

∑
𝜈=1

|𝜉𝜈(𝑎) − 𝜉𝜈(𝑏)|
|𝜉𝜈(𝑏)|

.

With𝑚∗
𝑘 ≤ 𝑚𝑘+1 being the last index of a return, i.e. 𝜉𝑚𝑘∗

(𝜔𝑘) ⊂ 𝐼𝑟∗𝑘 ⊂ (−4𝛿, 4𝛿), we divide Σ
as

Σ =
𝑚∗
𝑘−1

∑
𝜈=1

+
𝑚𝑘+1−1

∑
𝜈=𝑚∗

𝑘

= Σ1 + Σ2,

and begin with estimating Σ1.

The history of 𝜔𝑘 will be that of 𝜔0, 𝜔1, … , 𝜔𝑘−1. Let {𝑡𝑗}
𝛮
𝑗=0 be all the inessential, essential,

escape, and complete returns. We further divide Σ1 as

𝑚∗
𝑘−1

∑
𝜈=1

|𝜉𝜈(𝑎) − 𝜉𝜈(𝑏)|
|𝜉𝜈(𝑏)|

=
𝛮−1
∑
𝑗=0

𝑡𝑗+1−1

∑
𝜈=𝑡𝑗

|𝜉𝜈(𝑎) − 𝜉𝜈(𝑏)|
|𝜉𝜈(𝑏)|

=
𝛮−1
∑
𝑗=0

𝑆𝑗.

The contribution to 𝑆𝑗 from the bound period is

𝑝𝑗

∑
𝜈=0

|𝜉𝑡𝑗+𝜈(𝑎) − 𝜉𝑡𝑗+𝜈(𝑏)|

|𝜉𝑡𝑗+𝜈(𝑏)|
≲
|𝜉𝑡𝑗(𝜔)|

|𝜉𝑡𝑗(𝑏)|
+
|𝜉𝑡𝑗(𝜔)|

|𝜉𝑡𝑗(𝑏)|

𝑝𝑗

∑
𝜈=1

𝑒−2𝑟𝑗|𝜕𝑥𝐹
𝜈−1(1; 𝑎)|

|𝜉𝜈(𝑏)|
.

Let 𝜄 = (𝜅1 log 4)
−1 and further divide the sum in the above right hand side as

𝜄𝑝𝑗

∑
𝜈=1

+
𝑝𝑗

∑
𝜈=𝜄𝑝𝑗+1

.

To estimate the first sum we use the inequalities |𝜕𝑥𝐹
𝜈| ≤ 4𝜈 and |𝜉𝜈(𝑏)| ≥ 𝛿𝜈/3 ≳ 𝜈−𝑒, and

that 𝑝𝑗 ≤ 𝜅1𝑟𝑗, to find that

𝜄𝑝𝑗

∑
𝜈=1

𝑒−2𝑟𝑗|𝜕𝑥𝐹
𝜈−1(1; 𝑎)|

|𝜉𝜈(𝑏)|
≲ 𝑒−2𝑟𝑗

𝜄𝑝𝑗

∑
𝜈=1

4𝜈𝜈𝑒

≲ 𝑒−2𝑟𝑗4𝜄𝑝𝑗𝑝𝑒𝑗

≲
𝑟𝑒𝑗
𝑒𝑟𝑗
.

To estimate the second sum we use (BC) and the equality (9), and find that

𝑝𝑗

∑
𝜈=𝜄𝑝𝑗+1

𝑒−2𝑟𝑗|𝜕𝑥𝐹
𝜈−1(1; 𝑎)|

|𝜉𝜈(𝑏)|
≲ 1
𝑟2𝑗
.
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Therefore the contribution from the bound period adds up to

𝑡𝑗+𝑝𝑗

∑
𝜈=𝑡𝑗

|𝜉𝜈(𝑎) − 𝜉𝜈(𝑏)|
|𝜉𝜈(𝑏)|

≲
|𝜉𝑡𝑗(𝜔)|

|𝜉𝑡𝑗(𝑏)|
+
|𝜉𝑡𝑗(𝜔)|

|𝜉𝑡𝑗(𝑏)|
( 1
𝑟2𝑗

+
𝑟𝑒𝑗
𝑒𝑟𝑗
)

≲
|𝜉𝑡𝑗(𝜔)|

|𝜉𝑡𝑗(𝑏)|
.

After the bound period and up to time 𝑡𝑗+1 we have a free period of length 𝐿𝑗 during which
we have exponential increase of derivative. We wish to estimate

𝑡𝑗+1−1

∑
𝜈=𝑡𝑗+𝑝𝑗+1

|𝜉𝜈(𝑎) − 𝜉𝜈(𝑏)|
|𝜉𝜈(𝑏)|

=
𝐿𝑗−1

∑
𝜈=1

|𝜉𝑡𝑗+𝑝𝑗+𝜈(𝑎) − 𝜉𝑡𝑗+𝑝𝑗+𝜈(𝑏)|

|𝜉𝑡𝑗+𝑝𝑗+𝜈(𝑏)|
.

Using the mean value theorem, parameter independence and Lemma 3.1, we have that for
1 ≤ 𝜈 ≤ 𝐿𝑗 − 1

|𝜉𝑡𝑗+1(𝑎) − 𝜉𝑡𝑗+1(𝑏)| = |𝜉𝑡𝑗+𝑝𝑗+𝐿𝑗(𝑎) − 𝜉𝑡𝑗+𝑝𝑗+𝐿𝑗(𝑏)|

≃ |𝐹𝐿𝑗−𝜈(𝜉𝑡𝑗+𝑝𝑗+𝜈(𝑎); 𝑎) − 𝐹
𝐿𝑗−𝜈(𝜉𝑡𝑗+𝑝𝑗+𝜈(𝑏); 𝑎)|

= |𝜕𝑥𝐹
𝐿𝑗−𝜈(𝜉𝑡𝑗+𝑝𝑗+𝜈(𝑎

′); 𝑎)||𝜉𝑡𝑗+𝑝𝑗+𝜈(𝑎) − 𝜉𝑡𝑗+𝑝𝑗+𝜈(𝑏)|

≳ 𝑒𝛾𝛭(𝐿𝑗−𝜈)|𝜉𝑡𝑗+𝑝𝑗+𝜈(𝑎) − 𝜉𝑡𝑗+𝑝𝑗+𝜈(𝑏)|,

and therefore

|𝜉𝑡𝑗+𝑝𝑗+𝜈(𝑎) − 𝜉𝑡𝑗+𝑝𝑗+𝜈(𝑏)| ≲
|𝜉𝑡𝑗+1(𝑎) − 𝜉𝑡𝑗+1(𝑏)|

𝑒𝛾𝛭(𝐿𝑗−𝜈)
, (25)

provided 𝜉𝑡𝑗+1(𝜔) does not belong to an escape interval. If 𝜉𝑡𝑗+1(𝜔) belongs to an escape
interval, then we simply extend the above estimate to 𝑡𝑗+2, 𝑡𝑗+3, …, until we end up inside
some 𝐼𝑟𝑙 ⊂ (−4𝛿, 4𝛿) (which will eventually happen, per definition of𝑚

∗
𝑘). Hence we may

disregard escape returns, and see them as an extended free period.

Since |𝜉𝑡𝑗+1(𝑏)| ≤ |𝜉𝑡𝑗+𝑝𝑗+𝜈(𝑏)| for 1 ≤ 𝜈 ≤ 𝐿𝑗 − 1, it follows from the above inequality that

𝐿𝑗−1

∑
𝜈=1

|𝜉𝑡𝑗+𝑝𝑗+𝜈(𝑎) − 𝜉𝑡𝑗+𝑝𝑗+𝜈(𝑏)|

|𝜉𝑡𝑗+𝑝𝑗+𝜈(𝑏)|
≤
|𝜉𝑡𝑗+1(𝑎) − 𝜉𝑡𝑗+1(𝑏)|

|𝜉𝑡𝑗+1(𝑏)|

𝐿𝑗−1

∑
𝜈=1

𝑒−𝛾𝛭(𝐿𝑗−𝜈)

≲
|𝜉𝑡𝑗+1(𝑎) − 𝜉𝑡𝑗+1(𝑏)|

|𝜉𝑡𝑗+1(𝑏)|
,

thus the contribution from the free period is absorbed in 𝑆𝑗+1.
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What is left is to give an estimate of

𝑚∗
𝑘−1

∑
𝜈=𝑚0

|𝜉𝜈(𝑎) − 𝜉𝜈(𝑏)|
|𝜉𝜈(𝑏)|

≲
𝛮
∑
𝑗=0

|𝜉𝑡𝑗(𝜔)|

|𝜉𝑡𝑗(𝑏)|
≲

𝛮
∑
𝑗=0

|𝜉𝑡𝑗(𝜔)|

|𝐼𝑟𝑗|
,

where, with the above argument, {𝑡𝑗}
𝛮
𝑗=0 are now considered to be indices of inessential,

essential, and complete returns only. Because of the rapid growth rate, we will see that
among the returns to the same interval, only the last return will be significant. From
Lemma 4.8 we have that |𝜉𝑡𝑗+1(𝜔)| ≳ (𝑒𝑟𝑗/𝑟𝜅2𝑗 )|𝜉𝑡𝑗(𝜔)| ≫ 2|𝜉𝑡𝑗(𝜔)|, hence with 𝐽(𝜈) the last
𝑗 for which 𝑟𝑗 = 𝜈,

𝛮
∑
𝑗=0

|𝜉𝑡𝑗(𝜔)|

|𝐼𝑟𝑗|
= ∑

𝜈∈{𝑟𝑗}

1
|𝐼𝜈|

∑
𝑟𝑗=𝜈

|𝜉𝑡𝑗(𝜔)| ≲ ∑
𝜈∈{𝑟𝑗}

|𝜉𝑡𝐽(𝜈)(𝜔)|
|𝐼𝜈|

.

If 𝑡𝐽(𝜈) is the index of an inessential return, then |𝜉𝑡𝐽(𝜈)(𝜔𝑘)|/|𝐼𝜈| ≲ 𝜈−2, and therefore the
contribution from the inessential returns to the above left most sum is bound by some
small constant. It is therefore enough to only consider the contribution from essential
returns and complete returns. To estimate this contribution we may assume that𝑚∗

𝑘 ≥ 𝑚𝑘,
and that 𝜉𝑚𝑘

(𝜔) = 𝐼𝑟𝑘𝑙. Moreover, we assume that 𝜉𝑚𝑗
(𝜔) = 𝐼𝑟𝑗𝑙 for all 𝑗.

With 𝑛𝑗,0 = 𝑚𝑗 being the index of the 𝑗
th complete return, and 𝑛𝑗,𝜈 ∈ (𝑚𝑗, 𝑚𝑗+1) being the

index of the 𝜈th essential return for which 𝜉𝑛𝑗,𝜈(𝜔) ⊂ 𝐼𝑟𝑗,𝜈 , we write

∑
𝜈∈{𝑟𝑗}

|𝜉𝑡𝐽(𝜈)(𝜔)|
|𝐼𝜈|

≲
𝑘
∑
𝑗=0

𝜈𝑗

∑
𝜈=0

|𝜉𝑛𝑗,𝜈(𝜔)|

|𝐼𝑟𝑗,𝜈|
=

𝑘
∑
𝑗=0

𝑆𝑚𝑗
.

For the last partial sum we use the trivial estimate 𝑆𝑚𝑘
≤ log∗𝑚𝑘. To estimate 𝑆𝑚𝑗

, for
𝑗 ≠ 𝑘, we realise that between any two free returns 𝑛𝑗,𝜈 and 𝑛𝑗,𝜈+1 the distortion is uniformly
bound by some constant 𝐶1 > 1. Therefore

|𝜉𝑛𝑘−1,𝜈𝑘−1−𝑗(𝜔)|

|𝐼𝑟𝑘−1,𝜈𝑘−1−𝑗|
≤
𝐶𝑗
1

𝑟2𝑘
,

and consequently, since 𝜈𝑗 ≤ log∗ 𝑟𝑗 (see (21)),

𝑆𝑚𝑘−1
≤
𝐶log∗ 𝑟𝑘−1
2

𝑟2𝑘
,

66



for some uniform constant 𝐶2 > 1. Continuing like this, we find that

𝑆𝑚𝑘−𝑗
≤
𝐶
log∗ 𝑟𝑘−𝑗
2 𝐶

log∗ 𝑟𝑘−𝑗+1
2 ⋯𝐶log∗ 𝑟𝑘−1

2

𝑟2𝑘−𝑗+1𝑟
2
𝑘−𝑗+2 ⋯ 𝑟

2
𝑘

≤
𝐶
log∗ 𝑟𝑘−𝑗
2

𝑟3/2𝑘−𝑗+1𝑟
3/2
𝑘−𝑗+2 ⋯ 𝑟

2
𝑘

,

where we in the last inequality used the (very crude) estimate

𝐶log∗ 𝑥
2 ≤ √𝑥.

Let us call the estimate of 𝑆𝑚𝑘−𝑗
good if 𝐶

log∗ 𝑟𝑘−𝑗
2 ≤ 𝑟𝑘−𝑗+1. For such 𝑆𝑚𝑘−𝑗

we clearly have

𝑆𝑚𝑘−𝑗
≤ 1
Δ𝑗/2 .

Let 𝑗1 ≥ 1 be the smallest integer for which 𝑆𝑚𝑘−𝑗1
is not good, i.e.

log∗ 𝑟𝑘−𝑗1 ≥ (log𝐶2)
−1 log 𝑟𝑘−𝑗1+1 ≥ (log𝐶2)

−1 logΔ.

We call this the first bad estimate, and for the contribution from 𝑆𝑚𝑘−𝑗1
to the distortion we

instead use the trivial estimate

𝑆𝑚𝑘−𝑗1
≤ log∗ 𝑟𝑘−𝑗1 ≤ log∗𝑚𝑘.

Suppose that 𝑗2 > 𝑗1 is the next integer for which

𝐶
log∗ 𝑟𝑘−𝑗2
2 ≥ 𝑟𝑘−𝑗2+1.

If it turns out that
𝐶
log∗ 𝑟𝑘−𝑗2
2 ≤ 𝑟𝑘−𝑗1 ,

then
𝑆𝑚𝑘−𝑗2 ≤

1
Δ𝑗/2 ,

and we still call this estimate good. If not, then

log∗ 𝑟𝑘−𝑗2 ≥ (log𝐶2)
−1 log 𝑟𝑘−𝑗1 ,
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and 𝑗2 is the index of the second bad estimate. Continuing like this, we get a number 𝑠 of
bad estimates and an associated sequence 𝑅𝑖 = 𝑟𝑘−𝑗𝑖 satisfying

log∗ 𝑅1 ≥ (log𝐶2)
−1 logΔ,

log∗ 𝑅2 ≥ (log𝐶2)
−1 log𝑅1,

⋮
log∗ 𝑅𝑠 ≥ (log𝐶2)

−1 log𝑅𝑠−1.

This sequence grows incredibly fast, and its not difficult to convince oneself that

𝑅𝑠 ≫ 𝑒𝑒.
..𝑒

⏟
𝑠 copies of 𝑒

.

In particular, since 𝑅𝑠 ≤ 𝑚𝑘 we find that

𝑠 ≪ log∗ 𝑅𝑠 ≤ log∗𝑚𝑘.

We conclude that

(∑
good

+∑
bad

) 𝑆𝑚𝑗
≤

∞
∑
𝑗=1

1
Δ𝑗/2 + 𝑠 log

∗𝑚𝑘

≲ (log∗𝑚𝑘)
2,

hence
𝑚∗
𝑘−1

∑
𝜈=1

|𝜉𝜈(𝑎) − 𝜉𝜈(𝑏)|
|𝜉𝜈(𝑏)|

≲ (log∗𝑚𝑘)
2.

From𝑚𝑘∗ to𝑚𝑘+1 − 1, the assumption is that we only experience an orbit outside (−𝛿, 𝛿).
By a similar estimate as (25) we find that for 𝜈 ≥ 1

|𝜉𝑚𝑘∗+𝜈(𝑎) − 𝜉𝑚𝑘∗+𝜈(𝑏)| ≲
|𝜉𝑚𝑘−1(𝑎) − 𝜉𝑚𝑘−1(𝑏)|

𝛿𝑒𝛾𝛭(𝑚𝑘−1−𝑚𝑘∗−𝜈)
,

and therefore
𝑚𝑘+1−1

∑
𝜈=𝑚∗

𝑘

|𝜉𝜈(𝑎) − 𝜉𝜈(𝑏)|
|𝜉𝜈(𝑏)|

≲ 1 + 1
𝛿2

≤ (log∗𝑚𝑘)
2,

provided𝑚0 is large enough. This proves the lemma.
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6 Proof of Theorem B

Returning to the more cumbersome notation used in the beginning of the induction step,
let 𝜔𝑟𝑙𝑘 ⊂ Δ𝑘. We claim that a similar inequality as (24) is still true if we replace �̂� and 𝜔
with Δ𝑘+1 and Δ𝑘, respectively. To realise this write Δ𝑘+1 as the disjoint union

Δ𝑘+1 = ⋃𝜔𝑟𝑙𝑘+1 = ⋃�̂�𝑟𝑙𝑘 .

With𝑚0 being the start time, consider the sequence of integers defined by the equality

𝑚𝑘+1 = ⌈𝑚𝑘 + 𝜅 log𝑚𝑘⌉ (𝑘 ≥ 0),

where ⌈𝑥⌉ denotes the smallest integer satisfying 𝑥 ≤ ⌈𝑥⌉. By induction, using (22),

𝑚𝑟𝑙
𝑘+1 ≤ 𝑚𝑟′𝑙′

𝑘 + 𝜅 log𝑚𝑟′𝑙′
𝑘 ≤ 𝑚𝑘 + 𝜅 log𝑚𝑘 ≤ 𝑚𝑘+1.

Hence the sequence (𝑚𝑘) dominates every other sequence (𝑚𝑟𝑙
𝑘 ), and therefore it follows

from (24) that

|Δ𝑘+1| = ∑|�̂�𝑟𝑙𝑘 |

= ∑|𝜔𝑟𝑙𝑘 |(1 − 𝛿𝑚𝑟𝑙
𝑘+1
𝜏(log

∗𝑚𝑟𝑙
𝑘+1)

3
)

≤ (∑|𝜔𝑟𝑙𝑘 |) (1 − 𝛿𝑚𝑘+1
𝜏(log

∗𝑚𝑘+1)
3
)

= |Δ𝑘|(1 − 𝛿𝑚𝑘+1
𝜏(log

∗𝑚𝑘+1)
3
).

By construction
Λ𝑚0

(𝛿𝑛) ∩ 𝒞ℰ(𝛾𝛣, 𝐶𝛣) ∩ 𝜔0 ⊂ Δ∞ =
∞
⋂
𝑘=0

Δ𝑘,

and therefore, to prove Theorem B, it is sufficient to show that

∞
∏
𝑘=0

(1 − 𝛿𝑚𝑘
𝜏(log

∗𝑚𝑘)
3
) = 0.

By standard theory of infinite products, this is the case if and only if

∞
∑
𝑘=0

𝛿𝑚𝑘
𝜏(log

∗𝑚𝑘)
3
= ∞.

To evaluate the above sum we make use of the following classical result, due to Schlömilch
(see [BK06], for instance).
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Proposition 6.1 (Schlömilch Condensation Theorem). Let 𝑞0 < 𝑞1 < 𝑞2 ⋯ be a strictly
increasing sequence of positive integers such that there exists a positive real number 𝛼 such that

𝑞𝑘+1 − 𝑞𝑘
𝑞𝑘 − 𝑞𝑘−1

< 𝛼 (𝑘 ≥ 0).

Then, for a nonincreasing sequence 𝑎𝑛 of positive nonnegative real numbers,
∞
∑
𝑛=0

𝑎𝑛 = ∞ if and only if
∞
∑
𝑘=0

(𝑞𝑘+1 − 𝑞𝑘)𝑎𝑞𝑘 = ∞.

Proof. We have

(𝑞𝑘+1 − 𝑞𝑘)𝑎𝑞𝑘+1 ≤
𝑞𝑘+1−𝑞𝑘−1

∑
𝑛=0

𝑎𝑞𝑘+𝑛 ≤ (𝑞𝑘+1 − 𝑞𝑘)𝑎𝑞𝑘 ,

and therefore

𝛼−1
∞
∑
𝑘=0

(𝑞𝑘+2 − 𝑞𝑘+1)𝑎𝑞𝑘+1 ≤
∞
∑
𝑛=𝑞0

𝑎𝑛 ≤
∞
∑
𝑘=0

(𝑞𝑘+1 − 𝑞𝑘)𝑎𝑞𝑘 .

Since𝑚𝑘+1 − 𝑚𝑘 ∼ log𝑚𝑘 is only dependent on𝑚𝑘, we can easily apply the above result in
a backwards manner. Indeed we have that

𝑚𝑘+1 − 𝑚𝑘
𝑚𝑘 − 𝑚𝑘−1

≤
𝜅 log𝑚𝑘 + 1
𝜅 log𝑚𝑘−1

≤
𝜅 log (𝑚𝑘−1 + 𝜅 log𝑚𝑘−1 + 1) + 1

𝜅 log𝑚𝑘−1

≤ 1 + const.
log𝑚0

(𝑘 ≥ 0),

and therefore with 𝑞𝑘 = 𝑚𝑘 and 𝑎𝑛 = 𝛿𝑛𝜏
(log∗ 𝑛)3/ log 𝑛, the prerequisites of Schlömilch

result are satisfied. We conclude that
∞
∑
𝑛=𝑚0

𝛿𝑛
log 𝑛𝜏

(log∗ 𝑛)3 = ∞

if and only if

∞
∑
𝑘=0

(𝑚𝑘+1 − 𝑚𝑘)
𝛿𝑚𝑘

log𝑚𝑘
𝜏(log

∗𝑚𝑘)
3
∼

∞
∑
𝑘=0

𝛿𝑚𝑘
𝜏(log

∗𝑚𝑘)
3
= ∞.

This proves Theorem B.
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Slowly recurrent Collet–Eckmann maps with
non-empty Fatou set

Magnus Aspenberg, Mats Bylund andWeiwei Cui

Abstract

In this paper we study rational Collet–Eckmann maps for which the Julia set is not
the whole sphere and for which the critical points are recurrent at a slow rate. In
families where the orders of the critical points are fixed, we prove that such maps
are Lebesgue density points of hyperbolic maps. In particular, if all critical points
are simple, they are Lebesgue density points of hyperbolic maps in the full space of
rational maps of any degree 𝑑 ≥ 2.

1 Introduction

Uniformly expanding maps have the property that nearby points on the Julia set repel
each other at a uniform rate (with respect to some smooth metric). One of the central
problems in complex dynamics is to prove that the set of these so called hyperbolic maps
is open and dense in the parameter space of rational maps (or other complex analytic
families of maps). This conjecture by P. Fatou in the 1920s has been proven in the real
case [GŚ97, Lyu97, KSvS07], but is still open in the complex setting. In recent years, a
great deal of attention has been focused on maps which are non-hyperbolic but satisfy
a certain non-uniformly expanding condition, like theMisiurewicz condition (critically
non-recurrent or even postcritically finite maps), the Collet–Eckmann condition or other
more general summability conditions, semi-hyperbolicity etc. Conjecturally, almost every
map is hyperbolic or satisfies such a non-uniformly expanding condition. This would also
imply that the Fatou conjecture is true. In this paper, we focus on maps which satisfy
the Collet–Eckmann condition. Our result demonstrates that any such map, for which
the critical points are allowed to be recurrent at a slow rate (slowly recurrent maps), can
be perturbed into hyperbolic maps in a strong sense; they are Lebesgue density points of
hyperbolic maps. We discuss the (rather weak) condition on slow recurrence more below.
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TheCollet–Eckmann condition stems from the pioneeringworks by P. Collet and J.-P. Eck-
mann in the 1980s [CE80]. In the real setting, there are many works on the perturbation
of such maps, see e.g. the seminal papers [BC85,BC91] byM. Benedicks and L. Carleson.
M. Tsujii generalised these results for real maps in [Tsu93], see also the more recent work
of B. Gao andW. Shen [GS14]. We are going to study perturbations of such maps in the
complex setting. For the quadratic family and other unicritical families, J. Graczyk and
G. Świa̧tek recently made an extensive study of perturbations of typical Collet–Eckmann
maps with respect to harmonic measure, in a series of papers [GS17, GS, GS00, GS15].
M. Benedicks and J. Graczyk also have an unpublished work on perturbations on such
(quadratic or, more generally, unicritical) maps. The maps there and in the recent pa-
pers [GS17,GS] are also slowly recurrent, and hence the results in this paper is partially a
generalisation of some of those results. We will not use harmonic measure, but develop the
classical Benedicks–Carleson parameter exclusion techniques and combining it with strong
results on transversality, by G. Levin [Lev14]. Technically, this paper is closely related
to [Asp].

Let 𝑓 be a rational map. As usual let𝒥(𝑓) andℱ(𝑓) denote the Julia and Fatou set of 𝑓
respectively. LetCrit(𝑓) be the set of critical points of𝑓, i.e. the set of points with vanishing
spherical derivative. With Jrit(𝑓)wemean the the set of critical points of 𝑓 contained in
the Julia set, i.e. Jrit(𝑓) = Crit(𝑓) ∩𝒥(𝑓). As is standard, we let 𝑓𝑛 denote the 𝑛-th iterate
of 𝑓.

In this paper we will consider perturbations of rational maps satisfying the following two
properties. Recall that a rational map is called hyperbolic if it is expanding on the Julia
set or, equivalently, if every critical point belongs to the Fatou set and is attracted to an
attracting cycle. If a rational map is not hyperbolic, it is called non-hyperbolic. Derivatives
are always with respect to the spherical metric on the Riemann sphere.

Definition 1.1 (Collet–Eckmann condition). A non-hyperbolic rational map 𝑓without
parabolic periodic points satisfies the Collet–Eckmann condition, if there exist 𝐶 > 0 and
𝛾 > 0 such that for each critical point 𝑐 in the Julia set of 𝑓, one has

|𝐷𝑓𝑛(𝑓(𝑐))| ≥ 𝐶𝑒𝛾𝑛 for all 𝑛 ≥ 0.

We will often refer to the constant 𝛾 appearing in the above definition as the Lyapunov
exponent or simply the exponent. Notice that the Collet–Eckmann condition is equivalent
to requiring the lower Lyapunov exponent at critical values (in the Julia set) to be strictly
positive.

Definition 1.2 (Slow recurrence). A point 𝑧 is said to be slowly recurrent if for any 𝛼 > 0,
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there exists𝐾 > 0 such that

dist(𝑓𝑛(𝑧), Jrit(𝑓)) ≥ 𝐾𝑒−𝛼𝑛 for all 𝑛 ≥ 0. (1)

Moreover, we say that 𝑓 is slowly recurrent if every point in Jrit(𝑓) is slowly recurrent.

This condition is conjecturally generic, as for example in the real quadratic family [AM05].
In fact, every Collet–Eckmann map has some 𝛼 > 0 for which (1) holds; see [DPU96,
Lemma 2.2 or Lemma 2.3].

We denote byℛ𝑑, the space of rational maps of degree 𝑑. In this paper we always assume
that 𝑑 ≥ 2. If we write 𝑓(𝑧) = 𝑝(𝑧)/𝑞(𝑧), where 𝑝 and 𝑞 are polynomials, and the maximal
degree of 𝑝 and 𝑞 is 𝑑, there are two local charts on the coefficients; one for the case when
deg(𝑝) = 𝑑 and another for deg(𝑞) = 𝑑. The Lebesgue measure on each of these charts are
not equal but mutually absolutely continuous. So talking about sets of positive measure
is independent of the chart used. We also mention that the Fubini-Study metric onℛ𝑑
(which is a measure on the projective space ℙ2𝑑+1(ℂ)) is mutually absolutely continuous
with respect to the Lebesgue measure on each chart.

We will also consider a certain normalisation of the spaceℛ𝑑 as follows, following G. Levin
[Lev14, Lev11]. We say that two maps 𝑓 and 𝑔 are equivalent if they are conjugate by a
Möbius transformation. Then we can consider the spaceΛ𝑑,𝑝′ ⊂ ℛ𝑑, (see [Lev14]) up to
equivalence, as the set of rational maps 𝑓 of degree 𝑑 ≥ 2with precisely 𝑝′ critical points,
i.e. Crit = {𝑐1, … , 𝑐𝑝′}, with corresponding multiplicities 𝑝′ = {𝑚1, … , 𝑚𝑝′} (in the same
order). This means in particular that all critical points move analytically insideΛ𝑑,𝑝′ .

We will prove the following result.

Theorem 1.3. Any slowly recurrent rational Collet–Eckmannmap𝑓 ∈ Λ𝑑,𝑝′ of degree𝑑 ≥ 2,
for which the Julia set is not the entire sphere, is a Lebesgue density point of hyperbolic maps in
Λ𝑑,𝑝′ .

If all critical points are simple, thenΛ𝑑,𝑝′ is locally equal toℛ𝑑 (up toMöbius conjugacy),
and we immediately get the following corollary.

Corollary 1.4. Any slowly recurrent rational Collet–Eckmann map 𝑓 of degree 𝑑 ≥ 2 with
only simple critical points, and for which the Julia set is not the entire sphere, is a Lebesgue
density point of hyperbolic maps inℛ𝑑.

Note that if 𝑓 is Collet–Eckmann andℱ(𝑓) ≠ ∅, then the Fatou setℱ(𝑓) consists only
of attracting cycles and the Julia set of 𝑓 has Lebesgue measure zero (and actually the
Hausdorff dimension is strictly less than 2) [GS98].
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2 Preliminaries

Wewill consider one-dimensional complex analytic families inΛ𝑑,𝑝′ ⊂ ℛ𝑑 and prove the
corresponding main result in almost all such families (where ‘almost all’ means almost all
tangents inΛ𝑑,𝑝′ in the sense of Levin, see Section 3.1). The main result will then follow by
Fubini’s theorem. Throughout the paper𝒬 = 𝒬(𝜀)will denote a fixed one-dimensional
parameter square with sidelength 𝜀, centred around a slowly recurrent Collet–Eckmann
map 𝑓0. So 𝑓𝑎, 𝑎 ∈ 𝒬 is a one-dimensional analytic family of rational maps in Λ𝑑,𝑝′ . Let
𝐶0 and 𝛾0 be the associated constant and exponent of 𝑓0 appearing in Definition 1.1 for
the starting map 𝑓0. We denote by 𝑐𝑙(0) and 𝑣𝑙(0) (or simply 𝑐𝑙 and 𝑣𝑙 if it is clear from the
context) the critical points and critical values of 𝑓0 in𝒥(𝑓0). In other words, 𝑐𝑙 ∈ Jrit(𝑓0).
The corresponding critical points and critical values for 𝑓𝑎 with 𝑎 ∈ 𝒬 are denoted by 𝑐𝑙(𝑎)
and 𝑣𝑙(𝑎), respectively, and we see that 𝑐𝑙(𝑎) (and consequently 𝑣𝑙(𝑎)) are analytic in 𝒬
(since we are consideringΛ𝑑,𝑝′). For simplicity, we write Jrit0 instead of Jrit(𝑓0), while Jrit𝑎
denotes the set of 𝑐𝑙(𝑎), for 𝑎 ∈ 𝒬. (Note that we are not claiming that 𝑐𝑙(𝑎) lies in the Julia
set𝒥(𝑓𝑎).) For a connected set𝐴 ⊂ 𝒬, we let Jrit𝛢 denote the union of Jrit𝑎 over 𝑎 ∈ 𝐴.

For 𝑎 ∈ 𝒬, we are going to study the evolution of the critical points 𝑐𝑙(𝑎), and for this we
introduce the functions

𝜉𝑛,𝑙(𝑎) = 𝑓𝑛
𝑎 (𝑐𝑙(𝑎)) for all 𝑛 ≥ 0.

With 𝑥 ≲ 𝑦 (or 𝑥 ≳ 𝑦) we will mean that there exists a constant 𝐶 > 0 (not dependent on
the dynamics) such that 𝑥 ≤ 𝐶𝑦 (or 𝑥 ≥ 𝐶𝑦). If both 𝑥 ≲ 𝑦 and 𝑥 ≳ 𝑦 then we will write
𝑥 ∼ 𝑦.

Since 𝑓0 satisfies the Collet–Eckmann condition, nearby parameters inherit expansion for
some time, and therefore the image of the parameter square𝒬will expand under 𝜉𝑛,𝑙. Once
the image of𝒬 gets close to Jrit𝒬, the derivative will decrease (depending on the distance
to Jrit𝒬). To ensure that we still have good expansion after getting close to Jrit𝒬, a local
analysis is needed. Let 0 < Δ′ < Δ be two large numbers, and let

𝛿 = 𝑒−Δ, 𝛿′ = 𝑒−Δ
′
,

𝑈𝑙 = 𝐷(𝑐𝑙, 𝛿), 𝑈′
𝑙 = 𝐷(𝑐𝑙, 𝛿

′),

and define
𝑈 = ⋃

𝑙
𝑈𝑙 and 𝑈′ = ⋃

𝑙
𝑈′
𝑙 (2)

80



to be neighbourhoods of the critical points of 𝑓0 belonging to𝒥0. By continuity, one can
choose 𝜀 sufficiently small such that𝑈 is also a neighbourhood of 𝑐𝑙(𝑎) for all parameters
𝑎 ∈ 𝒬. In fact, we want to have diam(𝑈𝑙) ≫ diam(𝑐𝑙(𝒬)). We will frequently use local
Taylor expansion

𝑓𝑎(𝑧) = 𝑓𝑎(𝑐𝑙) + 𝐵(𝑧 − 𝑐𝑙)
𝑑𝑙 + 𝒪 ((𝑧 − 𝑐𝑙)

𝑑𝑙+1) ,

and𝑈′ is chosen to be some fixed neighbourhood where first order Taylor expansions are
sufficiently good around any 𝑐𝑙. Considering the multiplicity at critical points, we let �̂� =
max𝑙 𝑑𝑙. (Note that we assume that the critical points do not split under perturbation, i.e.
𝑑𝑙 = 𝑑𝑙(𝑎) is constant for 𝑎 ∈ 𝒬.) The smaller neighbourhood𝑈 should be thought of as a
neighbourhood that could be as small as one likes to fit into the construction. Furthermore,
in the section on large deviations, we will also make use of a smaller neighbourhood
𝑈2 = ∪𝑙𝑈

2
𝑙 , where𝑈

2
𝑙 = 𝐷(𝑐𝑙, 𝛿

2) ⊂ 𝑈𝑙. By choosing 𝜀 small enough we make sure that𝑈2
𝑙

is still a neighbourhood of Jrit𝑄.

As time evolves, we will discard parameters that come too close to Jrit𝑎. For this reason we
define the basic approach rate assumption (or simply the basic assumption) as follows.

Definition 2.1. Let 𝛼 > 0 and𝐾 > 0 be the constants from the slow recurrence condition
(Definition 1.2). We say that 𝑐𝑙(𝑎) satisfies the basic assumption up to time 𝑛with exponent
𝛼, if

dist(𝜉𝑘,𝑙(𝑎), Jrit𝑎) ≥ 𝐾𝑒−2𝛼𝑘 for all 𝑘 ≤ 𝑛. (3)

For our starting map 𝑓0 which is assumed to be slowly recurrent, the basic assumption
is, per definition, always satisfied for all 𝑛 and for all 𝑙 with exponent 𝛼. By making the
perturbations sufficiently small, i.e. choosing 𝜀 small enough, each parameter 𝑎 ∈ 𝒬will
also satisfy the basic assumption up to some time. However, as the number 𝑛 of iterates
grows, 𝜉𝑛,𝑙(𝒬) becomes a comparatively large set, so that we shall need to partition our
parameter square𝒬 in the following way. Let𝑈 be as defined in (2).

Definition 2.2 (Partition element). Let 𝑆 > 0 be given. A connected set𝐴 ⊂ 𝒬 is called a
partition element at time 𝑛 if the following holds for all 𝑘 ≤ 𝑛:

diam 𝜉𝑘,𝑙(𝐴) ≤ {

dist(𝜉𝑘,𝑙(𝐴), Jrit𝒬)
(log dist(𝜉𝑘,𝑙(𝐴), Jrit𝒬))2

if 𝜉𝑘,𝑙(𝐴) ∩ 𝑈 ≠ ∅,

𝑆 if 𝜉𝑘,𝑙(𝐴) ∩ 𝑈 = ∅.

For convenience, the partition elements are going to be squares in our situation, since we
start with a square𝒬, but in principle this is not needed. The reason to make partitions
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according to the above rule is that we have distortion control of 𝜉𝑛,𝑙(𝑎) for 𝑎 ∈ 𝐴. So as
time evolves, the partition gets finer. The constant 𝑆 appearing in the above definition is
usually referred to as the large scale, and we say that a partition element has escaped when it
reaches size 𝑆 under the action of the function 𝜉𝑛,𝑙.

Our main task in the paper is to show that almost all partition elements will reach the large
scale within a bounded (but not necessarily uniform) amount of time. This is relatively
easy if 𝜉𝑛,𝑙(𝐴) never comes close to critical points (which is true if our starting map is, say,
of Misiurewicz type). In our case, however, it can happen that 𝜉𝑛,𝑙(𝐴) approaches critical
points, since we are starting with a (slowly) recurrent map. Although the approach rate
is controlled by the basic assumption, we may still lose derivative. To restore this loss, we
shall use the ideas from [BC85,BC91] (see also [Asp] which is similar to the setting here).

The fundamental concepts for dealing with the above situations are the so-called bound
periods and free periods. To define them, we first introduce the notion of returns which can
be defined for single parameters and also for partition elements.

Recall that𝑈 and𝑈′ are defined in (2). For a partition element 𝐴 we say that 𝜉𝑛,𝑙(𝐴) is
a return if 𝜉𝑛,𝑙(𝐴) ∩ 𝑈

′ ≠ ∅ or 𝜉𝑛,𝑙(𝐴) ∩ 𝑈 ≠ ∅. We speak of a pseudo-returns if 𝜉𝑛,𝑙(𝐴)
is a return into 𝑈′ but not 𝑈. For a parameter 𝑎 ∈ 𝒬, we say that 𝜉𝑛,𝑙(𝑎) is a return if
𝜉𝑛,𝑙(𝑎) ∈ 𝑈

′ or 𝜉𝑛,𝑙(𝑎) ∈ 𝑈.

Definition 2.3 (Bound period for parameters). Let 𝛼 be as in the basic assumption (3).
Let 𝜉𝑛,𝑙(𝑎) ∈ 𝑈

′
𝑘 be a return, where𝑈

′
𝑘 is the component of𝑈′ containing 𝑐𝑘(0). The bound

period for this return is defined as the indices 𝑗 > 0 such that the following holds:

∣𝜉𝑛+𝑗,𝑙(𝑎) − 𝜉𝑗,𝑘(𝑎)∣ ≤ 𝑒−𝛼𝑗 dist(𝜉𝑗,𝑘(𝑎), Jrit𝑎).

The largest number 𝑝 = 𝑝(𝑎) > 0 for which the above inequality holds is called the length
of the bound period.

During the boundperiod, the growthof derivative is inherited from its early orbit, regardless
of whether or not there are more returns during this period. Such returns are called bound
returns. Because of the binding condition in the above definition, these returns are harmless.
As soon as the bound period ends, we enter into a free period, whichmeans that this piece of
orbit stays away from critical points. During the free period, derivative growth is guaranteed
by the classical result of Mañé (see the next section for a more precise statement). If 𝑝 is the
length of the bound period, when 𝜉𝑛+𝑝+𝐿,𝑙(𝑎) ∈ 𝑈

′ for the least possible 𝐿 > 0, we speak
of a free return. The number 𝐿 is the length of the free period. Since bound returns are
harmless we only speak of returns, and thereby mean free returns.
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Wewill also need a corresponding notion of bound period for partition elements. To define
this, let𝐴 ⊂ 𝒬 be a partition element at time 𝑛. We say that a return 𝜉𝜈,𝑙(𝐴), 𝜈 > 𝑛, into𝑈
is essential if

diam 𝜉𝜈,𝑙(𝐴) ≥
1
3

dist(𝜉𝜈,𝑙(𝐴), Jrit𝒬)
(log dist(𝜉𝜈,𝑙(𝐴), Jrit𝒬))2

.

Otherwise, it is called an inessential return. When an essential return occurs we will have to
make partitions according to Definition 2.2. Because of strong bounds on distortion, we
will see that 𝜉𝑛,𝑙 is almost affine on each partition element𝐴 and if𝐴 is a perfect square then
𝜉𝑛,𝑙(𝐴) is also almost a perfect square. If𝐴 has side length 𝑑, simply partition𝐴 into four
subsquares of equal length. If all these four subsquares are partition elements according to
Definition 2.2, we are done; the new partition is thereby defined. If a subsquare is not a
partition element, continue partitioning it into four new subsquares of equal length, and
continue like this until all the new subsquares are partition elements. We get a collection
of squares of sidelength of the form 2−𝑘𝑑, for some 𝑘 ≥ 0 (note that we can have different
values of 𝑘). No partition is made at an inessential return. We can now define the bound
period for partition elements.

Definition 2.4 (Bound period for partition elements). Let 𝐴 be a partition element at
time 𝑛 and 𝜉𝑛,𝑙(𝐴) an essential, inessential or pseudo- return to𝑈

′
𝑘 , the component of𝑈′.

The bound period for this return is defined as indices 𝑗 > 0 such that the following holds
for all 𝑎, 𝑏 ∈ 𝐴 and for all 𝑧 ∈ 𝜉𝑛,𝑙(𝐴):

∣𝑓𝑗
𝑎 (𝑧) − 𝜉𝑗,𝑘(𝑏)∣ ≤ 𝑒−𝛼𝑗 dist(𝜉𝑗,𝑘(𝑏), Jrit𝑏).

The largest number 𝑝 = 𝑝(𝐴) > 0 for which the above inequality holds is called the length
of the bound period.

With the above notions, we will follow the parameter exclusion technique originated
by M. Benedicks and L. Carleson [BC85, BC91]. However, we have to deal with the
situation caused by the presence of several critical points (again following an idea due to
M. Benedicks). What can happen is that a critical orbit might get close to a critical point
other than itself. In this case, to use induction we need to use the binding information of
this latter critical point. To handle this we make the following definition. Let 𝛾𝛪 > 0 be a
constant to be defined later.

Definition 2.5. Given 𝛾 > 0, we say that a parameter 𝑎 belongs to ℰ𝑛,𝑙(𝛾) if

|𝐷𝑓𝑘
𝑎 (𝑣𝑙(𝑎))| ≥ 𝐶0𝑒

𝛾𝑘 for all 𝑘 ≤ 𝑛 − 1,

and
|𝐷𝑓𝑘

𝑎 (𝑣𝑗(𝑎))| ≥ 𝐶0𝑒
𝛾𝑘 for all 𝑘 ≤ 2�̂�𝛼𝑛/𝛾𝛪, and all 𝑗 ≠ 𝑙. (4)
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We say that a parameter 𝑎 belongs toℬ𝑛,𝑙 if

dist(𝜉𝑘,𝑙(𝑎), Jrit𝑎) ≥ 𝐾𝑒−2𝛼𝑘 for all 𝑘 ≤ 𝑛 − 1,

and
dist(𝜉𝑘,𝑗(𝑎), Jrit𝑎) ≥ 𝐾𝑒−2𝛼𝑘 for all 𝑘 ≤ 2�̂�𝛼𝑛/𝛾𝛪, and all 𝑗 ≠ 𝑙.

3 Lemmas

In this sectionwe present several lemmas on distortion and transversality. The transversality
property says that phase and parameter derivatives can be compared if the phase derivative
grows at a certain rate. In our new situation with recurrent critical points, this property is
inherited from quite recent powerful results by G. Levin [Lev21,Lev14]. Together with
a strong distortion lemma in the phase space (the main distortion lemma), we get strong
control of the geometry of 𝜉𝑛,𝑙(𝐴) on partition elements.

3.1 Phase-parameter relations

3.1.1 Transversality

Using a result by G. Levin we state a transversality result for Collet–Eckmann parameters,
relating phase and parameter derivatives. In the following there is a notion of degenerate
families of rational maps, following [Lev14,Lev21]. We consider one-dimensional complex
families of rational maps in Λ𝑑,𝑝′ through the starting map 𝑓0 such that this family has a
non-zero tangent at 𝑓0, i.e. such that 𝑓𝑎(𝑧) = 𝑓0(𝑧) + 𝑎𝑢(𝑧) + 𝒪(𝑎2), for some non-zero
𝑢(𝑧). For almost all directions of this tangent in the parameter space, it is shown that we
have a certain transversality property (see [Lev21], Corollary 2.1, part (8)), namely that the
limit

lim𝑛→∞

𝜉′𝑛,𝑙(0)
(𝑓𝑛−1

0 )′(𝑓0(𝑐𝑙))
= 𝐿𝑙,

exists and is different from 0 and∞. (With 𝜉′𝑛,𝑙(𝑎)we mean the parameter derivative of 𝑓𝑛
𝑎

evaluated at 𝑐𝑙(𝑎), i.e. 𝜉
′
𝑛,𝑙(𝑎) = 𝜕𝑎𝑓

𝑛
𝑎 (𝑐𝑙(𝑎)).) Families satisfying this condition are called

non-degenerate in the sense of Levin. Based on this we get the following, see Proposition 4.1
in [Asp].

Lemma 3.1. Let 𝑓 = 𝑓0 be a slowly recurrent Collet–Eckmannmap with exponent 𝛾0 and 𝑓𝑎,
𝑎 ∈ 𝒬, an analytic non-degenerate family in the sense of Levin. Then for any 𝑞 ∈ (0, 1) and
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any 𝛾 ∈ (0, 𝛾0) there exists𝑁 > 0 and 𝜀 > 0 such that

∣
𝜉′𝑛,𝑙(𝑎)

(𝑓𝑛−1
𝑎 )′(𝑣𝑙(𝑎))

− 𝐿𝑙∣ ≤ 𝑞|𝐿𝑙|

provided that 𝑓𝑎 satisfies the Collet–Eckmann condition up to time 𝑛 ≥ 𝑁 with exponent 𝛾 for
all 𝑎 ∈ 𝒬.

Recall that our starting map 𝑓0 satisfies the Collet–Eckmann condition with exponent 𝛾0.
With 𝛾𝛨 being the exponent from Lemma 3.10 below (see Remark 3.11), we shall apply the
above lemma for

𝛾𝐿 ∶=
1
6 min{𝛾0, 𝛾𝛨}(1 − 𝜏),

where 𝜏 ∈ (0, 1) is some constant to be determined later. This choice of 𝛾𝐿 also dictates
the choices of the corresponding𝑁 and 𝜀 in Lemma 3.1, which we denote by𝑁𝐿 and 𝜀𝐿
correspondingly. We choose the size 𝜀 of our domain of perturbation (i.e., the parameter
square𝒬) to comply with Lemma 3.1, e.g. 𝜀 < 𝜀𝐿. For later convenience, we also define

𝛾𝛪 ∶= 2𝛾𝐿, and 𝛾𝛣 ∶=
9
2𝛾𝐿.

We thus have that 𝛾𝛣 > 𝛾𝛪 > 𝛾𝐿.

3.1.2 Weak parameter dependence

The following lemma tells us that the dependence on parameter is weak as long as we have
exponential growth of the derivative. As a matter of fact, the dependence is even weaker, as
will be seen after the proof of the main distortion lemma.

Lemma 3.2. Let𝑁𝐿 and 𝛾𝐿 be as in Lemma 3.1, and let 𝛾1 > (3/2)𝛾𝐿. Suppose that 𝑎, 𝑏 ∈ 𝒬.
If 𝜀 and 𝛿 are small enough, and if there is an integer 𝑘1 ≥ 0 such that

i) |𝐷𝑓𝑛
𝑎 (𝑣𝑙(𝑎))| ≥ 𝐶1𝑒

𝛾1𝑛 for all 𝑛 ≤ 𝑁𝐿 + 𝑘1;

ii) for all 𝑛 ≤ 𝑁𝐿 + 𝑘1, if 𝜉𝑛,𝑙(𝑎), 𝜉𝑛,𝑙(𝑏) ∉ 𝑈 then |𝜉𝑛,𝑙(𝑎) − 𝜉𝑛,𝑙(𝑏)| ≤ 𝑆, and otherwise if
𝜉𝑛,𝑙(𝑎) ∈ 𝑈 or 𝜉𝑛,𝑙(𝑏) ∈ 𝑈 then

|𝜉𝑛,𝑙(𝑎) − 𝜉𝑛,𝑙(𝑏)| ≤
dist(𝜉𝑛,𝑙(𝑎

′), Jrit𝑎′)

(log (dist(𝜉𝑛,𝑙(𝑎′), Jrit𝑎′)))
2 ,

with 𝑎′ ∈ {𝑎, 𝑏}minimising dist(𝜉𝑛,𝑙(𝑎
′), Jrit𝑎′);
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then there exists𝑄 > 1 (arbitrarily close to 1 if𝑁𝐿 is large enough) such that for all𝑁𝐿 ≤ 𝑛 ≤
𝑁𝐿 + 𝑘1

|𝜉𝑛(𝑎) − 𝜉𝑛(𝑏)| ≥ 𝑄−(𝑛−1)|𝐷𝑓𝑛−1
𝑎 (𝑣𝑙(𝑎))||𝑎 − 𝑏|.

Moreover, for all 0 ≤ 𝑗 ≤ 𝑛 − 𝑁𝐿

|𝜉𝑛,𝑙(𝑎) − 𝜉𝑛,𝑙(𝑏)| ∼𝑄𝑗 |𝐷𝑓𝑗
𝑎 (𝜉𝑛−𝑗,𝑙(𝑎))||𝜉𝑛−𝑗,𝑙(𝑎) − 𝜉𝑛−𝑗,𝑙(𝑏)|.

Proof. We fix 𝑙 and write 𝜉𝑛 = 𝜉𝑛,𝑙,𝑁 = 𝑁𝐿. We begin with proving that there is a𝑄 > 1
close to 1 such that

|𝜉𝑛(𝑎) − 𝜉𝑛(𝑏)| ≥ 𝑄−(𝑛−1)|𝐷𝑓𝑛−1
𝑎 (𝑣𝑙(𝑎))||𝑎 − 𝑏| (5)

is true for all𝑁 ≤ 𝑛 ≤ 𝑁 + 𝑘1.

By making 𝜀 small enough we can make sure that

|𝜉𝛮(𝑎) − 𝜉𝛮(𝑏)| ≥
1
2|𝜉

′
𝛮(𝑎)||𝑎 − 𝑏|.

Using Lemma 3.1 we find that

|𝜉𝛮(𝑎) − 𝜉𝛮(𝑏)| ≥
1
2|𝐿𝑙|(1 − 𝑞)|𝐷𝑓

𝛮−1
𝑎 (𝑣𝑙(𝑎))||𝑎 − 𝑏|

≥ 𝑄−(𝛮−1)|𝐷𝑓𝛮−1
𝑎 (𝑣𝑙(𝑎))||𝑎 − 𝑏|,

where𝑄 > 1 can be made arbitrarily close to 1 by increasing𝑁. Assume that the above
inequality holds for some𝑁 ≤ 𝑛 ≤ 𝑁 + 𝑘1 − 1. We have that

|𝜉𝑛+1(𝑎) − 𝜉𝑛+1(𝑏)| ≥ |𝑓𝑎(𝜉𝑛(𝑎)) − 𝑓𝑎(𝜉𝑛(𝑏))| − |𝑓𝑎(𝜉𝑛(𝑏)) − 𝑓𝑏(𝜉𝑛(𝑏))|
≥ 𝑄−1

0 |𝐷𝑓𝑎(𝜉𝑛(𝑎))||𝜉𝑛(𝑎) − 𝜉𝑛(𝑏)| − 2|𝜕𝑎𝑓𝑎(𝜉𝑛(𝑎))||𝑎 − 𝑏|

≥ 𝑄−1
0 𝑄−(𝑛−1) (|𝐷𝑓𝑛

𝑎 (𝑣𝑙(𝑎))| − 2𝐵𝑄0𝑄
𝑛−1) |𝑎 − 𝑏|,

where 𝐵 = sup |𝜕𝑎𝑓𝑎| and 𝑄0 > 1 can be made arbitrarily close to 1 by making 𝜖1 small
enough in 𝑆 = 𝛿𝜖1, and𝑁 large enough.

From assumption i) since if𝑄 is such that log𝑄 < 𝛾1/2, say, then

2𝐵𝑄0𝑄
𝑛−1 ≤

𝑄0 − 1
𝑄0

𝐶1𝑒
𝛾1𝑛 ≤

𝑄0 − 1
𝑄0

|𝐷𝑓𝑛
𝑎 (𝑣𝑙(𝑎))|, (6)

for𝑁 large enough. Combining this with with the above, taking𝑄0 = √𝑄, we find that

|𝜉𝑛+1(𝑎) − 𝜉𝑛+1(𝑏)| ≥ 𝑄−𝑛|𝐷𝑓𝑛
𝑎 (𝑣𝑙(𝑎))||𝑎 − 𝑏|,
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proving the first conclusion of the lemma.

The proof of the second claim of the lemma is very similar to the proof of the first claim
above. We use an inductive argument as follows. For 𝑛 = 𝑁 (and thus 𝑗 = 0) the result
is trivial. Suppose therefore that for some𝑁 ≤ 𝑛 ≤ 𝑁 + 𝑘1 − 1 the conclusion in the
statement of the lemma is true, and consider the case 𝑛 + 1. Pick some 0 ≤ 𝑗 ≤ 𝑛 − 𝑁.
Using (5) we find that

|𝜉𝑛+1(𝑎) − 𝜉𝑛+1(𝑏)|
≥ |𝑓𝑎(𝜉𝑛(𝑎)) − 𝑓𝑎(𝜉𝑛(𝑏))| − |𝑓𝑎(𝜉𝑛(𝑏)) − 𝑓𝑏(𝜉𝑛(𝑏))|
≥ 𝑄−1

0 |𝐷𝑓𝑎(𝜉𝑛(𝑎))||𝜉𝑛(𝑎) − 𝜉𝑛(𝑏)| − 2|𝜕𝑎𝑓𝑎(𝜉𝑛(𝑎))||𝑎 − 𝑏|

≥ 𝑄−1
0 (|𝐷𝑓𝑎(𝜉𝑛(𝑎))| −

2𝐵𝑄0𝑄
𝑛−1

|𝐷𝑓𝑛−1
𝑎 (𝑣𝑙(𝑎))|

) |𝜉𝑛(𝑎) − 𝜉𝑛(𝑏)|.

It follows from inequality (6) that

2𝐵𝑄0𝑄
𝑛−1

|𝐷𝑓𝑛−1
𝑎 (𝑣𝑙(𝑎))|

≤
𝑄0 − 1
𝑄0

|𝐷𝑓𝑎(𝜉𝑛(𝑎))|.

We continue now, using the induction assumption that the lemma is true for 𝑛, to conclude
that, for 0 ≤ 𝑗 ≤ 𝑛 − 𝑁,

|𝜉𝑛+1(𝑎) − 𝜉𝑛+1(𝑏)| ≥ 𝑄−2
0 |𝐷𝑓𝑎(𝜉𝑛(𝑎))||𝜉𝑛(𝑎) − 𝜉𝑛(𝑏)|

≥ 𝑄−2
0 |𝐷𝑓𝑎(𝜉𝑛(𝑎))|𝑄

−𝑗|𝐷𝑓𝑗
𝑎 (𝜉𝑛−𝑗(𝑎))||𝜉𝑛−𝑗(𝑎) − 𝜉𝑛−𝑗(𝑏)|

≥ 𝑄−2
0 𝑄−𝑗|𝐷𝑓𝑗+1

𝑎 (𝜉𝑛−𝑗(𝑎))||𝜉𝑛−𝑗(𝑎) − 𝜉𝑛−𝑗(𝑏)|.

Choosing𝑄0 = √𝑄 close enough to 1, we get

|𝜉𝑛+1(𝑎) − 𝜉𝑛+1(𝑏)| ≥ 𝑄−(𝑗+1)|𝐷𝑓𝑗+1
𝑎 (𝜉𝑛−𝑗(𝑎))||𝜉𝑛−𝑗(𝑎) − 𝜉𝑛−𝑗(𝑏)|.

The case 𝑗 = 0 in the second claim of the lemma is trivial. Hence, this proves one of
the inequalities of the second claim. We can achieve the other inequality in a completely
analogous way.

With the above lemma we immediately get the following result, telling us that the analytic
dependence of critical points on the parameters are negligible.

Lemma 3.3. Under the assumptions of Lemma 3.2 there exists a constant 𝐶 > 0 such that

|𝜉𝑛,𝑙(𝑎) − 𝜉𝑛,𝑙(𝑏)| ≥ 𝐶𝑒𝛾2𝑛|𝑐𝑙(𝑎) − 𝑐𝑙(𝑏)|,

for any𝑁𝐿 ≤ 𝑛 ≤ 𝑁𝐿 + 𝑘1.
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Proof. Since we assume that the critical points 𝑐𝑙(𝑎)move analytically in 𝑎we have

𝑐𝑙(𝑎) = 𝑐𝑙(𝑏) + 𝐾𝑙(𝑎 − 𝑏)
𝑘𝑙 + 𝒪 ((𝑎 − 𝑏)𝑘𝑙+1) .

From (5) and the the conclusion of Lemma 3.2 we find that

|𝑐𝑙(𝑎) − 𝑐𝑙(𝑏)| ≤ 2|𝐾𝑙|𝑘𝑙|𝑎 − 𝑏|
𝑘𝑙−1|𝑎 − 𝑏|

≲
𝑄𝑛

|𝐷𝑓𝑛
𝑎 (𝑣𝑙(𝑎))|

|𝜉𝑛(𝑎) − 𝜉𝑛(𝑏)|

≲ 𝑒−𝛾2𝑛|𝜉𝑛(𝑎) − 𝜉𝑛(𝑏)|,

where 𝛾2 is slightly smaller than 𝛾1.

With these lemmas we can neglect the parameter dependence on each partition element𝐴.
In particular, for returns into𝑈′, dist(𝜉𝑛,𝑙(𝐴), 𝑐𝑙(𝐴)) is very close to |𝜉𝑛,𝑙(𝑎) − 𝑐𝑙(𝑎)| for all
𝑎 ∈ 𝐴, so we can almost view 𝑐𝑙(𝐴) as one single critical point.

3.1.3 Distortion estimate

In the sequel we will frequently use the following distortion estimate, which we for conve-
nience formulate as a lemma.

Lemma 3.4. If 𝑧 and 𝑤 stay sufficiently close to each other under iteration by 𝑓𝑎 up to time 𝑛,
then

∣
𝐷𝑓𝑛

𝑎 (𝑧)
𝐷𝑓𝑛

𝑎 (𝑤)
− 1∣ ≤ exp (𝐶

𝑛−1
∑
𝑗=0

|𝑓𝑗
𝑎 (𝑧) − 𝑓

𝑗
𝑎 (𝑤)|

dist(𝑓𝑗
𝑎 (𝑤), Jrit𝑎)

) − 1, (7)

for some constant 𝐶 > 0 dependent on 𝑓0 and 𝜀. Moreover, if also 𝑧 = 𝜉𝜈(𝑎) and 𝑤 = 𝜉𝜈(𝑏),
with 𝑎, 𝑏 ∈ 𝒬, and if the assumptions of Lemma 3.2 are satisfied, then

∣
𝐷𝑓𝑛

𝑎 (𝜉𝜈(𝑎))
𝐷𝑓𝑛

𝑏 (𝜉𝜈(𝑏))
− 1∣ ≤ exp (𝐶

𝑛−1
∑
𝑗=0

|𝜉𝜈+𝑗(𝑎) − 𝜉𝜈+𝑗(𝑏)|
dist(𝜉𝜈+𝑗(𝑏), Jrit𝑏)

) − 1. (8)

Proof. Given any complex numbers 𝑧1, … , 𝑧𝑛, the following inequality is standard

∣
𝑛
∏
𝑗=1

𝑧𝑗 − 1∣ ≤ exp (
𝑛
∑
𝑗=1

|𝑧𝑗 − 1|) − 1,

and therefore, using the chain rule, we conclude that

∣
𝐷𝑓𝑛

𝑎 (𝑧)
𝐷𝑓𝑛

𝑏 (𝑤)
− 1∣ ≤ exp (

𝑛−1
∑
𝑗=0

|𝐷𝑓𝑎(𝑓
𝑗
𝑎 (𝑧)) − 𝐷𝑓𝑏(𝑓

𝑗
𝑏 (𝑤))|

|𝐷𝑓𝑏(𝑓
𝑗
𝑏 (𝑤))|

) − 1.
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We begin to prove (7); (8) will then follow from Lemma 3.2.

Let us write 𝑧𝑗 = 𝑓𝑗
𝑎 (𝑧) and 𝑤𝑗 = 𝑓𝑗

𝑎 (𝑤). If one (or both) of 𝑧𝑗 and 𝑤𝑗 does not belong to
𝑈′, we are away from critical points and the estimate follows easily. Indeed we have that

|𝐷𝑓𝑎(𝑧𝑗) − 𝐷𝑓𝑎(𝑤𝑗)| ≤ 2 sup
𝑧∈ℂ̂

|𝐷2𝑓𝑎(𝑧)||𝑧𝑗 − 𝑤𝑗|,

and also
|𝐷𝑓𝑎(𝑤𝑗)| ≥

1
2

inf𝑧∉𝑈′ |𝐷𝑓𝑎(𝑧)|
sup𝑧∉𝑈′ dist(𝑧, Jrit𝑎)

dist(𝑤𝑗, Jrit𝑎).

If both 𝑧𝑗 and 𝑤𝑗 belong to𝑈
′
𝑙 ⊂ 𝑈′, using local Taylor expansion

𝑓𝑎(𝑥) = 𝑓(𝑐𝑙) + 𝐵(𝑥 − 𝑐𝑙)
𝑑𝑙 + 𝒪 ((𝑥 − 𝑐𝑙)

𝑑𝑙+1) ,

and the fact that |𝐷𝑓(𝑧𝑗) − 𝐷𝑓(𝑤𝑗)| ≤ |𝐷2𝑓(𝑥)||𝑧𝑗 − 𝑤𝑗| for some 𝑥 ∈ [𝑧𝑗, 𝑤𝑗] we find
that

|𝐷𝑓𝑎(𝑧𝑗) − 𝐷𝑓𝑎(𝑤𝑗)| ≤ 𝑑2𝑙 |𝐵||𝑥 − 𝑐|
𝑑𝑙−2|1 + 𝒪 ((𝑥 − 𝑐)) ||𝑧𝑗 − 𝑤𝑗|

≤ 2𝑑2𝑙 |𝐵||𝑤 − 𝑐|𝑑𝑙−2|𝑧𝑗 − 𝑤𝑗|,

where we used that |𝑧𝑗 − 𝑤𝑗| and 𝛿
′ is very small.

For the derivative we have the estimate

|𝐷𝑓𝑎(𝑤𝑗)| = |𝐵𝑑𝑙(𝑤𝑗 − 𝑐𝑙)
𝑑𝑙−1 + 𝒪 ((𝑤𝑗 − 𝑐𝑙)

𝑑𝑙) | ≥ 1
2𝑑𝑙|𝐵||𝑤𝑗 − 𝑐|

𝑑𝑙−1.

We conclude that
𝑛−1
∑
𝑗=0

|𝐷𝑓𝑎(𝑓
𝑗
𝑎 (𝑧)) − 𝐷𝑓𝑎(𝑓

𝑗
𝑎 (𝑤))|

|𝐷𝑓𝑎(𝑤)|
≲

𝑛−1
∑
𝑗=0

|𝑓𝑗
𝑎 (𝑧) − 𝑓

𝑗
𝑎 (𝑤)|

dist(𝑤, Jrit𝑎)
.

To prove (8) we use the previous discussion together with Lemma 3.2 to conclude that

|𝐷𝑓𝑎(𝜉𝜈+𝑗(𝑎)) − 𝐷𝑓𝑏(𝜉𝜈+𝑗(𝑏))|

≤ |𝐷𝑓𝑎(𝜉𝜈+𝑗(𝑎)) − 𝐷𝑓𝑎(𝜉𝜈+𝑗(𝑏))| + |𝐷𝑓𝑎(𝜉𝜈+𝑗(𝑏)) − 𝐷𝑓𝑏(𝜉𝜈+𝑗(𝑏))|

≲ |𝜉𝜈+𝑗(𝑎) − 𝜉𝜈+𝑗(𝑏)| + 2|𝜕𝑎𝐷𝑓𝑎(𝜉𝜈+𝑗(𝑎))||𝑎 − 𝑏|

≲ (1 +
2|𝜕𝑎𝐷𝑓𝑎(𝜉𝜈+𝑗(𝑎))|𝑄

𝜈+𝑗−1

|𝐷𝑓𝜈+𝑗−1
𝑎 (𝑣(𝑎))|

) |𝜉𝜈+𝑗(𝑎) − 𝜉𝜈+𝑗(𝑏)|

≲ |𝜉𝜈+𝑗(𝑎) − 𝜉𝜈+𝑗(𝑏)|.

89



3.2 Expansion during bound periods

We study in this section how an orbit preserves certain expansion during bound periods
(although some loss is unavoidable at returns). To achieve this, we first need some distortion
control during these periods. Recall that𝑈′ is defined in (2).

Lemma 3.5. Let 𝜀′ > 0. Let 𝛿′ > 0 be sufficiently small and𝑁 sufficiently large. Let also
𝛾 ≥ 𝛾𝛪. Suppose that 𝜉𝜈,𝑙(𝑎) is a free return to𝑈

′
𝑖 with 𝑎 ∈ ℰ𝜈,𝑙(𝛾) ∩ ℬ𝜈,𝑙. Then we have

∣
𝐷𝑓𝑗

𝑎 (𝜉𝜈+1,𝑙(𝑎))

𝐷𝑓𝑗
𝑎 (𝜉1,𝑖(𝑎))

− 1∣ ≤ 𝜀′

for all 𝑗 ≤ 𝑝, where 𝑝 is the length of the bound period.

Proof. Since 𝜉𝜈,𝑙(𝑎) is a free return to𝑈
′
𝑖 , we can thus assume that for some 𝑟 > 0

|𝜉𝜈,𝑙(𝑎) − 𝑐𝑖(𝑎)| ∼ 𝑒−𝑟.

By Lemma 3.4, it suffices to prove that the following sum can be made sufficiently small

𝑝

∑
𝑗=1

|𝐷𝑓𝑎(𝜉𝜈+𝑗,𝑙(𝑎)) − 𝐷𝑓𝑎(𝜉𝑗,𝑖(𝑎))|
|𝐷𝑓𝑎(𝜉𝑗,𝑖(𝑎))|

≤ 𝐶1
𝑝

∑
𝑗=1

|𝜉𝜈+𝑗,𝑙(𝑎) − 𝜉𝑗,𝑖(𝑎)|
dist(𝜉𝑗,𝑖(𝑎), Jrit𝑎)

,

where 𝐶1 > 0 is some constant. Assume that 𝑑𝑖 is the local degree of 𝑓0 at 𝑐𝑖(0). So we have,
for some constant 𝐶2 > 0,

|𝜉𝜈+1,𝑙(𝑎) − 𝜉1,𝑖(𝑎)| ≤ 𝐶2𝑒
−𝑑𝑖𝑟. (9)

Put 𝐽 = 𝑑𝑖𝑟/10(Γ + 2𝛼), where Γ = sup
𝑧∈ℂ̂, 𝑎∈𝒬

log |𝑓𝑎(𝑧)|. We can divide the above sum into

two parts [1, 𝐽] and [𝐽 + 1, 𝑝], and estimate them separately.

For the first sum, we have

|𝜉𝜈+𝑗,𝑙(𝑎) − 𝜉𝑗,𝑖(𝑎)| ≤ 𝑒Γ(𝑗−1)|𝜉𝜈+1,𝑙(𝑎) − 𝜉1,𝑖(𝑎)|.

Therefore, combining with the basic assumption (3) and (9) we have

𝐽

∑
𝑗=1

|𝜉𝜈+𝑗,𝑙(𝑎) − 𝜉𝑗,𝑖(𝑎)|
dist(𝜉𝑗,𝑖(𝑎), Jrit𝑎)

≤
𝐽

∑
𝑗=1

𝑒Γ(𝑗−1)|𝜉𝜈+1,𝑙(𝑎) − 𝜉1,𝑖(𝑎)|
𝐾𝑒−2𝛼𝑗

≤ 𝐶3𝑒
−9𝑑𝑖𝑟/10 ≤ 𝐶3𝑒

−9𝑑𝑖Δ
′/10.
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Here 𝐶3 depends only on 𝐶2 and𝐾.

For the second sum we can use Definition 2.4 directly to see that
𝑝

∑
𝑗=𝐽+1

|𝜉𝜈+𝑗,𝑙(𝑎) − 𝜉𝑗,𝑖(𝑎)|
dist(𝜉𝑗,𝑖(𝑎), Jrit𝑎)

≤
𝑝

∑
𝑗=𝐽+1

𝑒−𝛼𝑗 ≤ 𝐶4𝑒
−𝛼𝑑𝑖𝑟/(Γ+2𝛼) ≤ 𝐶4𝑒

−𝛼𝑑𝑖Δ
′/(Γ+2𝛼)

for some constant 𝐶4 > 0. As both of the above sums can be made sufficiently small by
choosing Δ′ large enough (i.e., 𝛿′ sufficiently small), we reach the conclusion.

Lemma 3.6 (Expansion and lengths for bound periods). Let 𝛾 ≥ 𝛾𝛪 and 𝑎 ∈ ℰ𝜈,𝑙(𝛾) ∩ ℬ𝜈,𝑙,
where 𝜈 ≥ 𝑁 (𝑁 as in Lemma 3.1). Assume that 𝜉𝜈,𝑙(𝑎) is a return to 𝑈′

𝑖 whose length of
bound period is 𝑝. Then if𝑁 is sufficiently large we have

∣𝐷𝑓𝑝+1
𝑎 (𝜉𝜈,𝑙(𝑎))∣ ≥ 𝑒𝛾𝑝/(2𝑑𝑖),

where 𝑑𝑖 is the degree of 𝑓 at 𝑐𝑖. Moreover, if dist(𝜉𝜈,𝑙(𝑎), Jrit𝑎) ∼√𝑒 𝑒
−𝑟, then

𝑑𝑖𝑟
2Γ ≤ 𝑝 ≤

2𝑑𝑖𝑟
𝛾 .

In particular, 𝑝 ≤ 2𝛼𝑑𝑖𝜈/𝛾.

Proof. Recall that �̂� is the maximal multiplicity of critical points of 𝑓0. First we show that
𝑝 ≤ 2�̂�𝛼𝜈/𝛾𝛪 so that we can use the expansion along the orbit of 𝑣𝑖(𝑎) up to time 𝑝. It
follows from Lemma 3.5 that, for 𝑗 ≤ 𝑝 + 1

∣𝜉𝜈+𝑗,𝑙(𝑎) − 𝜉𝑗,𝑖(𝑎)∣ ∼ |𝐷𝑓𝑗−1
𝑎 (𝜉𝜈+1,𝑙(𝑎))||𝜉𝜈+1,𝑙(𝑎) − 𝑣𝑖(𝑎)| (10)

∼ |𝐷𝑓𝑗−1
𝑎 (𝑣𝑖(𝑎))||𝜉𝜈+1,𝑙(𝑎) − 𝑣𝑖(𝑎)|.

The above relation (10), combined with the definition of bound period (i.e., Definition
2.3), gives us for some constant 𝐶 > 0

|𝐷𝑓𝑗−1
𝑎 (𝑣𝑖(𝑎))||𝜉𝜈+1,𝑙(𝑎) − 𝑣𝑖(𝑎)| ≤ 𝐶𝑒−𝛼𝑗 dist(𝜉𝑗,𝑖(𝑎), Jrit𝑎) ≤ 𝐶 ′𝑒−𝛼𝑗. (11)

Now we see that 𝑝 ≤ 2�̂�𝛼𝜈/𝛾𝛪. Otherwise, we put 𝑗 = 2�̂�𝛼𝜈/𝛾𝛪 in (11) and use the fact that
𝑎 ∈ ℰ𝜈,𝑙(𝛾) (cf. (4)) to obtain that

𝐶0𝑒
𝛾(2�̂�𝛼𝜈/𝛾𝛪−1)𝑒−𝑑𝑖𝑟 ≤ 𝐶 ′𝑒−𝛼2�̂�𝛼𝜈/𝛾𝛪 .

This means that
2�̂�𝛼𝜈
𝛾𝛪

≤
2𝑑𝑖𝑟
𝛾 ,

91



which is impossible, since 𝑎 ∈ ℬ𝜈,𝑙, 𝑑𝑖 ≤ �̂� and 𝛾 > 𝛾𝛪. This also proves that

𝑝 ≤
2𝑑𝑖𝑟
𝛾 .

Now it follows from Lemma 3.5 and 𝑎 ∈ ℰ𝜈,𝑙(𝛾) that

𝐸𝑗 ∶= |𝐷𝑓𝑗
𝑎 (𝜉𝜈+1,𝑙(𝑎))| ∼ |𝐷𝑓𝑗

𝑎 (𝑣𝑖(𝑎))| ≥ 𝐶0𝑒
𝛾𝑗 (12)

for 𝑗 ≤ 𝑝.

From (10) we also have that, for 𝑗 ≤ 𝑝 + 1,

|𝜉𝜈+𝑗,𝑙(𝑎) − 𝜉𝑗,𝑖(𝑎)| ∼ |𝐷𝑓𝑗
𝑎 (𝜉𝜈,𝑙(𝑎))||𝜉𝜈,𝑙(𝑎) − 𝑐𝑖(𝑎)|. (13)

With𝐷𝑗 ∶= |𝐷𝑓𝑗
𝑎 (𝜉𝜈,𝑙(𝑎))| and (13) we see that

𝐷𝑝+1𝑒
−𝑟 ≥ 𝑒−𝛼(𝑝+1) dist(𝜉𝑝+1,𝑖(𝑎), Jrit𝑎) ≥ 𝐾𝑒−3𝛼(𝑝+1), (14)

where the first inequality follows from the definition of bound periods and the second one
holds since 𝑎 ∈ ℬ𝜈,𝑙. By the definition of Γwe see from (14) that

𝑒Γ𝑝𝑒−𝑑𝑖𝑟 ≥ 𝐷𝑝+1𝑒
−𝑟 ≥ 𝐾𝑒−3𝛼(𝑝+1).

So we get that

𝑝 ≥
𝑑𝑖𝑟
2Γ .

It remains to estimate𝐷𝑝. By (14),

𝑒−𝑟 ≥ 𝐾𝐷−1
𝑝+1𝑒

−3𝛼(𝑝+1)

and thus
𝑒−𝑟(𝑑𝑖−1) ≥ 𝐾𝑑𝑖−1𝐷−(𝑑𝑖−1)

𝑝+1 𝑒−3𝛼(𝑝+1)(𝑑𝑖−1).

As𝐷𝑝+1 ∼ 𝑒−𝑟(𝑑𝑖−1)𝐸𝑝, we have, by (12),

𝐷𝑝+1 ≥ 𝐾𝑑𝑖−1𝐷−(𝑑𝑖−1)
𝑝+1 𝑒−3𝛼(𝑝+1)(𝑑𝑖−1)𝑒𝛾𝑝,

which means that
𝐷𝑑𝑖
𝑝+1 ≥ 𝐾𝑑𝑖−1𝑒−3𝛼(𝑝+1)(𝑑𝑖−1)𝑒𝛾𝑝.

So we obtain
𝐷𝑝+1 ≥ 𝐾(𝑑𝑖−1)/𝑑𝑖𝑒−3𝛼(𝑝+1)(𝑑𝑖−1)/𝑑𝑖𝑒𝛾𝑝/𝑑𝑖 ≥ 𝑒𝛾𝑝/(2𝑑𝑖).

92



3.3 Expansion during free periods

Roughly speaking, outside expansion means that the derivative of 𝑓𝑛 grows exponentially
if the orbit stays away from a neighbourhood of the critical points. For slowly recurrent
Collet–Eckmann maps, this was proved in [Asp] which will also be crucial in our case. We
provide the same statement here (with some modifications).

We begin with stating the following classical lemma byMañé [Mañ93].

Lemma 3.7. Let 𝑓 be a rational map. Provided 𝛿 is small enough, there exist a constant
𝐶𝛭 > 0, dependent on 𝛿, and an exponent 𝜆𝛭 > 1 such that if 𝑧 ∈ 𝒥(𝑓) and 𝑓𝑘(𝑧) ∉ 𝑈 for
𝑘 = 1, 2, … 𝑛 − 1 then

|𝐷𝑓𝑛(𝑧)| ≥ 𝐶𝛭𝜆𝑛𝛭.

If 𝑓𝑛(𝑧) is a return to𝑈, one can say something stronger. To state our next lemma we recall
the definition of the second Collet–Eckmann condition.

Definition 3.8 (Second Collet–Eckmann condition). A non-hyperbolic rational map 𝑓
without parabolic periodic points is said to satisfy the second Collet–Eckmann condition, if
there exist 𝐶 > 0 and 𝛾 > 0 such that for every 𝑛 ≥ 1 and 𝑤 ∈ 𝑓−𝑛(𝑐), for 𝑐 ∈ Jrit(𝑓) not in
the forward orbit of other critical points,

|𝐷𝑓𝑛(𝑤)| ≥ 𝐶𝑒𝛾𝑛.

In general, the Collet–Eckmann condition does not imply the second Collet–Eckmann
condition, and vice versa. However, within the family of slowly recurrent rational maps,
these two conditions are equivalent [Byl]. By the assumptions imposed on our startingmap
𝑓0, we therefore have that it satisfies the second Collet–Eckmann condition. The following
lemma ensures strong expansion for orbits outside of𝑈. We give an outline of the proof
which technically is similar to the proof of Lemma 2.3 in [PRLS03]. For a detailed proof
we refer to Lemma 3.1 in [Asp].

Lemma 3.9. Let 𝑓 be a rational map satisfying the second Collet–Eckmann map with
exponent𝛾 > 1, and let𝑈 = ⋃𝑙𝑈𝑙 be such that𝑈𝑙 = 𝐷(𝑐𝑙, 𝛿) is aneighbourhood of 𝑐𝑙 ∈ Jrit(𝑓).
If 𝛿 is small enough there exists a constant 𝐶 > 0, not dependent on 𝛿, such that if

𝑧, 𝑓(𝑧), … , 𝑓𝑛−1(𝑧) ∉ 𝑈, 𝑓𝑛(𝑧) ∈ 𝑈𝑘,

with 𝑐𝑘 not in the forward orbit of other critical points, then

|𝐷𝑓𝑛(𝑧)| ≥ 𝐶𝑒𝛾𝑛.
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Proof. Let 𝑊𝑗 denote the connected component of 𝑓−𝑗(𝑈𝑘) containing 𝑧𝑗 = 𝑓𝑛−𝑗(𝑧),
and let (with some abuse of notation) 𝑐𝑗 denote the 𝑗-th preimage of the critical point
𝑐 = 𝑐𝑘 contained in𝑊𝑗, i.e. 𝑓

𝑗(𝑐𝑗) = 𝑐 and 𝑐𝑗 ∈ 𝑊𝑗. Following the proof of Lemma 2.3
in [PRLS03], once a small 𝛿0 > 0 is fixed there is ℓ ≥ 1 (dependent on 𝛿0) such that, if 𝛿 < 𝛿0
is small enough,

diam(𝑊𝑗) ≤ 𝑒−𝛾
′𝑗 diam(𝑈𝑘) = 𝑒−𝛾

′𝑗𝛿, (15)

for all 𝑗 > ℓ. Here 𝛾′ > 0 is slightly smaller than the exponent from the second Collet–
Eckmann condition. We now consider the quotient

∣
𝐷𝑓𝑛(𝑐𝑛)
𝐷𝑓𝑛(𝑧) ∣ = ∣

𝐷𝑓𝑛−ℓ(𝑐𝑛)
𝐷𝑓𝑛−ℓ(𝑧)

∣ ∣
𝐷𝑓ℓ(𝑐ℓ)
𝐷𝑓ℓ(𝑧ℓ)

∣ .

By making 𝛿 small, the second factor in the above is bounded by some small constant
𝐶 ′ ≥ 1. For the first factor, using (7), (15), and the assumption that dist(𝑧𝑗, Jrit(𝑓)) ≥ 𝛿
for 𝑗 ≥ 1, we find that

∣
𝐷𝑓𝑛−𝑙(𝑐𝑛)
𝐷𝑓𝑛−𝑙(𝑧)

∣ ≤ exp (𝐶″
𝑛−𝑙−1
∑
𝑗=0

|𝑓𝑗(𝑐𝑛) − 𝑓
𝑗(𝑧)|

dist(𝑓𝑗(𝑧), Jrit(𝑓))
)

≤ exp (𝐶″
𝑛
∑
𝑗=𝑙+1

diam(𝑊𝑗)
𝛿 )

≤ exp ( 𝐶″

𝑒𝛾′ − 1
) .

This proves the result, since

|𝐷𝑓𝑛(𝑧)| ≥ 1
𝐶 ′ exp (−

𝐶″

𝑒𝛾′ − 1
) |𝐷𝑓𝑛(𝑐𝑛)| ≳ 𝑒𝛾𝑛.

We are now in position to prove our desired outside expansion lemma, satisfied for any
small perturbation 𝑓𝑎 of 𝑓0, and also valid in an 𝜀0-neighbourhood𝒩𝜀0 of𝒥(𝑓0). We make
𝑈 so small that𝑈 ⊂ 𝒩𝜀0 .

Lemma 3.10. Suppose 𝑓 = 𝑓0 is a rational second Collet–Eckmann with non-empty Fatou
set. If 𝜀0, 𝛿 and 𝜀 are small enough, there exist constants 𝐶𝛿 > 0 (dependent on 𝛿) and 𝛾 > 0
such that, for all 𝑎 ∈ 𝒬, if

𝑧, 𝑓𝑎(𝑧), … 𝑓𝑛−1
𝑎 (𝑧) ∈ 𝒩𝜀0 ⧵ 𝑈
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then
|𝐷𝑓𝑛

𝑎 (𝑧)| ≥ 𝐶𝛿𝑒
𝛾𝑛 (16)

Moreover, there exists a constant 𝐶 > 0 (not dependent on 𝛿) such that if we also have
𝑓𝑛
𝑎 (𝑧) ∈ 𝑈 then

|𝐷𝑓𝑛
𝑎 (𝑧)| ≥ 𝐶𝑒𝛾𝑛. (17)

Remark 3.11. For later convenience, we put 𝛾𝛨 = 𝛾, where 𝛾 is as in (17).

Proof. Fix 𝛾 > 0 such that 3𝛾 ∈ (0,min{𝛾𝛭, 𝛾𝛨}), where 𝛾𝛭 and 𝛾𝛨 comes fromLemma 3.7
and Lemma 3.9, respectively. We will establish the result with this 𝛾.

From Lemma 3.7, provided 𝛿 is small enough, we can find �̂� large enough such that if
𝑓𝑘(𝑧) ∈ 𝒥(𝑓) ⧵ 𝑈 for 𝑘 = 0, 1, … , �̂� − 1 then

|𝐷𝑓 �̂�(𝑧)| ≥ 𝐶𝛭𝑒𝛾𝛭�̂� ≥ 𝑒3𝛾�̂�.

If 𝜀0 > 0 is small enough, we therefore conclude by continuity that if 𝑓𝑘(𝑧) ∈ 𝒩𝜀0 ⧵ 𝑈 for
𝑘 = 0, 1, … , �̂� − 1 then

|𝐷𝑓 �̂�(𝑧)| ≥ 𝑒2𝛾�̂�.

Using continuity again, now in the parameter variable, we conclude that if 𝜀 is small enough,
if for 𝑎 ∈ 𝒬we have that 𝑓𝑘

𝑎 (𝑧) ∈ 𝒩𝜀0 ⧵ 𝑈 for 𝑘 = 0, 1, … , �̂� − 1 then

|𝐷𝑓 �̂�
𝑎 (𝑧)| ≥ 𝑒𝛾�̂�.

Suppose now that 𝑓𝑘
𝑎 (𝑧) ∈ 𝒩𝜀0 ⧵ 𝑈 for 𝑘 = 0, 1, … 𝑛 − 1 and write 𝑛 = 𝑞�̂� + 𝑟, with 𝑞 and 𝑟

positive integers and 0 ≤ 𝑟 ≤ �̂� − 1. We find that

|𝐷𝑓𝑛
𝑎 (𝑧)| = |𝐷𝑓𝑟

𝑎 (𝑓
𝑞�̂�
𝑎 (𝑧))||𝐷𝑓 �̂�

𝑎 (𝑓
(𝑞−1)�̂�
𝑎 (𝑧))| ⋯ |𝐷𝑓 �̂�

𝑎 (𝑧)|

≥ |𝐷𝑓𝑟
𝑎 (𝑓

𝑞�̂�(𝑧))|𝑒𝛾𝑞�̂�,

and (16) now follows with constant 𝐶𝛿 = inf𝑎∈𝒬 inf𝑧∈𝒩𝜀0
⧵𝑈 |𝐷𝑓

�̂�
𝑎 (𝑧)|.

If we have a return to𝑈 then we are in the situation 𝑓𝑘
𝑎 (𝑓

𝑞�̂�
𝑎 ) ∉ 𝑈 for 𝑘 = 0, … , 𝑟 − 1 and

𝑓𝑟
𝑎 (𝑓

𝑞�̂�
𝑎 (𝑧)) ∈ 𝑈. In the case of the unperturbed map we get from Lemma 3.9 that

|𝐷𝑓𝑟(𝑓𝑞�̂�(𝑧))| ≥ 𝐶𝑒𝛾𝛨𝑟,

with𝐶 not depending on 𝛿. Once again, due to continuity in 𝑎, a similar estimate holds for
the perturbed map 𝑓𝑎 if 𝜀 is small enough (recall that 𝑟 ≤ �̂� − 1). This proves (17).
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3.4 At the next free return

Combining the results above we draw the following conclusions at the next free return.

Using Lemma 3.6 and Lemma 3.10, we can obtain longer time of exponential growth for
derivatives. More precisely, we have the following.

Lemma 3.12. Let𝑁 be sufficiently large. Let 𝜈 ≥ 𝑁 be a return such that 𝜉𝜈,𝑙(𝑎) ∈ 𝑈
′ for

𝑎 ∈ ℰ𝜈,𝑙(𝛾) ∩ ℬ𝜈,𝑙, where 𝛾 ≥ 𝛾𝛪. Let also 𝜈
′ be the next free return time. Then we have

|𝐷𝑓𝑛
𝑎 (𝑣𝑙(𝑎))| ≥ 𝑒𝛾1𝑛,

for all 0 ≤ 𝑛 ≤ 𝜈′ − 1, with 𝛾1 ≥ (9/10)min{𝛾, 𝛾𝛨}.

Proof. Recall that �̂� is the maximal multiplicity of critical points of 𝑓0. Let 𝑝 be the length
of the bound period for the return 𝜉𝜈,𝑙(𝑎), and suppose 𝑛 = 𝜈 + 𝑗with 1 ≤ 𝑗 ≤ 𝑝. By the
chain rule, the fact that 𝑎 ∈ ℰ𝜈,𝑙(𝛾) and Lemma 3.6, using the notation from the proof of
Lemma 3.6,

|𝐷𝑓𝜈+𝑗
𝑎 (𝑣𝑙(𝑎))| = |𝐷𝑓𝜈−1

𝑎 (𝑣𝑙(𝑎))|𝐷𝑗+1

≳ 𝑒𝛾(𝜈−1)|𝐷𝑓𝑎(𝜉𝜈(𝑎))|𝐸𝑗

≳ 𝑒𝛾(𝜈−1)𝑒−2𝛼�̂�𝜈𝑒𝛾𝑗

≥ 𝑒𝛾1(𝜈+𝑗),

by the choice of 𝛼 and provided𝑁 is large enough. If 𝑛 = 𝜈 + 𝑝 + 𝑗, with 1 ≤ 𝑗 ≤ 𝐿 − 1, it
also follows from Lemma 3.10 (here with respect to𝑈′) and the above that

|𝐷𝑓𝜈+𝑝+𝑗
𝑎 (𝑣𝑙(𝑎))| = |𝐷𝑓𝜈−1

𝑎 (𝑣𝑙(𝑎))|𝐷𝑝+1|𝐷𝑓
𝑗
𝑎 (𝜉𝜈+𝑝+1(𝑎))|

≳ 𝑒𝛾(𝜈−1)𝑒−2𝛼�̂�𝜈𝑒𝛾𝑝𝐶𝛿′𝑒
𝛾𝛨𝑗

≥ 𝑒𝛾1(𝜈+𝑝+𝑗),

again provided that𝑁 is large enough.

By the weak parameter dependence (Lemma 3.2) and using similar methods as above we
can see that parameters belonging to the same partition element repel each other in the
following sense.

Lemma 3.13. Let 𝑎, 𝑏 ∈ ℰ𝜈,𝑙(𝛾) ∩ ℬ𝜈,𝑙 be in the same partition element for 𝛾 ≥ 𝛾𝛪. Let also 𝜈
be a return time for this partition element. If 𝜈′ is the next free return, then

|𝜉𝜈′,𝑙(𝑎) − 𝜉𝜈′,𝑙(𝑏)| ≥ 2|𝜉𝜈,𝑙(𝑎) − 𝜉𝜈,𝑙(𝑏)|.
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Proof. By Lemma 3.12 above we see that for 𝑎 ∈ ℰ𝜈,𝑙(𝛾) ∩ ℬ𝜈,𝑙 we have exponential growth
of phase derivative up to the next free return 𝜈′, i.e.

|𝐷𝑓𝑛
𝑎 (𝑣𝑙(𝑎))| ≥ 𝐶1𝑒

𝛾1𝑛,

for 0 ≤ 𝑛 ≤ 𝜈′ − 1. Since 𝛾1 ≥ (9/10)min{𝛾, 𝛾𝛨}, one can use the weak parameter
dependence property to get

|𝜉𝜈′,𝑙(𝑎) − 𝜉𝜈′,𝑙(𝑏)| ≥ 𝑄−(𝜈′−𝜈)|𝐷𝑓𝜈′−𝜈
𝑎 (𝜉𝜈,𝑙(𝑎))||𝜉𝜈,𝑙(𝑎) − 𝜉𝜈,𝑙(𝑏)|.

Since 𝜈′ − 𝜈 = 𝑝 + 𝐿, with 𝑝 and 𝐿 being the associated bound period and free period,
respectively, we get from Lemma 3.6 and Lemma 3.10 that

|𝐷𝑓𝜈′−𝜈
𝑎 (𝜉𝜈,𝑙(𝑎))| = |𝐷𝑓𝑝+1

𝑎 (𝜉𝜈,𝑙(𝑎))||𝐷𝑓
𝐿−1
𝑎 (𝜉𝜈+𝑝+1(𝑎))|

≥ 𝐶𝑒𝛾𝑝/(2�̂�)+𝛾𝛨(𝐿−1)

≥ 𝑒𝛾2(𝜈
′−𝜈),

for some 𝛾2 > 0, provided 𝛿′ is small enough (hence 𝑝 is large). Notice that the constant 𝐶
coming from the outside expansion lemma is not dependent on 𝛿′ since we have an actual
return. As𝑄 is chosen very small we have log𝑄 < 𝛼 ≪ 𝛾2, and we get the conclusion.

3.5 Main distortion lemma (MDL)

The following lemma is the main result of this section, and it tells us that we have strong
distortion estimates for parameters belonging to the same partition element. An essential
ingredient in the proof is the weak parameter dependence proved earlier (Lemma 3.2).

Lemma 3.14 (Main distortion lemma). Let 𝜀′ > 0. Then there exists𝑁 large enough such
that the following holds: If𝐴 ⊂ ℰ𝜈,𝑙(𝛾) ∩ ℬ𝜈,𝑙 is a partition element for 𝛾 ≥ 𝛾𝛪 and 𝜈 ≥ 𝑁 is a
return time or does not belong to the bound period, and 𝜈′ is the next free return, then we have

∣
𝐷𝑓𝑛

𝑎 (𝑣𝑙(𝑎))
𝐷𝑓𝑛

𝑏 (𝑣𝑙(𝑏))
− 1∣ ≤ 𝜀′

for 𝑎, 𝑏 ∈ 𝐴 and for 𝜈 ≤ 𝑛 ≤ 𝜈′, provided𝐴 is still a partition element at the time 𝑛.

Proof. By Lemma 3.2 and Lemma 3.4, it reduces to check whether the following sum can
be made arbitrarily small:

Υ ∶=
𝑛−1
∑
𝑗=1

|𝜉𝑗,𝑙(𝑎) − 𝜉𝑗,𝑙(𝑏)|
dist(𝜉𝑗,𝑙(𝑏), Jrit𝑏)

.
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Let (𝜈𝑘) be the free returns before time 𝑛, where 𝑘 ≤ 𝑠. In other words, 𝜈 = 𝜈𝑠 and 𝜈
′ = 𝜈𝑠+1.

Let also 𝑝𝑘 be the length of the associated bound period of the return 𝜈𝑘. The estimate ofΥ
is divided into several parts:

Υ =
𝑠
∑
𝑘=1

𝜈𝑘−1+𝑝𝑘−1
∑
𝑗=𝜈𝑘−1

|𝜉𝑗,𝑙(𝑎) − 𝜉𝑗,𝑙(𝑏)|
dist(𝜉𝑗,𝑙(𝑏), Jrit𝑏)

+
𝑠
∑
𝑘=1

𝜈𝑘−1

∑
𝑗=𝜈𝑘−1+𝑝𝑘−1+1

|𝜉𝑗,𝑙(𝑎) − 𝜉𝑗,𝑙(𝑏)|
dist(𝜉𝑗,𝑙(𝑏), Jrit𝑏)

+
𝑛−1
∑
𝑗=𝜈𝑠

|𝜉𝑗,𝑙(𝑎) − 𝜉𝑗,𝑙(𝑏)|
dist(𝜉𝑗,𝑙(𝑏), Jrit𝑏)

=∶ Υ𝛣 + Υ𝐹 + Υ𝛵.

HereΥ𝛣 denotes the contribution from bound periods, whileΥ𝐹 the contribution from
free periods, andΥ𝛵 the contribution from the last return 𝜈𝑠 up until time 𝑛.

Contribution from bound periods: the estimate of Υ𝛣. Let 𝜈𝑘 be one of the free returns, with
𝑘 ≤ 𝑠 − 1. We would like to estimate the following

Υ𝑘
𝛣 ∶=

𝜈𝑘+𝑝𝑘
∑
𝑗=𝜈𝑘

|𝜉𝑗,𝑙(𝑎) − 𝜉𝑗,𝑙(𝑏)|
dist(𝜉𝑗,𝑙(𝑏), Jrit𝑏)

=
𝑝𝑘
∑
𝑗=0

|𝜉𝜈𝑘+𝑗,𝑙(𝑎) − 𝜉𝜈𝑘+𝑗,𝑙(𝑏)|
dist(𝜉𝜈𝑘+𝑗,𝑙(𝑏), Jrit𝑏)

.

Assume also that 𝜉𝜈𝑘,𝑙(𝑎) ∈ 𝑈
′
𝑖 is a return and dist(𝜉𝜈𝑘,𝑙(𝑏), Jrit𝑏) ∼ 𝑒−𝑟. It then follows from

the distortion in Lemma 3.5 and the definition of bound periods that

Υ𝑘
𝛣 ≤

|𝜉𝜈𝑘,𝑙(𝑎) − 𝜉𝜈𝑘,𝑙(𝑏)|
𝑒−𝑟 (1 +

𝑝𝑘
∑
𝑗=1

|𝐷𝑓𝑗
𝑎 (𝜉𝜈𝑘,𝑙(𝑎))|𝑒

−𝑟

dist(𝜉𝜈𝑘+𝑗,𝑙(𝑏), Jrit𝑏)
)

≲
|𝜉𝜈𝑘,𝑙(𝑎) − 𝜉𝜈𝑘,𝑙(𝑏)|

𝑒−𝑟 (1 +
𝑝𝑘
∑
𝑗=1

|𝐷𝑓𝑗
𝑎 (𝜉𝜈𝑘,𝑙(𝑎))||𝜉𝜈𝑘,𝑙(𝑎) − 𝑐𝑖(𝑎)|
dist(𝜉𝜈𝑘+𝑗,𝑙(𝑏), Jrit𝑏)

)

≲
|𝜉𝜈𝑘,𝑙(𝑎) − 𝜉𝜈𝑘,𝑙(𝑏)|

𝑒−𝑟 (1 +
𝑝𝑘
∑
𝑗=1

|𝜉𝜈𝑘+𝑗,𝑙(𝑎) − 𝜉𝑗,𝑖(𝑎)|
dist(𝜉𝜈𝑘+𝑗,𝑙(𝑏), Jrit𝑏)

)

≲
|𝜉𝜈𝑘,𝑙(𝑎) − 𝜉𝜈𝑘,𝑙(𝑏)|

𝑒−𝑟 (1 +
𝑝𝑘
∑
𝑗=1

𝑒−𝛼𝑗)

≲
|𝜉𝜈𝑘,𝑙(𝑎) − 𝜉𝜈𝑘,𝑙(𝑏)|

𝑒−𝑟 .

Given 𝑟 ≥ Δ, let 𝐾(𝑟) be the set of indices 𝑘 such that dist(𝜉𝜈𝑘,𝑙(𝐴), Jrit𝛢) ∼ 𝑒−𝑟, and let
�̂�(𝑟) be the largest index contained in𝐾(𝑟). Then it follows from Lemma 3.13 that

Υ𝛣 =
𝑠−1
∑
𝑘=1

Υ𝑘
𝛣 ≤ ∑

𝑟≥Δ
∑

𝑘∈𝛫(𝑟)
Υ𝑘
𝛣 ≲ ∑

𝑟≥Δ
Υ�̂�(𝑟)
𝛣 ≲ ∑

𝑟≥Δ

1
𝑟2

≲ 1
Δ,
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where we used that for the last return associated with this 𝑟

|𝜉𝜈�̂�(𝑟),𝑙(𝑎) − 𝜉𝜈�̂�(𝑟),𝑙(𝑏)| ≲
𝑒−𝑟

𝑟2
.

Contribution from free periods: the estimate of Υ𝐹. Similar as above, we define for 𝑘 ≤ 𝑠 − 1,

Υ𝑘
𝐹 ∶=

𝜈𝑘+1−1

∑
𝑗=𝜈𝑘+𝑝𝑘+1

|𝜉𝑗,𝑙(𝑎) − 𝜉𝑗,𝑙(𝑏)|
dist(𝜉𝑗,𝑙(𝑏), Jrit𝑏)

.

By the weak parameter dependence and Lemma 3.10 we see that

|𝜉𝜈𝑘+1,𝑙(𝑎) − 𝜉𝜈𝑘+1,𝑙(𝑏)| ≥
1

𝑄𝜈𝑘+1−𝑗
|𝐷𝑓𝜈𝑘+1−𝑗

𝑎 (𝜉𝑗,𝑙(𝑎))|𝜉𝑗,𝑙(𝑎) − 𝜉𝑗,𝑙(𝑏)|

≳ (𝑒
𝛾𝛨

𝑄 )
𝜈𝑘+1−𝑗

|𝜉𝑗,𝑙(𝑎) − 𝜉𝑗,𝑙(𝑏)|

for 𝜈𝑘 + 𝑝𝑘 + 1 ≤ 𝑗 ≤ 𝜈𝑘+1 − 1. Since 𝜈𝑘+1 is the index of a return, we assume that
dist(𝜉𝜈𝑘+1,𝑙(𝑏), Jrit𝑏) ∼ 𝑒−𝑟. So we see that, for 𝜈𝑘 + 𝑝𝑘 + 1 ≤ 𝑗 ≤ 𝜈𝑘+1 − 1,

|𝜉𝑗,𝑙(𝑎) − 𝜉𝑗,𝑙(𝑏)| ≲ (
𝑄
𝑒𝛾𝛨 )

𝜈𝑘+1−𝑗
|𝜉𝜈𝑘+1,𝑙(𝑎) − 𝜉𝜈𝑘+1,𝑙(𝑏)|.

Since dist(𝜉𝑗,𝑙(𝑏), Jrit𝑏) ≥ dist(𝜉𝜈𝑘+1,𝑙(𝑏), Jrit𝑏) ∼ 𝑒−𝑟 this gives

Υ𝑘
𝐹 ≲

|𝜉𝜈𝑘+1,𝑙(𝑎) − 𝜉𝜈𝑘+1,𝑙(𝑏)|
𝑒−𝑟

𝜈𝑘+1−1

∑
𝑗=𝜈𝑘+𝑝𝑘+1

(
𝑄
𝑒𝛾𝛨 )

𝜈𝑘+1−𝑗
≲
|𝜉𝜈𝑘+1,𝑙(𝑎) − 𝜉𝜈𝑘+1,𝑙(𝑏)|

𝑒−𝑟 ,

where we have used the fact that log𝑄 is much smaller than 𝛾𝛨. Using the same argument
as in the estimate of the contribution from the bound periods, we find that

Υ𝐹 =
𝑠−1
∑
𝑘=1

Υ𝑘
𝐹 ≤ ∑

𝑟≥Δ
∑

𝑘∈𝛫(𝑟)
Υ𝑘
𝐹 ≲ ∑

𝑟≥Δ
Υ�̂�(𝑟)
𝐹 ≲ ∑

𝑟≥Δ

1
𝑟2

≲ 1
Δ.

Estimate of tail Υ𝛵. It remains to estimate the sum between the last free return 𝜈𝑠 up to time
𝑛. As 𝜈𝑠 ≤ 𝑛 ≤ 𝜈𝑠+1, we need to consider the different situations that can occur in this time
interval. If 𝑛 ≤ 𝜈𝑠 + 𝑝𝑠 (i.e. 𝑛 belongs to the bound period immediately after 𝜈𝑠), then the tail
Υ𝛵 can be estimated in the same asΥ𝛣 by reducing to the return at time 𝜈𝑠. If 𝑛 = 𝜈𝑠+1, then
the tail consists of a bound period following 𝜈𝑠 and a free period before the return 𝑛 = 𝜈𝑠+1
happens. In this case, the estimateΥ𝛵 can be estimated again as above.
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The remaining case is when 𝜈𝑠 + 𝑝𝑠 + 1 ≤ 𝑛 < 𝜈𝑠+1. For this purpose, we consider pseudo-
returns, and we let 𝜈𝑠 + 𝑝𝑠 + 1 ≤ 𝑞1 ≤ ⋯ ≤ 𝑞𝑡 ≤ 𝑛 be the indices of these returns. By
definition, 𝜉𝑞𝑘,𝑙(𝑎) ∩ 𝑈

′ ≠ ∅ and 𝜉𝑞𝑘,𝑙(𝑎) ∩ 𝑈 = ∅. For pseudo-returns, bound periods and
free periods are defined in a similar way. As in the previous estimates, the contribution to
the distortion between any two pseudo-returns of index 𝑞𝑘 and 𝑞𝑘+1 is a constant times

|𝜉𝑞𝑘,𝑙(𝑎) − 𝜉𝑞𝑘,𝑙(𝑏)|
𝑒−𝑟𝑘 +

|𝜉𝑞𝑘+1,𝑙(𝑎) − 𝜉𝑞𝑘+1,𝑙(𝑏)|
𝑒−𝑟𝑘+1 ,

where 𝑟𝑘 and 𝑟𝑘+1 such that dist(𝜉𝑞𝑘,𝑙(𝑏), Jrit𝑎) ∼ 𝑒−𝑟𝑘 and dist(𝜉𝑞𝑘+1,𝑙(𝑏), Jrit𝑎) ∼ 𝑒−𝑟𝑘+1 . The
difference here is that, at a pseudo-return, the only thing we know about the length of
our interval is that |𝜉𝑞𝑘,𝑙(𝑎) − 𝜉𝑞𝑘,𝑙(𝑏)| ≤ 𝑆, where 𝑆 = 𝜀1𝛿 is the large scale. With similar
methods and notation used for estimating the bound and free contributions, we have

Υ𝛵 = (
𝑞1
∑
𝑗=𝜈𝑠

+
𝑡−1
∑
𝑘=1

𝑞𝑘+1−1

∑
𝑗=𝑞𝑘

+
𝑛−1
∑
𝑗=𝑞𝑡

)
|𝜉𝑗,𝑙(𝑎) − 𝜉𝑗,𝑙(𝑏)|
dist(𝜉𝑗,𝑙(𝑏), Jrit𝑏)

≲ 1
𝑟2𝑠

+
𝑡
∑
𝑘=1

|𝜉𝑞𝑘,𝑙(𝑎) − 𝜉𝑞𝑘,𝑙(𝑏)|
dist(𝜉𝑞𝑘,𝑙(𝑏), Jrit𝑏)

+
𝑛−1
∑
𝑗=𝑞𝑡

|𝜉𝑗,𝑙(𝑎) − 𝜉𝑗,𝑙(𝑏)|
dist(𝜉𝑗,𝑙(𝑏), Jrit𝑏)

≲ 1
Δ2 +

Δ
∑
𝑟=Δ′

|𝜉𝑞�̂�(𝑟),𝑙(𝑎) − 𝜉𝑞�̂�(𝑟),𝑙(𝑏)|

dist(𝜉𝑞�̂�(𝑟),𝑙(𝑏), Jrit𝑏)
+ 𝑆
𝛿′

≲ 1
Δ2 + 𝜀1

Δ
∑
𝑟=Δ′

𝑒𝑟−Δ + 𝜀1

≲ 1
Δ2 + 𝜀1,

where we in the sum from 𝑞𝑡 to 𝑛 − 1 used Lemma 3.10 (inequality (16), now with respect
to𝑈′) and that dist(𝜉𝑗,𝑙(𝑏), Jrit𝑏) > 𝛿′ > 𝛿 during this time.

Combining all these estimate above we arrive at

Υ =
𝑛−1
∑
𝑗=1

|𝜉𝑗,𝑙(𝑎) − 𝜉𝑗,𝑙(𝑏)|
dist(𝜉𝑗,𝑙(𝑏), Jrit𝑏)

≲ 1
Δ + 𝜀1,

and if 𝛿 and 𝜀1 are small enough, we reach the desired conclusion of strong distortion.

3.6 Consequences of MDL

With Lemma 3.14 in hand, we can conclude that the previously obtained weak parameter
dependence of Lemma 3.2 can be promoted to a stronger form:

|𝜉𝑛+𝑗,𝑙(𝑎) − 𝜉𝑛+𝑗,𝑙(𝑏)| ∼ |𝐷𝑓𝑛
𝑎 (𝜉𝑗,𝑙(𝑎))||𝜉𝑗,𝑙(𝑎) − 𝜉𝑗,𝑙(𝑏)|,
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provided that 𝑎 and 𝑏 belong to the same partition element.

Another direct consequence of Lemma 3.14 is that for a sufficiently small parameter square
𝒬, we have the following dichotomy for each critical point 𝑐𝑙: there exists𝑁𝑙 such that
either 𝜉𝛮𝑙,𝑙(𝒬) grows to some definite size or 𝜉𝛮𝑙,𝑙(𝒬) is the first essential return.

Lemma 3.15. Let 𝑓0 be a slowly recurrent Collet–Eckmann rational map. Let𝑁𝐿 be as in
Lemma 3.1, and let 𝜀′ > 0 be sufficiently small. Then there is a neighbourhood𝑈 of Jrit0 and
𝑆 > 0 (depending on𝑈) such that, for each sufficiently small 𝜀 > 0 and for each critical point
𝑐𝑙(0) ∈ Jrit0, there is𝑁𝑙 ≥ 𝑁𝐿 such that for all 𝑎 ∈ 𝒬 we have the following:

(i) For some 𝛾𝑙 ≥ 𝛾0(1 − 𝜀
′), one has

∣𝐷𝑓𝑘
𝑎 (𝑣𝑙(𝑎))∣ ≥ 𝐶𝑒𝛾𝑙𝑘 for 𝑘 ≤ 𝑁𝑙 − 1;

(ii) for 𝑘 ≤ 𝑁𝑙 − 1, one has

diam 𝜉𝑘,𝑙(𝒬) ≤ {

dist(𝜉𝑘,𝑙(𝒬), Jrit𝒬)
(log dist(𝜉𝑘,𝑙(𝒬), Jrit𝒬))2

, if 𝜉𝑘,𝑙(𝒬) ∩ 𝑈 ≠ ∅,

𝑆, if 𝜉𝑘,𝑙(𝒬) ∩ 𝑈 = ∅;

(iii) for 𝑘 = 𝑁𝑙, one has

diam 𝜉𝑘,𝑙(𝒬) ≥ {

dist(𝜉𝑘,𝑙(𝒬), Jrit𝒬)
(log dist(𝜉𝑘,𝑙(𝒬), Jrit𝒬))2

, if 𝜉𝑘,𝑙(𝒬) ∩ 𝑈 ≠ ∅,

𝑆, if 𝜉𝑘,𝑙(𝒬) ∩ 𝑈 = ∅;

(iv) for all 𝑎, 𝑏 ∈ 𝒬 one has

∣
𝐷𝑓𝑛−𝛮

𝑎 (𝜉𝛮,𝑙(𝑎))
𝐷𝑓𝑛−𝛮

𝑎 (𝜉𝛮,𝑙(𝑏))
− 1∣ ≤ 𝜀′ for 𝑛 ≤ 𝑁𝑙.

Proof. By the choice of𝑁𝐿, we can choose 𝜀 > 0 sufficiently small such𝒬 ⊂ ℰ𝛮𝐿,𝑙(𝛾)∩ℬ𝛮𝐿,𝑙
for all 𝑙 and for some 𝛾 arbitrarily close to 𝛾0.

Now we fix any 𝑐𝑙(0) ∈ Jrit0 and assume that (𝑖𝑖) is always satisfied up to some time,
denoted by𝑁𝑙 − 1. Then this implies that all other parameters in𝒬will inherit expansion
from our starting map:

∣𝐷𝑓𝑘
𝑎 (𝑣𝑙(𝑎))∣ ≥ 𝐶−𝑘𝑒𝛾0𝑘 ≥ 𝐶0𝑒

𝛾1𝑘.
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Since we assumed that (𝑖𝑖) is satisfied, we see that all parameters will be slowly recurrent
up to time𝑁𝑙 − 1. Then by the definition of partition element we can use Lemma 3.14
repeatedly starting from the time𝑁𝐿 up to𝑁𝑙 − 1 to get the distortion claimed in (𝑖𝑣).

To prove our main result, we would like to see if a small parameter square will grow to the
large scale 𝑆 under the action of 𝜉𝑛,𝑙. For this purpose, let𝑁𝑙 be as in the above lemma and
suppose without loss of generality that𝑁1 ≤ 𝑁2 ≤ ⋯. Then by Lemma 3.15, we have the
situation that 𝜉𝛮1,1(𝒬) either reaches the large scale 𝑆 or is the first essential return. If the
first case happens, we stop and consider the next critical point. If the second case occurs,
we partition the parameter square𝒬 into small dyadic squares inductively as follows. Since
the partition rule should be valid for all returns, let us consider a given partition element
𝐴 ⊂ 𝒬 (instead of𝒬), which is assumed to be a perfect square. So suppose that 𝜉𝑛,𝑙(𝐴)
is an essential return, and𝐴 is not a partition element according to Definition 2.2, then
partition𝐴 into four perfect squares𝐴𝑗1 ⊂ 𝐴, 𝑗1 = 1, 2, 3, 4 of equal size. If each of these
subsquares satisfies Definition 2.2, then stop. If not, for each subsquare𝐴𝑗1 ⊂ 𝐴 that is not
a partition element, partition𝐴𝑗1 into four new subsquares𝐴𝑗1𝑗2 , 𝑗2 = 1, 2, 3, 4 of equal size.
If they are partition elements, then stop. Otherwise go on until all subsquares are partition
elements. In this way we obtain a partition of𝐴 into subsquares of possibly different sizes
of the form 2−𝑘 times the side length of𝐴. We get a collection of dyadic subsquares𝐴𝑖

𝑛 ⊂ 𝐴
such that𝐴 = ∪𝑖𝐴

𝑖
𝑛 and

1
3

dist(𝜉𝑛,𝑙(𝐴
𝑖
𝑛), Jrit𝛢𝑖

𝑛
)

(log dist(𝜉𝑛,𝑙(𝐴𝑖
𝑛), Jrit𝛢𝑖

𝑛
))2

≤ diam 𝜉𝑛,𝑙(𝐴
𝑖
𝑛) ≤

dist(𝜉𝑛,𝑙(𝐴
𝑖
𝑛), Jrit𝛢𝑖

𝑛
)

(log dist(𝜉𝑛,𝑙(𝐴𝑖
𝑛), Jrit𝛢𝑖

𝑛
))2

.

By construction, each 𝐴𝑖
𝑛 is a partition element, as defined in 2.2 (the constant 1/3 is

chosen because of small distortion; in an completely affine situation, 1/2would suffice).
At this point we will need to delete parameters which violate the basic assumption. But
it turns out that these deleted parameters constitute only a small portion. After (possi-
bly) deleting parameters not satisfying the basic assumption, we continue to iterate each
partition element individually.

4 Large deviations and escape of partition elements

We now consider a partition element in 𝒬 and follow it in a time window of the type
[𝑚, (1 + 𝜄)𝑚], for some (small) 𝜄 > 0. This section is very similar to [BC91] where the
original ideas were developed. See also [Asp13,Asp]. Let𝐴𝑛(𝑎) ⊂ 𝒬 be a partition element
at time 𝑛, containing the parameter 𝑎. Since the proofs are very similar to these earlier
papers, we are not going through all the proofs here again but instead give references.
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Definition 4.1. We say that 𝜉𝑛,𝑙(𝐴𝑛(𝑎)) has escaped or is in escape position, if 𝑛 does not
belong to a bound period and diam(𝜉𝑛,𝑙(𝐴𝑛(𝑎))) ≥ 𝑆 before partitioning. We also speak of
escape situation for𝐴𝑛(𝑎) and say that𝐴𝑛(𝑎) has escaped if 𝜉𝑛,𝑙(𝐴𝑛(𝑎)) has escaped.

The first observation is that the measure of parameters deleted between two consecutive
essential returns is exponentially small in terms of the return time of the former return. See
Lemma 8.1 in [Asp].

Lemma 4.2. Let 𝜉𝜈,𝑙(𝐴) be an essential return,𝐴 ⊂ ℰ𝜈,𝑙(𝛾𝛪) ∩ ℬ𝜈,𝑙 and let 𝜉𝜈′(𝐴) be the next
essential return. Then if �̂� is the set of parameters in𝐴 that satisfy the basic assumption at
time 𝜈′, we have

𝑚(�̂�) ≥ (1 − 𝑒−𝛼𝜈)𝑚(𝐴).

Proof. We first show that 𝜉𝜈,𝑙(𝐴) grows rapidly during the bound period 𝑝. By Lemmas 3.5
and 3.14 and the definition of the bound period, we get, for any 𝑎 ∈ 𝐴,

diam(𝜉𝜈+𝑝+1,𝑙(𝐴)) ∼
𝑒−𝑟𝑑𝑖
𝑟2

|𝐷𝑓𝑝
𝑎 (𝜉𝜈+1,𝑙(𝑎))|

∼
|𝜉𝜈+𝑝+1,𝑙(𝑎) − 𝜉𝑝+1,𝑖(𝑎)|

𝑟2
≥ 𝐶𝑒−𝛼(𝑝+1)−2 log 𝑟 dist(𝜉𝑝+1,𝑖(𝑎), Jrit𝑎)

≥ 𝐶𝐾𝑒−2𝛼(𝑝+1)−𝛼(𝑝+1)−2 log 𝑟 ≥ 𝑒−(7/2)𝛼𝑝−2 log 𝑟,

if 𝑝 is large. So, by Lemma 3.10 and Lemma 3.6,

diam(𝜉𝜈′,𝑙(𝐴)) ≥ diam(𝜉𝜈+𝑝+1,𝑙(𝐴))𝐶
′𝑒𝛾𝛨(𝜈

′(𝜈+𝑝+1))

≥ 𝐶 ′𝑒−(7/2)𝛼𝑝−2 log 𝑟

≥ 𝑒−7𝛼𝑑𝑟/𝛾−2 log 𝑟

≥ 𝑒−
8𝛼𝑑
𝛾 𝑟. (18)

So by the main distortion Lemma 3.14 together with Lemma 3.1, we see that the measure
of parameters deleted at time 𝜈′ is

𝑚(𝐴) − 𝑚(�̂�)
𝑚(𝐴) ≤ 2 (𝑒−2𝛼𝜈

′
)2

diam(𝜉𝜈′(𝐴))2
≤ 2𝑒−𝛼(4−

16𝛼𝑑
𝛾 )𝜈 ≤ 𝑒−𝛼𝜈,

since 𝛼�̂�/𝛾 ≤ 1/100 (�̂� is the maximal multiplicity of the critical points).

We next state the following lemma, which is a correspondence to Lemma 8.3 in [Asp]
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Lemma 4.3. Let 𝜉𝜈,𝑙(𝐴) be an essential return,𝐴 ⊂ ℰ𝜈,𝑙(𝛾𝛪)∩ℬ𝜈,𝑙, with dist(𝜉𝜈,𝑙(𝐴), Jrit𝛢) ∼
𝑒−𝑟. If 𝑞 is the time after this return spent on inessential returns up until 𝜉𝑛,𝑙(𝐴𝑛(𝑎)) either
escapes, or makes an essential return, 𝑛 > 𝜈, whichever comes first, then

𝑞 ≤ 1
2ℎ𝑟,

where ℎ = 8�̂�2/𝑟.

We now assume that we have a partition element𝐴 ⊂ 𝒬 at time𝑚. We follow a parameter
𝑎 ∈ 𝐴 in the time window [𝑚, (1 + 𝜄)𝑚], for some (small) 𝜄 > 0. Suppose that 𝜈0, 𝜈1, 𝜈2, … , 𝜈𝑠
are the essential returns in this time window for 𝑎. In addition we assume that 𝑎 ∈ ℰ𝑘,𝑙(𝛾𝛪)
for 𝑘 ≤ (1 + 𝜄)𝑚 (this will be satisfied a posteriori). At each return 𝜈𝑗 the basic approach
rate assumption may force us to delete a fraction of parameters.

Let now𝐴𝑗 = 𝐴𝜈𝑗(𝑎) and suppose that dist(𝜉𝜈𝑗,𝑙(𝐴𝑗), Jrit𝛢𝑗
) ∼ 𝑒−𝑟𝑗 . Then by (18), we have,

𝑚(𝐴𝑗+1)
𝑚(𝐴𝑗)

≤ 𝐶 (𝑒−𝑟𝑗+1)2

(𝑒−8𝛼�̂�𝑟𝑗/𝛾𝛪)2
= 𝐶 𝑒−2𝑟𝑗+1

𝑒−16𝛼�̂�𝑟𝑗/𝛾𝛪
.

So if we look at the sequence of parameter squares, the measure of𝐴𝑠 compared to𝐴1 is

𝑚(𝐴𝑠)
𝑚(𝐴0)

=
𝑠−1
∏
𝑗=0

𝑚(𝐴𝑗+1)
𝑚(𝐴𝑗)

≤ 𝐶𝑠
𝑠−1
∏
𝑗=1

𝑒−2𝑟𝑗+1

𝑒−16𝛼�̂�𝑟𝑗/𝛾𝛪
.

Nowwrite 𝑅 = 𝑟1 + … + 𝑟𝑠. Then, putting 𝑟0 = 𝑟, we have

𝑚(𝐴𝑠)
𝑚(𝐴0)

≤ 𝐶𝑠𝑒𝑟016𝛼�̂�/𝛾𝛪−∑
𝑠−1
𝑗=1 𝑟𝑗(2−16𝛼�̂�/𝛾𝛪)−𝑟𝑠 = 𝐶𝑠𝑒𝑟016𝛼�̂�/𝛾𝛪−(3/2)𝑅.

So we suppose that 𝜉𝜈0,𝑙(𝐴0) is an essential return and will estimate the measure of parame-
ters that do not escape after a long time. If the parameter 𝑎 ∈ 𝐴 = 𝐴0 has 𝑠 essential returns
before it has escaped then, with 𝜈0 = 𝜈,

𝐸𝑙(𝑎, 𝜈) ≤ 𝑝 + 1 +
𝑠
∑
𝑗=0

(ℎ/2)𝑟𝑗 ≤ ℎ𝑟 + ℎ𝑅,

where we have included the first bound period 𝑝, which is bounded by 2𝛼�̂�/𝛾𝛪 < �̂�2/𝛾𝛪 in
ℎ𝑟.

The number of combinations of 𝑟𝑗’s such that 𝑅 = 𝑟1 + … + 𝑟𝑠 is at most

(𝑅 + 𝑠 − 1
𝑠 − 1 ).
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Since 𝜉𝑛,𝑙(𝐴) is almost a small perfect square by the strong distortion lemma, there are
maximum about 2𝜋𝑒−𝑟/𝑟2 number of such disjoint squares at distance 𝑒−𝑟 from the critical
points, if diam(𝜉𝑛,𝑙(𝐴)) ∼ 𝑒−𝑟/𝑟2. Note also that 𝑠Δ ≤ 𝑅. Let 𝑠Δ = 𝑞𝑅, for some 0 < 𝑞 ≤ 1.
Taking this into account we get by Stirling’s formula that the number of combinations is

(𝑅 + 𝑠 − 1
𝑠 − 1 ) ≤ 𝐶(𝑅 + 𝑠 − 1)𝑅+𝑠−1𝑒−𝑅−𝑠+1

𝑅𝑅(𝑠 − 1)𝑠−1𝑒−𝑅𝑒−𝑠+1
√ 𝑅(𝑠 − 1)
𝑅 + 𝑠 − 1

≤ 𝐶(
(1 + (𝑞/Δ))1+𝑞/Δ

(𝑞/Δ)𝑞/Δ
)
𝑅
√𝑅

≤ 𝑒𝑅/32(1 + 𝜂(Δ))𝑅,

where 𝜂(Δ) → 0 as Δ → ∞, for 𝑅 large enough (i.e., Δ large enough). Continuing
following the the earlier papers, we let 𝐴𝑠,𝑅 ⊂ 𝐴 be the set of all parameters which have
exactly 𝑠 essential return in the time window [𝑚, (1 + 𝜄)𝑚], for some 𝜄 > 0 and fixed 𝑅. If
we let 𝑅 and 𝑠 vary, we get a partition of𝐴 into countably many subsquares. For fixed 𝑠 and
𝑅, let �̂�𝑠 be the largest of all such subsquares. Then we get,

𝑚(𝐴𝑠,𝑅) ≤ 𝑚(�̂�𝑠)𝑒
𝑅/32(1 + 𝜂(Δ))𝑅.

Now, we go through the same type of calculations as in [Asp] et al.

𝑚({𝑎 ∈ 𝐴 ∶ 𝐸𝑙(𝑎, 𝜈) = 𝑡})

≤ ∑
𝑅≥𝑡/ℎ−𝑟0,𝑠≤𝑅/Δ

𝑚(𝐴𝑠,𝑅)

≤ ∑
𝑅≥𝑡/ℎ−𝑟0,𝑠≤𝑅/Δ

𝑚(�̂�𝑠)𝑒
𝑅/32(1 + 𝜂(Δ))𝑅

≤ 𝑚(𝐴)
∞
∑

𝑅=𝑡/ℎ−𝑟0

𝑅/Δ

∑
𝑠=1

𝑒𝑅/32(1 + 𝜂(Δ))𝑅𝐶𝑠𝑒𝑟0(16𝛼�̂�/𝛾)−(3/2)𝑅

≤ 𝐶 ′𝑚(𝐴)
∞
∑

𝑅=𝑡/ℎ−𝑟0

𝐶𝑅/Δ𝑒𝑅/32+𝑅 log(1+𝜂(Δ))−(3/2)𝑅+(16�̂�𝛼/𝛾)𝑟0

≤ 𝐶 ′𝑚(𝐴)𝑒−(
𝑡
ℎ−𝑟0)

46
32+(16�̂�𝛼/𝛾)𝑟0

≤ 𝐶 ′𝑚(𝐴)𝑒−
𝑡
ℎ
46
32+(

46
32+

16�̂�𝛼
𝛾 )𝑟0 .

for some constant 𝐶 ′ > 0.

By the condition on 𝛼, if 𝛾 ≥ 𝛾𝛪, we get an estimate of the measure of parameters for large
escape times. Let us suppose that 𝑡 > 2ℎ𝑟0. Then

𝑚({𝑎 ∈ 𝐴 ∶ 𝐸𝑙(𝑎, 𝜈) = 𝑡}) ≤ 𝐶𝑒−
𝑡
3ℎ𝑚(𝐴).
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Of course we may put

𝑚({𝑎 ∈ 𝐴 ∶ 𝐸𝑙(𝑎, 𝜈) ≥ 𝑡}) ≤ 𝐶𝑒−
𝑡
3ℎ𝑚(𝐴). (19)

for possibly another constant 𝐶 > 0.

5 Conclusion and proof

Choose 𝜀0 > 0 and consider a 𝜀0-neighbourhood𝒩𝜀0 of the Julia set𝒥(𝑓0). Then ℂ̂ ∖ 𝒩𝜀0
is a compact subset of the Fatou set. Hence there is 𝜀 > 0 such that𝒥(𝑓𝑎) ∈ 𝒩𝜀0 holds for
all 𝑎 ∈ 𝒬. Consequently,ℱ(𝑓𝑎) ⊃ ℂ̂ ∖𝒩𝜀0 , for 𝑎 ∈ 𝒬.

Now suppose that 𝜉𝑛,𝑙(𝐴) is in escape position, i.e. has diameter comparable to 𝑆. If we
choose 𝜀0 ≪ 𝑆, then by the strong distortion control:

𝑚({𝑎 ∈ 𝐴 ∶ 𝜉𝑛,𝑙(𝑎) ∈ ℱ(𝑓𝑎)}) ≥ 𝑚(𝐴)(1 − 𝜀′0), (20)

where 𝜀′0 → 0 as 𝜀0 → 0.

For the 𝜀 > 0 chosen from the beginning, let 𝛼 be such that 32�̂�2𝛼/𝛾𝛪 ≤ 𝜄/2. Then, given
a first essential return 𝜉𝜈0,𝑙(𝐴)with dist(𝜉𝜈0,𝑙(𝐴), Jrit𝛢) ∼ 𝑒−𝑟, we have that 2ℎ𝑟 ≤ 4ℎ𝛼𝑛 =
32�̂�2𝛼/𝛾𝛪 ≤ 𝜄𝑛. According to (19), parameters in𝐴 that have escape time longer than 𝜄𝑛 are
very few in measure, i.e. less than 𝐶𝑒−2ℎ𝑟/3ℎ𝑚(𝐴) ≤ 𝑒−𝑟/2𝑚(𝐴) < 𝜀′𝑚(𝐴), for some 𝜀′ > 0,
for 𝑟 ≥ Δ large enough. Let us disregard from them. The rest of the parameters makes
escape before 𝑛 + 𝜄𝑛 and we can use the estimate (20), given that the Lyapunov exponent
does not drop below 𝛾𝛪. But since 𝜉𝜈0,𝑙(𝐴) is a first essential return, we have that all 𝑎 ∈ 𝐴
have 𝑎 ∈ ℰ𝜈0,𝑙(𝛾𝛣), so that, at time (1 + 𝜄)𝜈 we have, given that 𝑎 ∈ ℬ(1+𝜄)𝜈,𝑙, that indeed
𝑎 ∈ ℰ(1+𝜄)𝜈,𝑙(𝛾𝛪) (see the definitions of 𝛾𝛣 and 𝛾𝛪).

Now we know from Lemma 3.15 that, for each 𝑐𝑙 there is an𝑁𝑙 > 0 such that 𝜉𝛮𝑙,𝑙(𝒬)
satisfies the statements in Lemma 3.15, i.e. bounded distortion of 𝜉𝛮𝑙,𝑙(𝑎) on𝒬 and that
𝜉𝛮𝑙,𝑙(𝒬) is an essential return or escape situation. If it is an escape situation we are done,
and can use (20). Suppose that𝑁1 = min{𝑁𝑙} and𝑁2 = max{𝑁𝑙}. To be able to use the
binding information for all critical points 𝑐𝑙(𝑎) for 𝑎 ∈ 𝒬 we need to make sure that the
bound periods for returns in a time window of the type (𝑁𝑙, (1 + 𝜄)𝑁𝑙), where 𝜄 > 0 is given
above, are all smaller than𝑁1. Actually, we make 𝛼 so small that all such bound periods
satisfy

𝑝 ≤ 4�̂�𝛼
𝛾𝛪

(1 + 𝜄)𝑁2 ≤ 𝑁1.
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By doing this we can use the binding information of all critical points as said. We also delete
parameters not satisfying the basic assumption. Using Lemma 4.2, from this we conclude
that, for every 𝜀′ > 0 (depending on 𝜄 and 𝛼), we get setsΩ𝑙 ⊂ 𝒬 of measure

𝑚(Ω𝑙) ≥ (1 − 𝜀′)(1 − 𝑒−𝛼𝛮𝑙)𝑚(𝒬)

such that every partition element in𝐴 inΩ𝑙 has escaped and

Ω𝑙 ⊂ ℰ(1+𝜄)𝛮2,𝑙(𝛾𝛪) ∩ ℬ(1+𝜄)𝛮2,𝑙 .

Moreover, from (20) we get that

𝑚({𝑎 ∈ 𝒬 ∶ 𝜉𝑛,𝑙(𝑎) ∈ ℱ(𝑓𝑎)}) ≥ 𝑚(Ω𝑙)(1 − 𝜀
′
0)

≥ (1 − 𝜀′0)(1 − 𝜀
′)(1 − 𝑒−𝛼𝛮𝑙)

≥ 𝑚(𝒬)(1 − 𝜀″),

for some 𝜀″ > 0 arbitrarily small. Taking the intersection of all critical points and noting
that 𝑓𝑎 is hyperbolic if all critical points belong to the Fatou set, we get, where 𝑑

′ are the
number of critical points,

𝑚({𝑎 ∈ 𝒬 ∶ 𝑓𝑎 is hyperbolic }) ≥ 𝑚(𝒬)(1 − 𝑑′𝜀″).

Since the set of degenerate one-dimensional families in the parameter spaceΛ𝑑,𝑝′ of rational
maps around 𝑓0 has measure zero, we get by Fubini’s theorem that 𝑓0 is a Lebesgue density
point of hyperbolic maps inΛ𝑑,𝑝′ .

References

[AM05] Artur Avila and Carlos GustavoMoreira. Statistical properties of unimodal
maps: the quadratic family. Ann. ofMath. (2), 161(2):831–881, 2005.

[Asp] Magnus Aspenberg. Slowly recurrent Collet-Eckmann maps on the Riemann
sphere. Preprint, arXiv:2103.14432.

[Asp13] Magnus Aspenberg. The Collet-Eckmann condition for rational functions on
the Riemann sphere. Math. Z., 273:935–980, 2013.

[BC85] Michael Benedicks and Lennart Carleson. On iterations of 1 − 𝑎𝑥2 on (−1, 1).
Ann. ofMath. (2), 122(1):1–25, 1985.

107



[BC91] Michael Benedicks and Lennart Carleson. The dynamics of the Hénon map.
Ann. ofMath. (2), 133(1):73–169, 1991.

[Byl] Mats Bylund. Equivalence of Collet–Eckmann conditions for slowly recurrent
rational maps. Preprint, arXiv: 2209.05237.

[CE80] P. Collet and J.-P. Eckmann. On the abundance of aperiodic behaviour for
maps on the interval. Comm.Math. Phys., 73(2):115–160, 1980.

[DPU96] Manfred Denker, Feliks Przytycki, and Mariusz Urbański. On the transfer
operator for rational functions on theRiemann sphere. Ergodic TheoryDynam.
Systems, 16(2):255–266, 1996.

[GS] Jacek Graczyk and Grzegorz Świa̧tek. Analytic structures and harmonic mea-
sure at bifurcation locus. Preprint, arXiv: 1904.09434.

[GŚ97] Jacek Graczyk and Grzegorz Świa̧tek. Generic hyperbolicity in the logistic
family. Ann. ofMath. (2), 146(1):1–52, 1997.

[GS98] Jacek Graczyk and Stanislav Smirnov. Collet, Eckmann andHölder. Invent.
Math., 133(1):69–96, 1998.

[GS00] Jacek Graczyk and Grzegorz Świa̧tek. Harmonic measure and expansion on
the boundary of the connectedness locus. Invent. Math., 142(3):605–629,
2000.

[GS14] Bing Gao and Weixiao Shen. Summability implies Collet-Eckmann almost
surely. Ergodic Theory Dynam. Systems, 34(4):1184–1209, 2014.

[GS15] Jacek Graczyk and Grzegorz Świa̧tek. Lyapunov exponent and harmonic
measure on the boundary of the connectedness locus. Int. Math. Res. Not.
IMRN, (16):7357–7364, 2015.

[GS17] Jacek Graczyk and Grzegorz Świa̧tek. Fine structure of connectedness loci.
Math. Ann., 369(1-2):49–108, 2017.

[KSvS07] Oleg Kozlovski, Weixiao Shen, and Sebastian van Strien. Density of hyperbol-
icity in dimension one. Ann. ofMath. (2), 166(1):145–182, 2007.

[Lev11] Genadi Levin. Multipliers of periodic orbits in spaces of rational maps. Ergodic
Theory Dynam. Systems, 31(1):197–243, 2011.

108



[Lev14] Genadi Levin. Perturbations of weakly expanding critical orbits. In Frontiers in
complex dynamics, volume51 ofPrincetonMath. Ser., pages 163–196. Princeton
Univ. Press, Princeton, NJ, 2014.

[Lev21] Genadi Levin. Fixed points of the Ruelle-Thurston operator and the Cauchy
transform. Fund.Math., 254(1):49–67, 2021.

[Lyu97] Mikhail Lyubich. Dynamics of quadratic polynomials. I, II. Acta Math.,
178(2):185–247, 247–297, 1997.

[Mañ93] RicardoMañé. On a theorem of Fatou. Bol. Soc. Brasil.Mat. (N.S.), 24(1):1–11,
1993.

[PRLS03] Feliks Przytycki, Juan Rivera-Letelier, and Stanislav Smirnov. Equivalence
and topological invariance of conditions for non-uniform hyperbolicity in the
iteration of rational maps. Invent. Math., 151(1):29–63, 2003.

[Tsu93] Masato Tsujii. Positive Lyapunov exponents in families of one-dimensional
dynamical systems. Invent. Math., 111(1):113–137, 1993.

109





Paper III





Equivalence of Collet–Eckmann conditions for slowly
recurrent rational maps

Mats Bylund

Abstract

In this short note we observe that within the family of slowly recurrent rational
maps on the Riemann sphere, the Collet–Eckmann, second Collet–Eckmann, and
topological Collet–Eckmann conditions are equivalent and also invariant under
topological conjugacy.

1 Introduction

The Collet–Eckmann condition first appeared in the seminal papers by P. Collet and
J.-P. Eckmann [CE80,CE83] where they studied the chaotic behaviour of certain non-
uniformly expanding maps on the interval. This condition, which requires exponential
growth of the derivative along the critical orbit(s), was later introduced in [Prz98] to the
study of holomorphic (rational) maps on the Riemann sphere. The Collet–Eckmann
condition, which often implies the existence of absolutely continuous invariant measures
with strong ergodic properties, is known to be abundant in both the real [BC85,BC91,
AM05] and complex [Ree86,Asp04] settings. A related and purely topological condition
was introduced in [PR98], where it was proved to be implied by the Collet–Eckmann
condition. Much work has been made to identify the relationships between the Collet–
Eckmann condition (abbr. CE), the second Collet–Eckmann condition (abbr. CE2), and the
topological Collet–Eckmann condition (abbr. TCE) (see below for definitions). Notably,
these conditions are known to be equivalent within the family of unicritical maps (see
[PRLS03] and references therein). In [PRLS03] examples are given of maps which satisfy
TCE but not CE and/or CE2, and maps which satisfy CE but not CE2, and vice versa.
The main problem that arises is when critical points come close to other critical points of
high multiplicity. By assuming a recurrence condition of the critical orbits, known as the
slow recurrence condition (abbr. SR), we observe in this note that these conditions become
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equivalent; in a sense slow recurrence takes the rôle of unicritical. The slow recurrence
condition is defined as follows.

Definition 1.1. A rationalmap𝑓∶ ℂ̂ → ℂ̂ of degree≥ 2 is said to satisfy the slow recurrence
condition if for each 𝛼 > 0 there exists 𝐶 > 0 such that, for every critical point 𝑐 ∈
Crit(𝑓) ∩ 𝐽(𝑓),

dist (𝑓𝑛(𝑐),Crit(𝑓) ∩ 𝐽(𝑓)) ≥ 𝐶𝑒−𝛼𝑛 (𝑛 ≥ 1).

Remark 1.2. Note that if 𝑓 satisfies SR then no critical point is mapped onto another
critical point.

The SR condition is generally believed to be a typical property among rational Collet–
Eckmann maps, and it should be noted that within the real quadratic family this is known
to be true due to a result by A. Avila and C. G. Moreira [AM05]. In fact they proved that
for a typical non-hyperbolic (the critical point does not tend to an attractive cycle) real
quadratic map 𝐹 one has

dist(𝐹𝑛(𝑐), 𝑐) ≥ 𝐶
𝑛1+𝜖

(𝑛 ≥ 1),

for any 𝜖 > 0 and 𝐶 = 𝐶(𝜖) > 0 a constant. Moreover, in the multimodal setting, B. Gao
andW. Shen [GS14] proved that for one-parameter families the slow recurrence condition is
satisfied on a set of positive Lebesguemeasure. We alsomention that for complex unicritical
polynomials 𝑧 ↦ 𝑧𝑑 + 𝑐, it follows from a result by J. Graczyk and G. Świątek [GS15] that
the slow recurrence condition is satisfied for a typical parameter 𝑐with respect to harmonic
measure on the boundary of the connectedness locus.

The SR condition is also natural in the sense that CE+SR is invariant under topological
conjugacy, as was observed by H. Li (Theorem A.1 in [Li17], see also [LW06]). The short
proof of the invariance is given at the end of this note.

The following is our main observation.

Proposition 1.3. Within the family of slowly recurrent rational maps of degree ≥ 2 on
the Riemann sphere, CE, CE2, and TCE are equivalent. Moreover, these conditions are
invariant under topological conjugacy.

In [PRLS03] examples of real polynomials of degree 5 that satisfy CE but not CE2 (and
vice versa) are given, and also examples of real polynomials of degree 3 that satisfy TCE but
neither CE nor CE2. We therefore conclude that none of these examples satisfy SR.
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Wemake a final remark that it would be interesting to investigate the set of rational maps
satisfying TCE+SR. Indeed if almost every topological Collet–Eckmann map is slowly
recurrent then TCE and CE are equivalent up to a set of measure zero.

Below we indicate the changes in three already existing lemmas in order to reach the above
stated result of Proposition 1.3. For completeness we provide the minimal of definitions
and proofs, but refer to the relevant articles for greater detail. Throughout this note
the standing assumption is that 𝑓 is a slowly recurrent rational map on the Riemann
sphere ℂ̂ of degree ≥ 2, and with 𝑓𝑛 we mean 𝑓 composed with itself 𝑛 times. We let
𝐵(𝑧, 𝑟) = {𝑤 ∶ dist(𝑧, 𝑤) < 𝑟} ⊂ ℂ̂ denote the disk of radius 𝑟 > 0 centred at 𝑧, and we let
Crit′(𝑓) = Crit(𝑓) ∩ 𝐽(𝑓)withCrit(𝑓) the set of critical points of 𝑓, and 𝐽(𝑓) the Julia
set of 𝑓. Distances, diameters, and derivatives are taken with respect to the spherical metric
on ℂ̂.

2 Equivalence of CE+SR and CE2+SR

The Collet–Eckmann condition and second Collet–Eckmann condition are defined as
follows.

Definition 2.1. A rational map 𝑓∶ ℂ̂ → ℂ̂ of degree ≥ 2 without parabolic periodic
points is said to satisfy the Collet–Eckmann condition (CE) if there exist constants 𝜆1 > 1
and 𝐶1 > 0 such that, for each critical point 𝑐 ∈ Crit

′(𝑓),

|(𝑓𝑛)′(𝑓(𝑐))| ≥ 𝐶1𝜆
𝑛
1 (𝑛 ≥ 0).

Definition 2.2. A rational map 𝑓∶ ℂ̂ → ℂ̂ of degree ≥ 2 is said to satisfy the second
Collet–Eckmann condition (CE2) if there exist constants 𝜆2 > 1 and 𝐶2 > 0 such that, for
every 𝑛 ≥ 1 and every 𝑤 ∈ 𝑓−𝑛(𝑐) for 𝑐 ∈ Crit′(𝑓) not in the forward orbit of other critical
points,

|(𝑓𝑛)′(𝑤)| ≥ 𝐶2𝜆
𝑛
2 .

In [GS98] it was proved that these two conditions are equivalent for critical points of
maximal (dynamical) multiplicity. This was achieved through the so-called (reversed)
telescope construction. At the heart of these techniques lies the shrinking neighbourhoods
(first introduced in [Prz98]) which are defined as follows. Fix a decreasing sequence of
positive real numbers (𝛿𝑛) satisfying∏𝑛(1 − 𝛿𝑛) > 1/2. Let 𝐵𝑟 = 𝐵(𝑧, 𝑟), and consider
a sequence (𝑓−𝑛(𝑧)) of consecutive preimages of 𝑧. With Δ𝑛 = ∏𝑘<𝑛(1 − 𝛿𝑘), the 𝑛

th

shrinking neighbourhoods of 𝑧 are now defined as

𝑈𝑛 = Comp𝑓−𝑛(𝑧) 𝑓
−𝑛𝐵𝑟Δ𝑛

and 𝑈′
𝑛 = Comp𝑓−𝑛(𝑧) 𝑓

−𝑛𝐵𝑟Δ𝑛+1
.
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Here,Comp𝑤 denotes the connected component containing𝑤. With the right scale around
each critical point, using these shrinking neighbourhoods, one gets distortion and expan-
sion estimates. The scale is defined by the choice of two positive numbers𝑅′ ≪ 𝑅 ≪ 1, and
the correct choice of these two numbers is crucial for the local analysis. We refer to [GS98]
for details; for our purposes it is enough to keep in mind that these two numbers are fixed
throughout the analysis.

2.1 CE+SR ⟹ CE2+SR

Let (𝑐−𝑘)
𝑛
𝑘=1 be a sequence of consecutive preimages of 𝑐0 = 𝑐 ∈ Crit′(𝑓) of length 𝑛 ≥ 1,

i.e. 𝑓(𝑐−𝑘) = 𝑐−𝑘+1 and 𝑓
𝑘(𝑐−𝑘) = 𝑐. In [GS98], the authors inductively define an increasing

sequence of numbers 0 = 𝑛0 < 𝑛1 < ⋯ < 𝑛𝑚 = 𝑛, and each (backward) orbit of length
𝑛𝑘+1 − 𝑛𝑘 is classified as either a type 1, type 2, or type 3 orbit. For orbits of type …2, … 3, or
1… 13 (one reads from the right), one has exponential growth of the derivative (a 12 block
is not allowed by construction). The only problem thus arise when a given backward orbit
begins with a block of 1’s which is not preceded by a 3. For clarity we give the definition of
a type 1 orbit.

Definition 2.3. A sequence 𝑧0 = 𝑧, 𝑧−1 ∈ 𝑓
−1(𝑧), … , 𝑧−𝑛 ∈ 𝑓

−𝑛(𝑧) of consecutive preim-
ages of 𝑧 is of the first type with respect to the critical points 𝑐′ and 𝑐″ if

1) Shrinking neighbourhoods 𝑈𝑘 for 𝐵(𝑧, 𝑟), 1 ≤ 𝑘 ≤ 𝑛, avoid critical points for some
𝑟 < 2𝑅′,

2) The critical point 𝑐″ ∈ 𝜕𝑈𝑛,

3) The critical value of 𝑐′ is close to 𝑧with 𝑓(𝑐′) ∈ 𝐵(𝑓(𝑧), 𝑅).

The situation of having a block of 1’s not preceded by a 3 can only happen in the beginning,
and given such a situation the authors prove that there is a constant 𝜆 > 1 such that

|(𝑓𝑛)′(𝑐−𝑛)|
𝜇max ≥ const 𝜆𝑛𝑟𝜇max−𝜇(𝑐)

1 , (1)

where 𝜇(𝑐) is the multiplicity of 𝑐, 𝜇max = max𝑐∈Crit′(𝑓) 𝜇(𝑐), and 𝑟1 < 2𝑅′ is the radius of
a disk centred at 𝑐. Here 𝑟1 can not be chosen freely in order for the inductive definition
of the 𝑛𝑘’s to work, thus for large 𝑛 (1) might not yield expansion. The authors assume
𝜇(𝑐) = 𝜇max and in doing so prove that CE implies CE2 for critical points of maximal
multiplicity (Proposition 1 in [GS98]). If one assumes SR this problem is easily seen to
vanish since the slow recurrence condition dictates how small 𝑟1 can be.
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Lemma 2.4. If a slowly recurrent rational map 𝑓∶ ℂ̂ → ℂ̂ of degree ≥ 2 satisfies CE then it
satisfies CE2.

Proof. Suppose the situation is as described above, and let 𝑛1 be the length of the first
type 1 orbit. Per definition of a type 1 orbit there exists a critical point 𝑐″ ∈ 𝜕𝑈𝑛1 which is
mapped into 𝐵(𝑐, 𝑟1). From SR we get that

𝑟1 ≥ dist(𝑓𝑛1(𝑐″), 𝑐) ≥ 𝐶𝑒−𝛼𝑛1 .

Since 𝑛1 ≤ 𝑛, inserting the above in (1) we find that

|(𝑓𝑛)′(𝑐−𝑛)|
𝜇max ≥ const 𝜆𝑛 (𝐶𝑒−𝛼𝑛)𝜇max−𝜇(𝑐) ≥ 𝐶2𝜆

𝑛
2 ,

where we can make 𝜆2 arbitrarily close to 𝜆 by decreasing 𝛼 (and thus also decreasing
𝐶2).

2.2 CE2+SR ⟹ CE+SR

Pick 𝑐 ∈ Crit′(𝑓), fix 𝑛, and consider a sequence of images

𝑧0 = 𝑓𝑛(𝑓(𝑐)), 𝑧−1 = 𝑓𝑛−1(𝑓(𝑐)), … , 𝑧−(𝑛+1) = 𝑐.

Similarly as in the previous case, the authors inductively define an increasing subsequence
𝑛0 < 𝑛1 < ⋯ < 𝑛𝑚 = 𝑛. Here 𝑛0 is the smallest positive integer such that 𝑧−(𝑛0+1) is in the
𝑅-neighbourhood of some critical point. Due to the exponential shrinking of components
(see below for a definition), which is implied by CE2 (see [PRLS03]), one can prove that
during this last orbit of length 𝑛0 one has expansion. (In [GS98]R-expansionwas taken as
an assumption.) The conditions imposed on 𝑛𝑗, 𝑗 ≠ 0, are as follows:

I) The sequence 𝑧−𝑛𝑗−1 , … , 𝑧−𝑛𝑗 is of the first reversed type,

II) Some critical point 𝑐(𝑗) ∈ 𝐵(𝑧−(𝑛𝑗+1), 𝑅).

The definition of a first reversed type orbit is as follows.

Definition 2.5. A sequence 𝑧0 = 𝑧, 𝑧−1 ∈ 𝑓
−1(𝑧), … , 𝑧−𝑛 ∈ 𝑓

−𝑛(𝑧) of consecutive preim-
ages of 𝑧 is of the reversed first type with respect to two critical points 𝑐′ and 𝑐″ if

1) Shrinking neighbourhoods𝑈𝑘 for 𝐵(𝑧−1, 𝑟), 1 ≤ 𝑘 ≤ 𝑛 − 1, avoid critical points,
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2) dist(𝑧−1, 𝑐
′) = 𝑟/2 < 𝑅,

3) 𝑐″ ∈ 𝑈𝑛.

The authors continue and prove (Proposition 5 in [GS98]) that there is a constant 𝜆 > 1
such that

|(𝑓𝑛)′(𝑓(𝑐))| ≥ const 𝜆𝑛 (diam(𝑈𝑚))
𝜇max−𝜇(𝑐) . (2)

Here diam(𝑈𝑚) is the diameter of a shrinking neighbourhood around 𝑐. As in the previous
case, this factor might interfere with expansion for large 𝑛 unless 𝑐 is assumed to be a critical
point of maximal multiplicity 𝜇(𝑐) = 𝜇max. Again, assuming SR, we get a lower bound for
the diameter.

Lemma 2.6. If a slowly recurrent rational map 𝑓∶ ℂ̂ → ℂ̂ of degree ≥ 2 satisfies CE2 then
it satisfies CE.

Proof. It is given that 𝑓𝑚(𝑐) ∈ 𝐵(𝑐′, 𝑅) for a critical point 𝑐′, and 𝑈𝑚 is the shrinking
neighbourhood of 𝐵(𝑓𝑚(𝑐), 𝑟) of radius 𝑟 = 2 dist(𝑓𝑚(𝑐), 𝑐′). By definition of a reversed
type 1 orbit 𝑓−(𝑚−1) ∶ 𝐵(𝑓𝑚(𝑐), 𝑟/2) → 𝑓(𝑈𝑚) is univalent, and with an application of
Koebe’s 1

4 -lemma we find that

diam(𝑈𝑚) ≥ diam(𝑓(𝑈𝑚)) ≥
1
𝐶𝑟|(𝑓

𝑚−1)′(𝑓(𝑐))|−1.

(Here 𝐶 > 1 is a constant depending on the scale 𝑅we are working with, and it shows up
since we are adapting Koebe’s 14 -lemma to the spherical metric.) The first inequality follows
since 𝑐 ∈ 𝑈𝑚 and thus the image of𝑈𝑚 under 𝑓 is contracted. Since 𝑟/2 = dist(𝑓𝑚(𝑐), 𝑐′),
invoking SR and that𝑚 ≤ 𝑛, we find by inserting the above in (2) that

|(𝑓𝑛)′(𝑓(𝑐))| ≥ const [ 1𝐶|(𝑓
𝑚−1)′(𝑓(𝑐))|−1]

𝜇max−𝜇(𝑐)
𝜆𝑛 (𝐶𝑒−𝛼𝑛)𝜇max−𝜇(𝑐) .

We observe that |(𝑓𝑚−1)′(𝑓(𝑐))| ≤ 𝐾with𝐾 = 𝐾(𝑅) an absolute constant depending on
the choice of 𝑅. Indeed, for each critical point 𝑐 under consideration, and for a fixed 𝑅,
there exists a unique smallest integer𝑚 = 𝑚(𝑐, 𝑅) for which 𝑓𝑚(𝑐) ∈ 𝐵(𝑐″, 𝑅), for some
critical point 𝑐″. We simply let

𝐾 = max
𝑐∈Crit′(𝑓)

|(𝑓𝑚(𝑐,𝑅)−1)′(𝑓(𝑐))|.

Thus we get that
|(𝑓𝑛)′(𝑓(𝑐))| ≥ 𝐶1𝜆

𝑛
1 ,

where we can make 𝜆1 arbitrarily close to 𝜆 by decreasing 𝛼 (and thus also decreasing
𝐶1).
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3 Equivalence of CE+SR and TCE+SR

The topological Collet–Eckmann condition for rational maps on the Riemann sphere was
first introduced in [PR98] and is defined as follows. Recall that for a connected setΩ,
Comp𝑤 𝑔

−1(Ω) denotes the connected component of 𝑔−1(Ω) containing 𝑤.

Definition 3.1. A rational map 𝑓∶ ℂ̂ → ℂ̂ of degree ≥ 2 is said to satisfy the topological
Collet–Eckmann condition (TCE) if there exist𝑀 ≥ 0, 𝑃 ≥ 0 and 𝑟 > 0 such that for every
𝑧 ∈ 𝐽(𝑓) there exists a strictly increasing sequence of positive integers 𝑛𝑗, for 𝑗 = 1, 2, …,
such that 𝑛𝑗 ≤ 𝑃 ⋅ 𝑗, and for each 𝑗

# {𝑖 ∶ 0 ≤ 𝑘 < 𝑛𝑗,Comp𝑓𝑘(𝑧) 𝑓
−(𝑛𝑗−𝑘) (𝐵(𝑓𝑛𝑗(𝑧), 𝑟)) ∩ Crit ≠ ∅} ≤ 𝑀.

Since TCE is formulated purely in topological terms it is a topological invariant. One of
the useful properties of this condition is its many equivalent formulations (see [PRLS03]
and also [PRL07,RL10]). Here we make use of the following equivalent condition.

Definition 3.2. A rational map 𝑓∶ ℂ̂ → ℂ̂ of degree ≥ 2 is said to satisfy exponential
shrinking of components (ExpShrink) if there exists 𝜆Exp > 1 and 𝑟Exp > 0 such that for
every 𝑥 ∈ 𝐽(𝑓), every 𝑛 > 0, and every connected component𝑊 of 𝑓−𝑛(𝐵(𝑥, 𝑟Exp))

diam(𝑊) ≤ (𝜆−1Exp)
𝑛.

It was first proved in [PR98] that CE implies TCE, and in [PR99] it was proved that under
the assumption that for every 𝑐 ∈ Crit′(𝑓) whose forward trajectory does not meet any
other critical point

cl⋃
𝑛>0

𝑓𝑛(𝑐) ∩ (Crit(𝑓) ∖ {𝑐}) = ∅, (3)

TCE implies CE. This latter result clearly implies that CE+(3) is a topological invariant; in
particular CE is a topological invariant in the case of unicritical maps. Another proof of
this result was obtained in [Prz00]. We will effectively replace condition (3) with SR, thus
proving that TCE+SR implies CE+SR. This constitutes an obvious modification in the
proof of Lemma 4.5 in [Prz00]; for completeness we give a sketch of this proof. (See also
Proposition 3.4 in [Li17].)

Lemma 3.3. If a slowly recurrent rational map 𝑓∶ ℂ̂ → ℂ̂ of degree ≥ 2 satisfies ExpShrink
then it satisfies CE.
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Proof. Let 𝛼 be the exponent in SR and let 𝑛0 = 𝑛0(𝛼) be large enough such that for every
𝑛 ≥ 𝑛0

dist(𝑓𝑗(𝑓(𝑐)),Crit(𝑓)) > 𝑒−2𝛼𝑛 (𝑗 = 0, 1, … , 𝑛 − 1).

This condition is assumed in Lemma 4.5 [Prz00], and the proof now continues as follows.
Fix 𝜖 > 0 arbitrary and let

𝑠 = [
− log 𝜖
log 𝜆Exp

+ 2𝛼𝑛
log 𝜆Exp

] + 1,

where [𝑥] denotes the integral part of 𝑥. By ExpShrink we have that for all 0 ≤ 𝑗 ≤ 𝑛

diam (Comp𝑓𝑛−𝑗(𝑓(𝑐)) 𝑓
−𝑠−𝑗 (𝐵(𝑓𝑛+𝑠(𝑓(𝑐)), 𝑟Exp))) ≤ (𝜆−1Exp)

𝑠+𝑗

≤ (𝜆−1Exp)
𝑠

≤ 𝜖𝑒−2𝛼𝑛.

Let 𝐵 = 𝐵(𝑓𝑛(𝑓(𝑐)), 𝑟Exp𝑒
−3𝛼𝛭𝑛), where

𝑀 = [
log supℂ̂ |𝑓

′|
log 𝜆Exp

] + 1.

Then for 𝑛 large enough we get that

𝐵 ⊂ Comp𝑓𝑛(𝑓(𝑐)) 𝑓
−𝑠 (𝐵(𝑓𝑛+𝑠(𝑓(𝑐)), 𝑟Exp)) .

Let𝑊𝑛 = Comp𝑓(𝑐) 𝑓
−𝑛(𝐵). Then there exists 𝑤 ∈ 𝑊𝑛 such that

|(𝑓𝑛)′(𝑤)| ≥ diam𝐵
diam𝑊𝑛

≥ (2𝑟Exp𝑒
−3𝛼𝛭𝑛)𝜆𝑛Exp.

If 𝜖 is sufficiently small we have distortion and can switch from 𝑤 to 𝑓(𝑐), hence

|(𝑓𝑛)′(𝑓(𝑐))| ≥ 𝜆𝑛1 ,

where we can make 𝜆1 arbitrarily close to 𝜆Exp by decreasing 𝛼 and 𝜖 (and thus increasing
𝑛0).

4 Topological invariance

Wefinish by giving the short proof of the topological invariance, as outlined inTheoremA.1
[Li17].
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Lemma 4.1. Let 𝑓 and 𝑔 be topologically conjugated rational maps on the Riemann sphere
of degree ≥ 2. If 𝑓 satisfies TCE+SR then so does 𝑔.

Proof. Since 𝑓 is TCE+SR it is CE+SR and therefore, by Theorem A in [PR99], the
conjugacy is quasi-conformal and therefore bi-Hölder. Let ℎ denote this conjugacy, and
let𝐴 > 0 and 𝐵 > 0 be the associated constant and exponent from the Hölder condition,
respectively. Let 𝑐′1 and 𝑐

′
2 be distinct critical points of 𝑔; then 𝑐1 = ℎ−1(𝑐′1) and 𝑐2 = ℎ−1(𝑐′2)

are distinct critical points of 𝑓. Since ℎ preserves TCE, 𝑔 is at least TCE. The fact that 𝑔 is
also SR follows from

𝐴 dist (𝑔𝑛(𝑐′1), 𝑐
′
2)

𝛣 ≥ dist (ℎ−1(𝑔𝑛(𝑐′1)), ℎ
−1(𝑐′2))

= dist (𝑓𝑛(𝑐1), 𝑐2)
≥ 𝐶𝑒−𝛼𝑛.
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