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Populirvetenskaplig sammanfattning

Studiet av dynamiska system grundar sig i att forsta det langsiktiga beteendet hos ett
system som fortskrider i tiden, enligt vissa for systemet specifika regler. Dynamiska system
uppkommer naturligt inom olika vetenskapliga discipliner, exempelvis di man vill studera
planeternas rorelse, ta fram viderprognoser, eller forsta hur ett virus sprider sig i samhillet.

For att studera dessa naturliga system behéver man matematiska modeller. Dessa modeller
ar naturligt parametriserade och det dr dirfor av intresse att inte enbart studera ett specifikt
dynamiskt system, utan en parametriserad familj av dynamiska system. En viktig friga man
kan stilla 4r hur robusta dessa system ir, eller med andra ord, hur dynamiken f6rindras vid
sma stérningar av parametrarna. Fastin modellerna man tar fram ofta ir férenklade, och
parameterberoendet vildigt explicit, uppkommer teoretiskt intressanta och mycket icke-
triviala problem. Av betydande intresse ir interaktionen mellan tamt beteende och kaotiskt
beteende. I parameterrummet 4r dessa tvé skilda foreteelser ofta komplext sammanvivda.

I denna avhandling studeras smd storningar av kaotiska system. Dessa system kommer
att beskrivas av funktioner pd intervallet och pd Riemannsfiren. Systemen vi studerar
har kritiska punkter, det vill siga punkter dir funktionens derivata ir lika med noll. Hur
dynamiken f6r dessa specifika punkter ter sig visar sig ha stor betydelse for den globala
dynamiken. En viktig aspekt 4r rekurrent beteende: med vilken hastighet dterkommer de
kritiska punkterna till varandra under iteration? Avhandlingen bygger vidare pa tidigare vl
etablerade resultat, och det centrala temat ir just dessa frigestillningar angiende rekurrens
och dess konsekvenser.
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Introduction and summary






Chapter 1

Introduction

This introductory chapter gives a brief overview of the theory and results on which the
scientific papers of this thesis are based upon. It is divided into five sections as follows.
We begin by introducing what a dynamical system is, and some of the most fundamental
notions. The second section is devoted to the real quadratic family, which is the system
studied in Paper I, and which is one of the most well studied families of dynamical systems.
In Paper II and Paper III we study the dynamics of rational functions on the Riemann
sphere, and this topic is briefly introduced in the third section. In the fourth section we
discuss the Collet—Eckmann condition and some of its variants. These are conditions of
non-hyperbolicity and they play a central role in the thesis. In the final section we give a
schematic outline of the Benedicks—Carleson techniques, which are the foundational tools
used in Paper I and Paper IL

These sections below are by no means complete in terms of their scope, and many important
results and notions are left out. Rather, the goalis to give the minimal information needed to
motivate the problems studied in Paper I-III. Relevant references will be given throughout
the text, but for the more general theory of interval dynamics and complex (rational)
dynamics, we refer to [dMvS93, Dev92] and [CG93, Mil06, Bea91], respectively.

1 Some notions in dynamical systems

In this thesis we are concerned with the study of discrete dynamical systems. At its core this
constitutes a set X of points and a mapping f : X — X. The set X is usually referred to as
the state space (or phase space), with each x € X representing a specific state of the system.



The mapping f is the evolution mapping which determines the future of the system, taking
state x to its future state £ (x). One of the main objectives when studying a dynamical
system is to understand its long term behaviour: given a state x € X, how does its orbit

%, f(2), f(f(2))5 eens [ (%), ..

distribute in state space? Here and elsewhere, /™ always denotes the th iterate of /. That
is, f* =idand f* = fo f*', with n > 1 an integer.

More generally, given one or more parameters A belonging to some parameter space, one
can consider a family of dynamical systems f; : X — X. In this setting it is of interest
to understand how certain behaviours of the system are affected by small changes of the
parameter value.

The above questions are of course too general to answer if no structure on X nor regularity
on f are imposed. In this thesis we study the so-called real quadratic family

x> +a= Q,(x),

acting on the real line, and more general rational functions

adzd + ad_lzd_l + -+ ag
g o -1 = R(2),
byz® + by 12771 + - + b

acting on the Riemann sphere. The quadratic family can be seen as a ‘toy model’ for the
more general study of rational maps, but has also been used in, for instance, biological
modelling [May76]. Nevertheless, already in this analytically simple family of dynamical
systems one finds very rich dynamics.

To understand the dynamics of a function f such as above, acting on some appropriate
space, it is important to look for points which are left invariant under the action of £, and
to study the local behaviour of f near these points. Such points are called fixed points, and
per definition they solve the equation f(x) = x. More generally, one can look for so-called
periodic points. A point x is a periodic point of f if there exists an integer £ > 0 such that

x> fx) o f2(@) o o fH(@) =

Such an above orbit is usually referred to as a cycle, and if &£ > 0 is the least integer such that

the above holds, then £ is called the length of the cycle. A cycle of length £ is classified as

* attracting if |(fk)'(x)|<1,

s repelling if |(fk)’(x)|>1,
o newtral  if (Y (x)] = L.



These names are very suggestive: nearby points get closer to the cycle under iteration if
the cycle is attracting, get further away if the cycle is repelling, and in the neutral case both
instances may occur.

Another important notion is that of ¢rtical points. A point x is a critical point of £ if the
derivative of £ at x vanishes, i.e. critical points are the solutions to the equation f(x) = 0.
From now on we denote the set of critical points of f by Crit( f). It turns out that the
behaviour of the critical orbit(s) is of great importance to the global dynamics, and we give
some motivation to this claim in the following sections.

The results of this thesis are in one way or another concerned with the notion of ¢rtical
recurrence. In Paper I we investigate the real quadratic family and prove a theorem regarding
the rate of recurrence of the critical point to itself. This extends a previous result, and com-
pletes the picture of so-called polynomial recurrence. In Paper II and Paper III we consider
rational functions. Here we do not prove any results regarding the rate of recurrence, rather
we investigate some of the consequences when the critical points are allowed to approach
each other only at a slow rate.

2 The real quadratic family

A quadratic polynomial acting on the real line is from an analytic point of view the simplest
non-linear dynamical system one can study. Let x > Ax* +Bx+C = p(x) bea quadratic
polynomial with real coefficients 4 # 0, B, and C. Conjugating this polynomial with
x = Ax we get the monic quadratic polynomial x x*+Bx+AC, and further conjugating
withx = x+B/2,1i.e. translating the critical point to the origin, we end up with the so-called
real quadratic family

x>t +a=0Q,(x),

with @ = B/2 — B> /4 + AC being the parameter. Given a real parameter 4, going the other
way around does not determine a unique quadratic polynomial. Rather, each 4 corresponds
to a conjugacy class. In this thesis we are concerned with the recurrent behaviour of the
critical orbit. To motivate this study, and also settle some notation, let us first briefly
mention some of the major results regarding this family of dynamical systems.

To understand the dynamics of Q,, for different values of , understanding the behaviour
of the critical orbit is of interest, as can be understood from the following result.

Proposition 2.1. For each parameter a there can exist at most one (finite) attracting cycle
for the corresponding quadratic map Q . Moreover, if an attracting cycle exists, the orbit of
the critical point x = 0 will accumulate along this cycle.



As a first step towards understanding the behaviour of the iterations of the critical point,
we allow ourselves to restrict the parameter interval.

Proposition 2.2. If a does not belong to the interval -2, 1 /4], then Q,(0) tends to infinity
as n tends to infinity. On the other band, if a belongs to [=2, 1/ 4] then there exists an interval
I, ¢ [=2,2], containing the critical point, such that Q (1) c 1,.

a

To begin the study of the qualitative behaviour of the real quadratic family, the following
proposition can be checked by hand.

Proposition 2.3. For the quadratic family Q ,:

(1) Fora = 1[4, there is a single fixed point that is neutral.
(2) For=3]4 < a < 1/4, thereis an attracting fixed point.
(3) Fora = =3 /4, the attracting fixed point given in (2) becomes neutral.

(4) For=S[4 < a < =3[4, there is an attracting cycle of length two.

Hence, for parameter values in the interval (=5/4, 1/4], the dynamics is rather trivial. In
fact, for such a parameter, almost every point of Z, (with respect to Lebesgue measure) will
tend to the attracting fixed point, or 2-cycle, under iteration. To calculate attracting cycles
by hand soon becomes impractical, and one must rely on more qualitative and sophisticated
techniques. The transition from an attracting fixed point to an attracting 2-cycle is an
example of a so-called period-doubling bifurcation. By plotting the iterations of the critical
point for different values of 4, this period-doubling bifurcation can be illustrated as in
Figure 1.1. Here one sees, going from right to left, the transition from an attracting fixed
point to an attracting 2-cycle, from an attracting 2-cycle to an attracting 4-cycle, and so on.
At the parameter value 2 = —1.401 ... (the so-called Feigenbaum point), we see a sudden
change in the behaviour of the orbit of the critical point. Namely, the orbit does not seem
to be attracted to any cycle. This motivates the following definition.

Definition 2.4. A parameter ¢ € [~2, 1/4] is called a regular parameter if x — x* + ¢ has
an attracting cycle, and otherwise it is called a nonregular parameter. The set of regular
parameters is denoted R, and the set of nonregular parameters is denoted N'R.

It is customary to call the corresponding function Q, regular (or nonregular) if the para-
meter  is regular (or nonregular). Looking at the bifurcation diagram of Figure 1.1, the
‘white windows’ correspond to regular parameters, while the ‘black lines’ correspond to



nonregular parameters. To understand these two sets of parameters, and how they are
intertwined, has been a central topic of study during the last couple of decades.

2.0 1
1.54
1.0
059
0.0

~0.54

-1.0 1

—-1.549

.

-2.0 -15 -1.0 -0.5 0.0

Figure 1.1: Bifurcation diagram for x > x® + 4, 2 € [-2,1/4].

When studying a parameterised family of dynamical systems, one is often interested in
whether some specific property holds on a positive measure set of parameters. In the case
of the quadratic family, the natural measure on the parameter interval is the Lebesgue
measure (which we from now on denote by Leb). For instance, it is obvious that the set
of regular parameters has positive measure since the interval (=3 /4, 1/4) is contained in
R. Moreover, it is not difficult to show that the set of parameters having neutral cycles
constitute only a set of measure zero. More difficult is the question about the measure
of the set of nonregular parameters. In 1981, M. Jakobson [Jak81] initiated the study of
nonregular parameters by proving that there exists a set A; of positive measure such that
for each 2 € A, there exists an absolutely continuous (with respect to Lebesgue) invariant
probability measure (acip) for the corresponding quadratic function Q,. This in turn
implies that the Lebesgue measure of N'R is positive, since for a regular parameter any
finite invariant measure is necessarily singular with respect to Lebesgue measure, being the
sum of point measures along the attracting cycle. We make the following definition for
this subset of the nonregular parameters.



Definition 2.5. A parameter 2 € [-2,1/4] is called a stochastic parameter if x — X +a
has an absolutely continuous (with respect to Lebesgue) invariant probability measure.
The set of stochastic parameters is denoted S.

We recall that the measure g is acip with respect to the function £ if it is a probability
measure and if, for every measurable set 4, u( £ (4)) = p(4) and

dpe
u(4) = fA Eaten,
with du/d Leb denoting the so-called Radon-Nikodym derivative.

Having an acip is one characterisation of being nonregular. Other characterisations can be
formulated in terms of the derivative along the critical orbit. Indeed, since for a regular
map the critical orbit accumulates on the attracting cycle, the condition

lim inf [(Q})"(2)| > 0

clearly implies « being nonregular. However this condition is not necessary: in [Bru94]
examples of parameters « are provided such that x — x* + a has no attracting or neutral
cycles, but liminf,_,, |(Q%)'(2)| = 0. Instead, let us denote by y_ () the so-called ower
Lyapunov exponent

log |(Q)'(@)|

x-(a) = lim inf

It turns out that the condition y_(4) > 0 is the correct one to consider, since it is not only
sufficient for 4 to be nonregular, but also necessary [NS98, LPS16].

Focusing on a similar condition as the above, M. Benedicks and L. Carleson [BC85] proved
in the early 1980s that there exists a set Ay of positive measure such that, for each z € Ag,
the derivative along the critical orbit grows at least subexponentially:

log |(Q2)'(a)]
Jn

Moreover, for each 4 € Ay, the corresponding quadratic map has an acip. In the sub-

ligxl) iorolf > 0.

sequent paper [BC91], working with the so-called Hénon family, Benedicks and Carleson
improved this growth condition and showed that it is in fact exponential. This condition
of having exponential growth of the derivative along the critical orbit is called the Coller—
Eckmann condition, and it was first introduced by P. Colletand J. P. Eckmann [CE83,CE80]
where they used this condition to prove the abundance of functions with chaotic dynamics
within certain families of dynamical systems. The Collet—Eckmann condition, and some
of its variants, are further discussed in Section 4 below. For the quadratic family, we make
the following definition.



Definition 2.6. A parameter a € [-2,1/4] is called a Collet—Eckmann parameter if the

corresponding quadratic map satisfies the Coller—Eckmann condition

l0g 1(Q2) (@) _
n

lim inf 0.
n—o

The set of Collet—Eckmann parameters is denoted CE.

The techniques developed in [BC85,BC91] are of great importance in the field of dynamical
systems, and are also central to this thesis. We come back to these in Section 5.

It turns out that both the property of being stochastic, and that of being Collet—Eckmann,
are typical within the real quadratic family, namely

LebNR =LebS = Leb CE.

That the stochastic parameters are typical within nonregular parameters was proved by
M. Lyubich [Lyu02], following the work in [Lyu00, MNOO]. That the Collet—Eckmann
parameters are typical within nonregular parameters was proved by A. Avila and C. G. Mor-
eira [AMOS]. For this reason, one can consider both of these conditions as good character-
isations of being nonregular.

Considering the set of regular parameters, one can with an application of the inverse
function theorem show that this set is open, i.e. small changes in the parameter value of
a regular map do not alter the existence of an attracting cycle. A much deeper result is
that these parameters form a dense set in [-2, 1/4]. This result, known as the real Fatou
conjecture, was proved by J. Graczyk and G. Swigtek [GS97, GS98b], and independently by
Lyubich [Lyu97]. This genericity result was later extended to the class of real polynomials
of arbitrary fixed degree, by O. Kozlovski, W. Shen, and S. van Strien [KSvS§07]. With the
characterisation of nonregular maps, and the density of regular maps, one can say that
from a qualitative point of view, the real quadratic family is well-understood.

Considering the orbit of the critical point, we know from Proposition 2.1 thatif z is a
regular parameter, then its orbit accumulates on the attracting cycle. If z on the other
hand is a nonregular parameter then, by definition, there can be no accumulation on an
attracting cycle, and we are left with two possible cases:

either liminf|Q7(0)[ >0 or liminf[Q7(0)| = 0.

The first case is known as the Misiurewicz case, and it implies that there exists 9 = d(a) > 0
such that |Q7(0)| > J forall » > 1. It was conjectured by M. Misiurewicz in the early
1980s that these parameters constitute only a set of measure zero, and this conjecture was



proved to be true by D. Sands [San98]. Hence for a typical nonregular parameter the
second case holds, and we simply call this the recurrent case. In this recurrent case, it is
natural to ask at what rate the critical point returns to itself or, more precisely, what are the
correct conditions on 4, that guarantee

|Q%(0)| <9, forinfinitely many 7. (1.1)

It was conjectured by Y. Sinai that in the recurrent case, the critical point typically returns
with exponent 1. This can be formulated as, for almost every nonregular parameter 4,

-1 ”(0
llm Sup M = 1'
n—oo log n
This conjecture was indeed proved to be true by Avila and Moreira [AMO05]. Another way
to phrase this result is as follows: for almost every nonregular parameter 4, the set of z such
that |Q7(0)| < 1/ 7% is finite if @ > 1, and infinite if 6 < 1. This result motivated Paper I,

namely to study the case of the critical exponent & = 1.

3 Rational dynamics

The study of iterations of rational maps on the Riemann sphere C was first initiated by
P. Fatou [Fatl9,Fat20a, Fat20b] and G. Julia [Jul18] around the 1920s. With the emergence
of computers with better power of computation, this theory got more popular in the 1980s,
much due to the many beautiful pictures. Let us briefly introduce the fundamental notions
of rational dynamics.

We consider rational functions of one complex variable z belonging to the Riemann sphere
C. The Riemann sphere is the complex plane together with the abstract ‘point at infinity’.
Through stereographic projection, C is identified with the usual euclidean sphere in R?,

and by pulling back the euclidean metric | - | this provides us with the so-called chordal
metric ¢. For points z and w in the plane the distance between them with respect to the
chordal metric is

2|z — w|

7(&w) = 1+ 221+ w]?

and if w = oo then 5

JI+ |2

Instead of the chordal metric one can also consider the equivalent so-called spherical metric

_lde]
mff L+ ¢

10

7(2,00) = lim o(z,w) =

gy, which is defined as



where the infimum is taken over all continuous curves y joining z and w.

Each rational function can be represented as the quotient of two polynomials

a2’ +ay 7+t ay _ P(3)
bz + by 2+t by Q(2)

z - = R(2),

with 4; and 4; belonging to C. We always assume that the P and Q do not share any common
factors, and if not both 4, and &, are equal to 0, we say that the degree of R deg(R) is equal
to d. Thus, a rational map of degree 4 is a d-to-1 covering of the Riemann sphere onto
itself. The spherical derivative of z — R(z) is defined as

1+ |z

DR(z) = R’ (z)w,

and we notice that it satisfies the chain rule.

The parameter space of rational maps (of a fixed degree &) is more complicated than that of
theinterval. We can assume thateither 4, = 1 or 4, = 1, thus the parameter space of rational
maps of degree d is a (2d + 1)-dimensional complex manifold, and also a subspace of the
projective space CP***!. On each of the two charts corresponding to ¢, = 1and &, = 1,
respectively, the Lebesgue measures are mutually absolutely continuous. The Lebesgue
measures on each chart are also mutually absolutely continuous to the induced Fubini-
Study measure on CP***! In Paper II we use a special normalisation of rational functions
of degree d, due to G. Levin [Levl4]. We identify two rational functions of degree 4 as
being equal if they are conjugated by a Mébius transformation. Up to equivalence, we then
consider the space of rational functions (of degree d) with exactly p’ different critical points
€15 Cy vees Gyt with corresponding multiplicities F = (my, my, ..., mpl). Within this space,
which we denote by A, , critical points move ilalytically with respect to the parameter.
In particular, if all critical points are simple, i.e. p" = (1, 1, ..., 1), then A, 7 is locally equal
to the entire parameter space.

An early and important step in the theory of rational dynamics was made by Fatou and
Julia when they described a decomposition of the Riemann sphere into two invariant sets
with respect to a rational function, namely the Fatou set and its complement, the julia
set. The Fatou set of a rational map R is denoted F (R) and is by definition the domain of
normality: for each z € F(R) there exists a neighbourhood U, containing z, such that the
set of consecutive iterates of R restricted to U forms a normal family. That is to say, there
exists an increasing sequence 7, such that /™|, converges locally uniformly on compact
subsets of U, with respect to the spherical metric. Intuitively, nearby points belonging
to the Fatou set share similar limiting behaviour, and for this reason the dynamics on the

11



Fatou set is considered stable. From the definition, it follows that the Fatou set is open,
hence the Julia set is compact. We denote the Julia set by 7(R). Using Montel’s theorem,
one can prove that the Julia set is equal to the closure of the repelling cycles. Hence, nearby
points belonging to the Julia set will repel each other, and one speaks of chaotic dynamics.
On the Julia set, it therefore makes sense to talk about Lyapunov exponents, invariant
measures, and so on.

The dynamics in the Fatou set for a rational function is well understood, and for complete-
ness we state the following classification result. A component U of the Fatou set F(R) is
called frxed if R(U) = U, periodic if R¥(U) = U for some k > 0, and pre-periodic if RI(U)
is periodic for some / > 0. That these are the only possibilities was proved by D. Sulli-
van [Sul85]: a component U of the Fatou set of a rational map is either fixed, periodic,
or pre-periodic. This result by Sullivan, which is often called Sullivan’s no-wandering-
domain theorem, is a milestone in rational dynamics, and introduced the new idea of using
quasiconformal mappings in dynamics.

Assuming U to be a fixed component, the dynamics can be classified as follows.

Proposition 3.1. Let U be a fixed component of the Fatou set of a rational function. Then
one of the following alternatives is true.

(1) U contains an attracting fixed point for which all points in U converge to under iteration,
(2) 0U contains a neutral fixed point for which all point in U converge to under iteration,
(3) U is either conformally equivalent to the disk or an annulus, and the dynamics is conjug-

ated to a euclidean rotation.

In case (2) above, the neutral fixed point, say z = R(z), is in fact a so-called parabolic
fixed point. By definition this means that DR(z) = ¢”? /1, with p and g being integers. If
U is of type (3), it is called a Stegel disk if it is conformally equivalent to the disk, and a
Herman ring if it is conformally equivalent to an annulus. The rotation angle is, in either
case, irrational. Proposition 3.1 can be naturally generalised to periodic components by
considering a suitable iterate of the rational map.

Let us now begin to consider the dynamics on the Julia set. It is illustrative to consider the
most simple function, namely a complex quadratic one

g+ 2" +a=P2),

with 2 € C. The following result tells us that the behaviour of the critical point has direct
consequences for the geometry of the Julia set.
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Proposition 3.2. If P (0) tends to infinity as n tends to infinity, then the Julia set J (L)) is
totally disconnected. Otherwise it is connected.

The above result motivates the definition of the so-called connectedness locus, which is the set
consisting of those parameters 4 for which 7 (£,) is connected. In the case of the (complex)
quadratic family this set is usually called the Mandelbrot set, after B. Mandelbrot [Man80]
who was the first to obtain high quality pictures of it (see also [BM81]). We denote the
Mandelbrot set by M, and from Proposition 2.2 we know that M intersects the real line
in [-2, 1/4]. Moreover we have the following result.

Proposition 3.3. M is a closed simply connected subset of the disk {|a| < 23, and consists of
precisely those a such that P (0) < 2 forall n > 0.

Figure 1.2 provides a picture of the Mandelbrot set, and we notice the close connection
with the bifurcation diagram of Figure 1.1. Indeed, the parameter values for which period
doubling bifurcation occurs are precisely those parameters in the Mandelbrot set lying on
the real axis connecting the components.
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Figure 1.2: Connectedness locus for z = 2% + ¢.

In the rational setting there is no analogue of Proposition 3.2, however the behaviour of the
critical orbits are equally important for the global dynamics. The following result resembles
that of Proposition 2.1.

13



Proposition 3.4. For each attracting cycle of a rational function of degree d > 2 there is at
least one critical point whose orbit accumulates on this cycle. The number of critical points
(counting multiplicity) is at most 2d — 2, hence there are at most 2d — 2 attracting cycles.

In order to understand the dynamics on the Julia set, the following definition is of central
importance. We notice the resemblance with Definition 2.5.

Definition 3.5. A rational function z = R(z) is called hyperbolic if every critical point
belongs to the Fatou set 7 (R) and is attracted to an attracting cycle. Otherwise it is called
non-hyperbolic.

Being hyperbolic is equivalent to the existence of a metric, smoothly equivalent to the
spherical metric in a neighbourhood of the Julia set, for which R is expanding. If we assume
that co ¢ J(R), then this is equivalent to the existence of C > 0 and y > 0 such that

[(R") (2)] = Ce”™

forall z € 7(R) and » > 1. (This latter notion of expanding on the Julia set is in fact the
usual definition of being hyperbolic, and our definition can be proved to be equivalent.)

One of the great open conjectures in the field of rational dynamics is the so-called Hyperbol-
icity conjecture: the set of hyperbolic rational maps form an (open) dense set in parameter
space. Even in the case of the quadratic family z + 2> + it is not yet known whether the
set of (complex) parameters 2 forms an open dense set (this is the so-called Fatou conjecture).

4 The Collet—Eckmann conditions

As mentioned earlier, the Collet—Eckmann condition was first introduced by Collet and
Eckmann [CE83, CE80] in their study of certain real families of dynamical systems, and
was used to prove the abundance of acip’s.

The Collet—Eckmann condition has proven to be very fruitful to consider also in the
rational setting, although things naturally become more complex. We give the following
definition.

Definition 4.1. A rational function R without parabolic cycles is said to satisfy the Coller-
Eckmann condition (CE) if there exist C > 0 and ¥ > 0 such that, for each critical point ¢
in the Julia set of R,

|DR*(R(c))| = Ce™,

forallz = 0.

14



The requirement of no parabolic cycles is a technical one since, for instance, one usually
wants uniform expansion outside a neighbourhood of the critical points in the Julia set.
From now on we denote by Crit'(R) the set of critical points in the Julia set of R, i.e.
Crit (R) = Crit(R) n J(R).

The study of rational Collet—Eckmann maps was initiated by F. Przytycki [Prz96, Prz98].
For instance, in [Prz96] it is proved that if 7(R) # C, then Leb J(R) = 0, i.e. for a rational
Collet—Eckmann map, either the Julia set is the entire sphere, or it has measure zero.
Moreover, by assuming an extra condition by M. Tsujii, namely that the average distance of
R”(Crit') to Crit’ is not too small, it was also proved that the Hausdorff dimension of 7 (R)
is strictly less than 2 (provided J (R) # C, of course). Later, Graczyk and Smirnov [GS98a]
proved, among other things, that rational Collet—Eckmann maps can have no rotation
domains, and the Fatou components are Holder domains. (Using a result by P. Jones and
N. Makarov [JM95], this latter property implies that, for a rational Collet—Eckmann map
with at least one fully invariant Fatou component, the Hausdorft dimension of its Julia set
is strictly less than 2.)

That rational Collet—Eckmann maps are interesting from a measure point of view was
established by M. Aspenberg [Asp04, Asp13] in his doctoral thesis: the set of Collet—
Eckmann maps has positive (Lebesgue) measure in the parameter space of rational functions
of any fixed degree d > 2. Moreover, using the results of Przytycki [Prz96], and Graczyk and
Smirnov [GS98a], these maps described by Aspenberg also support acip’s. The existence of
a positive measure set of rational maps having acip’s was first proved by M. Rees [Ree86].

Considering the recurrent nature of rational functions, Aspenberg [Asp09] furthermore
proved that the set of rational Misiurewicz functions of any fixed degree d > 2 constitutes
only a set of measure zero in the parameter space. Therefore, analogous to the case of real
quadratic functions, the critical points belonging to the Julia set of a typical non-hyperbolic
rational function are recurrent. Results regarding the rate of recurrence of the critical points
for non-hyperbolic rational functions are more sparse than in the real quadratic setting.
In the quadratic (and even unicritical) setting z +—> 2 + a = P (2), the Collet—Eckmann
parameters are known to constitute only a set of measure zero [ALS11]. However, Graczyk
and Swigtek [GS00] proved that for a typical parameter with respect to harmonic measure
on the boundary of the Mandelbrot set, the Collet—Eckmann condition is satisfied (see
also [Smi00]). Moreover, they proved in [GS15] that the Lyapunov exponent y(a) exists:
for a typical parameter 2 € dM with respect to harmonic measure,

log |(5)"(a)|

x(a) = lim = log2.

n—oo

This in turn immediately gives us a recurrence result: for every & > 0 there exists a constant
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C = C(«) > 0 such that
|27(0)] = Ce™,

forall » > 1. For a rational function, we make the following definition.

Definition 4.2. A rational function R of degree d > 2 is said to satisfy the slow recurrence
condition (SR) if for every « > 0 there exists C = C(«) > 0 such that, for every critical point
¢ € Crit' (R),

dist(R"(c), Crit') = Ce ",

forallz > 1.

Not much is known about the measure of rational functions satisfying the slow recur-
rence condition, however it is conjectured to be satisfied for almost every rational Collet—
Eckmann map. We should also mention that, to the author’s knowledge, no results exist
regarding the typical rate of recurrence in the rational setting, i.e. for what J, do we have,
given ¢ € Crit,

dist(R"(c), Crit') < 9,

for infinitely many #? We do believe, however, that the techniques of Paper I can be carried
over to the rational setting.

Focusing on this slow recurrence condition, Aspenberg [Asp21] recently proved the follow-
ing consequence. Let R be a rational Collet—Eckmann map of degree d > 2, satisfying the
slow recurrence condition, and such that 7(R) = C. ThenRisa Lebesgue density point
of rational Collet—Eckmann maps of degree d within the space A o In particular, this
generalises the results in [Asp04, Asp13]. Motivated by this result, together with Aspenberg
and W. Cui, in Paper II we consider functions as above but with [7(R) # C, and prove
that these are density points of hyperbolic maps. In particular, assuming that almost every
rational Collet—Eckmann map satisfies the slow recurrence condition, then almost every
Collet—Eckmann map has its Julia set equal to the Riemann sphere.

Let us finish this section with discussing some other closely related conditions of non-
hyperbolicity. Already in [CE83,CE80], a condition now known as the second (or backward)
Collet-Eckmann condition was considered. The definition in the rational setting is as
follows.

Definition 4.3. A rational map R of degree d > 2 is said to satisty the second Collet—Eck-
mann condition (CE2) if there exist constants C, > 1 and 3 > 0 such that, foreveryz > 1
and every w € R™"(c), for ¢ € Crit (R) not in the forward orbit of other critical points,

|DR* (w)| = Cye”".
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Graczyk and Smirnov [GS98a] proved that CE and CE2 are equivalent in the unicritical
setting z ~> 2% + 4. In Paper I and Paper II, this condition is utilised to prove strong
expansion results outside a neighbourhood of the critical point(s).

In their study of the geometry of Collet—Eckmann Julia sets, Przytyckiand S. Rohde [PR98]
formulated the following condition.

Definition 4.4. A rational map R of degree d > 2 is said to satisfy the topological Collet-
Eckmann condition (TCE) if there exist M > 0, P > 0 and » > 0 such that for every
z € J(R) there exists a strictly increasing sequence of positive integers 7 ] =12 such
that n; < Pj and, for each 7,

# {/e 10 <k < np;, Compy, R (B(R"(z), 7)) n Crit = @} < M.

Here in the above definition, Comp  denotes the connected component containing w.
Since the above condition is formulated in topological terms, it is invariant under topolo-
gical conjugacy. One of the more useful properties of the topological Collet—Eckmann
condition is its many equivalent formulations [PRLS03, PRL07,RL10]. In particular, CE
and CE2 independently imply TCE.

Much work has been done to understand the relationships between these three character-
isations of non-hyperbolicity. Przytycki, Smirnov, and J. Rivera-Letelier [PRLS03] made
an extensive study and proved, among other things, that these conditions are equivalent
within the family of unicritical functions z + 2 + 4. In Paper III, we observe yet another
consequence of the slow recurrence condition, namely that within the family of slowly
recurrent rational maps of degree 4 > 2, all of these conditions are equivalent. Since there
are known examples where CE does not imply CE2, CE2 does not imply CE, and TCE
does not imply CE or CE2, this shows that the slow recurrence condition is in some sense
essential for equivalence to hold.

5 The Benedicks—Carleson techniques

In their seminal papers, Benedicks and Carleson [BC85, BC91] developed techniques to
prove the abundance of Collet—Eckmann real quadratic functions, and the existence of
acip’s. However, this machinery of theirs is far reaching, as can be realised by the many
papers utilising it. In fact, it is the foundational tool used in Paper I and Paper II of this
thesis. In this section we try to provide a schematic outline of these parameter exclusion
technigues.
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At its core, these techniques constitute a technical induction argument, with the Collet—
Eckmann condition being the driving force. For the sake of explanation, let /= f; be
the so-called unperturbed map, acting on some space X. We ask of this map to satisfy the
Collet—Eckmann condition: there exist constants C > 0 and > 0 such that, for all critical

points ¢ of £ belonging to J( f),
[(F) (f(e)] = Cer,

forallz = 0.

For 4 in some subset A = A of the parameter space, we let £, denote a perturbation of
/. The goal is to show that for a large (or small) set of parameters, the corresponding
perturbations £, share similar properties as the unperturbed map.

To this end, suppose that f only has one critical point ¢ = ¢(0), and that the corresponding
perturbation f, only has one critical point ¢(«). In fact, let us assume a normalisation so
that c(2) = 0 forall 2 € A. We will iterate the critical point simultaneously for different
parameters, and we let £, : A — X denote the function 2 — £,(a) = £,"(0).

If A is chosen sufficiently small then, up to some large time N, the Collet—Eckmann
condition is inherited by all perturbations. In particular, as long as the derivatives of
jZN and ﬁN, evaluated at their corresponding critical values, are comparable, the Collet—
Eckmann condition gives expansion of the image. This property of having comparable
derivatives is called distortion. Atsome time m, > N, the image of A will come very close to,
and might even cover, the critical point. At this stage one makes a partition: A = J, A, .
This partition is made so that on each partition element A, ;, we have good distortion
control. Each of the partition elements will then be iterated individually until the same
situation occurs. That is to say, the partition element A; = A, for instance, will be
iterated until at some time m, > m; its image £, (A,) gets close to the critical point. At
this stage we once again make a partition A; = J, A, ;, and the procedure continuous

indefinitely.

At each stage of partitioning, one might have to discard parameters that belong to partition
elements that come too close to the critical point. The reason for this is to make sure that
not too much derivative is lost, hence ensuring a Collet—Eckmann condition for future
iterates. This approach rate condition is usually referred to as the basic assumption: for all
a € A we ask that

dist (£7(0),0) = 4,

for all » > 1, and for some suitable sequence 9,
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Even though some derivative is lost when returning close to the critical point, much (but
not all) of what was lost will be recovered during the so called bound period. Indeed, the
Collet—Eckmann condition is a standing induction assumption, and for some time after
the partition, the future iterates will stay close to the past iterates. Using this fact, one can
show that during this bound period, derivative from the past iterates will be inherited by
the future iterates.

In order to estimate what is left in parameter space after each partition stage, one needs
to be able to compare the parameter derivative of £, with the phase derivative of £~
This kind of comparison is called t7ansversality. Assuming good distortion estimates, and
good transversality estimates, the measure of what is left in parameter space after infinitely
long time is essentially determined by whether the sequence d, in the basic assumption is
summable or not.
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Chapter 2

Summary of results

Paper I

In this paper we study the real quadratic family
x> x*+a=0Q,(x),

acting on X = [-2,2], and with parameter 2 € [-2,1/4]. Our goal is to investigate the
typical recurrence rate of the critical point x = 0 to itself, when z is a nonregular parameter,
i.e. when z is such that x = x* + 4 has no attracting cycle. With typical recurrence rate we
mean a sequence J, such that, for almost every nonregular parameter 4,

1Q2(0)] <3,

holds true for infinitely many 7. Without loss of generality we may assume 2 € [-2, —1],
and for such parameters we instead study the equivalent family

x> 1—ax® = F(x;a),
actingon X = [-1, 1], and with parameter « € [1,2].
A. Avila and C. G. Moreira [AMO5] proved two important results regarding the real
quadratic family. The first result states that almost every nonregular parameter satisfies the

Collet—Eckmann condition. The second result concerns recurrence, and states that for
almost every nonregular parameter «

. —log |F"(0;4)|
11m sup T =
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Introducing the set A(9,) = {a € NR : |[F"(0;4)| < 9, for infinitely many »} the above
equality can be rephrased as

LebNR ifé<1,

Leb A(n7%) =
0 ifd > 1.

The above lim sup-result is strong and gives us both a typical recurrence rate, namely
3, = n ") forany ¢ > 0, but also a typical approach rate: for almost every nonregular
parameter « and ¢ > 0 there exists a constant C = C(a, ¢) such that

forall n>1.

|F*(0;a)| > T

What the lim sup cannot see, though, is the sharpness of the exponent, i.e. the case of ¢ = 0,
and to investigate this is the main concern of Paper I.

Let us call a sequence 9, admissible if there exists a constant K > 0 and an exponent o > 0
such that X
J,>— forall n=>1.
n

In Paper I we prove the following result. There exists 7 € (0, 1) such that if 9, is admissible

Z 3_n7(10g* " = oo,
log n

then Leb A(9,) = Leb N'R. Here log” is the so-called iterated logarithm, and it is defined

as
« 1 ifx <1,

log” x = .
1+log logx ifx > 1.

and

In particular, Iog* grows slower than any logj = logo logj_ pJz0. Therefore as a direct

corollary we find that
LebA(z™') = Leb AR,

thus covering the missing case of § = 1.

The proof utilises the Benedicks—Carleson techniques [BC85, BC91], together with more
recent developments [Asp21,Lev14]. The main innovation of this paper is the introduction
of unbounded distortion estimates.
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Paper 11

We consider slowly recurrent rational functions of a fixed degree and whose Julia set is not
equal to the entire sphere. By assuming that the critical points approach each other only at
a slow rate, i.e. by assuming the so-called slow recurrence condition, we prove that these
functions can be approximated in a strong sense by hyperbolic functions.

Let us call two rational functions equivalent if they are conjugated by a M&bius transforma-
tion. In the parameter space of rational functions of a fixed degree d > 2, let A " denote the
subspace of rational functions, up to equivalence, with exactly p' critical points ¢, ¢, ..., ¢,
and with corresponding multiplicities F = (my, my, ey mp,). Within this subspace, critical
points do not split, and move analytically with the parameter. In this paper, we look at
small perturbation of R = R, € A, , where R satisfies the Collet-Eckmann condition,

and J(R) # C. Moreover, R also satisfies the slow recurrence condition: for any « > 0
there exists C > 0 such that, for every ¢ € Crit,

dist (R”(c), Crit') = Ce™",

for all z > 1. In Paper II we prove that such a rational function is a Lebesgue density point
of hyperbolic functions (within A ;). Moreover, if all critical points are simple, then such
afunction is a Lebesgue density point of hyperbolic functions in the entire space of rational
functions of degree d.

To prove the above result, we utilise the parameter exclusion techniques developed by
Benedicks and Carleson [BC85, BC91], together with its evolvement in the rational set-
ting by Aspenberg [Asp04, Asp13, Asp09, Asp21], and strong transversality results by
Levin [Lev14]. In fact, Aspenberg [Asp21] recently proved a contrasting result. Namely, if
ReA A7 satisfies the Collet-Eckmann condition, if 7(R) = C, and if R satisfies the slow
recurrence condition, then it is a Lebesgue density point of Collet—Eckmann functions
(within A, ).

The techniques used in Paper II are similar to those in [Asp21]. We begin with a small
parameter square centred at R, and our goal is for this square to reach to so-called large scale.
Since J(R) # C, the measure of the Julia set J(R) is equal to zero [Prz96]. Therefore,
upon reaching the large scale, a large portion of our square will correspond to parameters
whose critical points lie in the Fatou set. We show that the large scale is reached under
bounded transversality, and bounded distortion, and the conclusion is that in parameter
space, most parameters correspond to hyperbolic maps, hence our density result.
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Paper III

In Paper IIT we consider rational functions acting on the Riemann sphere </C\, and the
relationships between the Collet—Eckmann condition (CE), the second Collet—Eckmann
condition (CE2), and the topological Collet—Eckmann condition (TCE). Much work has
been made investigating these conditions. In particular it is known that CE or CE2 implies
TCE, whereas to any other possible implication there are known counterexamples. In the
unicritical, on the other hand, all of these conditions are equivalent. (See [PRLS03] and
references therein.)

In this paper we observe that within the family of slowly recurrent rational functions, all
of the above conditions are equivalent. Moreover these conditions are invariant under
topological conjugation. The proofs in this paper are short, even though the results on
which they are based upon require technical machinery. Indeed, the techniques are those
of shrinking neighbourhoods as developed by Przytycki [Prz98], and used by Graczyk and
Smirnov [GS98a].
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Critical recurrence in the real quadratic family

Mats Bylund

Abstract

We study recurrence in the real quadratic family and give a sufficient condition on
the recurrence rate (9,) of the critical orbit such that, for almost every nonregular
parameter 4, the set of z such that |F”(0;4)| < J, is infinite. In particular, when
3, = n”", this extends an earlier result by Avila and Moreira.

1 Introduction

1.1 Regular and nonregular parameters

Given a real parameter 2, we let x - 1 — ax’* = F(x;a) denote the corresponding real
quadratic map. We will study the recurrent behaviour of the critical point x = 0 when
the parameter belongs to the interval [0, 2]. For such a choice of parameter there exists an
invariant interval 7, c [-1, 1], i.e.

containing the critical point x = 0. The parameter interval is naturally divided into a
regular (R) and nonregular (N'R) part

[0,2] = RUNTR,

with 2 € R beingsuch thatx — 1 —ax” hasan attractive cycle,and N'R = [0,2]\R. These
two sets turn out to be intertwined in an intricate manner, and this has led to an extensive
study of the real quadratic family. We briefly mention some of the more fundamental
results, and refer to [Lyu00b] for an overview.

The regular maps are from a dynamic point of view well behaved, with almost every point,
including the critical point, tending to the attractive cycle. This set of parameters, which
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with an application of the inverse function theorem is seen to be open, constitutes a large
portion of [0, 2]. The celebrated genericity result, known as the real Fatou conjecture, was
settled independently by Graczyk-Swiatek [GS97] and Lyubich [Lyu97]: R is (open and)
dense. This has later been extended to real polynomials of arbitrary degree by Kozlovski—
Shen—van Strien [KSvS07], solving the second part of the eleventh problem of Smale
[Sma98]. The corresponding result for complex quadratic maps, the Fatou conjecture, is
still to this day open.

The nonregular maps, in contrast to the regular ones, exhibit chaotic behaviour. In [Jak81]
Jakobson showed the abundance of stochastic maps, proving that the set of parameters
a € S for which the corresponding quadratic map has an absolutely continuous (with
respect to Lebesgue) invariant measure (a.c.i.m), is of positive Lebesgue measure. This
showed that, from a probabilistic point of view, nonregular maps are not negligible: for a
regular map, any (finite) a.c.i.m is necessarily singular with respect to Lebesgue measure.

Chaotic dynamics is often associated with the notion of sensitive dependence on initial
conditions. A compelling way to capture this property was introduced by Collet and
Eckmann in [CE80] where they studied certain maps of the interval having expansion
along the critical orbit, proving abundance of chaotic behaviour. This condition is now
known as the Collet—Eckmann condition, and for a real quadratic map it states that

log |0.F"(1;
liminfw >0

n—oo n

(1)

Focusing on this condition, Benedicks and Carleson gave in their seminal papers [BC8S5,
BC91] another proof of Jakobson’s theorem by proving the stronger result that the set CE
of Collet—Eckmann parameters is of positive measure. As a matter of fact, subexponential
increase of the derivative along the critical orbit is enough to imply the existence of an
a.c.i.m, but the stronger Collet-Eckmann condition implies, and is sometimes equivalent
with, ergodic properties such as exponential decay of correlations [KN92, You92, NS98],
and stochastic stability [BV96]. For a survey on the role of the Collet—Eckmann condition
in one-dimensional dynamics, we refer to [SO1].

Further investigating the stochastic behaviour of nonregular maps, supported by the results
in [Lyu00a, MNO00], Lyubich [Lyu02] established the following famous dichotomy: a/most
all real quadratic maps are either regular or stochastic. Thus it turned out that the stochastic
behaviour described by Jakobson is in fact typical for a nonregular map. In [AMO5]
Avila and Moreira later proved the strong result that expansion along the critical orbit
is no exception either: almost all nonregular maps are Collet—Eckmann. Thus a typical
nonregular map have excellent ergodic properties.
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1.2 Recurrence and Theorem A

In this paper we will study recurrence of the critical orbit to the critical point, for a typical
nonregular (stochastic, Collet—Eckmann) real quadratic map. For this reason we introduce
the following set.

Definition 1.1 (Recurrence Set). Given a sequence (9,),; of real numbers, we define the
recurrence set as

A@9,) ={a e NR: |F"(0;a)| < 9, for finitely many 7}.

In [AMOS] Avila and Moreira also established the following recurrence result, proving a
conjecture of Sinai: for almost every nonregular parameter a

—log | F”(0;
T— L]

71— log

Another way to state this result is as follows: for almost every nonregular parameter 4, the
set of 7 such that |F”(0;4)| < n~? is finite if @ > 1 and infinite if # < 1. In terms of the
above defined recurrence set, this result translates to

LebNR iféd>1,

Leb A(n™?) =
0 ifd < 1.

In [GS14], as a special case, a new proof of the positive measure case in the above stated
result was obtained, together with a new proof that almost every nonregular map is Collet-
Eckmann. In this paper we will give a new proof of the measure zero case, and in particular
we will fill in the missing case of & = 1, thus completing the picture of polynomial recurrence.
Our result will be restricted to the following class of recurrence rates.

Definition 1.2. A nonincreasing sequence (9,) of positive real numbers is called admissible
if there exists a constant 0 < ¢ < oo, and an integer NV > 1, such that

1

>
2 —

(n = N).

The following is the main result of this paper.

Theorem A. There exists v € (0, 1) such that if (3,) is admissible and

> O tog' ) _ %0,
log n

then Leb(A(3,) N CE) = 0.
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Here log” denotes to so-called zterated logarithm, which is defined recursively as

N 0 ifx<1,
log"x = .
1+log logx ifx > 1.

That is, log” x is the number of times one has to iteratively apply the logarithm to x in
order for the result to be less than or equal to 1. In particular, log" grows slower than
logj = loge logj_l, foranyj > 1.

Theorem A, together with the fact that almost every nonregular real quadratic map is
Collet—Eckmann, clearly implies

Corollary 1.3. Leb A(n™") = 0.

Remark 1.4. In fact, one can conclude the stronger statement
Leb A(1/(nloglogn)) = 0.

At this moment we do not get any result for when J, = 1/(zlog#), and this would be
interesting to investigate further.

One of the key points in the proof of Theorem A is the introduction of unbounded
distortion estimates; this differs from the classical Benedicks—Carleson techniques.

Acknowledgement. This project has been carried out under supervision of Magnus Aspenberg as
part of my doctoral thesis. I am very grateful to Magnus for proposing this problem, for his support,
and for many valuable discussions and ideas. I express gratitude to my co-supervisor Tomas Persson
for helpful comments and remarks. I would also like to thank Viviane Baladi for communicating
useful references, and I thank Michael Benedicks for interesting discussions. Finally I thank the
referee whose careful reading and comments helped improve the manuscript.

2 Reduction and outline of proof

2.1 Some definitions and Theorem B

We reduce the proof of Theorem A to that of Theorem B, stated below. For this we begin
with some suitable definitions.

It will be convenient to explicitly express the constant in the Collet—Eckmann condition
(1), and for this reason we agree on the following definition.
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Definition 2.1. Given y, C > 0 we call a parameter « (y, C)-Collet—-Eckmann if
|0.F"(1;a)| = Ce”” (2 >0).

The set of all (y, C)-Collet—Eckmann parameters is denoted CE(y, C).

Our parameter exclusion will be carried out on intervals centred at Collet—Eckmann pa-
rameters satisfying the following recurrence assumption.

Definition 2.2. A Collet-Eckmann parameter « is said to have polynomial recurrence (PR)
if there exist constants K = K (2) > 0 and ¢ = 7(4) = 0 such that

|F"(052)| = nE (n=1).

The set of all PR-parameters is denoted PR.
Finally, we consider parameters for which the corresponding quadratic maps satisty the
reversed recurrence condition after some fixed time N > 1:
ANG,) ={ae NR: |F"(0;a)| > 9, forallz > N}.
Clearly we have that
N=>1

Theorem A will be deduced from

Theorem B. There exists v € (0, 1) such that if (3,) is admissible and

Z 5_n7(10g* " = oo,
log

then for all N = 1, > 0, C > 0, and for all a € PR, there exists an interval w, centred at a
such that
Leb(An(9,) N CE(y, C) nw,) = 0.

2.2  Proof of Theorem A

Using Theorem B, Theorem A is proved by a standard covering argument. Since w, is
centred at 4, so is the smaller interval &, = w,/S. By Vitali covering lemma there exists a
countable collection (4;) of PR-parameters such that

PRc | a);cOwﬂ_.
a€PR =1
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It now follows directly that
Leb(Ay(3,) N CE(y,C) N PR) < > Leb(Ay(3,) n CE(y,C) n @) =0,
j=1

and therefore

Leb(A(3,) N CENPR) < Leb(Ax(8,) N CE(R log2,/7") N PR)
N,k,/>1

=0.

Finally, we notice that A(9,) N C€ c PR; indeed this is clearly the case since (J,) is assumed
to be admissible.

Remark 2.3. With the introduction of the set PR we are avoiding the use of previous
recurrence results (e.g. Avila—Moreira) in order to prove Theorem A, by (a priori) allowing
PR to be a set of measure zero. In either case, the statement of Theorem A is true.

2.3 Outline of proof of Theorem B

The proof of Theorem B will rely on the classical parameter exclusion techniques developed
by Benedicks and Carleson [BC85, BC91], complemented with more recent results. In
particular we allow for perturbation around a parameter in more general position than
a = 2. In contrast to the usual application of these techniques, our goal here is the show
that what remains after excluding parameters is a set of zero Lebesgue measure. One of the
key points in our approach is the introduction of unbounded distortion estimates.

We will carefully study the returns of the critical orbit, simultaneously for maps corre-
sponding to parameters in a suitable interval @ c [0,2], to a small and fixed interval
(=9,9) = (=™, ¢™). (In fact, we will assume that @ c [1,2] since [0,1] \ {3/4} c R,
with @ = 3/4 being a parabolic parameter.) These returns to (=0, 9) will be classified as
either inessential, essential, escape, or complete. Per definition of a complete return, we
return close enough to x = 0 to be able to remove a large portion of (=d,,d,) in phase
space. To estimate what is removed in parameter space, we need distortion estimates. This
will be achieved by i) enforcing a (y, C)-Collet—-Eckmann condition, and ii) continuously
making suitable partitions in phase space: (=9, 9) is subdivided into partition elements
I = ("¢ forr > 0,and I = =1, for » < 0. Furthermore, each I, is subdivided
into 7* smaller intervals I, c L, of equal length | | /7*. After partitioning, we consider
iterations of each partition element individually, and the proof of Theorem B will be one
by induction.
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We make a few comments on the summability condition appearing in the statement of
Theorem A and Theorem B. In order to prove our result we need to estimate how much is
removed at a complete return, but also how long time it takes from one complete return to
the next. The factor 7% is connected to the estimate of what is removed at complete
returns, and more specifically it is connected to distortion; as will be seen, our distortion
estimates are unbounded. The factor (log n) s directly connected to the time between
two complete returns: if 7 is the index of a complete return, it will take < log 7 iterations
until we reach the next complete return.

In the next section we prove a couple of preliminary lemmas, and confirm the existence of
a suitable start-up interval w, centred at 2 € PR, for which the parameter exclusion will be
carried out. After that, the induction step will be proved, and an estimate for the measure
of Ay (3,) n CE(y, C) n w, will be given.

3 DPreliminary Lemmas

In this section we establish three important lemmas that will be used in the induction step.
These are derived from Lemma 2.6, Lemma 2.10, and Lemma 3.1 in [Asp21], respectively,
where they are proved in the more general setting of a complex rational map.

3.1 Outside Expansion Lemma

The first result we will need is the following version of the classical Mané Hyperbolicity
Theorem (see [dMvS93], for instance).

Lemma 3.1 (Outside Expansion). Given a Collet—Eckmann parameter a, there exist con-
stants yyp, Gy > 0such that, for all 8 > 0 sufficiently small, there is a constant ey, = €,,(3) > 0
such that, for all a € (ay — ey, ag + &), if

x, F(x; a),Fz(x; a), ... J Pt (x;2) ¢ (=9,9),

then
|0.F" (x;a)| = 0C, ™",

Furthermore, if we also have that F" (x; a) € (=20, 2d), then

10,F" (x;2)| = Gypeh™.
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A similar lemma for the quadratic family can be found in [BBS15] and [Tsu93], for instance.
The version stated here allows for J-independence at a more shallow return to the interval
(=29, 29). To get this kind of annular result constitutes a minor modification of Lemma 4.1
in [Tsu93]. We refer to Lemma 2.6 in [Asp21] and the proof therein, however, for a proof
of the above result. This proof is based on Przytycki’s telescope lemma (see [Prz90] and
also [PRLS03]). In contrast to the techniques in [Tsu93], in the case of the quadratic
family, no recurrence assumption is needed.

3.2 Phase-parameter distortion

If £ = F(x;a + t) is a family of (analytic) perturbations of (x; 2) +— F(x;a) at 2, we may
expand each such perturbation as

F(x;a + t) = F(x;a) + td,F(x; a) + higher order terms,
and it is easy to verify that

0,F" (x; a) _ 0, F" " (x; ) N 3, F(F" " (x; a); a)
0. F" Y (F(x;a); a) B 0F"2(F(x;a);a)  O.F"Y(F(x;a);a)

Our concern is with the quadratic family x — 1 —ax” = F(x;a), with a being the parameter
value. In particular we are interested in the critical orbit of each such member, and to this
end we introduce the functions 2 — fj(zz) = F/(0;2), for j = 0. In view of our notation
and the above relationship, we see that

9,F"(0;a2) ’ill 0,F(§,(a); a)

AF" N (La) & 0.F*(l;4)

Throughout the proof of Theorem B it will be of importance to be able to compare phase
and parameter derivatives. Under the assumption of exponential increase of the phase
derivative along the critical orbit, this can be done, as is formulated in the following lemma.
The proof is that of Lemma 2.10 in [Asp21].

Lemma 3.2 (Phase-Parameter Distortion). Let a, be (), C,)-Collet—Eckmann, y- € (0, ),
Cr € (0,Gy), and A € (0,1). There exist T, Ny, ep > 0such that if a € (ay — er,ay + er)
satisfies

|0.F/ (L;a)| = Cre”™  (j=1,2,..,Npyoon = 1),

forsomen — 1 = Np, then

9,F"(0; a)

(1-A)T < —axF”_l(l;ﬂ)

‘ <(1+A)T.

40



Proof. According to Theorem 3 in [Tsu00] (see also Theorem 1 in [Lev14])

0, (03 40) S (5 (ap)s )

=T eR
7= 0 FI1(1; a,) 9 Fk( 1 40) 70

=0

Let N > 0 be large enough so that

o 0.F(&(a0); 40)
Z aka(I; ag)

= 1 = 1 1
< Z Coe%k < Z — < §AT.

k
k=NT k:NT /6=NT CT€77'

Since a4 — 34F(§€(4);ﬂ)/8x1:k(1; a) is continuous there exists ¢, > 0 such that given

a € (ay—epray+er)

Np-1
 0,F(&,(a);a)

0.F(1; 2)

1
T|< EAT'

k=0

Assuming x — 1 — ax* to be (y, Cp)-Collet—Eckmann up to time 7 > Ny, the result now
follows since
i 9,F (. (a); a)

A T| < AT.
k=0 avF (1;4)

O]

Remark 3.3. The quotient (1 + 4)/(1 — A) = D, can be chosen arbitrarily close to 1 by
increasing Ny and decreasing e;-.

3.3 Start-up Lemma

With the above two lemmas we now prove the existence of a suitable interval in parameter
space on which the parameter exclusion will be carried out.

Given an admissible sequence (9, ), let N, be the integer in Definition1.2. Fix N > 1,7 > 0,
and G > 0, and let 4, be a PR-parameter satistying a (3, C;)-Collet—Eckmann condition.
In Lemma 3.2 we make the choice

yr = min(y%, %, %) /20 and  Cp = min(G, Gy) /3.
Furthermore let
y =min() 2,7, /2 and  C=min(G, G)/2,

and let m_; = max(N, Ny, Ny).
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Lemma 3.4 (Start-up Lemma). There exist an interval wy = (ay — €,a, + €), an integer
my = m_y, and a constant S = €0 such that

(z) fmo twy — [=1, 1] is injective, and

IR L (w0 L% O,

&0, (@0)| 2 {S lffmo n(=9,9) = @.

(1) Each a € w is (y, C)-Collet—Eckmann up to time m:

|0.F/(1;a)| = CeV’ (j=0,1,..,my—1).

(111) Each a € w enjoys polynomial recurrence up to time myy: there exist absolute constants
K > 0and o = 0 such that for a € w,

K .
G@l= % (= L2em- 1),

Proof. Givenx,y € fj(wo), 7 = 1, consider the following distance condition

—r 2 .
lx -yl < {6 SO (2)

S=gd if£(w)n(=5,9) = 0.

By making e smaller, we may assume that (2) is satisfied up to time m_;. Moreover, we
make sure that ¢ is small enough to comply with Lemma 3.2. Whenever (2) is satisfied,
phase derivatives are comparable as follows

0.F (x5 a)
0.F(y;b)

1
— <
G

<, (3)

with C; > 1 a constant. This can be seen through the following estimate

0.F(xwsa)| |-2ax| ay+e ( x=y 1)
0F0) | | 2by| Sa—e\| v | T/
If we are outside (-, 9) then
x=y - £ 3
y 1T
and if we are hitting /. with largest possible 7,
oyl L e e
Y 72 i) 2 T A2
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By making sure that ¢, ¢, and 9 are small enough, C; can be made as close to 1 as we want.
In particular, we make C; close enough to 1 so that

Cl_jCOe7°j > Ce?’ (7 =0). (4)

As long as the distance condition (2) is satisfied, we will have good expansion along the
critical orbits. Indeed by (3) and (4) it follows that, given a € w,
0./ (1;4)| = C7|0,F/ (15 2,)|
> CCpen
> CeV/ (/ = 0 such that (2) is satisfied).
This tells us that, during the time for which (2) is satisfied, every a € @, is such that the

corresponding map is (y, C)-Collet—Eckmann. In particular, since y > 3 and C > Cp, we
can apply Lemma 3.2, and together with the mean value theorem we have that

|£(@o)| = 10,77 (0;.2) [ |

> (1= A)T|9.F 7 (1;4)| ]
> (1 - A)TCe’ ™ |ay).

Our interval is thus expanding, and we let m, = 7, with j > m_; the smallest integer for
which (2) is no longer satisfied. This proves statements (i) and (ii).

To prove statement (iii), let K, > 0 and ¢, > 0 be the constants associated to 4, for which

In view of (2), when we hit (=0, 9) at some time ;j < m,
e—r
15(@)| = 15(a0)| = 5(@o) | = [5(a)| = =5
Here, 7 is such that

7 < |5 ay)],

and therefore, given d small enough,
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Remark 3.5. By making 3 small enough so that 1/A* < ¢, S will be larger than any
partition element [, € (=9, ). This S is usually referred to as the large scale.

Since Ay (9,) € A,, (9,), Theorem B follows if

Leb (A, (3,) 0 CE(, Gg) N ay) = 0.

4 Induction Step

4.1 Initial iterates

Letw, = A, be the start-up interval obtained in Lemma 3.4. Iterating this interval under &
and successively excluding parameters that do not satisty the recurrence condition, or the
Collet-Eckmann condition, we will inductively define a nested sequence Ay > A; > - >
A, 2 - of sets of parameters satisfying

A, (3,) N CEG, Gg) N, € A ﬂAk,

and our goal is to estimate the Lebesgue measure of A . This will require a careful analysis
of the so-called returns to (=9, 9), and we will distinguish between four types of returns:
inessential, essential, escape, and complete. At the I complete return, we will be in the
position of excluding parameters and form the partition that will make up the set A,. Below
we will describe the iterations from the & complete return to the (k£ + 1) complete return,
hence the forming of A, . Before indicating the partition, and giving a definition of the
different returns, we begin with considering the first initial iterates of £, («).

If fmo (wp) N (=9,9) # @, then we have reached a return and we proceed accordingly as is
described below. If this is not the case, then we are in the situation

£, (@) N (=0,0)=0 and |&, (@)|2$

with S larger than any partition element [, ¢ (=0, ) (see Remark 3.5). Since the length
of the image is bounded from below, there is an integer »* = #"(S) such that for some
smallest z < 7" we have

‘fm0+n(w0) n (_a\: 3) # Q.

In this case, m, + 7 is the index of the first return. We claim that, if m, is large enough,
we can assume good derivative up to time mz, + 7. To realise this, consider for j < 7 the
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distortion quotient

OFINE, (a);a)
0FT1(E, (0):0)

ame°+j (1;2)
9, F™%7 (1;b)

3me°_1 (1;2)
0. F™~1(1;b)

Since the distance conditions (2) are satisfied up to time 7z, — 1, the first factor in the above
right hand side is bounded from above by the constant C}" o1 with C} > 1 being very close
to 1 (see (3)). Furthermore, since j < 7z < " (S), and since we by assumption are iterating
outside (-9, ), the second factor in the above right hand side is bounded from above by
some positive constant Cg ; dependent on S and J.

If there is no parameter 2 € w, such that |9 F™" (1;4")| > nge%*(m"ﬁ) then we have
already reached our desired result. If on the other hand there is such a parameter 4" then
for all 2 € w it follows from the above distortion estimate and our choice of y that

CB€7B(m°+j)

— > Cé‘}/(m°+j),
—
C1 C:S’,S

|0.F™% (154)| =

provided m, is large enough. We conclude that

|0.F7 (1;a)| = CeV? (a€wy j=0,1,..,my+n-1). (5)

In the case we have to iterate £, (@) further to hit (=9, ) we still let 7, denote the index
of the first return.

4.2 The partition

Atthe (k+1)® step in our process of excluding parameters, A, consists of disjoint intervals

a)lgl, and for each such interval there is an associated time mzl for which either £ . (a)lgl) =
(3
I, c (—49,49), or fm/;;l (wzl) is mapped onto £(J, x), with |x — 9| = 39. We iterate each such

interval individually, and let mZil be the time for which fmzl (a)gl) hits deep enough for

us to be able to remove a significant portion of (=9, ,9, ) in phase space, and let E/:l
k+1 k+1

denote the corresponding set that is removed in parameter space. We now form the set

a?k’[ c A, and make the partition

Arl rl rl Pl
@y =w \bB = (U “’lm) UTpsr = Nepy U Ty

A

Y ) y )
Here, each w,/; ¢ N, is such that fml:-lv-l (@1) = Ly (=40, 49), and T, | consists of (at

most) two intervals whose image under £ . is (9, x), with [x — | > 3.
k+1
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Remark 4.1. At most four intervals “)/:Z; c N,,; will be mapped onto an interval slightly

larger than ., i.e. y
R
]r’l’ C Emzlﬂ ((x)k+1) C ]rylr U ‘[}"”l”’
with 1., and 1..;» adjacent partition elements.

Remark 4.2. At essential returns and escape returns we will, if possible, make a partial
partition. To these partitioned parameter intervals we associate a complete return time even
though nothing is removed at these times. This is described in more detail in sections 4.8
and 4.9.

Remark 4.3. Notice that our way of partitioning differs slightly from the original one
considered in [BC85], since here we do not continue to iterate what is mapped outside of
(=9, 9), but instead stop and make a partition.

4.3 The different returns to (-9, 9)

Attime m/:il we say that wzl has reached the (£ +1)™® complete return to (=9, 9). In between
the two complete returns of index mzl and m/:il we might have returns which are not
complete. Given a return at time 7 > m/: , we classify it as follows.

i) IfE (") € Ly U Lo, with I, and L, adjacent partition elements (# = #"), and if
|&,(@)| < |L.p], we call chis an inessential return. The interval L, U L0 is called the
host interval.

ii) If the return is not inessential, it is called an essential return. The outer most partition
element Z, contained in the image is called the essential interval.

i) If £, (@) N (=3,9) # @and |£,(«}") \ (=3,3)| = 39, we call this an escape return. The
interval £, (a)zl) \ (=9, 9) is called the escape interval.

iv) Finally, if a return satisfies &, (a)/:l) N (=d,/3,9,/3) # @, itis called a complete return.

We use these terms exclusively, that is, an inessential return is not essential, an essential
return is not an escape, and an escape return is not complete.

Given wzl c A, we want to find an upper bound for the index of the next complete return.
In the worst case scenario we encounter all of the above kind of returns, in the order

complete — inessential — essential — escape — complete.

Given such behaviour, we show below that there is an absolute constant ¥ > 0 such that
. th . rl rl rl
the index of the (£ + 1)™ complete return satisfies 72, | < m” + xlogm,”.
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4.4 Induction assumptions

Up until the start time 72, we do not want to assume anything regarding recurrence with
respect to our recurrence rate (d,). Since the perturbation is made around a PR-parameter
a,, we do however have the following polynomial recurrence to rely on (Lemma 3.4):

(PR) |F/(0;a)| =2 K[/ foralla € w andj = 1,2,...,m — 1.
After m, we start excluding parameters according to the following basic assumption:
(BA) |F/(05)| = 9/3 forall a € ] and j = mg, mg + 1,...,m] .

Since our sequence J; is assumed to be admissible, we will frequently use the fact that

%/321/G3).

From (5) we know that every 4 € wzl is (y, C)-Collet—Eckmann up to time 7z, and this
condition is strong enough to ensure phase-parameter distortion (Lemma 3.2). We will
continue to assume this condition at complete returns, but in between two complete
returns we will allow the exponent to drop slightly due to the loss of derivative when
returning close to the critical point x = 0. We define the basic exponent conditions as
follows:

(BE)1) [0,F”% " (1;4)| = Ce”™ ™ forall a € .

(BE)(2) [0.F/(1;a)| = Ce¥/* foralla € &)’ and j = 0,1, ..., m}' — 1.

Assuming (BA) and (BE)(1,2) fora € a)/:l c A, we will prove it for 2’ € a),:fl C A,y CA,
Before considering the iteration of a);[, we define the bound period and the free period, and
prove some useful lemmas connected to them. For technical reasons these lemmas will be
proved using the following weaker assumption on the derivative. Given a time 7 > mzl we

consider the following condition:
(BE)(3) |0.F/(1;4)| = Ce7PV foralla e a)krl andj=0,1,..,n - 1.

Notice that /9 > 3, hence we will be able to apply Lemma 3.2 at all times.

To rid ourselves of cumbersome notation we drop the indices from this point on and write

_ 7l _ 7l
w=uaw,,andm =m .
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4.5 The bound and free periods

Assuming we are in the situation of a return for which & (w) c 1., UL U _; c (—40, 49),
we are relatively close to the critical point, and therefore the next iterates £, y ( ) will closely
resemble those of £;(w). We quantify this and define the bound period associated to this

return as the maximal p such that

(BC) |4(a) = F (p3a)| < |€,(a)|/(10¥%) forv = 1,2,..,p

holds forall 2 € w, and all 5 € (0, ¢ "71). We refer to (BC) as the binding condition.

Remark 4.4. In the proof of Lemma 4.12 we will refer to pointwise binding, meaning
that for a given parameter 2 we associate a bound period p = p(a) according to when
(BC) breaks for this specific parameter. We notice that the conclusions of Lemma 4.5 and
Lemma 4.6 below are still true if we only consider iterations of one specific parameter.

The bound period is of central importance, and we establish some results connected to it
(compare with [BC85]). An important fact is that during this period the derivatives are
comparable in the following sense.

Lemma 4.5 (Bound distortion). Let n be the index of a return for which £,(w) € I,,ULUI._,,
and let p be the bound period. Then, for all a € w and 5 € (0, eIl ),

- 0.F/ (1 - 4;72; a)
0.F/(1; a)

1 .
z_ <2 (]=1,2,...,P).

Proof. Itis enough to prove that

T(1 — 52
0. F (1' ay";a) 1l < l ©)
d.F/(1;a) 2
The quotient can be expressed as
aFJ(l—my a) J F'(p;a) — ¢,(a)
1/,
3.F/(1;a) H( ) " )

and applying the elementary inequality

J

Hu+1—1

=1

<CXP(Z|% I)
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valid for complex #,,, (6) now follows since

L \F (p3a) - £ 1 <1
Z ;7|g( @ —oz—zﬁ

=1

IN

le

O

The next result gives us an estimate of the length of the bound period. As will be seen, if
(BA) and (BE)(3) are assumed up to time z > m = mzl, the bound period is never longer
than 7, and we are therefore allowed to use the induction assumptions during this period.
In particular, in view of the above distortion result and (BE)(3), we inherit expansion along
the critical orbit during the bound period; making sure , is large enough, and using (BA)
together with the assumption that (9,) is admissible, we have

|0.F" (1;.4)| = 24|, (@) |10, (1;2) | [0,F/ (1 - a&,(a)s a)
5> 220901

3n¢
20 a elogn .
—3C€ exp{(9 —— (n+7)
> Cre?™™) (7 =0,1,..,p). (7)

This above estimate is an a priori one, and will allow us to use Lemma 3.2 in the proof of
Lemma 4.10.

Lemma 4.6 (Bound Length). Let n be the index of a return such that &,(w) ¢ 1., UL Ul_;

r+1

and suppose that (BA) and (BE)(3) are satisfied up to time n. Then there exists a constant
Ky > 0 such that the corresponding bound period satisfy

K< p < (8)

Proof. By the mean value theorem and Lemma 4.5 we have that
£(a) = F/(552)| = |F/ " (La) - F7M (1= 2y’ a) |
= ay’|0F/7 (1 - ay”; )| )

2
> %Mfo_l(l;a)L

aslongas j < p. (Here, 0 < ' < 7.) Furthermore, as long as we also have ; < (log n)?, say,
we can use the induction assumptions: using (BE)(3) we find that

£
1052

1 200 0, 019G o YT |9 FIl(1La)] <

49



Taking the logarithm, using (BA), and making sure that , is large enough, we therefore
have 9
j<1+ 7 (27 +2+1log2—logC) s r < logn < (logn)z,

aslongas j < pand j < (logn)®. This tells us that ; < p must break before ; < (log7)*;

in particular there is a constant x; > 0 such that p < x;7.

For the lower bound consider j = p + 1 and the equality (9). With 2 € @ being the
parameter for which the inequality in the binding condition is reversed, using Lemma 4.5
we find that

551(a) |

06717 = i@~ (5a)| s 467101 (i) | < 4674

Using the upper bound for p we know that (BA) (or (PR)) is valid at time p + 1, hence

Ga@l 1
IO(P"' 1)2 - 30(P+ 1)2+é>

where ¢ = max(e, 7). Therefore

1

— < 46_2’41’,
30(p + 1)%+

and taking the logarithm proves the lower bound.
O

Remark 4.7. Notice that the lower bound is true without assuming the upper bound
(which in our proof requires (BE)(3) at time 7) as long as we assume (BA) to hold at time
p+ 1Ll

The next result will concern the growth of £, (w) during the bound period.

Lemma 4.8 (Bound Growth). Lez n be the index of a return such that &,(w) c I with
I,clcl, vl ul_,,andsupposethat (BA)and (BE)(3) are satisfied up to time n. Then
there exists a constant x, > 0 such that

|£,(«)|
1

1
|fn+p+1 (w) | 2 y_Kz
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Proof. Denote Q = £, ,,;(w) and notice that for any two given parameters 2,5 € » we
have

|Q| |Fn+‘b+1(0,él) Fn+p+1(0 b)|
= |F' (&, (a); a) = FP*H(E,(0); D)
2 |FP*(E, (a)sa) - FP* (£, (0); )
— |FPH (&, (b)s @) = FP (&, (6); ). (10)

Due to exponential increase of the phase derivative along the critical orbit, the dependence
on parameter is inessential in the following sense:

|FPPU(E (b)s @) = P&, (05 0)] < 71197 £, (w) . (11)

To realise this, first notice that we have the following (somewhat crude) estimate for the
parameter derivative:
|0,F/ (w;a)| <5/ (j=12..).

Indeed, |9,F(x;4)| <1 <5, and by induction
0,7 (55)| = 10,(1 - aF? (x: 2)?)]
— | = FI(5,0)" - 2aF (%, 2)0,F (v;0)|

<1+4-5/
< s/

Using the mean value theorem twice, Lemma 3.2 and (BE)(3) we find that
|FPYUE,(b)s a) = PP (E,(8);0)| < [(1 = A)T] 'SPl 0PID g (o).
In view of (8) and (BA), making mz, larger if needed, the inequality (11) can be achieved.

Assume now that at time p + 1 (BC) is broken for parameter 4, and let 4 be an endpoint of
w such that
|4, ()]
>

15,(a) - £,(b)] =
Continuing the estimate of |Q|, using (11), we find that
Q| = |[FP(1 - 4, (a)%2) = FP (1 - a£,(b); a)|
— |FP* (g, (b)s 2) = FPTH(E,(0); 0)
(4l @) + £, D10 (1 - af, (s )] - 2670197) L)

|5, ()|
R

\%

> (2a¢7 |07 (1 - af,(d); a) | - 2¢70197)
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Using Lemma 4.5 twice and the equality in (9) (with p + 1 instead of p) together with (BC)
(now reversed inequality) we continue the estimate in (12) to find that

L1 5] e 1£,(@)]
1 2(2‘” b 0+ 12 > 7 ) 2
A @1 g 15.@)]
2(6 20(p+1)2—2e 7/18 ) - (13)

In either case of p < m,, or p > m,, we have that (using (BA), (PR), and the assumption
that our recurrence rate is admissible)

@l &
(7 " 341

where ¢ = max(e, o). We can make sure that the second term in the parenthesis in (13) is

always less than a fraction, say 1/2, of the first term and therefore, using (BC), (8), and that
¢ = 1/(2r*|1]), we finish the estimate as follows

K 1 )
= mm@(wﬂf

K 1 |4, ()|

> — -
480 ;,.2(10 + 1)2+e |[|

. K 1 |£(o)]

T 480(2x, )2+ pire |1
1 [£(0)]

> :
e ||

Q]

(14)
where we can choose x, = 5 + ¢ as long as 9 is sufficiently small. O

Remark 4.9. Using the lower bound for p, the upper bound
1§, ()]

|fn+p+1(w)| < ; |[|

can be proved similarly.

This finishes the analysis of the bound period, and we continue with describing the free
period. A free period will always follow a bound period, and during this period we will
be iterating outside (=0, 9). We let L denote the length of this period, i.e. L is the smallest
integer for which

£ s (0) 0 (=3,9) % 0.
The following lemma gives an upper bound for the length of the free period, following the
bound period of a complete return, or an essential return.
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Lemma 4.10 (Free length). Lez &, (w) c 1,y UL U L_, with n being the index of a complete
return or an essential return, and suppose that (BA) and (BE)(3) are satisfied up to time n.
Let p be the associated bound period, and let L be the free period. Then there exists a constant
x5 > 0 such that

L<wyr.

Proof. Assuming j < Land j < (log#)?, similar calculations as in the proof of Lemma 4.8
gives us parameter independence (see (11) and notice that from (7) we are allowed to apply
Lemma 3.2); using Lemma 4.8 and Lemma 3.1 we find that

1
2> |fn+p+j(a))| 2 Te}/M] D

=
Taking the logarithm, using (BA), and making sure that , is large enough, we therefore

have
j<1+ yi(leogr+A +log4 —log Cy,) s » < logn < (logn) ,
M

aslongas j < Land ; < (log n)%. This tells us that j < L must break before ; < (log n)%in

particular there is a constant x; > 0 such that L < x;7. O

Remark 4.11. Ifthereturn,, ./ (w) is inessential or essential, then there is no dependence
on d in the growth factor; more generally, if the prerequisites of Lemma 4.8 are satisfied,

|f | CM ;/MLI 1|f( )|
n+p+L = ;,.xz |]| :

then

Before considering iterations of w = a)lgl c Ay fromm = mzl to m/il, we make the following

observation that as long as (BA) is assumed in a time window [#, 2], the derivative will
not drop too much.

Lemma 4.12. Suppose that a is a parameter such that
0.F/(1;a)| = Ce’7 (j=0,1,..,n—1), (15)
withy' > y|3. Then, if (BA) is satisfied up to time 2n, we have
|0 F" (1;a)| = CeVPD (j=0,1,..,n-1).

In other words, if (BA) and (BE)(1) [(BE)(2)] are satisfied up to time n then (BE)(2) [(BE)(3)]
is satisfied up to time 2n, as long as (BA) is.
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Proof. The proof is based on the fact that we trivially have no loss of derivative during the
bound and free periods. Indeed suppose £, (2) ~ ¢, with " > 7 and let p be the bound
period (here we use pointwise binding, see Remark 4.4), and L the free period. Moreover
we assume that 2’ + p + L < 2z; in particular this implies p < 7 and we can use (15) during
this period. Introducing D, = |0,F?(1; )| and using similar calculations as in Lemma 4.8
(e.g. the equality in (9) and reversed inequality in (BC)) we find that

N &1 ()] N 1
T 10(p+1)2 7 (p+1)2+E

e_ZVDP > ay®|0.F! (1 - ay*;a)|

where we used (BA) (or (PR)). Since p < 7 we are free to use (15) and therefore the above
inequalities yield

1 '12p
¢'D,2 D, > — > G

? \/(P + 1)2+é \/(P"’ 1)2+é

provided 4 is small enough. Here in the last inequality we used the lower bound in (8) (see
Remark 4.7). Assuming 51’+p+L (a) is areturn (and that 2’ + p + L < 27), we therefore have

b

|axFP+L(fn’ (‘4)3 d)| 2 2d|‘fn’ (d) | |axFP(1 - ﬂ‘fn’ (‘4)25 ﬂ) | |axFL_1(‘fn’+p+l (ﬂ); ﬂ)|
2 e D,Cye (L-1)

> 1.

We conclude that the combination of a return, a bound period, and a free period does not
decrease the derivative.

Let us now follow a parameter 4 satistying (15) and (BA) up to time 2z. If the iterates
- ;(a) are always outside (-0, ) then

10.F"*(1;2)| = |8.F" " (1;2)||0.F/*1 (£, (a); )
> Ce}"(n—l)gCMg}’M(jﬂ)

> GV I 3¢ S0 19 0)
> CVPE) (20,12 - 1),
provided m, is big enough.

Otherwise, the worst case is if we have a short free period followed by a return, a bound
period, a free period, and so on, and which ends with a return together with a short bound
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period. In this case, using the above argument, the estimate is as follows:
0, (13a)| > |0,F (1,)] - Gy -1+ 10124, (a)] - C

, S
> Ce? (”‘1)CMC24%

S 7 190)) CMC%€<7’/3>n—zlog<2n>
> C P (j=0,1,..,n-1),

provided m, is big enough. This proves the lemma. O

4.6 From the 4™ complete return to the first inessential return

If w c T;, then we have already reached an escape situation and proceed accordingly as is
described below in the section about escape. We therefore assume w ¢ N, and £, (w) =
I, c (—49,49).

(]

If it happens that for some j < p

fmﬁ'(w) N (_5m+j/3’5m+j/3) # @,

then we stop and consider this return complete. If not, we notice that £, +P(a)) can not be
a return, unless it is escape or complete; indeed we would otherwise have [£,, ., (#)] <
£, +P(a)) |, due to the fact that we return close to the critical point, thus contradicting
the definition of the bound period. We therefore assume that £, » (w) does not intersect

(=3,9).

Up until the next return we will therefore experience an orbit outside of (=9, 9), i.e. we will
be in a free period. After the free period, our return is either inessential, essential, escape,
or complete. In the next section we consider the situation of an inessential return.

4.7 From the first inessential return to the first essential return

Let#; = m + p, + L denote the index of the first inessential return to (=4, 9). We will keep
iterating & () until we once again return. If this next return is again inessential, we denote
itsindex by 7, = 7; + p; + L;, where p; and L, are the associated bound period and free
period, respectively. Continuing like this, let i be the index of the jth inessential return.

The following lemma gives an upper bound for the total time spent doing inessential
returns (compare with Lemma 2.3 in [BC91]).
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Lemma 4.13 (Inessential Length). Lez &, (w) € L, UL U L_y with n being the index of a
complete return or an essential return, and suppose tlmt (B4) zmd (BE)(2) are satisfied up to
time n. Then there exists a constant x, > 0 such that the total time o spent doing inessential
returns satisfy

0 < Ky

Proof. Leti; = n+ p + L be the index of the first inessential return, i.e. £ (») < 7., with [,
being the host interval. From Lemma 4.6 and Lemma 4.10, together with (BA), we have
that

L=n+p+L<n+(c +13)r<2n,

provided 2, is large enough. We can therefore apply Lemma 4.12 and conclude that (BE)(3)
is satisfied at time 7. To this first inessential return we associate a bound period of length
1 (satistying p; < x;7 due to the fact that (BE)(3) is satisfied time 7;) and a free period
oflength L,. Welet7, = 7; + p; + L; denote the index of the second inessential return.
Continuing like this, we denote by 7; = 7,_; + p,_; + L;_; the index of the 7™ inessential
return. With o, denoting the total time spent doing 1nessential returns up to time 7;, we
o -1 1 -
have thato, = 7, — 7, = 22:1 (e + Ly). Suppose that the return with index z is the first
that is not inessential. We estimate o = o, as follows. Suppose that o, is as above and that

e <k fork=1,2,..,7 - 1. Using Remark 4.11 we find that

&, @] et ¢ el

> —— 2 (16)
&(@)] 2771 | 2 g2
and therefore
=g ( 3Gy e 11 €y, D
(/5 M€ ‘M e
22|f |_|£1 |H |§1 255 HTT (17)
lk k=1 k

Here the § is added to make sure that the estimate also holds for the last free orbit, when
the return can be escape or complete. This gives us a rather poor estimate, but since p < »
itis good enough.

Taking the logarithm of (17) we find that

j-1
z (log Cyy —log2 + %, (L, — 1) + 7, — x, log 1) < &, log 7 + A + const. .
k=1
Provided d'is small enough we have 7, > 4x;, log 7, and 7, > —logd > —2(log Gy +7,,+log2).
Therefore, using g, < «,7,, we find that
1
0; =1, —11 = » (pp + 1) < 5,7,

~.
|

T
oL
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with x, being an absolute constant. In particular

;=1 +0; < 2n,

and therefore (BE)(3) is still valid at time i Consequently the associated bound period
satisfies P < %17y and the above argument can therefore be repeated. With this we conclude
thato, < x,7. O

We proceed in the next section with describing the situation if our return is assumed to be
essential.

4.8 From the first essential return to the first escape return

With 7, denoting the index of the first essential return, we are in the following situation

L@)nl, =0, 1§ (@)] 2|1,
and §, (w) c (-49,49) \ (-9,,/3,9, /3),

for some 7, /. At this point, in order not to lose too much distortion, we will make a
partition of as much as possible, and keep iterating what is left. That is, we will consider
iterations of larger partition elements 7, = (71 e) ¢ (—49,49), and we establish an
upper bound for the number of essential returns needed to reach an escape return or a
complete return.

Let Q; = §, (w) andlet /; = [, ¢ Q, for smallest such 7. (In fact, we extend 7; to the
closest endpoint of €, and therefore have ; ¢ , U [._;.) If there is no such 7, we instead
let ; = Q. Moreover, let »' be the interval in parameter space for which &, (@) = 1I,.
The interval 7 is referred to as the essential interval, and this is the interval we will iterate.
Ifd=w\ois nonempty we make a partition

A /
b= c Ay,

i
where each & is such that [, c &, (@) = I, UL, c (~43,43). (If there is not enough

left for a partition, we extend / further so that; c I, ,; UL U [, _,.) Notice that, since the
intervals Z, are dyadic, the proportion of what remains after partitioning satisfies

|4
Q|

>1-

\%
N =

(18)

Q|
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We associate for each partitioned parameter interval & the complete return time 7, (even
though nothing is removed from these intervals). From the conclusions made in the
previous sections we know that

ny=m+ py+ Lo+ 0y <m+ (k) + x5 + %) 7 < 2m,

provided m, is large enough. In particular Lemma 4.12 tells us that (BE)(2) is satisfied
up to time 7, for all 2 € w. At this step, to make sure that (BE)(1) is satisfied for our
partitioned parameter intervals W’ c Ay, 1, we make the following rule (compare with the
initial iterates at the beginning of the induction step). If there is no 4’ € w such that

0 F" N (1;4)| = Gen7Y,

then we remove the entire interval. If there is such a parameter, on the other hand, using
Lemma 5.1 we have that

1,577 (154) | = DT |, (134
log" m)?
> Gy exp {(;@ - M long) (g — 1)}
n —1
> Ce?m ),
provided m, is large enough.

With the above rules applied at each essential return to come, we now describe the iterations.
Since &, (») = [, using Lemma 4.8 we know that the length of Q; satisfies

Cye™ 1 1
1] 2 = .
2 72 Ky +1
0 0

. . il
Notice that since ¢ "

> |Q;| we have that 5; < 2x, log 7. Iterating /; with the same
rules as before, we will eventually reach a second noninessential return, and if this return is
essential we denote its index by 7,. This index constitutes the addition of a bound period,
a free period, and an inessential period: 7, = n; + p; + L, + o;. Similarly as before, we let
Q,=£, (#'),and let I, ¢ Q, denote the essential interval of Q,. Let w”® ¢ w' be such that
fnz (#*) = L, and make a complete partition of w' \ & By applying Lemma 4.8 again, we

find that
1 1

K+l T

Q| = .
19212 21 2 (g Tog )

If we have yet to reach an escape return or a complete return, let 7 : be the index of the jth
essential return, and realise that we are in the following situation

1

K+l "
s

£,@) =LcQ =5 @) and |02 (19)
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Introducing the function » = 2x, log» = ¢(r), we see from the above that 7 < o/ (%)
The orbit ¢/ () will tend to the attracting fixed point # = =2k, W (-1/(2x,)), where W
is the Lambert 77 function. The following simple lemma gives an upper bound for the
number of essential returns needed to reach an escape return or a complete return.

Lemma 4.14. Let (r) = 2x, log 7, and let s = s(r) be the integer defined by
log 7 <2x, <log 7.
Then

o' (r) < 1255

Proof. Using the fact that 3 < 2x, < logj rforj =0,1,...,5 — 1, it is straightforward to
check that
o/ (r) < 6x, logj 7. (20)

Therefore
o' (r) < 2x, log (6K2 log . r) =2x, (log?) +log2x, + log r) < 1245,

O]

Given s = s(y) as in the above lemma we have that 7; < ¢’ (7)) < 12x;. By making sure  is
small enough we therefore conclude that

1
|Q:+1| = W > 49.

To express s in terms of 7y we introduce the so-called iterated logarithm, which is defined

. 0 ifx <1,
log” x = .
1+log logx ifx > 1.

recursively as

Thatis, log” x is the number of times one has to apply to logarithm to x in order for the
result to be less than or equal to one.

ince s satisties log 7 < 2x, < lo 7y and since 2« , we have
S tﬁlg0<22<lg10 d 2k, > 1 h
5 5=

s<log’ 5 < log" m. (21)
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We finish by giving an upper bound for the index of the first escape return (or (£ + 1™
complete return), i.e. we wish to estimate

j+1—m+Z( + L +0)

From Lemma 4.6, Lemma 4.10, and Lemma 4.13, we have that

<Ky <K <K
pi<xn L <y, and o, <wr.

Together with the inequalities 7 < @’ () and (20), we find that

=0 71
S
Shy+ Zlog 7
=
< 7.

Using (BA) we conclude that z,; — m < log m, provided m, is large enough.

4.9 From the first escape return to the (£ + 1)t complete return

Keeping the notation from the previous section, Q,,; = £, («") is the first escape return,

satisfying
Q. n(=9,9) #0, Qyyn(=9,/3,9,/3) =
and \ (=3,9)| = 39.

| s+1

We will keep iterating »’ until we get a complete return, and we show below that this must
happen within finite (uniform) time. In order to not run into problems with distortion we
will, as in the case of essential returns, whenever possible make a partition of everything
that is mapped inside of (-9, 9 ) and the corresponding parameter intervals will be a part
argletly =00\ (Q, 0 (=8,9)), ler o be
such that f"smf (@) = I, »and make a partition of &\ ™™, As in the case of

of A, ;;i.e. at time Moty =

35
essential returns, we associate to each partitioned parameter interval the complete time

7y414j> and as before we make sure that at these times (BE)(1) is satisfied.

Let w, = w; U wy, U wy be the disjoint union of parameter intervals for which

fnﬁl (“)L) = (55 23)3 f";ﬂ (wM) = (25’ 35)3 and f";ﬂ (wR) = (35, 43)
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Clearly it is enough to show that @, reaches a complete return within finite time. Let #, be
the smallest integer for which
Cyre™™ > 4.

If 9 is small enough, and if |, | = 2¢ is small enough, we can make sure that

Go@)n(=2020)=0  (1<j<u).

5

Suppose that, for some j > ¢,, fnﬁw(%) N (=9,9) # @, and that this return is not complete.
Assuming that wy returns we can not have §, () < (=29,29). Indeed, if this was the

J
case, then (using Lemma 3.1 and parameter independence)

£,

stl+j

()| >2[&, (@)] > 29,

contradicting the return not being complete. We conclude that after partitioning what
is mapped inside of (-9, 9), what is left is of size at least J, and we are back to the original
setting. In particular, w,, did not return to (-9, 9). Repeating this argument, &, and wy
will return, but w,, will stay outside of (=, 9). (Here we abuse the notation: if &y returns
we update it so that it maps onto (9, 29), and similarly if wy returns.) Due to Lemma 3.1
we therefore have

(@] 21§, (pr) [9Cy €™ > 52 Cype! (j20),
and clearly we must reach a complete return after ; = ¢ iterations, with

2A —log Gy,

Ym

t s

With this we conclude that if 72, is large enough then there exists a constant © > 0 such that

rl rl rl
my,. <my +xlogm. (22)

We finish by estimating how much of Q. is being partitioned at each iteration. By

definition of an escape return we have that |Q,,, | > 34, and since it takes a long time for
w, to return, the following estimate is valid:

I .

:+1+j|

>
|Q+1+j| |Q:

K

|Q

:+1+]’|

2
=z, (23)
+1+j| 3
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410 Parameter exclusion

We are finally in the position to estimate how much of w is being removed at the next
complete return. Up until the first free return, nothing is removed (unless we have a bound
return, for which we either remove nothing, or remove enough to consider the return
complete). Let £ be what is removed in parameter space, and write @ = . Taking into
account what we partition in between 7, and m,,; we have that

|E| ~ |E| =1 Ia):+1+vl s—1 |w1+1z|

|w0| - |wx+t| 11 |w5+v| 1 |wv|

Using the the mean value theorem we find that for each factor in the above expression
/| a4
/7 lay = by
|2, = b |fnj(ﬂj—1) - fnj(bj—l)l |§¢j(4j) =& (5)]
15, @) =&, @) ap bl 18, (@) =4, ()]

7

J
0 F5 7 (L6) 104, (gDl 10.F (15¢.)| 11|
2.4, 10" g 10577 (1) 11

Making use of Lemma 3.2 and Lemma 5.1, we find that

lw/| 1]
ik 19,1

DA D (log" mk)

and therefore, using (21), (18), and (23), there is, provided , is large enough, an absolute
constant 0 < 7 < 1 such that

|E| (é\m,eﬂ/?’) 1 —1 ~—(log" my)? t+log"my (log*m+)3
oz (G T) g e

In particular, for the remaining interval @ = @ \ E we have that

6] < |o|(1 =9, 708 M)y, (24)

M1

S Main Distortion Lemma

Before giving a proof of Theorem B, we give a proof of the much important distortion
lemma that, together with Lemma 3.2, allow us to restore derivative and to estimate what
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is removed in parameter space at the (£ + )™ complete return. The proof is similar to that

of Lemma S in [BC85], with the main difference being how we proceed at essential returns.
As will be seen, our estimate is unbounded.

If not otherwise stated, the notation is consistent with that of the induction step. Recall
that
A= NUT,,

with &, ¢ N, being mapped onto some [, ¢ (40, 49), and &, C T, being mapped onto an
interval +(d, x) with |x — 9| > 39. Moreover, we let 7, (4, &) denote the largest time for
which parameters 4, b € w, belong to the same parameter interval a)/i Cuwpeg ifabe w/i
thenmy,,(a,0) 2 n;,,.

Lemma 5.1 (Main Distortion Lemma). Let w, © Ay, and let my, be the index of the I
complete return. There exists a constant Dy > 1 such that, for a,b € w, and j < my,,; =
M1 (d: b)) )

9.5/ (L4)| _ g m)’

0.F/(1;6)] ~ '

Proof. Using the chain rule and the elementary inequality x + 1 < ¢* we have

|¢ﬁumn_flaﬂwu
0,F1(16)] g 10.F(F(130);0)]
(

|
S (g)fﬁ(lfv(ﬂ) - £,(b)| +1)

<@ya(f|ma—mmg
U E@r )

=1

We claim that the first factor in the above expression can be made arbitrarily close to 1. To
see this, notice that

a\/ Vi
(Z) < (1 + |a)/€|) .
Using (BE)(1) and Lemma 3.2 we have that |ay,| < ¢7"%, and for m, large enough we have
from (22) that j < my,,; < my, + xlogmy, < 2my,; therefore

(1 + |wk|)j <(1 +e_(7/2)mk)2mk.

Since
(1 + e—(}//Z)mk)ka < (1 + g_(7’/2)7”0)2m0 — 1 as my — 9,
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making ., larger if needed proves the claim. It is therefore enough to only consider the
sum .
R ) - 50
=2 TRl

With m;, < my,, being the last index of a return, i.e. e (@) © [ C (—40, 49), we divide

as
m;_l Mgy =1

=>4 > =3+3,

and begin with estimating %, .

The history of w, will be that of &y, @, ..., j,_;. Let {tj}]]\io be all the inessential, essential,
escape, and complete returns. We further divide X; as

-1

E@-£0) S p@ g0 S
; TEDL 22 <b>| =25

\\N

The contribution to S, from the bound period is

2 |ft+v ftw(b” |ft(“)) |58t(5‘) | b e_zr|3FV 1(1 d)|

2~ £+, (0)| Ift b)| Ift |Z b)|

=0 y=1

Let: = (x, log4)™" and further divide the sum in the above right hand side as

p; V4
22
r=1 V:1p1-+1

To estimate the first sum we use the inequalities |0.F”| < 4” and |£,(6)| = 9,/3 2 v ™%, and
that p; < 7, to find that

& ¢ 0E T (15 4) | < ily z
= 1£0)] o
< 6_274"7-7']);

(4
7
I

7

<

Q

To estimate the second sum we use (BC) and the equality (9), and find that

Lo 0. F T (1 a) 1

L EOI S

J
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Therefore the contribution from the bound period adds up to

ti+p; =
T @ -gw)| 5@ 1g@1 1 4
2 B0l SO EONZ TS
£ (@)
*TEO!

After the bound period and up to time #,,; we have a free period of length L, during which
we have exponential increase of derivative. We wish to estimate

tq—1 L.—1
A = e et AR ]
tzpjl E@0 Zl O

Using the mean value theorem, parameter independence and Lemma 3.1, we have that for
l<yv<l. -1
j
£, @ =&, ) = 15,001, (@) = £,y 0, D))
= [FY7(E L, @)sa) ~ FY(E L, L (0)5a)]
= |axFLj_V(ftj+pj+u (41)5 ﬂ) | |'£*j+pj+v (ﬂ) - £j+pj+v(b) |

L.—v
2 €7M( ’ )|‘ftj+pj+v(d) - ffj*]’j“'(b) |’

and therefore
£, @-£,0)
|‘£‘j+pj+v(ﬂ) - ftj+pj+1/(b)| s

provided ftj ., (@) does not belong to an escape interval. If ;”tj ., (@) belongs to an escape
interval, then we simply extend the above estimate to #;,,, 7,3, ..., until we end up inside
some 1., C (—49, 40) (which will eventually happen, per definition of 72;). Hence we may
disregard escape returns, and see them as an extended free period.

Since |§';j+1 b)) < |5ttj+p,-+v(b)| forl<v <L, -1,itfollows from the above inequality that

G @ = £ WO 15 (@ =& 0

j+1

< €7M(J
D 90 | R T a3

=1 y=1

£, (@)~ £, ()
Z.00

j+1

thus the contribution from the free period is absorbed in . ;.
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What is left is to give an estimate of

m;,—1
CE@ - g0) &G &g ()]
Zm HOl S;mj(bn szo Al

where, with the above argument, {tj}j]\i o are now considered to be indices of inessential,
essential, and complete returns only. Because of the rapid growth rate, we will see that
among the returns to the same interval, only the last return will be significant. From
Lemma 4.8 we have that |ftj+1 (w)] = (erf'/;;.xz) |§/(w)| > 2|ftj(a)) |, hence with /() the last
j for which n=7

j. £, @)
AR AP Fey e

r=v )
7 ve{r}

If #;(,) is the index of an inessential return, then |§’%) (@)|/|L] < »2, and therefore the
contribution from the inessential returns to the above left most sum is bound by some
small constant. It is therefore enough to only consider the contribution from essential
returns and complete returns. To estimate this contribution we may assume that 7z, > s,
and that £, («) = 7,;. Moreover, we assume that fmj (w) = L forall 5.

With 7, = m; being the index of the 7™ complete return, and 7 iy € (mj,m,,) being the

index of the »™ essential return for which ¢ (w) c I, wewrite
Jv Y

£ @) &L @] &
Z tj(|)[y| SZ |jI,v :ZS’”;"

ve{r}

For the last partial sum we use the trivial estimate S, < log” 7. To estimate S, , for
J

J # k, we realise that between any two free returns 7, , and 7;

: el the distortion is uniformly

bound by some constant C; > 1. Therefore

£y @

L9177

> _2,
|[r/e—1,vk_1—j | 7;6
. *
and consequently, since »; < log” 7 (see (21)),
Czlogx -1
S, < o
k
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for some uniform constant C, > 1. Continuing like this, we find that

Clog* Th-j Clog* et Clog* -1
2

2 2
Smk_- < 2 2 2
7 7 7 e
k—j+1'k—j+2 'k
log’ T-j
P S
- 3/2 3/2 5’
}//'e . 7 . e
—j+1k—j+2 'k

where we in the last inequality used the (very crude) estimate
og"
G® " < Vx.

. .~ ~log’ Thj
Let us call the estimate of Smk_,- good if C, < -1~ Forsuch Smk_,- we clearly have

1
< —.
Mej T AJI2

Let j; > 1 be the smallest integer for which Smk_,- is not good, i.c.
log’ %j, = (log G,) ' log By = (log G,) ' logA.

We call this the first bad estimate, and for the contribution from §,,  to the distortion we
—J1

instead use the trivial estimate

* *
Smk_j1 <log'7_; <log my.

Suppose that 7, > j; is the next integer for which

log” 7,
Cz 2 - pt1t
If it turns out that o
o8
CZ - 7}6_]‘1’

then
<
m—h = AjJ2’

and we still call this estimate good. If not, then

log™ 7, = (log G,) " log /-y
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and , is the index of the second bad estimate. Continuing like this, we get a number s of
bad estimates and an associated sequence R, = 7,_; satisfying

log" R, = (log G,) " log A,
log" R, > (log C,) ' log R,

log" R, > (logG,) ' log R,_;.

This sequence grows incredibly fast, and its not difficult to convince oneself that

3

R > ¢

s [u———

s copies of ¢

In particular, since R, < m, we find that
* *
s < log’' R, <log" my,.

We conclude that

hence .
& (a) - £(0)]
,:Zl £,

< (log” my)?.

From my,. to my,,; — 1, the assumption is that we only experience an orbit outside (-9, 9).
By a similar estimate as (25) we find that for» > 1

|fmk—1 (a) - fmk—l )|

S (my=1=my=v)

|fm1€x+1/(ﬂ) - fm,zurv(b” S

3

and therefore .
M1~
£.(a) = §,()| 1 ©o\2
22 <1+ — < (log my)7,
25 = los )
provided m, is large enough. This proves the lemma. O
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6 Proof of Theorem B

Returning to the more cumbersome notation used in the beginning of the induction step,

let wzl c A;. We claim that a similar inequality as (24) is still true if we replace © and @

with A, ; and A, respectively. To realise this write A, ; as the disjoint union
_ Arl
Bpy = U w/e+1
With 2, being the start time, consider the sequence of integers defined by the equality
my, = [my + xlogmy] (k=0),

where [x] denotes the smallest integer satisfying x < [x]. By induction, using (22),

o +xl r +xl <

my, <m," +xlogm " <my +xlogmy, < my,;.

Hence the sequence (72;,) dominates every other sequence (mzl), and therefore it follows
from (24) that

Bl = > 17"
= (gt (1= 8,0 A

< (3 1) 18, )

_ |A/e| (1- T(log mk+1)3)_
mle+1
By construction
A, (9,) N CEGy, Gg) Ny € Ay = () A
k=0

and therefore, to prove Theorem B, it is sufficient to show that

[]-35, 7% ") =0

k=0

By standard theory of infinite products, this is the case if and only if

Z 3 7(108 m/z) = o0,

To evaluate the above sum we make use of the following classical result, due to Schlémilch
(see [BKO0G], for instance).
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Proposition 6.1 (Schlémilch Condensation Theorem). Let gy < q; < ¢, -+ be a strictly
increasing sequence of positive integers such that there exists a positive real number a such that

q/e+1 % (/e > 0)
%~ %1

Then, for a nonincreasing sequence a,, of positive nonnegative real numbers,

Z a, = ifandonly if Z(%ﬂ - q/e)ﬂqk =
k=0

n=0

Proof. We have
Jer=q=1

(Ger — W)y, < 2 Ay n < (Gper — @),

n=0

and therefore
(o] (o] [o]
-1
@ Z(%rz - qk+1 Ghs1 S Z a, < Z Ge+1 ~
k=0 n=g k=0

O]

Since my,,, — my, ~ logmy, is only dependent on 2, we can easily apply the above result in
a backwards manner. Indeed we have that

M =M xlogmy +1

my, —my_y ~ xlogmy_;

xlog (my_; + xlogmy,_; +1) +1

xlog my,_;

< 1 4 Sonst. (k> 0),

log m,

and therefore with ¢, = my, and 4, = 3,[7(1055 n’ / log n, the prerequisites of Schlémilch
result are satisfied. We conclude that

n=m;
if and only if
i m 5’”& (Iog m)? h) (log™ my,) 0
k+1 — 10 m "
k=0 g k k=0
This proves Theorem B.
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Slowly recurrent Collet—Eckmann maps with
non-empty Fatou set

Magnus Aspenberg, Mats Bylund and Weiwei Cui

Abstract

In this paper we study rational Collet—Eckmann maps for which the Julia set is not
the whole sphere and for which the critical points are recurrent at a slow rate. In
families where the orders of the critical points are fixed, we prove that such maps
are Lebesgue density points of hyperbolic maps. In particular, if all critical points
are simple, they are Lebesgue density points of hyperbolic maps in the full space of
rational maps of any degree d > 2.

1 Introduction

Uniformly expanding maps have the property that nearby points on the Julia set repel
each other at a uniform rate (with respect to some smooth metric). One of the central
problems in complex dynamics is to prove that the set of these so called hyperbolic maps
is open and dense in the parameter space of rational maps (or other complex analytic
families of maps). This conjecture by P. Fatou in the 1920s has been proven in the real
case [GS97, Lyu97, KSvS07], but is still open in the complex setting. In recent years, a
great deal of attention has been focused on maps which are non-hyperbolic but satisfy
a certain non-uniformly expanding condition, like the Misiurewicz condition (critically
non-recurrent or even postcritically finite maps), the Collet—Eckmann condition or other
more general summability conditions, semi-hyperbolicity etc. Conjecturally, almost every
map is hyperbolic or satisfies such a non-uniformly expanding condition. This would also
imply that the Fatou conjecture is true. In this paper, we focus on maps which satisfy
the Collet—Eckmann condition. Our result demonstrates that any such map, for which
the critical points are allowed to be recurrent at a slow rate (slowly recurrent maps), can
be perturbed into hyperbolic maps in a strong sense; they are Lebesgue density points of
hyperbolic maps. We discuss the (rather weak) condition on slow recurrence more below.
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The Collet-Eckmann condition stems from the pioneering works by P. Collet and J.-P. Eck-
mann in the 1980s [CE80]. In the real setting, there are many works on the perturbation
of such maps, sce e.g. the seminal papers [BC85,BC91] by M. Benedicks and L. Carleson.
M. Tsujii generalised these results for real maps in [Tsu93], see also the more recent work
of B. Gao and W. Shen [GS14]. We are going to study perturbations of such maps in the
complex setting. For the quadratic family and other unicritical families, J. Graczyk and
G. Swiatek recently made an extensive study of perturbations of typical Collet-Eckmann
maps with respect to harmonic measure, in a series of papers [GS17, GS, GS00, GS15].
M. Benedicks and ]J. Graczyk also have an unpublished work on perturbations on such
(quadratic or, more generally, unicritical) maps. The maps there and in the recent pa-
pers [GS17, GS] are also slowly recurrent, and hence the results in this paper is partially a
generalisation of some of those results. We will not use harmonic measure, but develop the
classical Benedicks—Carleson parameter exclusion techniques and combining it with strong
results on transversality, by G. Levin [Levl4]. Technically, this paper is closely related
to [Asp].

Let f be a rational map. As usual let 7( f) and F( f) denote the Julia and Fatou set of f
respectively. Let Crit( f) be the set of critical points of £} i.e. the set of points with vanishing
spherical derivative. With Jrit( /) we mean the the set of critical points of / contained in
the Julia set, i.e. Jrit( ) = Crit(f) nJ(f). Asis standard, we let /* denote the 7-th iterate

of f.

In this paper we will consider perturbations of rational maps satisfying the following two
properties. Recall that a rational map is called hyperbolic if it is expanding on the Julia
set or, equivalently, if every critical point belongs to the Fatou set and is attracted to an
attracting cycle. If a rational map is not hyperbolic, it is called non-hyperbolic. Derivatives
are always with respect to the spherical metric on the Riemann sphere.

Definition 1.1 (Collet—Eckmann condition). A non-hyperbolic rational map f without
parabolic periodic points satisfies the Collet—Eckmann condition, if there exist C > 0 and
y > 0 such that for each critical point ¢ in the Julia set of £, one has

|IDf*(f(c))| = Ce? forall n=0.

We will often refer to the constant y appearing in the above definition as the Lyapunov
exponent or simply the exponent. Notice that the Collet—Eckmann condition is equivalent
to requiring the lower Lyapunov exponent at critical values (in the Julia set) to be strictly
positive.

Definition 1.2 (Slow recurrence). A point z is said to be slowly recurrent if for any a > 0,
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there exists K > 0 such that
dist( /" (z),Jrit(f)) = Ke™* forall n > 0. 1

Moreover, we say that f is slowly recurrent if every point in Jrit( f) is slowly recurrent.

This condition is conjecturally generic, as for example in the real quadratic family [AMO5].
In fact, every Collet—Eckmann map has some « > 0 for which (1) holds; see [DPU96,
Lemma 2.2 or Lemma 2.3].

We denote by R, the space of rational maps of degree . In this paper we always assume
thatd > 2. If we write £(2) = p(2)/4(z), where p and g are polynomials, and the maximal
degree of p and ¢ is d, there are two local charts on the coefficients; one for the case when
deg(p) = d and another for deg(g) = d. The Lebesgue measure on each of these charts are
not equal but mutually absolutely continuous. So talking about sets of positive measure
is independent of the chart used. We also mention that the Fubini-Study metric on R,
(which is a measure on the projective space P**1(C)) is mutually absolutely continuous
with respect to the Lebesgue measure on each chart.

We will also consider a certain normalisation of the space R ; as follows, following G. Levin
[Levl4, Levll]. We say that two maps / and g are equivalent if they are conjugate by a
Mébius transformation. Then we can consider the space A 47 © Ras (see [Levl4]) up to
equivalence, as the set of rational maps f of degree d > 2 with precisely p' critical points,
ie. Crit = {¢, ..., cp,}, with corresponding multiplicities F = {my, ..., mp!} (in the same
order). This means in particular that all critical points move analytically inside A A7

We will prove the following result.

Theorem 1.3. Any slowly recurrent rational Collet-Eckmann map f € N, - of degreed = 2,
[for which the Julia set is not the entire sphere, is a Lebesgue density point of hyperbolic maps in
Ay
If all critical points are simple, then A, 4 I8 locally equal to R ; (up to M6bius conjugacy),
and we immediately get the following corollary.

Corollary 1.4. Any slowly recurrent rational Collet—Eckmann map f of degree d > 2 with
only simple critical points, and for which the Julia set is not the entire sphere, is a Lebesgue

density point of hyperbolic maps in R ;.
Note that if f'is Collet—Eckmann and F(f) # @, then the Fatou set F( f) consists only

of attracting cycles and the Julia set of f has Lebesgue measure zero (and actually the
Hausdorff dimension is strictly less than 2) [GS98].
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2 Preliminaries

We will consider one-dimensional complex analytic families in A, 5; ¢ R, and prove the
corresponding main result in almost all such families (where ‘almost all’ means almost all
tangents in /A 4y 0 the sense of Levin, see Section 3.1). The main result will then follow by
Fubini’s theorem. Throughout the paper Q = Q(¢) will denote a fixed one-dimensional
parameter square with sidelength ¢, centred around a slowly recurrent Collet—Eckmann
map f. So f,, 2 € Q is a one-dimensional analytic family of rational maps in A i7" Let
C, and y, be the associated constant and exponent of f; appearing in Definition 1.1 for
the starting map f;. We denote by ¢(0) and 4(0) (or simply ¢ and ¢ if it is clear from the
context) the critical points and critical values of £ in J( f). In other words, ¢ € Jrit( ;).
The corresponding critical points and critical values for £, with 2 € Q are denoted by ()
and y(a), respectively, and we see that ¢(«) (and consequently (4)) are analytic in Q
(since we are considering A d,,?)' For simplicity, we write Jrit,, instead of Jrit( f;), while Jrit
denotes the set of ¢ (), for 2 € Q. (Note that we are not claiming that ¢(«) lies in the Julia
set J(f;).) For a connected set 4 ¢ Q, we let Jrit , denote the union of Jrit over 4 € 4.

For a € Q, we are going to study the evolution of the critical points ¢ (), and for this we
introduce the functions

§,.(a) = £ (g(a)) foralln = 0.

With x < y (or x 2 y) we will mean that there exists a constant C > 0 (not dependent on
the dynamics) such thatx < Cy (orx = Cy). If both x < y and x 2 y then we will write

xX~9.

Since £ satisfies the Collet—Eckmann condition, nearby parameters inherit expansion for
some time, and therefore the image of the parameter square Q will expand under &, ;. Once
the image of Q gets close to Jrit ), the derivative will decrease (depending on the distance
to Jrit,) :
analysis is needed. Let 0 < A" < A be two large numbers, and let

. To ensure that we still have good expansion after getting close to Jrit,,, a local

d=¢b, e,

) =
U =D(4:9), U =D(g,?),

and define
U=Jy ad U=y (2)
) )
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to be neighbourhoods of the critical points of £, belonging to 7,,. By continuity, one can
choose ¢ sufficiently small such that U is also a neighbourhood of ¢(«) for all parameters
a € Q. In fact, we want to have diam(0}) > diam(¢(Q)). We will frequently use local
Taylor expansion

£ = £(0) + Ble - 0% + 0 (e o)),

and U" is chosen to be some fixed neighbourhood where first order Taylor expansions are
sufficiently good around any ¢. Considering the multiplicity at critical points, we let d =
max; d;. (Note that we assume that the critical points do not split under perturbation, i.e.
dy = dj(a) is constant for « € Q.) The smaller neighbourhood U should be thought of as a
neighbourhood that could be as small as one likes to fit into the construction. Furthermore,
in the section on large deviations, we will also make use of a smaller neighbourhood
U* = y U7, where U? = D(g,9”) c . By choosing ¢ small enough we make sure that U
is still a neighbourhood of ]ritQ.

As time evolves, we will discard parameters that come too close to Jrit . For this reason we
define the basic approach rate assumption (or simply the basic assumption) as follows.

Definition 2.1. Let« > 0 and K > 0 be the constants from the slow recurrence condition
(Definition 1.2). We say that ¢ () satisfies the basic assumption up to time 7 with exponent
a, if

dist(§, ,(a), Jrit ) > Ke 2 forall k < n. (3)

For our starting map f; which is assumed to be slowly recurrent, the basic assumption
is, per definition, always satisfied for all z and for all / with exponent «. By making the
perturbations sufficiently small, i.e. choosing ¢ small enough, each parameter 2 € Q will
also satisty the basic assumption up to some time. However, as the number 7 of iterates
grows, &, ,(Q) becomes a comparatively large set, so that we shall need to partition our
parameter square Q in the following way. Let U be as defined in (2).

Definition 2.2 (Partition element). Let.S > 0 be given. A connected set 4 c Q is called a
partition element at time 7 if the following holds for all £ < »:

dist(&,(4), Jrit,) .
; f
diam &,,(4) < { (logdist(,,(4), Jrit,))? if &, (A)nU =,
5 it (A)nU=0.

For convenience, the partition elements are going to be squares in our situation, since we
start with a square Q, but in principle this is not needed. The reason to make partitions
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according to the above rule is that we have distortion control of , ;(4) for 2 € 4. So as
time evolves, the partition gets finer. The constant S appearing in the above definition is
usually referred to as the large scale, and we say that a partition element has escaped when it
reaches size S under the action of the function £, ;.

Our main task in the paper is to show that almost all partition elements will reach the large
scale within a bounded (but not necessarily uniform) amount of time. This is relatively
easy if £, ,(A4) never comes close to critical points (which is true if our starting map is, say,
of Misiurewicz type). In our case, however, it can happen that £, ,(A4) approaches critical
points, since we are starting with a (slowly) recurrent map. Although the approach rate
is controlled by the basic assumption, we may still lose derivative. To restore this loss, we
shall use the ideas from [BC85, BC91] (see also [Asp] which is similar to the setting here).

The fundamental concepts for dealing with the above situations are the so-called bound
periods and free periods. To define them, we first introduce the notion of refurns which can
be defined for single parameters and also for partition elements.

Recall that U and U’ are defined in (2). For a partition element A4 we say that &,.(A) is
areturnif £, (A) n U # @or &, (A) nU # @. We speak of a pseudo-returns if £, ;(A)
is a return into U’ but not U. For a parameter 2 € Q, we say that £, (a) is a return if
£u(a) €U or g, (a) € U.

Definition 2.3 (Bound period for parameters). Let  be as in the basic assumption (3).
Let{, (a) € U, beareturn, where U, is the component of U’ containing ¢,(0). The bound
period for this return is defined as the indices j > 0 such that the following holds:

£,0(a) = £4(a)| < 7 dist(£, 4 (a), Irit).

The largest number p = p(4) > 0 for which the above inequality holds is called the length
of the bound period.

During the bound period, the growth of derivative is inherited from its early orbit, regardless
of whether or not there are more returns during this period. Such returns are called bound
returns. Because of the binding condition in the above definition, these returns are harmless.
As soon as the bound period ends, we enter into a free period, which means that this piece of
orbit stays away from critical points. During the free period, derivative growth is guaranteed
by the classical result of Mafié (see the next section for a more precise statement). If p is the
length of the bound period, when &, ./ ,(2) € U ' for the least possible L > 0, we speak
of a free return. The number L is the length of the free period. Since bound returns are
harmless we only speak of returns, and thereby mean free returns.
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We will also need a corresponding notion of bound period for partition elements. To define
this, let 4 ¢ Q be a partition element at time 7. We say that a return £, ,(4), » > », into U

1 dist(£,,(4), Jrit,)
3 (logdist(&, ,(A), Jrity))*

Otherwise, it is called an inessential return. When an essential return occurs we will have to

is essential if

diam ¢, ,(4) =

make partitions according to Definition 2.2. Because of strong bounds on distortion, we
will see that £, ; is almost affine on each partition element 4 and if 4 is a perfect square then
&,1(A) is also almost a perfect square. If 4 has side length , simply partition 4 into four
subsquares of equal length. If all these four subsquares are partition elements according to
Definition 2.2, we are done; the new partition is thereby defined. If a subsquare is not a
partition element, continue partitioning it into four new subsquares of equal length, and
continue like this until all the new subsquares are partition elements. We get a collection
of squares of sidelength of the form 27*d, for some £ > 0 (note that we can have different
values of k). No partition is made at an inessential return. We can now define the bound
period for partition elements.

Definition 2.4 (Bound period for partition elements). Let 4 be a partition element at
time 7 and &, ;(4) an essential, inessential or pseudo- return to U, the component of U’
The bound period for this return is defined as indices 7 > 0 such that the following holds
forall 4,6 € A andforallz € £ ,(A):

f(2) = £,(0)| < € dist(£,,(b),Jrit,).

The largest number p = p(A4) > 0 for which the above inequality holds is called the length
of the bound period.

With the above notions, we will follow the parameter exclusion technique originated
by M. Benedicks and L. Carleson [BC85, BC91]. However, we have to deal with the
situation caused by the presence of several critical points (again following an idea due to
M. Benedicks). What can happen is that a critical orbit might get close to a critical point
other than itself. In this case, to use induction we need to use the binding information of
this latter critical point. To handle this we make the following definition. Let 3, > 0 be a
constant to be defined later.

Definition 2.5. Given y > 0, we say that a parameter 2 belongs to £, ,(y) if
|Dﬁzk(vz(ﬂ))| > C0€7k forall k<n—-1,

and

|D£(0;(a))| = Coe?* forall & < 2dan/y, andall j # L. (4)
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We say that a parameter 4 belongs to B,, ; if
dist(§,(a), Jrit ) = Ke?* forall k<n -1,

and
dist(§, ,(a), Jrit,) = Ke>* forall k < 2dan/y, andall j # 1.

3 Lemmas

In this section we present several lemmas on distortion and transversality. The transversality
property says that phase and parameter derivatives can be compared if the phase derivative
grows at a certain rate. In our new situation with recurrent critical points, this property is
inherited from quite recent powerful results by G. Levin [Lev21, Levl4]. Together with
a strong distortion lemma in the phase space (the main distortion lemma), we get strong
control of the geometry of £, ,(A4) on partition elements.

3.1 Phase-parameter relations
3.1.1 Transversality

Using a result by G. Levin we state a transversality result for Collet—Eckmann parameters,
relating phase and parameter derivatives. In the following there is a notion of degenerate
families of rational maps, following [Lev14, Lev21]. We consider one-dimensional complex
families of rational maps in A A7 through the starting map f; such that this family has a
non-zero tangent at f;, i.e. such that £,(z) = £;(z) + au(z) + O(a*), for some non-zero
#(z). For almost all directions of this tangent in the parameter space, it is shown that we
have a certain transversality property (see [Lev21], Corollary 2.1, part (8)), namely that the

. £.0)
llm _—
R (fo@)

exists and is different from 0 and co. (With £, () we mean the parameter derivative of £;"

limit

= LZ’

evaluated at (), i.e. nl,z (a) = d,1,"(g(a)).) Families satisfying this condition are called
non-degenerate in the sense of Levin. Based on this we get the following, see Proposition 4.1
in [Asp].

Lemma 3.1. Let f = f; be a slowly recurrent Collet- Eckmann map with exponent y, and f,
a € Q, an analytic non-degenerate family in the sense of Levin. Then for any q € (0, 1) and
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anyy € (0,%,) there exists N > 0 and & > 0 such that
’ fnlz (a)
(") (u(a)

provided that [, satisfies the Collet—Eckmann condition up to time n = N with exponent y for
all a € Q.

- L| < q|4]

Recall that our starting map f; satisfies the Collet—Eckmann condition with exponent y,.
With 7, being the exponent from Lemma 3.10 below (see Remark 3.11), we shall apply the
above lemma for

1 .
7/[‘ = Z mln{?/()a }/]—[}(1 - T),
where 7 € (0, 1) is some constant to be determined later. This choice of y; also dictates
the choices of the corresponding /N and ¢ in Lemma 3.1, which we denote by N and ¢
correspondingly. We choose the size ¢ of our domain of perturbation (i.c., the parameter
square Q) to comply with Lemma 3.1, e.g. ¢ < g. For later convenience, we also define

9
% =2y, and = 3%

We thus have that y; > % > .

3.1.2 Weak parameter dependence

The following lemma tells us that the dependence on parameter is weak as long as we have
exponential growth of the derivative. As a matter of fact, the dependence is even weaker, as
will be seen after the proof of the main distortion lemma.

Lemma 3.2. Let Ny and y; be as in Lemma 3.1, and let y, > (3/2)y;. Suppose that a,b € Q.
If e and 9 are small enough, and if there is an integer ky = 0 such that
1) |Df (y(a))| = Ce""” foralln < N + ky;

ii) foralln < N + ky, if §, (a), &,,(b) ¢ Uthen |§, (a) = &,,(0)| < S, and otherwise if
§,(a) e Uorg, (b) € Uthen

dist(fn,l (a), Jritﬂ,)
(log (dist(£, ("), Jric ,)))*

witha' € {a, b} minimising dist(£, (a'),]ritd,);

|fn,z(ﬂ) - fn,z(bﬂ =
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then there exists Q > 1 (arbitrarily close to 1 if Ny is large enough) such that for all N, < n <
N+ ky

4@ =501 2 VDL (@) a - bl.
Moreover, forall 0 < j <n—-N;

1£,0(@) = £,,0)| ~gr IDE €@ 16 0(a) = £, (B)].

Proof. We fix / and write §, = £, ,, N = N;. We begin with proving that thereisa Q > 1
close to 1 such that

|£,(a) - £,6)] = Q™" VDL (y(a)||a - b| (5)
istrueforall N < n < N + ;.

By making ¢ small enough we can make sure that

[6v(a) - £(0)| 2 515 (@]la bl

Using Lemma 3.1 we find that

|&g(a) — & ()] = §|Lz|(1 ~ Q) IDEN (g (a))| 2 - b
> Q"N DEN (g (a)) |2 - bl

where Q > 1 can be made arbitrarily close to 1 by increasing N. Assume that the above
inequality holds for some N < 7 < N + k; — 1. We have that

|‘fn+1(ﬂ)_ n+1 |f f - |f _ﬁ b))|
>Q01|Df IIE zlaf - (a))|la - b|
>Q,' Q" ”(IDf (4(a I—ZBQoQ” Yla-0l,

where B = sup |9, f,| and Q; > 1 can be made arbitrarily close to 1 by making ¢ small
enough in §' = J¢;, and IV large enough.

From assumption i) since if Q is such thatlog Q < », /2, say, then

QO C1€y1n QO

2BQ,Q"" 0, |DJZ a))l, (6)

for N large enough. Combining this with with the above, taking Q = ‘/Q, we find that
|£1(2) = £,1(0)| 2 Q7| DL (y(a) |2 = ],
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proving the first conclusion of the lemma.

The proof of the second claim of the lemma is very similar to the proof of the first claim
above. We use an inductive argument as follows. For » = N (and thus ;j = 0) the result
is trivial. Suppose therefore that for some N < n < N + k; — 1 the conclusion in the
statement of the lemma is true, and consider the case # + 1. Pick some 0 < j < n - N.

Using (5) we find that

|‘3€1+1(d) - ‘fnﬂ(b)l

> |£(6,(2) = L&) = 1L(5,(0)) - £, (8))
o IDAE@)IE (@) = £ )| =219, £(&, (@) |2~ b

Lo __25QQ"" .
> 00| IDAE(@N | - 1wt s | 6@ = 561

It follows from inequality (6) that

2800 Qu-
D @) - Qo DA

We continue now, using the induction assumption that the lemma is true for 7, to conclude
that, for0 < j <z - N,

1£.01(2) = £, (B)] = QDL (@) ] |£,(a) - f()l
>Q62|DJZ 2)|Q7 DA (@£, (@) - £,_,(8)]
> 0,°Q ‘fIDJZ’” &) ||f,,_,»a —£_ ).

Choosing Q, = ‘/é close enough to 1, we get
1£1(2) = £, ()| = OV IDAT & ()14, (a) - £, ().

The case j = 0 in the second claim of the lemma is trivial. Hence, this proves one of

the inequalities of the second claim. We can achieve the other inequality in a completely
analogous way. O

With the above lemma we immediately get the following result, telling us that the analytic

dependence of critical points on the parameters are negligible.

Lemma 3.3. Under the assumptions of Lemma 3.2 there exists a constant C > 0 such that
1&.0(a) = &,,(b)| = Ce™|g(a) — g(b)],

forany Ny <n < N; + k.
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Proof. Since we assume that the critical points ¢ («) move analytically in « we have
q(a) = () + Ky(a = b)" + O ((a = b)").
From (5) and the the conclusion of Lemma 3.2 we find that

|9(a) = q(6)| < 2|K|kla~ o] a~ 0|

AT
s |Dﬁn(vl(d>)||frz(d> ‘fn(b)|

< e E(a) - £,(0)];
where 7, is slightly smaller than . O

With these lemmas we can neglect the parameter dependence on each partition element 4.
In particular, for returns into U, dist(£, ;(4), ¢(4)) is very close to |£, () — ¢(a)| forall
a € A, so we can almost view ¢ (4) as one single critical point.

3.1.3 Distortion estimate

In the sequel we will frequently use the following distortion estimate, which we for conve-
nience formulate as a lemma.

Lemma 3.4. Ifz and w stay sufficiently close to each other under iteration by f, up to time n,

then . .
DF” n—1 ] _
£ | opfc S EOLN)
Df(w) = dist(f (w), Jric)
for some constant C > 0 dependent on fy and e. Moreover, if also z = £,(a) and w = £,(b),
with a,b € Q, and if the assumptions of Lemma 3.2 are satisfied, then
D " 2l 1/-1—'6Z - V+'b
DL | o[ - Eu01)
7=0 dlSt(fvﬂ‘(b)aJrlt[,)

(7)

DIED) ®)

Proof. Given any complex numbers z, ..., z,, the following inequality is standard

ﬁzj—l Sexp(i |zj—1|)—1,
J '

j=1
and therefore, using the chain rule, we conclude that

Df(2) _ < DL () - DA )]
o 4“%; DA ) -
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We begin to prove (7); (8) will then follow from Lemma 3.2.

Let us write z; = jgf (2) and w; = jfzj(w) If one (or both) ofzj and w; does not belong to
U', we are away from critical points and the estimate follows easily. Indeed we have that

|Df.(2,) = Df(w;)] < 2sup |D*£.(2) |z; — w;l,
zeC

and also .
l inf . [Df(2)]
=32 sup ., dist(z, Jrit )

|Df, (w, dist(w;, Jrit, ).

If both z; and w; belong to U' ¢ U', using local Taylor expansion

L) = f(@) +Bx - ) + O ((x - )%,

and the fact that |Df(zj) - Df(w])| < |D2f(x)||zj - wj| for some x € [z
that

3, w;] we find

IDf(2,) - Df(wy)| < & 1Bl|x — %21+ O (=) ||z, - w]
<247 |B||w = c| " 7| - w)],
where we used that |zj - wj| and 9" is very small.
For the derivative we have the estimate
DA ()| = B, ~ @) + O ((w, = )*) | = 3By — el

We conclude that

._.

n—

IDE(f () = DA ()] Z LA () - f (w
|DJ§ w)| dist(w, Jrit )

I
(=]

J
To prove (8) we use the previous discussion together with Lemma 3.2 to conclude that

ID£(E,(2)) = DA(E, (D))
< IDL(E, (@) = DEE(0)| + |IDAE.(0) = DA(E, (9)]
< 1&,(a) —fw,-(b)l +200,Df(&, (@) ]a - b]

 210DfE. @)1
DA (0(a))]
< 1£,,(a) - £,,0)].

|fv+j(4) - fv+j([7)|
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3.2 Expansion during bound periods

We study in this section how an orbit preserves certain expansion during bound periods
(although some loss is unavoidable at returns). To achieve this, we first need some distortion
control during these periods. Recall that U’ is defined in (2).

Lemma3.5. Let¢ > 0. Letd' > 0 be sufficiently small and N sufficiently large. Let also
¥y = . Suppose that £, )(a) is a free return to U with a € E,,(y) 0 B, ;. Then we bave

D
‘ f 1/+11 —1‘SE,
Dﬁ (5,:(a))

orall i < p, where p is the length of the bound period.
J=Pp b4 i¢ 4

Proof. Since £, () is a free return to U, we can thus assume that for some » > 0

1&,(a) = ¢(a)| ~ ¢

By Lemma 3.4, it suffices to prove that the following sum can be made sufficiently small

£ D @) - DEG @) ¢ |fy+,, £ .(a)]
jZf D& (a)) Zf dist(&; )]rlt )’

where C; > 0 is some constant. Assume that d; is the local degree of £; at ¢;(0). So we have,
for some constant C, > 0,

|58v+1,1(ﬂ) - fl,i(d)| < sz_d"r. (9)
Put/ = d;r/10(T + 22), whereI' = sup log |f,(2)|. We can divide the above sum into
ze@, a€Q

two parts [1, /] and [/ + 1, p], and estimate them separately.

For the first sum, we have

|‘Stz/+j,l(d) - fj,i(ﬂ)l < 61"(] Y |f1,+11 fl,z’(ﬂ) |

Therefore, combining with the basic assumption (3) and (9) we have

A

$ lmz £l L AVVIE () - £ (a)]
Z dist ( )]rlt ) Ke24

< C3€—9dir/10 < C3€—9d,vA /10

~.
1l
—_

j=1



Here C; depends only on C, and K.

For the second sum we can use Definition 2.4 directly to see that

4 - 4
|£,1j(2) = £.()] - ~af o O | (T422) o ad [ (0422)

2 dist(Z,_(a), Jrit ) > Vs = taf

j=/+1 ]2 > a j=/+1

for some constant C, > 0. As both of the above sums can be made sufficiently small by
choosing A" large enough (i.e., 8’ sufficiently small), we reach the conclusion. O

Lemma 3.6 (Expansion and lengths for bound periods). Lety > y;anda € &, ,(y) n B,
wherev > N (N as in Lemma 3.1). Assume that £,(a) is a return to U; whose length of
bound period is p. Then if N is sufficiently large we have

‘Dﬁp+1(§,’1(ﬂ)) ‘ > (7P1C4)
where d; is the degree of f at ¢;. Moreover, if dist(&, (), Jrit ) ~ ; ¢, then

dir< <2dir
T—P— ¥

In particular, p < 2adv|[y.

Proof. Recall that d is the maximal multiplicity of critical points of f;. First we show that
p < 2dav[y so that we can use the expansion along the orbit of v,() up to time p. It
follows from Lemma 3.5 that, for j < p + 1

£.4(a) = £, ~ D G (@)]1£14(a) - 1,(a)] (10)
~ IDF 7 @ (@)||14(a) = v(a).

The above relation (10), combined with the definition of bound period (i.e., Definition

2.3), gives us for some constant C > 0
IDE ™ (@) |101,(@) - v(a)| < Ce dist(§,(a),Jrit)) < C'e™. (11)

Now we see that p < 242041//7/,. Otherwise, we put j = ZdAmz/y[ in (11) and use the fact that
a €&, (y)(ct. (4)) to obtain that

Coey(Za?av/;/I—l)e—dl-r < Cle—aZdAav/y]'

This means that

b

szav<@
7/
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d. < dand y > 3. This also proves that

which is impossible, since 2 € B, ;, d,

2d;r

< .
? Y

Now it follows from Lemma 3.5 and z € £, ,(y) that

E; = |Df (£ (@)| ~ D (1)) | 2 Coe
for j < p.
From (10) we also have that, for j < p + 1,
1£,50(a) = £,(a)| ~ IDE (£ (@)1§,1(a) - 6(a) .
With D; = | Df/ (£, ,(a))| and (13) we see that

Dpﬂe—r > 2P+l diSt(fp+1,i(ﬂ)3Jrit4) > K€—3a(p+1)’

(12)

(13)

(14)

where the first inequality follows from the definition of bound periods and the second one

holds since 2 € B, ;. By the definition of " we see from (14) that
erpe—dir > DPHC’_r > K6_3a(p+1).

So we get that
. d;r
P=3r

It remains to estimate D,. By (14),

- -1 -3a(p+1)
e 2KDP+1€ ?

and thus
7Y 5 prdin1 Dp—(

d;-1) o321 (d-1)
+1 :

AsD,,, ~ e_r(d"_l)Ep, we have, by (12),

D

a1 2 Kd,-—le—xli—Ue—3zx(p+1)(di—1)gyp’

which means that

d; d;~1 -3a(p+1)(d;-1) yp
Dp+1 > K% e e,

So we obtain
D,y 3 KD/ V- d gl 5 o),
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3.3 Expansion during free periods

Roughly speaking, outside expansion means that the derivative of /” grows exponentially
if the orbit stays away from a neighbourhood of the critical points. For slowly recurrent
Collet—Eckmann maps, this was proved in [Asp] which will also be crucial in our case. We
provide the same statement here (with some modifications).

We begin with stating the following classical lemma by Mafié [Mafi93].

Lemma 3.7. Let f be a rational map. Provided 0 is small enough, there exist a constant
Cyr > 0, dependent on 9, and an exponent dp; > 1 such that if z € J(f) and f*(z) ¢ U for
k=1,2,..n—1then

|Df"(2)| = GA%,.

If £*(z) is a return to U, one can say something stronger. To state our next lemma we recall
the definition of the second Collet-Eckmann condition.

Definition 3.8 (Second Collet—Eckmann condition). A non-hyperbolic rational map f
without parabolic periodic points is said to satisfy the second Collet—Eckmann condition, if
there exist C > 0 and y > 0 such that forevery » > 1 and w € f7"(c), for ¢ € Jrit(f) notin
the forward orbit of other critical points,

|Df"(w)| = Ce’™.

In general, the Collet—Eckmann condition does not imply the second Collet—Eckmann
condition, and vice versa. However, within the family of slowly recurrent rational maps,
these two conditions are equivalent [Byl]. By the assumptions imposed on our starting map
fo» we therefore have that it satisfies the second Collet—Eckmann condition. The following
lemma ensures strong expansion for orbits outside of U. We give an outline of the proof
which technically is similar to the proof of Lemma 2.3 in [PRLS03]. For a detailed proof
we refer to Lemma 3.1 in [Asp].

Lemma 3.9. Let f be a rational map satisfying the second Collet—Eckmann map with
exponenty > 1, andlet U =\ J, U besuchthat Uy = D(q, 9) isa neighbourhood of g € Jrit(f).
If 3 is small enough there exists a constant C > 0, not dependent on 9, such that if

5, (@), f77(2) € U, f7(2) € U
with ¢, not in the forward orbit of other critical points, then

IDf"(2)| = Ce”™.
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Proof. Let W, denote the connected component of /77 () containing z = f " (2),
and let (w1th some abuse of notation) ¢; denote the ;-th preimage of the crltlcal point
¢ = g contained in 17/, ie. f/ () =c and ¢; € W,. Following the proof of Lemma 2.3
in [PRLS03], once a small 9, > 0 is fixed there is ¢ > 1 (dependent on d,) such that, if 9 < J,
is small enough,

diam(7}) < 7/ diam(U}) = €773, (15)

forall j > ¢. Here y’ > 0 is slightly smaller than the exponent from the second Collet—
Eckmann condition. We now consider the quotient

_ D)
Dfn—f (Z)

Df"(c,) Df'(c)
Df"(z) Df*(z)
By making 0 small, the second factor in the above is bounded by some small constant

C' > 1. For the first factor, using (7), (15), and the assumption that dlst( Jrit(f)) = 0
for j > 1, we find that

D) | SE 1 ) - f/ @)
‘Dfn—l(z) = ep (C 4 dist(f7(2), Jrie(f))
7 diam
< exp (C” w)
J=l+1

This proves the result, since

"

D@2 oo | P 2 e

O]

We are now in position to prove our desired outside expansion lemma, satisfied for any
small perturbation £, of £y, and also valid in an g;-neighbourhood ./\/5'0 of 7( /). We make
Usosmall that U ¢ AL.

Lemma 3.10. Suppose | = f; is a rational second Collet—Eckmann with non-empty Fatou

set. If gy, 0 and ¢ are small enough, there exist constants C; > 0 (dependent on 3) and y > 0
such that, for all a € Q, if

2, 1,(2), ...jfz”_l(z) € /\é'0 \U
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then
|Df ()| = Ge™ (16)

Moreover, there exists a constant C > 0 (not dependent on 3) such that if we also have
1 (=) € U then
|Df"(2)| = Ce”™. (17)

Remark 3.11. For later convenience, we put y; = ¥, where y is as in (17).

Proof. Fixy > Osuch that3y € (0, min{y,,, 5;}), where 3, and 3; comes from Lemma 3.7
and Lemma 3.9, respectively. We will establish the result with this y.

From Lemma 3.7, provided 9 is small enough, we can find 7 large enough such that if

FH2) e T(f) \Ufork=0,1,...,2 — 1 then
|Df”(z)| > CME}/Mﬁ > 77,

If ¢, > 0 is small enough, we therefore conclude by continuity that if £*(z) € N\ U for
k=0,1,..,7—1then

IDf*(z)| = &7
Using continuity again, now in the parameter variable, we conclude that if ¢ is small enough,
if for 2 € Q we have that £*(z ) €N \Ufork=0,1,..,72 - 1then

IDE )] = 7.

Suppose now that £¥(z) € N\ Ufork=0,1,..n - 1and write n = g7 + r, with g and
positive integers and 0 < » < 7z — 1. We find that

IDEM ()| = IDE L @ IDL (LT @) - DL (=)
> |Df f z)) |€7q”

and (16) now follows with constant G = inf .o inf,cxr \is | D sz” (2)
%

a

If we have a return to U then we are in the situation jff ngﬂ )¢ Ufork=0,..,7—1and
A ]f,q” ) € U. In the case of the unperturbed map we get from Lemma 3.9 that

IDF7(f7(2)] = Ce,

with C not depending on 9. Once again, due to continuity in 4, a similar estimate holds for
the perturbed map £, if ¢ is small enough (recall that » < 7 — 1). This proves (17).

O
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3.4 At the next free return

Combining the results above we draw the following conclusions at the next free return.

Using Lemma 3.6 and Lemma 3.10, we can obtain longer time of exponential growth for
derivatives. More precisely, we have the following.

Lemma 3.12. Let N be sufficiently large Letv > N be a return such that &, (a) € U for
a €&, (y)nB,, wherey > y. Let alsov' be the next free return time. Then we bave

DL ()] = e,

Sforall0 <n <v' =1, withy, 2 (9/10) min{y, y;}.

Proof. Recall that d is the maximal multiplicity of critical points of f;. Let p be the length
of the bound period for the return £, ,(4), and suppose » = » + j with 1 < j < p. By the
chain rule, the fact that z € £, (y) and Lemma 3.6, using the notation from the proof of
Lemma 3.6,

DA (@) = D (ua )| ,+1
2 " VDA (£(2)|E
> ey(v—l)e—Zadvey]

> N (V+j),

by the choice of « and provided N is large enough. If = v + p + j,with 1 < j < L — 1, it
also follows from Lemma 3.10 (here with respect to U’) and the above that

|DfV+P+J | = |Df;’_ Ul ) p+1 |Dﬁj (981/+p+1 (‘Z))|
> o771 o2y yp Cy e/

> 571(V+P+j)’
again provided that N is large enough. O
By the weak parameter dependence (Lemma 3.2) and using similar methods as above we

can see that parameters belonging to the same partition element repel each other in the
following sense.

Lemma3.13. Leta,b € E,,(y) n B, be in the same partition element fory > . Let alsov
be a return time for this partition element. If v is the next free return, then

|£1(a) = £,(0)| = 2|,,(a) - £,,(b)|.
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Proof. By Lemma 3.12 above we see that for z € £, ,(y) n B, ; we have exponential growth
. . /.
of phase derivative up to the next free recurn v, i.c.

DL (w(a)] = G,

for0 < n <+ - 1. Since 3 > (9/10) min{y, %}, one can use the weak parameter
dependence property to get

1£0(a) = £,0)] = QDL T (@)1£,(a) - £, 0.

Since ' — v = p + L, with p and L being the associated bound period and free period,
respectively, we get from Lemma 3.6 and Lemma 3.10 that

DA (€ 4(@)] = DL E @) IDET (£ pr (2))]
> Cpr?! CdH(L-1)
> 572(1/_1/),
for some », > 0, provided 9" is small enough (hence p is large). Notice that the constant C

. . . . /.
coming from the outside expansion lemma is not dependent on 9" since we have an actual
return. As Q is chosen very small we have log Q < @ < 7, and we get the conclusion. []

3.5 Main distortion lemma (MDL)

The following lemma is the main result of this section, and it tells us that we have strong
distortion estimates for parameters belonging to the same partition element. An essential
ingredient in the proof is the weak parameter dependence proved earlier (Lemma 3.2).

Lemma 3.14 (Main distortion lemma). Lete > 0. Then there exists N large enough such
that the following holds: If A ¢ £, ,(y) N B,,; is a partition element fory > yyandv > N isa
return time or does not belong to the bound period, and v' is the next free return, then we have

ACCIN By
D@ | ©

fora,b € Aand forv < n <, provided A is still a partition element at the time n.

Proof. By Lemma 3.2 and Lemma 3.4, it reduces to check whether the following sum can
be made arbitrarily small:
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Let (3,) be the free returns before time 7, where £ < s. In other words, » = » and ¥ = 3, ;.
Let also g, be the length of the associated bound period of the return %,. The estimate of Y
is divided into several parts:

s e | s 2 |Eu(a) = £,(0)]

1= dm(f me " Z dlst(é;[( ), Jrit,)

k=1 j:Vk_l k=1 ] 1t

w1 [ ,(a) f b)|
" JZ; dist(£;,(b), Jrit,)

W’-<

+ X + Xp

Here Y; denotes the contribution from bound periods, while Y. the contribution from
free periods, and Y- the contribution from the last return  up untll time 7.

Contribution from bound periods: the estimate of Yg. Let y, be one of the free returns, with
k < 5 — 1. We would like to estimate the following

v %D |§',l(ﬂ) - fj)l(b)l _ k |f7¢z+j,1(d) - fv)ﬁj,l(b”

g = F= dist(&; ,(6), Jrit,) B J.Z(;‘ dist(&,, ;,(b), Jrit,)

Assume also that &, ;(a) € U/ is a return and dist(£, ,(),Jrit,) ~ ¢ It then follows from
the distortion in Lemma 3.5 and the definition of bound periods that

6@ = £,O)| [ 2 IDE @)
k ol 4 2
Y, < p= 1+ = dist(fwjz( ), Jrltb))

1£,1(a) — £, ,(D)] & D&, ()14, ,(a) - ¢(a)]
® 2 &M@mﬂhk%>

e—?‘

7=1
SI@A@—@AM|1+”IQVA@—%A@w
o £ dist(Z,,,(5), Jrit,)
— Pr
. |f%l(ﬂ)€—r£b1(b)l "y g_dj)
j=1

< |fz7e,l(ﬂ) - fw(b)l .

6—7‘

Given r > A, let K(7) be the set of indices £ such that dist(f%l (d),]Jrit ;) ~ ¢, and let
/:e(r) be the largest index contained in K (7). Then it follows from Lemma 3.13 that

Y, = YgesZZ‘rksZY sZ—sA,

1 2/ keK(r, r>A r=A

z,\
._‘

=~
I
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where we used that for the last return associated with this »

Contribution from free periods: the estimate of Y. Similar as above, we define for £ < s -1,

L S () - £,(0)]

£ ot dist(é'}-,,(b),]ritb) )
By the weak parameter dependence and Lemma 3.10 we see that
1
QV/e+1_j

67/” Yer1—J
> (E) 1£,(a) - £,(0)]

fory, + p,+1 < j < y,, — 1. Since y,, is the index of a return, we assume that
dist(&, ,(),]rit,) ~ ¢ Sowesee that, fory, + p, + 1< j <9, — 1,

&, (@) =& ,(0)] = IDATE [(2)1£,(a) - £,(0)]

Ys1—]
|5,,<a>—5,1<b>|s(2) £ @) =& ).

€7H k+1> 41>

Since dist(&}-)l(b),]ritb) 2 dist(&, ;(b),]Jrit,) ~ ¢ this gives

F e’ e e’

< 1£y0(@) = &, ()] ”ki‘l (Q)”Wf . £y 0(@) = &, 1(0)]
T+l

where we have used the fact that log Q is much smaller than y;;. Using the same argument
as in the estimate of the contribution from the bound periods, we find that

—

=

=3y S HeY 0T S

1 =\ keK (r) rz=A rzA

Eaad
Il

Estimate of tail Y. It remains to estimate the sum between the last free return » up to time
n. Asy, < n <., weneed to consider the different situations that can occur in this time
interval. If z <, + p, (i.e. » belongs to the bound period immediately after ), then the tail
Y can be estimated in the same as Y by reducing to the return at time ». If » = %, then
the tail consists of a bound period following » and a free period before the return z = %,
happens. In this case, the estimate Y;- can be estimated again as above.
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The remaining case is when 3, + p. + 1 <z < »_,. For this purpose, we consider pseudo-

returns, and we let 4 + p, + 1 < ¢; < - < g, < n be the indices of these returns. By
definition, £ ;(2) nU "# @and &,(a) U = @. For pseudo-returns, bound periods and

free periods are defined in a similar way. As in the previous estimates, the contribution to
the distortion between any two pseudo-returns of index g, and g, is a constant times

5000 = 50| 1,00) = s
e e 1
where 7 and 7, such that dist(qu’,(b),]ritﬂ) ~ ¢ % and dist(é‘;m’l(b),]ritﬂ) ~ ¢ %1 The
difference here is that, at a pseudo-return, the only thing we know about the length of
our interval is that |qu)1(a) - f%l(b)l < S8, where § = ¢ is the large scale. With similar
methods and notation used for estimating the bound and free contributions, we have

B =1 Gl 1 (b)|
Yr = (Z N Z Z) dlSt f Jrltb)

J=% k=1 j=q.  j=q, 11

1 & Gula) =& (6)] ”1|fz() £4(0)]
= Z*Z dise(Z, (0 )]r1t) ~ Gist(Z,,(b). Jrit,)

bl

< 1 + i |£’!‘e<r>,z(ﬂ) f’iévxz(b)' + S
A? dist(%@(r),l(b),]ritb) J’
N r—A
S A2 +& V_ZA" e +g
1
< p + ¢,

where we in the sum from ¢, to z — 1 used Lemma 3.10 (inequality (16), now with respect
to U') and that dist(&}-)l(b),]ritb) > 9" > 9 during this time.

Combining all these estimate above we arrive at
21 £

1
Y =
dist( ]rlth) *A

+ ¢,
J=1

and if 0 and ¢, are small enough, we reach the desired conclusion of strong distortion.  [J

3.6 Consequences of MDL

With Lemma 3.14 in hand, we can conclude that the previously obtained weak parameter
dependence of Lemma 3.2 can be promoted to a stronger form:

|fn+j,l(ﬂ) - fn+j,1(b)| ~ |Dﬁ”(é,1(ﬂ))||s€,1(ﬂ) - et},z(b”,
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provided that 2 and & belong to the same partition element.

Another direct consequence of Lemma 3.14 is that for a sufficiently small parameter square
Q, we have the following dichotomy for each critical point ¢: there exists N, such that
either 4"}\[[ ;(Q) grows to some definite size or 5\7/,1 (Q) is the first essential return.

Lemma 3.15. Let fy be a slowly recurrent Collet—Eckmann rational map. Let Ny be as in
Lemma 3.1, and ler £ > 0 be sufficiently small. Then there is a neighbourhood U ofjrit0 and
S > 0 (depending on U) such that, for each sufficiently small ¢ > 0 and for each critical point
(0) € Jrit, there is N, > Ny such that for all a € Q we have the following:

(i) Forsomey, > y,(1 = ¢'), one bhas

‘Dﬁk(vz(ﬂ)” >Ce™  for k<N -1

(iz) fork < N; -1, one has

dist(§,,(Q), Jrit,) ’
diam f/e,l(Q) < (log dist(fk)l(Q),]ritQ))z’ l.fée,l(Q) nU # @,
S, if5,(Q)nU=q;
(ii7) fork = N, one has
dist(Q,,(Q),]ritQ) ‘
diam,(Q) = | (logdie(g, (@) Jrig)e TNV
5 if§,(Q)nU =@
(iv) forall a,b € Q one has
DJZ”_N (fN,z (a))

-1 <¢ n < N,.
DN (D) for m<d

Proof. By the choice of N}, we can choose ¢ > 0 sufficiently smallsuch Q ¢ &y ,(y) N By
for all / and for some y arbitrarily close to %,.

Now we fix any ¢(0) € Jrit, and assume that (/7) is always satisfied up to some time,
denoted by N, — 1. Then this implies that all other parameters in Q will inherit expansion
from our starting map:

DA ((a)] = CFent = Cuent.
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Since we assumed that (77) is satisfied, we see that all parameters will be slowly recurrent
up to time \j — 1. Then by the definition of partition element we can use Lemma 3.14
repeatedly starting from the time N up to N} — 1 to get the distortion claimed in (v). [

To prove our main result, we would like to see if a small parameter square will grow to the
large scale S under the action of £, ;. For this purpose, let IV be as in the above lemma and
suppose without loss of generality that N; < N, < --. Then by Lemma 3.15, we have the
situation that le 1(Q) either reaches the large scale S or is the first essential return. If the
first case happens, we stop and consider the next critical point. If the second case occurs,
we partition the parameter square Q into small dyadic squares inductively as follows. Since
the partition rule should be valid for all returns, let us consider a given partition element
A c Q (instead of Q), which is assumed to be a perfect square. So suppose that &, ,(A)
is an essential return, and 4 is not a partition element according to Definition 2.2, then
partition 4 into four perfect squares 4 [ C A4, j; = 1,2,3,4 of equal size. If each of these
subsquares satisfies Definition 2.2, then stop. If not, for each subsquare 4 [, C A thatis not
a partition element, partition 4 ” into four new subsquares 4 i 2 5 =1,2,3,4 of equal size.
If they are partition elements, then stop. Otherwise go on until all subsquares are partition
elements. In this way we obtain a partition of 4 into subsquares of possibly difterent sizes
of the form 27 times the side length of 4. We get a collection of dyadic subsquares 4% ¢ 4
such that 4 = U, 4’ and

l diSt(fn,l (A;Zz)a JritA;;) diSt(fn,l (A;)’JritA;)
3 (log dist(, (45, Jrit Z;)) (log dist(&, ;(4;), Jrit ’,;))2‘

By construction, each Af; is a partition element, as defined in 2.2 (the constant 1/3 is

> < diam £.,(4) <

chosen because of small distortion; in an completely affine situation, 1/2 would suffice).
At this point we will need to delete parameters which violate the basic assumption. But
it turns out that these deleted parameters constitute only a small portion. After (possi-
bly) deleting parameters not satistying the basic assumption, we continue to iterate each
partition element individually.

4 Large deviations and escape of partition elements

We now consider a partition element in Q and follow it in a time window of the type
[m, (1 + t)m], for some (small) : > 0. This section is very similar to [BC91] where the
original ideas were developed. See also [Aspl3, Asp]. Let 4, () ¢ Q be a partition element
at time 7, containing the parameter 4. Since the proofs are very similar to these earlier
papers, we are not going through all the proofs here again but instead give references.
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Definition 4.1. We say that £, ,(4, (a)) has escaped or is in escape position, if z does not
belong to a bound period and diam(£, ,(4,,(4))) = S before partitioning. We also speak of
escape situation for 4, (2) and say that 4, () has escaped if §, (4, (2)) has escaped.

The first observation is that the measure of parameters deleted between two consecutive
essential returns is exponentially small in terms of the return time of the former return. See
Lemma 8.1in [Asp].

Lemma 4.2. Let &, (A) be an essential return, A € £, ,(y) N B, and let £,(A) be the next
essential return. Then if A is the set of parameters in A that satisfy the basic assumption at

time v, we have
m(A) =2 (1 - e )ym(A).

Proof. We first show that £, ,(A4) grows rapidly during the bound period p. By Lemmas 3.5
and 3.14 and the definition of the bound period, we get, forany 2 € 4,

—rd;
diam (&, p111(4)) ~ 5 IDL (G14(@))]
5 |fv+p+1,l(4) - é}ﬁl,z‘(‘z)l

2
7
> Ce P28 dise(£, (a), Jrit)

> CKe—sz(p+1)—o:(p+1)—210gr > e—(7/2)aep—210gr’

if p is large. So, by Lemma 3.10 and Lemma 3.6,

diam(fy!,l(A)) > diam(£+])+1’l(A))C’€7H(V’(V+p+l))
> C’g—(7/2)ap—2[ogr
> €—7ocdr/}/—2 log
_ 8ad

>¢ 77, (18)

So by the main distortion Lemma 3.14 together with Lemma 3.1, we see that the measure
of parameters deleted at time »' is

7 —2av'\2
m(A) - Wl(A) < (€ ) < 26_“(4_¥)V < €_W,
m(A) diam(¢, (4))?
since ad [y <1/100 (d is the maximal multiplicity of the critical points). O

We next state the following lemma, which is a correspondence to Lemma 8.3 in [Asp]

103



Lemma 4.3. Let £, ,(A) be an essential return, A €, () B, ;, with dist(&, ,(A), Jrit ;) ~
¢, If q is the time after this return spent on inessential returns up until &, ,(A,(a)) either
escapes, or makes an essential return, n > v, whichever comes first, then

1
q< zhr,

where h = SdAZ/V.

We now assume that we have a partition element 4 ¢ Q at time 7. We follow a parameter
a € A in the time window [z, (1 + ¢)m], for some (small) £ > 0. Suppose that 3, ,%, ..., %
are the essential returns in this time window for 4. In addition we assume that z € &, ()
for k < (1 + 1)m (this will be satisfied a posteriori). At each return »; the basic approach
rate assumption may force us to delete a fraction of parameters.

Let now 4, = A,,j (a) and suppose that dist(f%_’, (Aj),]ritAj) ~ ¢ . Then by (18), we have,

m(d;1) <C (e‘_rf;“)z _c 6_2’};” .
WL(A]) (E—Sad;;-/%)z 6_16“1/1’}'/71

So if we look at the sequence of parameter squares, the measure of 4, compared to 4, is

Jlm ]+1 s—1 —7}~+1

A
=0 m —16adr, /71

J=le

Now write R = 7 + ... + 7. Then, putting ) = r, we have

< C°¢ "016"“1/71 Z =1 1(2 160‘”1/71) 4 C:e;bIGadA/;/,—(f’a/Z)R.

So we suppose that £, ;(4,) is an essential return and will estimate the measure of parame-
ters that do not escape after a long time. If the parameter 2 € 4 = 4, has s essential returns
before it has escaped then, with 3, = »,

E(a, V)<p+1+z h/2r<hr+hR

where we have included the first bound period p, which is bounded by 2ad /% < d* [y in
hr.

The number of combinations of 7;’s such that R = + ... + 7; is at most
R+s5-1
s=1 J
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Since &, ;(A) is almost a small perfect square by the strong distortion lemma, there are
maximum about 27z¢™” /7> number of such disjoint squares at distance ¢”” from the critical
points, if diam (&, ,(4)) ~ ¢”"[r*. Notealso that sA < R. Let sA = gR, forsome 0 < g < 1.
Taking this into account we get by Stirling’s formula that the number of combinations is

R+s5s-1 - (R + s — 1)kt Rrl T R(5 - 1)
s—1 RR(S_I):—Ie—RE—:+1 R+s5s-1
1 A 1+q/A R
oL
(q/A)q/A
< PP+ 5(a)5,

where 7(A) — 0as A — oo, for R large enough (i.e., A large enough). Continuing
following the the earlier papers, we let 4, z ¢ A be the set of all parameters which have
exactly s essential return in the time window [z, (1 + ¢)m], for some ¢ > 0 and fixed R. If
we let R and s vary, we get a partition of 4 into countably many subsquares. For fixed s and
R, let AAJ be the largest of all such subsquares. Then we get,

m(d4,g) < m(4)e" (1 +5(A))k,

Now, we go through the same type of calculations as in [Asp] et al.

m({a € 4d: E(a,v) =rt})

< Z m(AJ‘,R)
Rt [h—ry,s<R[A
< > mA)P )"
R>t[h—ry,s<R[A
0 R/A )
<m(d) DY A1+ p(a)Rcrntendn-CIaR
R:t/h—ru s=1

(o]

< C'm(4) Z CR/AER/32+Rlog(1+;7(A))—(3/2)R+(16¢ia/7);b
R=t[h-r,

< C’m(A)g—(i—ro)%+(160fa/y)r0

¢ 46, (46 | 16da
< C’m(A)e‘737+(37+ 7,

for some constant C' > 0.

By the condition on «, if ¥ > 5, we get an estimate of the measure of parameters for large
escape times. Let us suppose that z > 247,. Then

m({aed:E(a,v)=1t}) < Ce_ﬁm(A).
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Of course we may put
m({a € A: F(a,v) > t}) < Cewm(A). (19)

for possibly another constant C > 0.

5 Conclusion and proof

Choose ¢, > 0 and consider a ¢,-neighbourhood N, of the Julia set 7(£). Then C\ N, 5
is a compact subset of the Fatou set. Hence there is ¢ > 0 such that 7(f)) € ./\/;0 holds for

all 2 € Q. Consequently, F(f,) > C\ /\/'50, fora e Q.

Now suppose that £ ,(4) is in escape position, i.e. has diameter comparable to S. If we
choose g, < .S, then by the strong distortion control:

m(faeAd:£,,(a) € F(£)}) = m(A4)(1 - &), (20)

/
where g, — 0as¢g, — 0.

For the £ > 0 chosen from the beginning, let « be such that 324« /7 < /2. Then, given
afirst essential return £, ;(4) with dist(, ;(4),Jrit) ~ ¢™, we have that 27 < 4han =

0
324« /7% < tn. According to (19), parameters in A that have escape time longer than i are
very few in measure, i.c. less than C (4 ) < ¢ Pm(4) < £m(A), for some ¢ > 0,
for » = A large enough. Let us disregard from them. The rest of the parameters makes
escape before 7 + 1z and we can use the estimate (20), given that the Lyapunov exponent
does not drop below y;. Butsince £, ;(4) is a first essential return, we have thatall 2 € 4
have 2 € &, ;(3%), so that, at time (1 + 1) we have, given thata € B y,,,;, that indeed
a € E1,,,,(n) (see the definitions of y; and y).

Now we know from Lemma 3.15 that, for each g there is an IV, > 0 such that &, ,(Q)
satisfies the statements in Lemma 3.15, i.e. bounded distortion of & ;(4) on Q and that
hol(Q) is an essential return or escape situation. If it is an escape situation we are done,
and can use (20). Suppose that N; = min{/\}} and N, = max{/N}}. To be able to use the
binding information for all critical points () for 2 € Q we need to make sure that the
bound periods for returns in a time window of the type (1}, (1 +¢)1\;), where ¢ > 0 is given
above, are all smaller than /V;. Actually, we make « so small that all such bound periods
satisfy
p< 4j—%(lﬂ)l\fzs]\q.
7
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By doing this we can use the binding information of all critical points as said. We also delete
parameters not satisfying the basic assumption. Using Lemma 4.2, from this we conclude
that, for every ¢ > 0 (depending on s and «), we get sets Q; ¢ Q of measure

m(Qy) 2 (1-¢) (1~ )m(Q)
such that every partition element in 4 in £, has escaped and

Qc 5(1+,)NZ,1(%) n B(1+:)Nz,l'

Moreover, from (20) we get that

m({a€ Q& (a) € F(£)}) = m(Qy)(1 - <)
> (1-g)(1-¢)(1-eM)
>m(Q)(1-¢"),

forsomes’ >0 arbitrarily small. Taking the intersection of all critical points and noting
that £, is hyperbolic if all critical points belong to the Fatou set, we get, where d' are the
number of critical points,

m({a € Q: £ ishyperbolic }) > m(Q)(1 - d'¢").

Since the set of degenerate one-dimensional families in the parameter space A, > of rational
maps around f; has measure zero, we get by Fubini’s theorem that £ is a Lebesgue density
point of hyperbolic maps in A e
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Equivalence of Collet—Eckmann conditions for slowly
recurrent rational maps

Mats Bylund

Abstract

In this short note we observe that within the family of slowly recurrent rational
maps on the Riemann sphere, the Collet—-Eckmann, second Collet-Eckmann, and
topological Collet—Eckmann conditions are equivalent and also invariant under
topological conjugacy.

1 Introduction

The Collet—Eckmann condition first appeared in the seminal papers by P. Collet and
J.-P. Eckmann [CE80, CE83] where they studied the chaotic behaviour of certain non-
uniformly expanding maps on the interval. This condition, which requires exponential
growth of the derivative along the critical orbit(s), was later introduced in [Prz98] to the
study of holomorphic (rational) maps on the Riemann sphere. The Collet—Eckmann
condition, which often implies the existence of absolutely continuous invariant measures
with strong ergodic properties, is known to be abundant in both the real [BC85,BC91,
AMO5] and complex [Ree86, Asp04] settings. A related and purely topological condition
was introduced in [PR98], where it was proved to be implied by the Collet—Eckmann
condition. Much work has been made to identify the relationships between the Collet—
Eckmann condition (abbr. CE), the second Coller-Eckmann condition (abbr. CE2), and the
topological Collet—Eckmann condition (abbr. TCE) (see below for definitions). Notably,
these conditions are known to be equivalent within the family of unicritical maps (see
[PRLS03] and references therein). In [PRLS03] examples are given of maps which satisfy
TCE but not CE and/or CE2, and maps which satisty CE but not CE2, and vice versa.
The main problem that arises is when critical points come close to other critical points of
high multiplicity. By assuming a recurrence condition of the critical orbits, known as the
slow recurrence condition (abbr. SR), we observe in this note that these conditions become
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equivalent; in a sense slow recurrence takes the role of unicritical. The slow recurrence
condition is defined as follows.

Definition 1.1. A rational map f: C — Cof degree > 2 is said to satisty the slow recurrence
condition if for each « > 0 there exists C > 0 such that, for every critical point ¢ €

Crit(f) n J(f),
dist (£7(c), Crit(£) N J(f)) = Ce™ (> 1).

Remark 1.2. Note that if f satisfies SR then no critical point is mapped onto another
critical point.

The SR condition is generally believed to be a typical property among rational Collet—
Eckmann maps, and it should be noted that within the real quadratic family this is known
to be true due to a result by A. Avila and C. G. Moreira [AMO05]. In fact they proved that
for a typical non-hyperbolic (the critical point does not tend to an attractive cycle) real
quadratic map F one has

forany e > 0 and C = C(¢) > 0 a constant. Moreover, in the multimodal setting, B. Gao
and W. Shen [GS14] proved that for one-parameter families the slow recurrence condition is
satisfied on a set of positive Lebesgue measure. We also mention that for complex unicritical
polynomials z 2% + ¢, it follows from a result by J. Graczyk and G. Swigtek [GS15] that
the slow recurrence condition is satisfied for a typical parameter ¢ with respect to harmonic
measure on the boundary of the connectedness locus.

The SR condition is also natural in the sense that CE+SR is invariant under topological
conjugacy, as was observed by H. Li (Theorem A.1 in [Lil7], see also [LW06]). The short
proof of the invariance is given at the end of this note.

The following is our main observation.

Proposition 1.3. Within the family of slowly recurrent rational maps of degree = 2 on
the Riemann sphere, CE, CE2, and TCE are equivalent. Moreover, these conditions are
invariant under topological conjugacy.

In [PRLS03] examples of real polynomials of degree 5 that satisty CE but not CE2 (and
vice versa) are given, and also examples of real polynomials of degree 3 that satisfy TCE but
neither CE nor CE2. We therefore conclude that none of these examples satisfy SR.
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We make a final remark that it would be interesting to investigate the set of rational maps
satisfying TCE+SR. Indeed if almost every topological Collet—Eckmann map is slowly
recurrent then TCE and CE are equivalent up to a set of measure zero.

Below we indicate the changes in three already existing lemmas in order to reach the above
stated result of Proposition 1.3. For completeness we provide the minimal of definitions
and proofs, but refer to the relevant articles for greater detail. Throughout this note
the standing assumption is that f is a slowly recurrent rational map on the Riemann
sphere Cof degree > 2, and with /” we mean f composed with itself 7 times. We let
B(z,7) = {w: dist(z,w) < r} C denote the disk of radius » > 0 centred at z, and we let
Crit' (f) = Crit(f) n J(f) with Crit( ) the set of critical points of £, and /() the Julia
set of . Distances, diameters, and derivatives are taken with respect to the spherical metric
on C.

2 Equivalence of CE+SR and CE2+SR

The Collet-Eckmann condition and second Collet—Eckmann condition are defined as
follows.

Definition 2.1. A rational map f: C — C of degree > 2 without parabolic periodic
points is said to satisfy the Collet—Eckmann condition (CE) if there exist constants 4; > 1
and C; > 0 such that, for each critical point ¢ € Crit'(f),

|(F) (f =2 (n=0).

Definition 2.2. A rational map f* C — Cof degree > 2 is said to satisfy the second
Collet—Eckmann condition (CE2) if there exist constants 4, > 1 and C, > 0 such that, for
every n > 1 and every w € £"(c) for ¢ € Crit' (£) not in the forward orbit of other critical
points,

|(F") (w)] = G5

In [GS98] it was proved that these two conditions are equivalent for critical points of
maximal (dynamical) multiplicity. This was achieved through the so-called (reversed)
telescope construction. At the heart of these techniques lies the shrinking neighbourhoods
(first introduced in [Prz98]) which are defined as follows. Fix a decreasing sequence of
positive real numbers (J,) satistying [[ (1 —9,) > 1/2. Let B, = B(z,7), and consider
a sequence (f"(2)) of consecutive preimages of z. With A, = [],_ (1 - 9,), the nh
shrinking neighbourhoods of z are now defined as

(]n = Compf—n(z)f_nBrA” and Un/ = Compf—n(z)f_nBrAnH'
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Here, Comp_denotes the connected component containing w. With the right scale around
each critical point, using these shrinking neighbourhoods, one gets distortion and expan-
sion estimates. The scale is defined by the choice of two positive numbers R < R < 1,and
the correct choice of these two numbers is crucial for the local analysis. We refer to [GS98]
for details; for our purposes it is enough to keep in mind that these two numbers are fixed
throughout the analysis.

21 CE+SR — CE2+SR

Let (c_;),., be a sequence of consecutive preimages of ¢, = ¢ € Crit' (f) of length z > 1,
ie. f(c) = cpyqand fk (c_g) = c. In [GS98], the authors inductively define an increasing
sequence of numbers 0 = 7, < n; < - < n,, = n, and each (backward) orbit of length
.1 — ny is classified as either a zype 1, type 2, or type 3 orbit. For orbits of type ... 2,... 3, or
1...13 (one reads from the right), one has exponential growth of the derivative (a 12 block
is not allowed by construction). The only problem thus arise when a given backward orbit
begins with a block of 1’s which is not preceded by a 3. For clarity we give the definition of
atype 1 orbit.

Definition 2.3. A sequence z, = 2,2_; € £ '(2),...,2_, € f"(2) of consecutive preim-

ages of z is of the first type with respect to the critical points ¢’ and ¢” if

1) Shrinking neighbourhoods U, for B(z,7), 1 < k < n, avoid critical points for some
r < 2R,

2) The critical point ¢” € aU,,

3) The critical value of ¢’ is close to z with £(c') € B(f(z),R).

The situation of having a block of 1’s not preceded by a 3 can only happen in the beginning,
and given such a situation the authors prove that there is a constant 4 > 1 such that

|(fn),(c‘_n) |/"max > const ;lnrlxumax_iu([)’ (1)

where zt(c) is the multiplicity of ¢, ¢, = max ¢y () #(c), and 4 < 2R’ is the radius of
adisk centred at c. Here 74 can not be chosen freely in order for the inductive definition
of the 7,’s to work, thus for large 7 (1) might not yield expansion. The authors assume
¢(c) = tma and in doing so prove that CE implies CE2 for critical points of maximal
multiplicity (Proposition 1 in [GS98]). If one assumes SR this problem is easily seen to
vanish since the slow recurrence condition dictates how small #; can be.
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Lemma 2.4. Ifa slowly recurrent rational map f: C — C of degree > 2 satisfies CE then it
satisfies CE2.

Proof. Suppose the situation is as described above, and let 7, be the length of the first
type 1 orbit. Per definition of a type 1 orbit there exists a critical point ¢” € dU, which is
mapped into B(c, 74). From SR we get that

5 = dist(f1(c"), ¢) = Ce™™.
Since 7; < n, inserting the above in (1) we find that
|(f |/‘ma > const 1* (C ( —ﬁﬂ’l);umax_iu([) > CZJ'Z’

where we can make 4, arbitrarily close to 1 by decreasing « (and thus also decreasing

G,). O

2.2 CE2+SR = CE+SR

Pick ¢ € Crit'( f), fix n, and consider a sequence of images

5= 17 (f(e), 24 :fn_l(f(f)),...,z_(nH) =

Similarly as in the previous case, the authors inductively define an increasing subsequence
ny < ny < <mn,, =n. Heren is the smallest positive integer such that z_, ,;) isin the
R-neighbourhood of some critical point. Due to the exponential shrinking of components
(see below for a definition), which is implied by CE2 (see [PRLS03]), one can prove that
during this last orbit of length 7, one has expansion. (In [GS98] R-expansion was taken as
an assumption.) The conditions imposed on 7 > ] # 0,areas follows:

I) The sequence By o

is of the first reversed type,

_”j

1) Some critical point ¢'/) € B(z_ (1) ,R).

The definition of a first reversed type orbit is as follows.

Definition 2.5. A sequence z, = 2,2_; € £ (2),...,2_, € f"(2) of consecutive preim-
ages of z is of the reversed first type with respect to two crltlcal points ¢ and " if

1) Shrinking neighbourhoods U, for B(z_y,7), 1 < k < n — 1, avoid critical points,
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2) dist(z_,,¢') = r/2 < R,

3) e U,

The authors continue and prove (Proposition 5 in [GS98]) that there is a constant 4 > 1
such that

|(f")’(f(f))| > const A" (diam(Um))/‘"““_Mc) . (2)

Here diam(U,,) is the diameter of a shrinking neighbourhood around ¢. As in the previous
case, this factor might interfere with expansion for large 7 unless ¢ is assumed to be a critical
point of maximal multiplicity #(c) = #,,,,. Again, assuming SR, we get a lower bound for
the diameter.

Lemma 2.6. If a slowly recurrent rational map f: C — C of degree > 2 satisfies CE2 then
it satisfies CE.

Proof. It is given that f ”(c) € B(c,R) for a critical point ¢, and U, is the shrinking
neighbourhood of B(f™(c), ») of radius » = 2 dist( /™ (c), ¢’ ). By definition of a reversed
type 1 orbit £~ B( f ( ), r[2) — f(U,) is unlvalent, and with an application of
Koebe’s %-lemma we find that

diam(U,,) = diam(f(U,,)) = —V| "N (f(o) NI

(Here C > 1is a constant depending on the scale R we are working with, and it shows up
since we are adapting Koebe’s %—lemma to the spherical metric.) The first inequality follows
since ¢ € U, and thus the image of U, under £ is contracted. Since »/2 = dist(f”(c),¢),
invoking SR and that 7 < », we find by inserting the above in (2) that

Hmax=#(€)

(7Y (P = conse &£ (NI X (CementontlO

We observe that | (£”7")(f(c))| < K with K = K(R) an absolute constant depending on
the choice of R. Indeed, for each critical point ¢ under consideration, and for a fixed R,
there exists a unique smallest integer 7 = m(c, R) for which f”(c) € B(c", R), for some
critical point ¢”. We simply let

K = max (eR)=1y! c .
ce( rit'(f) l(f ) (f( ))|
Thus we get that

(A (F)] = GA3,

where we can make A, arbitrarily close to A by decreasing « (and thus also decreasing

c,). 0
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3 Equivalence of CE+SR and TCE+SR

The topological Collet—Eckmann condition for rational maps on the Riemann sphere was
first introduced in [PR98] and is defined as follows. Recall that for a connected set Q,
Comp | g_l (Q) denotes the connected component of g_l (Q) containing w.

Definition 3.1. A rational map £: C — Cof degree > 2 is said to satisfy the topological
Collet—Eckmann condition (TCE) if there exist M > 0, P > 0 and » > 0 such that for every
z € J(f) there exists a strictly increasing sequence of positive integers n, forj=1,2,..,
such that n; < P - j, and for each ;

#{i0 <k <n,Comp, | ™ (B(F(2),7) 0 Cric = @} < M

Since TCE is formulated purely in topological terms it is a topological invariant. One of
the useful properties of this condition is its many equivalent formulations (see [PRLS03]
and also [PRL07,RL10]). Here we make use of the following equivalent condition.

Definition 3.2. A rational map £ C — Cof degree > 2 is said to satisty exponential
shrinking of components (ExpShrink) if there exists Ag,, > 1and rg,, > 0 such that for
every x € J(f), every n > 0, and every connected component 7 of /" (B(x, PExp))

diam(W) < (AgL,)".

It was first proved in [PR98] that CE implies TCE, and in [PR99] it was proved that under
the assumption that for every ¢ € Crit'( #) whose forward trajectory does not meet any
other critical point

cl Uf (Crlt N {c}) =Q, (3)

n>0
TCE implies CE. This latter result clearly implies that CE+(3) is a topological invariant; in
particular CE is a topological invariant in the case of unicritical maps. Another proof of
this result was obtained in [Prz00]. We will eftectively replace condition (3) with SR, thus
proving that TCE+SR implies CE+SR. This constitutes an obvious modification in the
proof of Lemma 4.5 in [Prz00]; for completeness we give a sketch of this proof. (See also
Proposition 3.4 in [Lil7].)

Lemma 3.3. Ifa slowly recurrent rational map f: C — C of degree > 2 satisfies ExpShrink
then it satisfies CE.
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Proof. Let  be the exponent in SR and let 7, = 7(«) be large enough such that for every
n = n

dist( 7 (£(c)), Crit(f)) > > (j=0,1,..,n—1).

This condition is assumed in Lemma 4.5 [Prz00], and the proof now continues as follows.
Fix ¢ > 0 arbitrary and let

-1
5= o8¢ + 2an +1,
log lExp log lEXP

where [x] denotes the integral part of x. By ExpShrink we have thatforall0 < j < »
. —s—=7 n+s =1 \s+j
dlam (Compfnfj(f(())f / (B(f (f(c))’VExp)>) < (/‘lExp) /
(Aip)’

—2an

IA

<ee
LetB = B(f”(f(c)),rExpe_3“M”), where
I logsupa | f'] 1
- loglExp .

Then for 7 large enough we get that

Bc Compfn(f([))f—f (B(f”ﬂ (f(C)):”Exp)) .

Let ¥, = Comp 0 f7"(B). Then there exists w € ¥, such that

ny/ dlamB —3aMny\n
) @] 2 gz = Crage™ ™2,

If ¢ is sufficiently small we have distortion and can switch from w to f(c), hence

|(F) (FeN] = 21,

where we can make 4, arbitrarily close to A, by decreasing « and ¢ (and thus increasing

7). O

4 Topological invariance

We finish by giving the short proof of the topological invariance, as outlined in Theorem A.1
[Lil7].
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Lemma 4.1. Let f and g be topologically conjugated rational maps on the Riemann sphere
of degree > 2. If f satisfies TCE+SR then so does g.

Proof. Since f is TCE+SR it is CE+SR and therefore, by Theorem A in [PR99], the
conjugacy is quasi-conformal and therefore bi-Hélder. Let 4 denote this conjugacy, and
let 4 > 0 and B > 0 be the associated constant and exponent from the Holder condition,
respectively. Let ¢; and ¢, be distinct critical points of ¢; then ¢; = 27 (¢]) and ¢, = A7 ()
are distinct critical points of f. Since / preserves TCE, g is at least TCE. The fact that g is
also SR follows from

A dist (g” (), cé)B > dist (h_l (£" (), Wt (cé))
=dist (f"(¢)), )

> Ce ™,

O]

Acknowledgement. Ithank M. Aspenberg and W. Cui for discussions, and the referee for helpful

comments and suggestions.

References

[AMOS]  Artur Avila and Carlos Gustavo Moreira. Statistical properties of unimodal
maps: the quadratic family. Ann. of Math. (2),161(2):831-881, 2005.

[Asp04]  Magnus Aspenberg. The Collet-Eckmann condition for rational functions
on the Riemann sphere. ProQuest LLC, Ann Arbor, MI, 2004. Thesis
(Tekn.dr.)-Kungliga Tekniska Hogskolan (Sweden).

[BC85]  Michael Benedicks and Lennart Carleson. On iterations of 1 — ax” on (-1,1).
Ann. of Math. (2),122(1):1-25, 1985.

[BC91]  Michael Benedicks and Lennart Carleson. The dynamics of the Hénon map.
Ann. of Math. (2),133(1):73-169, 1991.

[CE80]  P. Collet and J.-P. Eckmann. On the abundance of aperiodic behaviour for
maps on the interval. Comm. Math. Phys.,73(2):115-160, 1980.

[CE83]  P. Collet and J.-P. Eckmann. Positive Liapunov exponents and absolute conti-
nuity for maps of the interval. Ergodic Theory Dynam. Systems, 3(1):13—46,
1983.

121



[GS98]

[GS14]

[GS15]

[Lil7]

[LWO06]

[PRIS]

[PR99]

[PRLO7]

[PRLS03]

[Prz98]

[Prz00]

[Ree86]

[RL10]

Jacek Graczyk and Stas Smirnov. Collet, Eckmann and Hélder. Tnvent. Math.,
133(1):69-96, 1998.

Bing Gao and Weixiao Shen. Summability implies Collet-Eckmann almost
surely. Ergodic Theory Dynam. Systems, 34(4):1184-1209, 2014.

Jacek Graczyk and Grzegorz Swiatek. Lyapunov exponent and harmonic
measure on the boundary of the connectedness locus. Int. Math. Res. Not.
IMRN, (16):7357-7364, 2015.

Huaibin Li. Topological invariance of the Collet-Eckmann condition for
one-dimensional maps. Nonlinearity, 30(5):2010-2022, 2017.

Stefano Luzzatto and Lanyu Wang. Topological invariance of generic non-
uniformly expanding multimodal maps. Math. Res. Lett., 13(2-3):343-357,
2006.

Feliks Przytycki and Steffen Rohde. Porosity of Collet-Eckmann Julia sets.
Fund, Math., 155(2):189-199, 1998.

Feliks Przytycki and Steffen Rohde. Rigidity of holomorphic Collet-Eckmann
repellers. Ark. Mat.,37(2):357-371,1999.

Feliks Przytycki and Juan Rivera-Letelier. Statistical properties of topological
Collet-Eckmann maps. Ann. Sci. Ecole Norm. Sup. (4), 40(1):135-178, 2007.

Feliks Przytycki, Juan Rivera-Letelier, and Stanislav Smirnov. Equivalence
and topological invariance of conditions for non-uniform hyperbolicity in the
iteration of rational maps. Invent. Math.,151(1):29-63, 2003.

Feliks Przytycki. Iterations of holomorphic Collet-Eckmann maps: conformal
and invariant measures. Appendix: on non-renormalizable quadratic polyno-
mials. Trans. Amer. Math. Soc., 350(2):717-742,1998.

Feliks Przytycki. Holder implies Collet-Eckmann. Number 261, pages xiv,
385-403. 2000. Géométrie complexe et systemes dynamiques (Orsay, 1995).

Mary Rees. Positive measure sets of ergodic rational maps. Ann. Sci. Ecole
Norm. Sup. (4),19(3):383-407, 1986.

Juan Rivera-Letelier. The maximal entropy measure detects non-uniform
hyperbolicity. Math. Res. Lett., 17(5):851-866, 2010.

122






Printed by Media-Tryck, Lund 2022 % NORDIC SWAN ECOLABEL 3041 0903

Doctoral Theses in Mathematical Sciences 2022:7

LU N ISBN 978-91-8039-341-6
UNIVERSITY ISSN 1404-0034



	Tom sida
	331272_2_164x232_Mats B.pdf
	Acknowledgements
	Populärvetenskaplig sammanfattning
	List of papers
	I Introduction and summary
	Introduction
	Some notions in dynamical systems
	The real quadratic family
	Rational dynamics
	The Collet–Eckmann conditions
	The Benedicks–Carleson techniques

	Summary of results

	References
	II Scientific papers
	Paper I: Critical recurrence in the real quadratic family
	Paper II: Slowly recurrent Collet–Eckmann maps with non-empty Fatou set
	Paper III: Equivalence of Collet–Eckmann conditions for slowly recurrent rational maps

	Tom sida
	Tom sida




