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Abstract

The aim of this mini-course is to give an elementary proof of two consequential

results about SLN (Z) for N ≥ 3. The first result concerns normal subgroups of

SLN (Z) and is due independently to Bass-Lazard-Serre and Mennicke. It states

that the normal subgroups of SLN (Z) for N ≥ 3 are either {IN}, {±In} (provided
N is even) or have finite index. The second result is a rigidity result that concerns

stabilizers of measurable actions of SLN (Z) that preserves an ergodic probability

measure and is due to Nevo-Stuck-Zimmer. To prove these results, we follow the

recent approach of boomerang subgroups due to Glasner-Lederle and provide the

proof of Glasner-Lederle’s theorem, which gives an explicit list of the boomerang

subgroups of SLN (Z) for N ≥ 3.

Introduction

Throughout the mini-course, the letter G will always denote a countably infinite group.

Definition ([GL22]). — Let G be a group. A subgroup H ≤ G is a boomerang if

for all g ∈ G, there exists a sequence of integers kn −→
n→+∞

+∞ such that

lim inf
n→+∞

gknHg−kn = lim sup
n→+∞

gknHg−kn = H,

Here we used the standard notations of liminf and limsup of sets, namely

lim inf
n→+∞

An =
⋃
n≥1

⋂
N≥n

AN , lim sup
n→+∞

=
⋂
n≥1

⋃
N≥n

AN .

Recall that:

− x ∈ lim inf
n→+∞

An if and only if x belongs to An eventually.

− x ∈ lim sup
n→+∞

An if and only if x belongs to infinitely many An.
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The definition of boomerang subgroup may seem to be pulled out of a hat, but it has

(more natural) characterization in terms of topological recurrence that we will discuss

later in the mini-course. The main theorem that we will prove in this mini-course

concerns boomerang subgroups of SLN(Z) for N ≥ 3. Recall that SLN(Z) denotes

the group of n × n matrices with integer coefficients of determinant 1. This is indeed

a group: if A,B ∈ SLN(Z), then AB is a n × n matrix with integer coefficients and

det(AB) = det(A)det(B) = 1. Moreover, if A ∈ SLN(Z), then A is invertible and

A−1 = 1
det(A)

t
Com(A), which is indeed a matrix with integer coefficients.

Given a subgroup H of a group G, a (left) coset of H in G is a set of the form

gH = {gh : h ∈ H} for some g ∈ G and that H has finite index in G if the number

of cosets of H in G is finite. We denote by [G : H] the number of left cosets of H in G.

Main Theorem ([GL22]). — Fix an integer N ≥ 3. Then the boomerang subgroups

of SLN(Z) are {IN}, {±IN} (provided that N is even) and the finite index subgroups.

Outline of the mini-course

This mini-course consists in three parts.

• Part I: Proof of Glasner-Lederle’s theorem

After providing preliminaries on boomerang subgroups, we will dive into the proof

of Glasner-Lederle’s theorem. Two of the main tools that we will use along the

proof are the Bruhat decomposition of SLN(R) and a criterion on subgroups of

SLN(Z) that ensure finite index.

• Part II : Measurable actions for SLN(Z) with N ≥ 3.

We will proof the celebrated Poincaré’s recurrence theorem and use it to prove –

as a consequence of Glasner-Lederle’s theorem – a theorem due to Nevo-Stuck-

Zimmer, which concerns stabilizers of measurable actions of SLN(Z) that preserves
an ergodic probability measure.

• Part III : The case of SL2(Z).

The aim of this part is to show that Glasner-Lederle’s theorem fails for SL2(Z). We

will prove that the second derived subgroup SL2(Z)′′ is indeed a normal subgroup

of SL2(Z) which is infinite and has finite index.
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Part I : Proof of Glasner-Lederle’s theorem

This part follows the lines of the paper [GL22].

1 Preliminaries of boomerang subgroups

The first examples of boomerang subgroups are given in the following lemma. Recall

that a subgroup H of a group G is normal if for all g ∈ G, we have gHg−1 = H. We

denote it by H ⊴ G.

Lemma 1. — Normal subgroups are boomerang subgroups.

Proof. Let H ≤ G be a normal subgroup. Then for all g ∈ G, it suffices to set kn = n

to get lim inf
n→+∞

gknHg−kn = lim inf
n→+∞

H = H and lim sup
n→+∞

gknHg−kn = lim sup
n→+∞

H = H.

As a corollary of Lemma 1 and the Main Theorem, we get the following description

of normal subgroups of SLN(Z) for N ≥ 3.

Theorem 2 ([BLS64], [Men65]). — Fix an integer N ≥ 3. Then the normal subgroups

of SLN(Z) are {IN}, {±IN} (provided that N is even) and the finite index normal

subgroups.

Remark. — In Part III, we will prove that SL2(Z) admits normal subgroups that are

infinite and of infite index.

Lemma 3. — Finite index subgroups are boomerang.

Proof. Let H be a finite index subgroup of G. We first show that H contains a non

trivial power of any element of G. Fix g ∈ G and let n be the number of cosets

of H in G. Among H, gH, . . . , gnH two cosets are equal. The equality giH = gjH

implies that gi−j ∈ H. Therefore H contains a non trivial power of any element

of G. Let us now show that H is a boomerang. Fix g ∈ G and let k ∈ N such

that gk ∈ H. Then for any integer n ≥ 0, we have gnk ∈ H and thus gnkHg−nk.

Thus lim infn→+∞ gnkHg−nk = lim supn→+∞ gnkHg−nk = H which shows that H is a

boomerang.

With Lemmas 1 and 3, we have now checked that all the subgroups in the Main

Theorem are indeed boomerang subgroups.

We now develop one result on boomerang subgroups that will be useful several times

in the sequel. Given a group G and two group elements g, h ∈ G, the commutator of

g and h is [g, h] = ghg−1h−1.

Lemma 4. — Let H be a boomerang subgroup of G. Then for all g ∈ G and h ∈ H,

there exists infinitely many integers k > 0 such that [h, gk] ∈ H.
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Proof. We apply the definition of boomerang with g−1. There exists a sequence of

integers kn −→
n→+∞

+∞ such that

lim inf
n→+∞

g−knHgkn = lim sup
n→+∞

g−knHgkn = H.

Since h−1 ∈ H, then h−1 ∈ g−knHgkn eventually. In other words, we have gknh−1g−kn ∈
H eventually. Multiplying by h, we obtain that [h, gkn ] belongs H eventually.

2 Bruhat decomposition

Let us fix some standard notation. Fix i, j ∈ {1, . . . , N} and λ ∈ R. We denote by

Ei,j the matrix (δi,kδk,l)k,l∈{1,...,N} where δ is the Kronecker delta. Whenever i ̸= j, we

denote Ti,j(λ) the transvection matrix IN + λEi,j. We recall that:

• multiplying a matrix M ∈ GLN(R) on the left by Ti,j(λ) (that means looking at

Ti,j(λ)M) is the same as making the elementary operation Li ← Li + λLj,

• multiplying a matrix M ∈ GLN(R) on the right by Ti,j(λ) (that means looking

at MTi,j(λ)) is the same as making the elementary operation Cj ← Cj + λCi.

The Bruhat decomposition is a decomposition of SLN(K) that holds for any field K.

Here, we will work with the field K = Q. Let U ≤ SLN(Q) be the group of upper

triangular unipotent matrix (diagonal coefficients are equal to 1). For σ ∈ SN and

m1, . . . ,mN ∈ Q satisfying m1 . . .mN = sgn(σ), we denote by Pσ(m1, . . . ,mN) the

matrix of SLN(Q) defined by

Pσ(m1, . . . ,mN) = (mjδi,σ(j))i,j∈{1,...,N}.

Notice that Pσ(m1, . . . ,mN) ∈ SLN(Q) because of the assumption m1 . . .mn = sgn(σ).

Theorem 5 (Bruhat decomposition). — For all matrixM ∈ SLN(Q), there exists two

matrices U, V ∈ U , a permutation σ ∈ SN and m1, . . . ,mN ∈ Q satisfying m1 . . .mN =

sgn(σ), such that such that M = UPσ(m1, . . . ,mN)V .

Proof. Let M ∈ SLN(Q) with M = (mi,j)i,j∈{1,...,N}.

Step 1: the first column of M is non null. Let i1 be the greatest index such that

mi1,1 ̸= 0. We make the following elementary operations.

− We multiply M on the left by Tk,i1(−mk,1/mi1,1) for all k < i1. This is equivalent

to making the elementary operation Lk ← Lk− (mk,1/mi1,1)Li1 for all k < i1. All

the coefficients of the first column, expect the i th
1 one, becomes zero.

− We multiply M on the right by T1,k(−mi1,k/mi1,1). This is equivalent to making

the elementary operation Ck ← Ck − (mi1,k/mi1,1)C1 for all k > 1. All the

coefficients on the i th
1 row becomes zero, except the first one.
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We have multiplied on the left and on the right by elements in U and we now get a

matrix of the form 

0
... ∗
0

mi1,1 0 . . . 0

0
... ∗
0


.

Step 2: We make similar elementary operations on the second column, which is non

null. By construction, we have i2 ̸= i1.

. . .

Step N : We have obtained two matrices T, T ′ ∈ U and a permutation σ : k 7→ ik in

SN such that TMT ′ = Pσ(m1, . . . ,mN).

Exercise 6. — Prove that the permutation σ ∈ SN in a Bruhat decomposition of a

matrix M ∈ SLN(Q) is uniquely determined.

3 A criterion of finite index for boomerang subgroups

In order to prove Glasner-Lederle’s theorem, we will use this criterion, which is a nec-

essary condition for a subgroup of SLN(Z) for N ≥ 3 to have finite index. We won’t

give the proof of it but we refer to [Ben21, Prop. 3.18] for a modern proof.

Lemma 7 ([Tit76], [Vas73]). — Fix N ≥ 3. Let H ≤ SLN(Z) be a subgroup such

that for all i, j ∈ {1, . . . , N} distinct, there exists k ∈ Z∗ with Ti,j(k) ∈ H. Then

[SLN(Z) : H] < +∞

Remark. — The converse of Lemma 7 holds. In fact, for N ≥ 3, SLN(Z) satisfies

the congruence subgroup property: any finite index subgroup is contained in the kernel

of the group homomorphism SLN(Z)→ SLN(Z/kZ) induced by the reduction modulo

some integer k ≥ 1.

When the subgroup is a boomerang, the above criterion is easier to satisfy.

Lemma 8. — Fix N ≥ 3. Let H ≤ SLN(Z) be a boomerang subgroup. If there exists

i, j ∈ {1, . . . , N} distinct and k ∈ Z∗ such that Ti,j(k) ∈ H, then H has finite index.

Proof. Assume that Ti,j(k) belongs to H. Let i′, j′ ∈ {1, . . . , N} distinct, with i ̸= i′

and j ̸= j′. By Lemma 4, there exists (infinitely many and therefore) one integer l ∈ Z∗

such that [Ti,j(k), Tj,j′(l)] ∈ H. But this commutator is equal to Ti,j′(kl). We apply

again Lemma 4 to get an integer m ∈ Z∗ such that [Ti,j′(kl), Ti′,i(m)] ∈ H. But this

commutator is equal to Ti′,j′(klm). We conclude by using Lemma 7.
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4 The proof of Glasner-Lederle theorem

In this section, we denote by (X1, . . . , XN) the canonical basis of RN .

Lemma 9. — Let H ≤ SLN(Z) be a boomerang subgroup. If HX1 ⊆ span(X1) then

for all i ∈ {1, . . . , N}, we have HXi ⊆ span(Xi).

Proof. There is nothing to prove when i = 1. Let i ∈ {2, . . . , N} and M ∈ H. We

apply the definition of boomerang subgroup for the group element T1,i(1): there ex-

ists a sequence of integers kn −→ +∞ as n → +∞ such that the matrix Mn =

T1,i(kn)MT1,i(−kn) belongs to H for all n ∈ N. By assumption on H, we have

MnX1 ⊆ span(X1). Since M is invertible, then so is Mn for all n ∈ N and thus

X1 is an eigenvector of Mn. Notice that T1,i(−kn)X1 = X1 − knXi. We therefore get

that X1 − knXi is an eigenvector of M . Thus, there exists λn ∈ R∗ such that

M(X1/kn −Xi) = λn(X1/kn −Xi). (1)

Since the norm of M(X1/kn − Xi) is bounded from above and that of (X1/kn − Xi)

is bounded from below by a strictly positive constant, we obtain that the sequence

(λn)n≥0 is bounded. Up to a subsequence, one can assume without loss of generality

that it converges to λ ∈ R. At the limit in Equation (1), we get MXi = λXi, which

finishes the proof.

Lemma 10. — Let H ≤ SLN(Z) be a boomerang subgroup. Assume that for every

M ∈ H, the permutation σ ∈ SN given in a Bruhat decomposition of M satisfies

σ(1) = 1. Then H is a subgroup of {±IN}.

Proof. Notice that if for every M ∈ H, the permutation σ ∈ SN given in a Bruhat

decomposition of M satisfies σ(1) = 1, then we have HX1 ⊆ span(X1). Thus, by

Lemma 9, for all i ∈ {2, . . . , N}, we have HXi ⊆ span(Xi). This implies that H is a

subgroup of {diag(d1, . . . , dN) : di ∈ {±1}}. Assume that there exists d1, . . . , dN ∈ {±1}
such that M = diag(d1, . . . , dN) and di ̸= dj for some i ̸= j. Then for all k ∈ Z∗, the

matrix Ti,j(k)MTi,j(−k) is not diagonal and therefore not in H. Thus, H ≤ {±IN}.

Proof of the Main theorem. Let H ≤ SLN(Z) be a boomerang subgroup and assume

that H is not a subgroup of {±IN}. By Lemma 10, there exists M ∈ H with a Bruhat

decomposition M = UPσ(m1, . . . ,mN)V satisfying σ(1) ̸= 1. There are two cases.

Case 1: if σ(N) ̸= 1. Fix l ∈ Z∗ such that UT1,σ(1)(l)U
−1 ∈ SLN(Z). By Lemma 4,

there are infinitely many integers k, l′ ∈ Z such that

[[M,T1,N(k)], UT1,σ(1)(ll
′)U−1] ∈ H

By Exercise 13 and the fact that [Tσ(1),σ(N)(km1/mN), T1,σ(1)(ll
′)] = T1,σ(N)(−kll′m1/mN),

we therefore obtain that UT1,σ(N)(−kll′m1/mN)U
−1 ∈ H. Since m1/mN ∈ Q, one can

choose k and l large enough so that U−1HU contains a transvection Ti,j(λ) with i ̸= j

and λ ∈ Z∗.
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Case 2: if σ(N) = 1, choose any j ̸= 1, σ(1). Fix l ∈ Z∗ such that UT1,j(l)U
−1 ∈

SLN(Z). By Lemma 4, there are infinitely many integers k, l′ ∈ Z such that

[[M,T1,N(k)], UT1,j(ll
′)U−1] ∈ H

By Exercise 13 and the fact that [Tσ(1),σ(N)(km1/mN), T1,j(ll
′)] = UTσ(1),j(kll

′m1/mN)U
−1,

we therefore obtain that UTσ(1),j(kll
′m1/mN)U

−1 ∈ H. Since m1/mN ∈ Q, one can

choose k and l large enough so that U−1HU contains a transvection Ti,j(λ) with i ̸= j

and λ ∈ Z∗

Now by Exercise 14, the group SLN(Z) ∩ U−1SLN(Z)U has finite index in SLN(Z). By
Exercise 12, we deduce that SLN(Z) ∩ U−1HU is a boomerang subgroup of SLN(Z) ∩
U−1SLN(Z)U and therefore of SLN(Z) by Exercise 11. Since it contains a transvection

Ti,j(λ) with i ̸= j and λ ∈ Z∗, we deduce by Lemma 8 that SLN(Z)∩U−1HU has finite

index in SLN(Z). It is now an easy to show that it implies that H has finite index in

SLN(Z).

We close this section with some exercises that are used in the proof of the Main

theorem.

Exercise 11. — Let H ≤ G be a finite index subgroup of a group G. If K ≤ H is a

boomerang subgroup of H, then K is a boomerang subgroup of G.

Hint. — Use the fact (proved in the proof of Lemma 3) that H contains a nontrivial

power of every element of G.

Exercise 12. — Let H ≤ G be a subgroup of a group G. Let g ∈ G such that

gHg−1 ∩H is a finite index subgroup of H. If K is a boomerang subgroup of H, then

gKg−1 ∩H is a boomerang subgroup of H.

Exercise 13. — Fix a matrix M ∈ SLN(Q) and let M = UPσ(m1, . . . ,mN)V be a

Bruhat decomposition. Let k ∈ Z.

− Prove that for all k ∈ Z, the matrix T1,N(k) commutes with every element of U .

− Prove that [U−1MU, T1,N(k)] = Tσ(1),σ(N)(k
m1

mN
)T1,N(−k).

− Deduce that for all 1 ≤ i < j ≤ N and l ∈ Z, we have [[M,T1,N(k)], UTi,j(l)U
−1] =

U [Tσ(1),σ(N)(k
m1

mN
), Ti,j(l)]U

−1.

Exercise 14 (Not that easy). — Let M ∈ SLN(Q). Prove that there exists an

integer k ≥ 1 such that if Γk denotes the kernel of the group homomorphism SLN(Z)→
SLN(Z/kZ) induced by the reduction modulo k, then MΓkM

−1 ⊆ SLN(Z). Deduce

that the index of SLN(Z) ∩MSLN(Z)M−1 in SLN(Z) is finite.
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Part II : Measurable actions for SLN(Z) with N ≥ 3.

In this part, we prove a dynamical consequence of the Main theorem. It concerns mea-

surable actions of SLN(Z) for N ≥ 3 which preserves an ergodic probability measure.

Before stating it, we develop some elementary notions of ergodic theory.

1 Poincaré recurrence theorem

Let G be a group and X a set. An action of G on X is a group homomorphism

G → S(X). Such an action will be denoted G ↷ X. Given an action G ↷ X, we

denote by x 7→ g · x the image of g in S(X). The stabilizer of a point x ∈ X is the

subgroup Gx = {g ∈ G : g · x = x}.
If (X,B) is a measurable space, a measurable action of G on X is an action

G ↷ X such that for all g ∈ G, the map x 7→ g · x is a measurable bijection, whose

inverse is also measurable (we call such a map a bi-measurable bijection). When G

is isomorphic to Z, any measurable action of G corresponds to the action generated by

the iteration of a bi-measurable bijection on X. A bi-measurable bijection f : X → X

preserves a probability measure µ on (X,B) if for all A ∈ B, we have µ(f−1(A)) = µ(A).

A measurable action G ↷ X preserves a probability measure µ on X if for all group

element g ∈ G, the bi-measurable bijection x 7→ g · x preserves µ. A measurable action

G↷ X that preserves a probability measure µ is ergodic if the sets A ∈ B that satisfy

g · A = A for all g ∈ G have measure 0 or 1.

Example 1. — Let R̂ = R ∪ {∞}. Given a matrix M =

[
a b

c d

]
in SL2(Z), we define

a bijection of R̂ (still denoted by M) by

M : x 7→


a/c if x =∞,
∞ if x = −d/c,

(ax+ b)/(cx+ d) else.

One checks that it defines an action of SL2(Z) on R̂.

Exercise 2. — Let B be the Borel σ-algebra on R. Let B̂ = B ∪ {A∪ {∞} : A ∈ B}.
Prove that B̂ is a σ-algebra on R̂ and that the action SL2(Z) ↷ R̂ from Example 1 is

a measurable action.

We recall Fatou’s lemma. Given a measurable space (X,B) and a sequence (fn)n∈N
of measurable non-negative functions, we have∫

X

lim inf
n→+∞

fn(x)dµ(x) ≤ lim inf
n→+∞

∫
X

fn(x)dµ(x).

Exercise 3 (Reverse Fatou lemma). — Let (X,B, µ) be a measure space, (fn)n≥0 a

sequence of measurable real valued functions. If there exists a measurable real valued
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function g such that fn ≤ g for all n ≥ 0, then prove that

lim sup
n≥0

∫
X

fn(x)dµ(x) ≤
∫
X

lim sup
n≥0

fn(x)dµ(x).

Theorem 4 (Poincaré recurrence theorem, measurable version). — Let (X,B) be a

measurable space and let µ be a probability measure on it. Let f : X → X be a bi-

measurable bijection that preserves µ. Then for all A ∈ B and for µ-a.e. x ∈ A, the set

{n ∈ N : fn(x) ∈ A} is infinite.

Proof. For x ∈ X and n ∈ N∗, we define

Sn(x) =
1

n

n−1∑
k=0

1A(f
k(x)).

Set S(x) = lim supn≥0 Sn(x). Then S is measurable as a limsup of measurable functions.

Let us compute S ◦ f .

S ◦ f(x) = lim sup
n→+∞

Sn(f(x))

= lim sup
n→+∞

(n+ 1

n
Sn+1(x)−

1

n
1A(x)

)
= lim sup

n→+∞
Sn(x).

Therefore, we obtain that S ◦ f = S. We now compute the following:

µ(A ∩ (1S=0)) =

∫
X

1A(x)1S=0(x)dµ(x)

=

∫
X

1A(f
k(x))1S=0(x)dµ(x) since f preserves µ and S ◦ f = S

=

∫
X

Sn(x)1S=0dµ(x)

≤
∫
X

S(x)1S=0(x)dµ(x) by the “reverse” Fatou lemma

= 0.

This shows that for µ-a.e. point x ∈ A, the frequency S(x) is strictly positive, which

shows the result.

Let (X, d) be a compact metric space and f : X → X an homeomorphism. A point

x ∈ X is recurrent for f if there exists a sequence of integers kn → +∞ as n→ +∞
such that fkn(x) −→

n→+∞
x.

Theorem 5 (Poincaré recurrence theorem, topological version). — Let X be a com-

pact metric space, µ a probability measure on X and f : X → X an homeomorphism
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that preserves µ. Then µ-a.e. point of X is recurrent for f .

Proof. Since X is a compact metric space, it is separable: let C ⊆ X be countable and

dense subset. Let C be the (countable) set of balls centered at an element of C and with

rational radius. For all A ∈ C, we apply the measurable version of Poincaré recurrence

theorem: the set NA of points in A which come back only finitely many times in A is

µ-negligible. Thus, the set N =
⋃

A∈C NA is also µ-negligible. By construction, every

point in X \N is recurrent.

2 Boomerang subgroups and recurrence

In this section, we will apply the topological version of Poincaré recurrence theorem

to give a characterization of the notion of boomerang subgroup in terms of recurrence.

Let G be a (countably infinite, as usual) group. Let X = {0, 1}G. In the sequel, we will

identify without mentioning it X with the set P(G) of subsets of G via the bijective

map E 7→ 1E. We endow E with the product topology, which is the coarsest topology

(that is the topology with the fewest open sets) for which for all g ∈ G, the projection

onto the gth coordinate pbg : X → {0, 1} is continuous. We denote by B the Borel

σ-algebra on X. We will use in the sequel the following two basic facts.

• Given a σ-algebra (X ′,B′), a map f : X ′ → X is measurable if and only if for all

g ∈ G, the map pg ◦ f : X ′ → {0, 1} is measurable.

• Given a topological space X ′, a map f : X ′ → X is continuous if and only if for

al g ∈ G, the map pg ◦ f : X ′ → {0, 1} is continuous.

The set X is compact and metrizable: one can for instance fix an enumeration (gn)n≥0

of all the elements of G and define the distance

d(x, x′) = sup
n∈N

δxgn ,x
′
gn

2n
,

where δ is the Kronecker delta. Let Sub(G) ⊆ X denotes the set of subgroups of G

(seen as subsets of G).

Lemma 6. — The set Sub(G) is a closed, and therefore compact, subset of {0, 1}G.

Proof. Fix (Hn)n≥0 ∈ Sub(G)N a sequence which converges in X. By definition of the

product topology, all the projections pg : X → {0, 1} are continuous. Projecting onto

the neutral element eG, we obtain that eG ∈ Hn for all n ≥ 0 and therefore eG ∈ Hn by

continuity. Fix two elements g, h ∈ H. Then using the continuity of the projections pg
and ph, we deduce that g and h belongs to Hn eventually. Since the Hn’s are groups,

we deduce that gh−1 ∈ Hn eventually. Using the continuity of the projection pgh−1 , we

obtain that gh−1 ∈ H and therefore H is a subgroup.

Lemma 7. — For all g ∈ G, the conjugacy map H 7→ gHg−1 from Sub(G) to itself is

continuous.
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Proof. Denote by f : Sub(G) → Sub(G) the map H 7→ gHg−1. Then f is continuous

if and only if for all k ∈ G, the map pk ◦ f is continuous. But notice that for all

H ∈ Sub(G), we have pk ◦ f = pg−1kg, which is continuous by definition of the product

topology.

Exercise 8. — Let H ∈ Sub(G) and (Hn)n≥0 ∈ Sub(G)N. Prove that Hn −→
n→+∞

H if

and only if lim inf
n→+∞

Hn = lim sup
n→+∞

Hn = H.

We can now state a characterization of boomerang subgroups in terms of recurrent

points.

Lemma 9. — A subgroup H of G is a boomerang subgroup if and only if for all group

element g ∈ G, the subgroup H is a recurrent point for the conjugacy map Sub(G) →
Sub(G) given by K 7→ gKg−1.

3 Measurable actions of SLN(Z) preserving a probability mea-

sure

Lemma 10. — Let G be a group, X a compact metric space and B its Borel σ-algebra.

If G ↷ (X,B) is a measurable action, then the map Stab : X → Sub(G) defined by

Stab(x) = Gx is measurable.

Proof. By definition of the product σ-algebra, Stab is measurable if and only if for all

g ∈ G, the map pg ◦ Stab is measurable. Fix g ∈ G and notice that pg ◦ Stab−1({1}) =
{x ∈ X : g · x = x}. So we need to show that the latter is measurable. Since the action

is measurable, the map f : X → X ×X given by f(x) = (x, g · x) is measurable. Since

X is a compact metric space, the set ∆ = {(x, x) : x ∈ X} is measurable in X ×X for

the product σ-algebra (beware that this is not true in general, but this holds when X

is a compact metric space endowed with its Borel σ-algebra). We finally have

{x ∈ X : g · x = x} = f−1(∆),

which is measurable.

We are now ready to state and prove that measurable actions of SLN(Z) that pre-
serves some ergodic probability measure are very rigid in some sense. The result

below was first proved by Stuck-Zimmer and is sometimes refered to as the Nevo-

Stuck-Zimmer’s theorem, because it uses in a crutial way a powerful result due to

Nevo-Zimmer.

Theorem 11 ([SZ94]). — Let N ≥ 3. Let X be a compact metric and B its Borel

σ-algebra. Let SLN(Z) ↷ (X,B) be a measurable action which preserves a probability

measure µ on X. If the action is ergodic, then

− either supp(µ) is finite and the action is G↷ supp(µ) is transitive,
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− or there exists H ≤ {±IN} such that the stabilizer Gx = {g ∈ G : g · x = x} of

µ-a.e. x ∈ X is equal to H.

Proof. The map Stab is measurable, so one can consider the pushforward measure

ν = Stab∗µ on Sub(G). Notice that the action by conjugation SLN(Z) ↷ Sub(SLN(Z))
is a measurable action by Lemma 7. Moreover, it preserves the probability measure ν:

indeed, given A a measurable subset of Sub(G) and g ∈ G, we have

ν(g−1 · A) = µ({x ∈ X : Gx ∈ g · A)
= µ({x ∈ X : Gg·x ∈ A})
= µ(g−1 · {x ∈ X : Gx ∈ A})
= ν(A)

One can now use the topological version of Poincaré recurrence theorem: for all g ∈ G,
ν-a.e. point H ∈ Sub(SLN(Z)) is a recurrent point for the conjugacy map K 7→ gKg−1.

Since G is countable, we deduce using Lemma 9 that ν-a.e. point H ∈ Sub(SLN(Z)) is
a boomerang subgroup. By the Main theorem and using the definition of ν, we deduce

that for µ-a.e. point x ∈ X, the stabilizer Gx is either of finite index, or a subgroup of

{±IN}. But the measurable set A = {x ∈ X : Gx has finite index} satisfies g · A = A

for all g ∈ SLN(Z). By ergodicity, µ(A) = 0 or µ(A) = 1. The first case exactly says

that supp(µ) is finite and that the action G↷ supp(µ) is transitive, whereas the second

case says that the set {x ∈ X : Gx ≤ {±IN}} has µ-measure one.

Part III : The case of SL2(Z)
Given a group G and a subset E ⊆ G, we denote by ⟨E⟩ the smallest subgroup of G

that contains E. We denote it by G = ⟨E⟩. Notice that the set

{gε11 . . . gεnn : n ≥ 0, gi ∈ E, εi ∈ {±1}}

is indeed a subgroup of G, which is equal to ⟨E⟩. Therefore, any element g ∈ ⟨E⟩ can
be written as a product g = g1 . . . gn with g1, . . . , gn ∈ E. We say that G is generated

by E if G = ⟨E⟩. We define two matrices of SL2(Z)

S =

[
0 −1
1 0

]
et T =

[
1 1

−1 0

]
.

Notice that S2 = T 3 = −I2 (S for “second”, T for “third”).

Lemma 1. — The group SL2(Z) is generated by S and T .

Proof. We know that SL2(Z) is generated by the two transvections

L =

[
1 0

1 1

]
and R =

[
1 1

0 1

]
12



(L for “left” and R right “right”). In order to prove that SL2(Z) = ⟨S, T ⟩, we need to

write L and R as a product of powers of L and R. One can check that L = (TS)−1 and

R = ST .

If G is a group, we denote by G′ the derived subgroup of G, which is the group

generated by all the commutators [g, h] = g−1h−1gh for g, h ∈ G. Notice that this is a

normal subgroup: if [g1, h1] . . . [gn, hn] ∈ G′ and g ∈ G, then

g[g1, h1] . . . [gn, hn]g
−1 = [gg1g

−1, gh1g
−1] . . . [ggng

−1, ghng
−1] ∈ G′.

Exercise 2. — Let G be a group and E a subset of G, such that G = ⟨E⟩. Let F

be a subset of G and let H = ⟨E⟩. Prove that H is normal in G if and only if for all

g ∈ E, h ∈ F , we have ghg−1 ∈ H and g−1hg ∈ H.

Lemma 3. — The derived subgroup SL2(Z)′ is generated by the two matrices

A =

[
2 1

1 1

]
and B =

[
1 1

1 2

]
.

Proof. One can check that [S, T ] = LR = A and [S−1, T−1] = RL = B. Therefore, we

have ⟨A,B⟩ ≤ SL2(Z)′. In order to prove the other inclusion, we first prove that ⟨A,B⟩
is a normal subgroup of SL2(Z). Since we know that SL2(Z) is generated by S and T ,

it by Exercise 2 to check the following equalities:

SAS−1 = A−1

S−1AS = A−1

TAT−1 = B−1

T−1AT = A−1B

SBS−1 = B−1

S−1BS = B−1

TBT−1 = B−1A

T−1BT = A−1

Therefore ⟨A,B⟩ is normal in SL2(Z). Moreover, we have the identity SR3 = A−1B,

which implies that S can be written as a word in A, B and R. Since L can also be writ-

ten as a word in A and R by the formula LR = A, we deduce that SL2(Z) = ⟨A,B,R⟩.
Thus, the quotient group SL2(Z)/⟨A,B⟩ is a cyclic group, generated by the image of

R. This is an abelian group, thus SL2(Z)′ ≤ ⟨A,B⟩.

Remark. — For N ≥ 3, the group SLN(Z) is perfect : it is equal to its derived

subgroup.

Exercise 4. — Compute [A,B−1]. Deduce that the index of SL2(Z)′ in SL2(Z) is at
least 12. One could prove that we indeed have [SL2(Z) : SL2(Z)′] = 12.

Lemma 5. — The group SL2(Z)′ is a free group, which is freely generated by A

et B. We denote it by SL2(Z)′ = ⟨A⟩ ∗ ⟨B⟩. This means that SL2(Z)′ is generated by A

and B and that for all integers n ≥ 0 and all finite sequence of integers a0, a1, . . . , an
and b1, . . . , bn all non null, except possibly a0 or an, the matrix Aa0Bb1Aa1 . . . BbnAan is

not equal to I2.
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Proof. We will use the action SL2(Z) ↷ R̂ from Example 1. We denote by A : x 7→
(2x+1)/(x+1) and B : (x+1)/(x+2) the bijections of R̂ corresponding to the matrices

A and B. One checks that:

− the fixed points of A are (1−
√
5)/2 and (1+

√
5)/2 and are respectively repulsive

and attractive,

− the fixed points of B are (−1 −
√
5)/2 and (−1 +

√
5)/2 and are respectively

repulsive and attractive.

We define the following two sets:

X = (∞,−1) ⊔ (0, 1),

Y = (−1, 0) ⊔ (1,∞).

One checks that for all n ∈ Z \ {0},

An(X) ⊆ Y

Bn(Y ) ⊆ X.

We now apply a standard method to prove that SL2(Z)′ is a free group, freely generated

•
0

• 1•−1

•
∞

•
1+
√ 5

2

•
1−
√ 5

2

•
−1− √

52

• −1+ √
52

Figure 1: The sets X (red) and Y (blue).

by A and B: ping-pong lemma. Fix a0, a1, . . . , an and b1, . . . , bn all non null, except

possibly a0 or an and let M be the matrix Aa0Bb1Aa1 . . . BbnAan . There are four cases.
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1. If a0 and an are non null, then for all x ∈ X, we have

Aan(x) ∈ Y
BbnAan(x) ∈ X

. . .

Aa0Bb1Aa1 . . . BbnAan(x) ∈ Y

Since M(x) ∈ Y and x ∈ X, we deduce that M(x) ̸= x. Thus M ̸= I2.

2. If a0 is null and an is non null. We apply the first case to the matrix A−anMAan .

It implies that A−anMAan ̸= I2, and thus M ̸= I2.

3. If a0 is non null and an is null. We apply the first case to the matrix Aa0MA−a0 .

It implies that M ̸= I2.

4. If a0 and an are null, then we apply the first case to the matrix AMA−1. Again,

it implies that M ̸= I2.

Lemma 6. — Any matrix M ∈ SL2(Z)′ can be uniquely written as a product M =

Aa0Bb1Aa1 . . . BbnAan where a0, a1, . . . , an and b1, . . . , bn are two finite sequences of in-

tegers, which are all non null except possibly a0 and an.

Proof. The existence of such a product decomposition is a consequence of Lemma 3

whereas the uniqueness is a consequence of Lemma 5

Given M = Aa0Bb1Aa1 . . . BbnAan , we define the syllabic norm of M and denote

it by |M |syl as follows:

|M |syl =


2n− 1 if a0 and an are null

2n+ 1 if a0 and an are non-null

2n else.

As a direct consequence of Lemma 6, the map φ : SL2(Z)′ → Z2 defined by

φ(Aa0Bb1Aa1 . . . BbnAan) = (a0 + · · ·+ an, b1 + · · ·+ bn).

is a well-defined group homomorphism.

Lemma 7. — The kernel of the group homomorphism φ : SL2(Z)′ → Z2 is equal to

SL2(Z)′′, the second derived subgroup of SL2(Z).

Proof. First of all, for all g, h ∈ SL2(Z)′, we have φ(g)φ(h) = φ(h)φ(g). In other

words, [g, h] ∈ ker(φ) and thus SL2(Z)′′ ⊆ ker(φ). Let us prove the reverse inclusion

by induction on the syllabic norm. First, notice that any matrix M ∈ SL2(Z)′ whose
syllabic norm is ≥ 3 is not in the kernel of φ. So for this initial step, take M ∈
ker(φ) whose syllabic norm is |M |syl = 4. Then either M = Aa0Bb1Aa1Bb2 or M =

Bb1Aa1Bb2Aa2 . In the first case, we get that a0 + a1 = b1 + b2 = 0 and therefore M =
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[Aa0 , Bb1 ] ∈ SL2(Z)′′. In the second case, we get that a1+a2 = b1+b2 = 0 and therefore

M = [Aa1 , Bb1 ] ∈ SL2(Z)′′. For the inductive step, fix m ≥ 4 and assume that any

M ∈ ker(φ) with syllabic norm |M |syl ≤ m belongs to SL2(Z)′′. Fix M ∈ ker(φ) whose

syllabic norm is |M |syl = m+1. Write M = Aa0Bb1Aa1 . . . BbnAan . We distinguish two

cases. If a0 ̸= 0, then the syllabic norm of M ′ = Bb1Aa0+a1Bb2Aa2 . . . BbnAan is ≤ m,

and M ′ ∈ ker(φ) so M ′ ∈ SL2(Z)′′ by the induction hypothesis. But M = [Aa0 , Bb1 ]M ′

and thus M ∈ SL2(Z)′′. If a0 = 0, then write M = [Bb1 , Aa1 ]M ′ with |M |syl ≤ m and

use the same argument.

We can now provide normal subgroups of SL2(Z) which are neither finite, nor of

finite index.

Lemma 8. — The second derived subgroup SL2(Z)′′ is an infinite normal subgroup, of

infinite index.

Proof. Let us prove that SL2(Z)′′ is normal in SL2(Z). Fix g ∈ SL2(Z) and g1, . . . , gn,
h1, . . . , hn ∈ SL2(Z)′. Then

g[g1, h1] . . . [gn, hn]g
−1 = [gg1g

−1, gh1g
−1] . . . [ggng

−1, ghng
−1]

But SL2(Z)′ is normal in SL2(Z), so for all 1 ≤ i ≤ n, the elements ggig
−1 and ghig

−1

belongs to SL2(Z)′. This shows that the second derived subgroup SL2(Z)′′ is normal

in SL2(Z). It is infinite as the elements [Ak, Bl] for k, l ∈ Z form a family of pairwise

disjoint (by Lemma 6) elements of SL2(Z)′′. Finally, it has infinite index because Lemma

7 implies for instance that the cosets AkSL2(Z)′′ for k ∈ Z are pairwise disjoint.

Remark. — One can use a more general argument to prove that the second derived

subgroup SL2(Z)′′ is normal in SL2(Z): the derived subgroup G′ of a group G is always

a characteristic subgroup (that is for any group automorphism ψ : G → G, ψ(G′) is a

subgroup of G′) and use the fact that a normal subgroup K ⊴ H of a characteristic

subgroup H ≤ G is normal in G.
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