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Introduction en français

La théorie des systèmes dynamiques étudie le comportement d’un espace sur
lequel un groupe de transformations agit. Cette thèse se concentre sur deux
branches importantes de cette théorie : la dynamique topologique et la théorie
ergodique des actions de groupes. La première consiste en l’étude d’actions par
homéomorphismes sur des espaces compacts. La seconde consiste en l’étude
des actions de groupes sur des espaces mesurés qui admettent des mesures
invariantes.

Ce manuscript est découpé en trois parties indépendantes. Dans cette intro-
duction, qui se veut illustrative, nous expliquons les principales notions étudiées
au cours de cette thèse et détaillons les principaux résultats obtenus.

Plan de la thèse :

Partie I : Allostérie
Chapitre 1 : Continuum d’actions allostériques pour les groupes de surface non-

moyennables, article prépublié arXiv:2110.01068

Partie II : Équivalence orbitale quantitative des actions de Z

Chapitre 2 : Le théorème de Belinskaya est optimal, article prépublié arXiv:2201.06662

avec A. Carderi, F. Le Maître et R. Tessera,

Chapitre 3 : Cycles dans les groupes pleins ϕ-intégrables
Chapitre 4 : Équivalence orbitale quantitative entre Z et D∞

Partie III : Équivalence orbitale quantitative et graphages
Chapitre 5 : Équivalence orbitale isométrique pour les actions préservant une

mesure de probabilité, article prépublié arXiv:2203.14598
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Partie I : Allostérie

Minimalité et ergodicité

Cette première partie mêle dynamique topologique et théorie ergodique des ac-
tions de groupes. On s’intéresse à des actions de groupes dénombrables sur des
espaces compacts, pour lesquelles il existe une mesure de probabilité invariante.
Plus précisément, une action minimale ergodique d’un groupe dénombrable Γ
est une action Γ y (C, µ) où

– Γ y C est une action par homéomorphismes sur un espace compact C, qui
est minimale (toutes les orbites sont denses).

12



Introduction en français

– µ est une mesure de probabilité borélienne Γ-invariante sur C, qui est er-
godique (les ensembles mesurables Γ-invariants sont de mesure 0 ou 1).

Les actions minimales ergodiques apparaissent naturellement dans différents
contextes. Par exemple, soit Γ un sous-groupe dense d’un groupe compact G et
soit µ la mesure de probabilité de Haar sur G. Alors l’action par multiplication
à gauche Γ y (G, µ) est une action minimale ergodique. Concrètement, on peut
penser à une rotation irrationnelle x 7→ x + θ (mod 1) qui fournit une action
minimale ergodique de Z sur le tore T muni de la mesure de Lebesgue. Les
actions profinies fournissent elles aussi des actions minimales ergodiques. Soit Γ
un groupe dénombrable et soit Γ ≥ Γ1 ≥ · · · ≥ Γn ≥ . . . une suite décroissante
de sous-groupes d’indice fini. Le groupe Γ agit sur chacun des ensembles finis
Γ/Γn et donc sur la limite profinie lim←− Γ/Γn des quotients Γ/Γn. Cette action est
une action minimale lorsque l’on munit la limite profinie de la topologie profinie.
Par ailleurs, il existe une unique mesure de probabilité µ sur la limite profinie qui
soit invariante par cette action. Alors l’action Γ y (lim←− Γ/Γn, µ) est une action
minimale ergodique qui est appelée action profinie. Les groupes qui admettent
des actions profinies fidèles sont les groupes résiduellement finis, c’est-à-dire les
groupes Γ qui possèdent une suite décroissante Γ ≥ Γ1 ≥ · · · ≥ Γn ≥ . . . de
sous-groupes d’indice fini telle que⋂

n≥1

Γn = {1Γ}.

En fait, tout groupe dénombrable admet des actions minimales ergodiques
qui sont fidèles. Plus précisément, on a le résultat suivant.

Théorème ([Ele21]). — Tout groupe dénombrable Γ admet une action minimale ergo-
dique qui est libre.

Ici, une action est libre si tout point a un stabilisateur trivial. Dans la suite,
ce sont plutôt les actions non-libres qui vont nous intéresser. Un des intérêts de
telles actions réside dans le fait qu’elles fournissent des familles intéressantes de
sous-groupes qui sont donnés par les stabilisateurs des points. De façon équi-
valente, lorsque le groupe est de type fini, cela fournit des familles de graphes
de Schreier du groupe, qui sont des objets d’études fondamentaux en théorie
spectrale des graphes. On pourra consulter l’article de survol [Gri11] qui illustre
l’utilisation de telles familles de graphes de Schreier.

Notions de liberté

Plusieurs notions de liberté générique existent. Une action minimale ergodique
Γ y (C, µ) est

– topologiquement libre si l’ensemble des points de C dont le stabilisateur
est trivial est Gδ dense.
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– essentiellement libre si l’ensemble des points de C dont le stabilisateur est
trivial est de mesure pleine.

Ces deux propriétés sont des propriétés génériques, la première du point de vue
topologique, la seconde dans un sens mesuré. En effet, un point d’un ensemble
Gδ dense est un point générique au sens topologique et un point d’un ensemble
de mesure pleine est un point générique du point de vue de la mesure. Ces
deux notions sont reliées dans le lemme qui suit. Énonçons tout d’abord une
observation utile.

Fait. — Soit Γ y C une action par homéomorphismes sur un compact. Alors l’ensemble
des x ∈ C dont le stabilisateur est trivial est un ensemble Gδ.

Preuve. Soit x ∈ C. Alors Stab(x) = {1} si et seulement si pour tout γ ∈ Γ \ {1},
on a γx 6= x, ce qui termine la preuve. �

Ainsi, pour qu’une action minimale soit topologiquement libre, il suffit qu’il
existe un point dont le stabilisateur est trivial.

Lemme. — Une action minimale ergodique essentiellement libre est topologiquement
libre.

Preuve. Soit Γ y (C, µ) une action minimale ergodique essentiellement libre.
On sait déjà que l’ensemble des points dont le stabilisateur est trivial est un en-
semble Gδ. Puisque c’est aussi un ensemble de mesure pleine, il est en particulier
non vide. Donc il existe x ∈ C tel que Stab(x) est trivial, ce qui conclut la preuve
par minimalité de l’action. �

La réciproque est fausse en général, ce qui nous amène à introduire la notion
d’allostérie.

Allostérie

Définition. — Soit Γ un groupe dénombrable. Une action minimale ergodique
de Γ est allostérique1 si elle est topologiquement libre mais pas essentiellement
libre. Un groupe Γ est allostérique s’il admet une action minimale ergodique qui
est allostérique.

Exemples de groupes non-allostériques

La notion d’allostérie est intimement liée à la dynamique sur l’espace des sous-
groupes. Si Γ est un groupe dénombrable, on note Sub(Γ) l’espace des sous-
groupes de Γ, sur lequel Γ agit par conjugaison. Les résultats de ce paragraphe
illustrent la maxime suivante : si l’action Γ y Sub(Γ) n’est pas suffisamment
riche, alors Γ n’est pas allostérique.

Proposition. — Le groupe Z n’est pas allostérique.
1
ἄλλος : autre, στερεός : exprime une idée de fixité.
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Introduction en français

Preuve. Soit Z y (C, µ) une action minimale ergodique qui n’est pas essentiel-
lement libre. Par définition

µ({x ∈ C : Stab(x) 6= {0}}) > 0.

En particulier, on peut trouver un point x ∈ C dont le stabilisateur n’est pas
trivial. Puisque ce dernier est un sous-groupe non-trivial de Z, il s’agit d’un nZ

pour un certain entier n ≥ 1 et donc le cardinal de l’orbite d’un tel point x est
fini. Par minimalité de l’action, on en déduit que C = Orb(x) est fini et que le
stabilisateur d’aucun point de C n’est trivial. L’action Z y (C, µ) n’est donc pas
topologiquement libre. �

Proposition. — Si Sub(Γ) est dénombrable, alors Γ n’est pas allostérique.

Preuve. Soit Γ un tel groupe. Soit Γ y (C, µ) une action minimale ergodique qui
n’est pas essentiellement libre. Alors µ({x ∈ C : Stab(x) 6= {1Γ}}) > 0. Pour tout
sous-groupe Λ ≤ Γ, notons

PΛ := {x ∈ C : Stab(x) = Λ}.

La famille des PΛ pour Λ sous-groupe de Γ forme une partition de C. Par hy-
pothèse sur Γ, cette partition n’admet qu’un nombre dénombrable de pièces. Il
existe alors un sous-groupe Λ ≤ Γ tel que µ(PΛ) > 0. Par ailleurs, pour tout
γ ∈ Γ, on a γPΛ = PγΛγ−1 , ce qui implique que µ(PΛ) = µ(PγΛγ−1). Donc Λ ne
possède qu’un nombre fini de conjugués.

Soit x ∈ C. Par minimalité de l’action et puisque Λ n’admet qu’un nombre
fini de conjugués, il existe γ ∈ Γ et une suite (xn)n≥0 ∈ CN tels que xn → x
et Stab(xn) = γΛγ−1 pour tout n ≥ 0. On en déduit que γΛγ−1 ≤ Stab(x).
Ainsi, le stabilisateur d’aucun point de C n’est trivial. Donc l’action n’est pas
topologiquement libre, ce qui termine la preuve. �

On trouvera dans la Figure 1.2 des exemples explicites de groupes dont l’en-
semble des sous-groupes est dénombrable. On peut démontrer un résultat simi-
laire pour les groupes qui ne possèdent pas suffisamment de sous-groupes aléa-
toires invariants. Soit Γ un groupe dénombrable et soit Sub(Γ) l’espace des sous-
groupes de Γ. C’est un espace compact lorsqu’on l’identifie à un sous-ensemble
de {0, 1}Γ, sur lequel Γ agit par conjugaison. Un sous-groupe aléatoire invariant
(SAI) de Γ est une mesure de probabilité Γ-invariante sur Sub(Γ). On peut adap-
ter la preuve ci-dessus pour démontrer qu’un groupe dont les SAI ergodiques
sont tous atomiques n’est pas allostérique. On trouvera des exemples concrets
de tels groupes dans la Figure 1.2.

Sous-groupes aléatoires invariants / Sous-groupes uniforméments récurrents

Dans ce paragraphe, nous expliquons plus en détail les liens entre l’allostérie et
la dynamique sur l’espace des sous-groupes.
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Soit Γ y (C, µ) une action minimale ergodique. L’application mesurable

Stab : x 7→ {γ ∈ Γ : γ · x = x}

associe à tout point de C un sous-groupe de Γ. Par ailleurs Stab est équivariante
puisque pour tout x ∈ C et γ ∈ Γ, on a

Stab(γ · x) = γStab(x)γ−1.

Ainsi, la mesure image de µ par Stab fournit une mesure de probabilité er-
godique Γ-invariante sur Sub(Γ), c’est-à-dire un SAI ergodique. Par définition,
l’action Γ y (C, µ) est essentiellement libre si et seulement si ce SAI ergodique
est égal à la mesure δ{1Γ}.

Les sous-groupes aléatoires invariants admettent un pendant topologique.
Un sous-groupe uniformément récurrent (SUR) est un sous-ensemble fermé, mi-
nimal et Γ-invariant de Sub(Γ). À toute action minimale ergodique Γ y (C, µ),
on peut associer un SUR, défini comme l’unique SUR inclus dans la clôture de
l’ensemble {Stab(x) : x ∈ C}, voir [GW15]. On peut montrer que ce SUR est
inclus dans le support du SAI associé à l’action [Jos21, Lem. 2.2]. Par ailleurs,
ce SUR est égal à {{1Γ}} si et seulement si l’action est topologiquement libre
[LBMB18, Prop. 2.7]. On obtient ainsi la caractérisation suivante de l’allostérie.

Lemme. — Une action minimale ergodique Γ y (C, µ) est allostérique si et seulement
si le groupe trivial {1Γ} est strictement contenu dans le support du SAI associé à cette
action.

Exemples de groupes allostériques

L’existence de groupes allostériques a été posée par Grigorchuk, Nekrashevich
et Suschanskii. Plus précisément, ils posent la question suivante.

Question ([GNS00, Prob. 7.3.3]). — Existe-t il un groupe dénombrable Γ qui
admet des actions profinies allostériques ?

Les premiers exemples de groupes allostériques ont été découverts par Ber-
geron et Gaboriau. Ils répondent de plus à la question de [GNS00].

Théorème ([BG04]). — Soient Γ et Λ deux groupes non-triviaux qui sont résiduelle-
ment finis. Alors le produit libre Γ ∗Λ est allostérique (sauf si Γ et Λ sont isomorphes
au groupe cyclique C2). Plus précisément, le groupe Γ ∗ Λ admet des actions profinies
qui sont allostériques.

Une preuve indépendante de ce résultat pour Γ = Λ = Z est donnée par
Abért et Elek dans [AE12]. Dans le chapitre 1, nous nous intéressons à une
autre classe de groupes : les groupes fondamentaux π1(Σg) de surfaces fermées,
connexes et orientables Σg. Ce sont des groupes à un relateur, dont une présen-
tation est donnée par

π1(Σg) := 〈x1, . . . , xg, y1, . . . , yg | [x1, y1] . . . [xg, yg] = 1〉,
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Introduction en français

où [x, y] = xyx−1y−1 désigne le commutateur de x et y, et g ≥ 1 est un entier. Le
résultat principal du chapitre 1 est le théorème suivant.

Théorème. — Soit Σg une surface fermée, connexe et orientable de genre g ≥ 2.
Alors π1(Σg)est allostérique. Plus précisément, il admet des actions profinies qui sont
allostériques.

Une construction d’actions allostériques pour F2

Pour conclure cette introduction à la partie I de cette thèse, nous proposons
une construction explicite d’actions allostériques pour le groupe libre F2 de rang
deux. Pour ce faire, on construit d’abord des actions de F2 sur des ensembles
finis avec certaines propriétés.

Pour tout entier n ≥ 0 et p ≥ 2 premier, soit

Cp,n :=
2n⋃

l=0

[[0, p− 1]]× [[0, p− 2]]l.

Un point x de Cp,n s’écrit donc sous la forme (x0, . . . , xl) avec x0 ∈ [[0, p− 1]] et
xi ∈ [[0, p− 2]] pour tout 1 ≤ i ≤ l. L’entier l s’appelle la profondeur de x. On
définit une permutation A sur l’ensemble Cp,n de la façon suivante. Soit x ∈ Cp,n

de profondeur l.

– Si l est pair, alors A(x) :=
{

(x0, . . . , xl, 0) si l < 2n,
x si l = 2n.

– Si l est impair, alors A(x) :=
{

(x0, . . . , xl + 1) si xl < p− 2,
(x0, . . . , xl−1) sinon.

Puis, on définit une autre permutation B sur l’ensemble Cp,n de la façon suivante.
Soit x ∈ Cp,n de profondeur l.

– Si l est impair, alors B(x) := (x0, . . . , xl, 0).

– Si l = 0, alors B(x) := x0 + 1 (mod p). Si l est pair > 0, alors

B(x) :=
{

(x0, . . . , xl + 1) si xl < p− 2,
(x0, . . . , xl−1) sinon.

Notons a et b les deux générateurs de F2. Les permutations A et B définissent
une action du groupe libre F2 sur Cp,n en posant a · x := A(x) et b · x := B(x)
pour tout x ∈ Cp,n. Cette action est illustrée dans la Figure 1.1.

Appelons bord de Cp,n l’ensemble ∂Cp,n des points de profondeur 2n. Ce sont
exactement les points fixes de a. Par ailleurs, un calcul élémentaire donne

|∂Cp,n|
|Cp,n|

−→
n→+∞

p− 2
p− 1

.
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Figure 1.1. — L’ensemble C3,1 et les permutations A (en noir) et B (en rouge).

Puisque (p − 2)/(p − 1) → 1 lorsque p → +∞, on peut fixer une suite de
nombres premiers deux à deux distincts (pk)k≥0 et une suite de nombres entiers
(nk)k≥0 qui tend vers +∞, telles que

+∞

∏
k=0

|∂Cpk,nk |
|Cpk,nk |

> 0.

Muni de la topologie produit, l’espace C := ∏k≥0 Cpk,nk est compact. On le munit
de la mesure de probabilité µ, produit des mesures de probabilité uniformes sur
chaque Cpk,nk .

Proposition. — L’action diagonale de F2 sur C est allostérique.

Esquisse de preuve. Tout d’abord F2 y (C, µ) est une action minimale ergodique.
En effet, une application du lemme des restes chinois permet de montrer que
pour tout K ≥ 0, l’action diagonale F2 y ∏k≤K Cpk est transitive. Ainsi, les
cylindres de C de la forme

O(y1,...,yK)
:= {(xk)k≥0 ∈ C : x0 = y0, . . . , xK = yK}

sont tous de la même mesure, et intersectent toute orbite de l’action F2 y C.
Cela implique que

– la mesure µ est l’unique mesure F2-invariante sur C, qui est donc ergo-
dique,

– l’action F2 y C est minimale.

Démontrons que F2 y (C, µ) est topologiquement libre, mais pas essentielle-
ment libre. Pour tout k ∈ N, fixons xk un élément de longueur 0 dans Cpk,nk et
soit x := (xk)k≥0 ∈ C. Par construction, on peut remarquer que Stab(x) = {1F2}.
Puisque F2 y C est minimale, on en déduit que l’ensemble des points de C avec
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Introduction en français

stabilisateur trivial est dense dans X. Puisque c’est un ensemble Gδ, on en déduit
que F2 y C est topologiquement libre. Par ailleurs, par définition de la mesure
µ, on a

µ({x ∈ C : a ∈ Stab(x)}) =
+∞

∏
k=0

|∂Cpk,nk |
|Cpk,nk |

> 0.

Donc F2 y (C, µ) n’est pas essentiellement libre, ce qui implique que c’est une
action allostérique. �
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Quelques groupes allostériques/non-allostériques

Groupe Allostérie Raison ou Référence

Γ ∗Λ ( 6= C2 ∗ C2)

avec Γ, Λ 6= {1}
et résiduellement fini

3 [BG04]

π1(Σg), g ≥ 2 3 [Jos21]

Z oZ 3 Travail en cours

Γ nilpotent

de type fini
7 |Sub(Γ)| = ℵ0

BS(1, n) 7 |Sub(BS(1, n))| = ℵ0

FSym(N), groupe des

permutations à

support fini de N

7 [Ver12]

Réseaux de SLn(R)

n ≥ 3
7

Les SAI ergodiques

sont atomiques [SZ94]

Réseaux de PSLn(Qp)

n ≥ 2, p premier
7

Les SAI ergodiques

sont atomiques [PT16]

Figure 1.2. — Une liste de quelques groupes allostériques et non-allostériques.
Cette liste n’est pas exhaustive. En particulier, les deux dernières lignes restent
valides en plus grande généralité.
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Partie II : Équivalence orbitale quantitative des actions
de Z

Équivalence orbitale

Le sujet principal de cette seconde partie est celui de l’équivalence orbitale des
actions de groupes, avec un accent sur les actions de Z. Soit Γ un groupe dénom-
brable. Une action p.m.p. Γ y (X, µ) sur un espace de probabilité (X, µ) est une
action par bijections bimesurables sur X qui préservent la mesure µ. L’action de
γ ∈ Γ sur x ∈ X est alors notée γ · x. Lorsqu’il est nécessaire de donner un nom
à l’action, on écrira Γ yα (X, µ) et l’action de γ ∈ Γ sur x ∈ X est notée α(γ)x.

Soient Γ et Λ deux groupes dénombrables. Deux actions p.m.p. Γ y (X, µ) et
Λ y (Y, ν) sont orbitalement équivalentes s’il existe une équivalence orbitale,
c’est-à-dire une bijection bimesurable Φ : X → Y telle que Φ∗µ = ν et pour
µ-presque tout x ∈ X,

Φ(Γ · x) = Λ ·Φ(x).

Exemple d’une équivalence orbitale

Soit X := {0, 1}N et µ := ( 1
2(δ0 + δ1))

⊗N. L’odomètre dyadique est la transfor-
mation T : X → X donnée par

T(1, . . . , 1, 0, xk+1, xk+2, . . . ) = (0, . . . , 0, 1, xk+1, xk+2, . . . )

et T(1, 1, . . . ) = (0, 0, . . . ). Cette transformation est une bijection bimesurable
qui préserve la mesure µ. Ainsi, les itérés de T fournissent une action p.m.p.
Z y (X, µ). On définit deux transformations Tpair : X → X et Timpair : X → X,
appelées respectivement odomètre dyadique pair et odomètre dyadique impair,
de la façon suivante

Tpair(x0, x1, . . . ) = (y0, y1, . . . ),

Timpair(x0, x1, . . . ) = (z0, z1, . . . ),

où pour tout n ≥ 0, x2n+1 = y2n+1, x2n = z2n et

(y0, y2, . . . ) = T(x0, x2, . . . ),

(z1, z3, . . . ) = T(x1, x3, . . . ).

Les transformations Tpair et Timpair préservent la mesure µ et commutent. Elles
définissent donc une action p.m.p. Z2 y (X, µ).

Lemme. — Ces deux actions Z y (X, µ) et Z2 y (X, µ) sont orbitalement équiva-
lentes

Esquisse de preuve. Soit X′ l’ensemble des suites (xn)n≥0 ∈ X telles que au moins
l’une des sous-suites (x2n)n≥0 ou (x2n+1)n≥0 soit constante à partir d’un certain
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rang. Alors µ(X \ X′) = 1 et pour tout x ∈ X \ X′, les deux assertions suivantes
sont vérifiées :

– pour tout n ∈ Z, il existe (u, v) ∈ Z2 tel que Tn(x) = (Tpair)
u(Timpair)

v(x).

– pour tout (u, v) ∈ Z2, il existe n ∈ Z tel que (Tpair)
u(Timpair)

v(x) = Tn(x).

Cela signifie que idX est une équivalence orbitale entre ces deux actions. �

Si à la place de la partition {pair} t {impair}, on partitionne N en fonction
du reste modulo n, m ≥ 1, on obtient de manière similaire une équivalence
orbitale entre deux actions ergodiques Zn y (X, µ) et Zm y (X, µ).

Équivalence orbitale et invariants

Dans l’exemple précédent, on a démontré que pour tout entier n, m ≥ 1, les
groupes Zn et Zm admettent des actions p.m.p. ergodiques qui sont orbitalement
équivalentes. En réalité, un résultat bien plus fort est vrai.

Théorème ([OW80]). — Les actions ergodiques de groupes moyennables infinis sont
toutes orbitalement équivalentes.

Ainsi, l’équivalence orbitale ne préserve aucun des invariants géométriques
que l’on peut associer aux groupes moyennables. Par exemple, la dimension d du
groupe Zd n’est pas préservée. Parmi les invariants géométriques, on peut citer
la fonction de croissance d’un groupe, la fonction de Følner, le cône asympto-
tique, etc. De même, aucun invariant ergodique des actions p.m.p. n’est en géné-
ral préservé par équivalence orbitale. Parmi les invariants ergodiques, on peut ci-
ter le spectre de la représentation de Koopman, l’entropie de Kolmogorov-Sinai,
etc. Ce manque d’invariant d’équivalence orbitale est l’une des motivations prin-
cipales à l’introduction de raffinements quantitatifs à l’équivalence orbitale.

Équivalence orbitale quantitative

Soit Γ un groupe de type fini et soit |·|Γ la longueur des mots associée à un
système fini de générateurs SΓ ⊆ Γ. Étant donnée une action p.m.p. Γ y (X, µ),
on peut construire une structure métrique sur (X, µ), notée dΓ, en déclarant que
la dΓ-distance entre deux points x, y ∈ X dans la même Γ-orbite est égale à

dΓ(x, y) := inf{|γ|Γ : γ · x = y}.

Cela fournit une L’un des objectifs principaux de l’équivalence orbitale quanti-
tative est de comprendre comment une équivalence orbitale entre deux actions
p.m.p. peut distordre les structures métriques associées. Plus précisément, soit Γ
et Λ deux groupes de type fini et soit |·|Γ et |·|Λ les longueurs des mots associées
à un système fini de générateurs de Γ et Λ respectivement.
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Définition. — Soit p ∈]0,+∞]. Une équivalence orbitale Φ : (X, µ) → (Y, ν)

entre deux actions p.m.p. Γ y (X, µ) et Λ y (Y, ν) est une équivalence orbitale
Lp si pour tout γ ∈ Γ et λ ∈ Λ, les applications

x 7→ dΛ(Φ(x), Φ(γ · x)) et y 7→ dΓ(Φ−1(y), Φ−1(λ · y))

appartiennent respectivement à Lp(X, µ) et Lp(Y, ν).

Par inégalité triangulaire, il suffit de vérifier ces conditions pour γ et λ ap-
partenant respectivement à un système fini de générateurs de Γ et de Λ. Remar-
quons de plus que si l’on change les systèmes finis de générateurs, les nouvelles
structures métriques obtenues restent bi-lipschitziennes aux anciennes structures
métriques, ce qui ne change par le caractère Lp d’une équivalence orbitale. Ainsi,
la notion d’équivalence orbitale Lp est indépendante du choix des systèmes finis
de générateurs.

On dit que deux actions p.m.p. Γ y (X, µ) et Λ y (Y, ν) sont Lp orbitale-
ment équivalentes (p ∈]0,+∞]) s’il existe une équivalence orbitale Lp entre elles.
Finalement, on dit que deux actions p.m.p. sont L<p orbitalement équivalentes
s’il existe une équivalence orbitale entre elles qui est une équivalence orbitale Lq

pour tout q < p.

Exemple d’une équivalence orbitale Lp

Soit X := {0, 1}N et µ := ( 1
2(δ0 + δ1))

⊗N. Soit T : X → X l’odomètre dyadique
et Tpair, Timpair les odomètres dyadiques pair et impair. Comme expliqué précé-
demment, les actions Z y (X, µ) et Z2 y (X, µ) induites par T et le couple
(Tpair, Timpair) sont orbitalement équivalentes, idX : X → X étant une équiva-
lence orbitale. Nous allons calculer explicitement le degré d’intégrabilité de cette
équivalence orbitale.

Dans les calculs qui suivent, on munit Z du système fini de générateurs
{±1} et Z2 du système fini de générateurs {(±1, 0), (0,±1)}. On note dZ et dZ2

les structures métriques obtenues sur (X, µ).

Propriétés d’intégrabilité pour x 7→ dZ2(x, T(x)). Pour tout n ≥ 0, soit
An ⊆ X l’ensemble des x ∈ X tels que x0 = · · · = xn−1 = 1 et xn = 0.
Les ensembles (An)n≥0 forment une partition de X sur laquelle on peut
calculer explicitement la valeur de dZ2(x, T(x)).

– Si x ∈ A2n, alors T(x) = Tpair(Timpair)
1−2n

(x).

– Si x ∈ A2n+1, alors T(x) = (Tpair)
2n+1−1Timpair(x).

Puisque l’action Z2 y (X, µ) est libre, on en déduit que

dZ2(x, T(x)) =
{
|1− 2n|+ 1 si x ∈ A2n,
|2n+1 − 1|+ 1 si x ∈ A2n+1.
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Enfin, la mesure de An vaut 1/2n+1, donc l’intégrale∫
X

dZ2(x, T(x))pdµ

a la même nature que ∑n≥0 2(p−2)n, qui converge si et seulement si p < 2.

Propriétés d’intégrabilité pour x 7→ dZ(x, Tpair(x)). Pour tout n ≥ 0, soit
Bn ⊆ X l’ensemble des x ∈ X tels que x0 = x2 = · · · = x2=−2 = 1 et
x2n = 0. Si x ∈ Bn, alors

Tpair(x) = T22n−(22n−2+22n−4+···+1)(x) = T(22n+1+1)/3(x).

Puisque l’action Z y (X, µ) est libre, on en déduit que

dZ(x, Tpair(x)) =
22n+1 + 1

3
si x ∈ Bn.

Enfin, la mesure de Bn vaut 1/2n+1, donc l’intégrale∫
X

dZ(x, Tpair(x))pdµ

a la même nature que ∑n≥0 2(2p−1)n, qui converge si et seulement si p < 1/2.
Un calcul similaire donne la même conclusion pour l’intégrale∫

X
dZ(x, Timpair(x))pdµ.

Comme il suffit de s’assurer de l’intégrabilité sur les générateurs des groupes
Z et Z2, on en déduit que les actions Z y (X, µ) et Z2 y (X, µ) sont L<1/2

orbitalement équivalentes.

Puisque ces actions sont libres et orbitalement équivalentes, on peut associer
à presque tout point x ∈ X une application fx : Z → Z2 où fx(n) est l’unique
élément (u, v) ∈ Z2 tel que T(x) = (Tpair)

u(Timpair)
v(x). Lorsque l’on regarde

précisément le graphe de fx pour un x ∈ X générique, on reconnaît la courbe de
Lebesgue, voir Figure 1.3. Cette condition “p < 1/2” n’est pas sans rappeler le
fait qu’une courbe continue [0, 1] → [0, 1]2 qui remplit le carré ne peut pas être
p-Hölder pour p > 1/2.

En partitionnant N en fonction du reste modulo n, m ≥ 2, on obtient d’une
façon similaire deux actions p.m.p. Zn y (X, µ) et Zm y (X, µ) qui sont L<p

avec p = min(n/m, m/n). On peut retrouver ces exemples (sous une forme
moins explicite) dans l’article [DKLMT20, Thm. 6.9]. Nous expliquons ci-dessous
en quoi ces conditions sur p sont optimales.
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x

Figure 1.3. — Le graphe de fx : Z → Z2 avec x = 000000∗∗ . . .

Le retour des invariants

L’équivalence orbitale quantitative permet de retrouver plusieurs invariants qui
ne sont pas capturés par l’équivalence orbitale. Par exemple, Bowen démontre
que deux groupes de type fini, qui admettent des actions p.m.p. essentielle-
ment libres qui sont L1 orbitalement équivalentes, possèdent la même fonc-
tion de croissance [Aus16b, Appen. B]. Plusieurs autres invariants sont préser-
vés lorsque des actions essentiellement libres sont L1 orbitalement équivalentes,
comme par exemple le cône asymptotique pour les groupes à croissance poly-
nomiale [Aus16b], ou encore l’entropie de Kolmogorov-Sinai pour les actions
p.m.p. de groupes moyennables [Aus16].

La condition “p < 1/2” obtenue dans l’équivalence orbitale du paragraphe
précédent s’explique grâce au théorème suivant.

Théorème. — Soient n, n ≥ 1 deux entiers. Soient Zn y (X, µ) et Zm y (Y, ν)

deux actions p.m.p. essentiellement libres qui sont Lp orbitalement équivalentes. Alors
p ≤ min(n/m, m/n).

On pourra se rapporter à [DKLMT20, Thm. 3.2] pour un énoncé plus général.
On ne sait pas s’il existe des actions p.m.p. essentiellement libres Zn y (X, µ)

et Zm y (Y, ν) qui sont Lp orbitalement équivalentes avec p = min(n/m, m/n).

Le théorème de Belinskaya est optimal

Dans le cas d’actions de Z, l’équivalence orbitale L1 est extrêmement rigide.
Deux actions p.m.p. Z yα (X, µ) et Z yβ (Y, ν) sont flip-conjuguées s’il existe
une bijection bimesurable Φ : X → Y telle que Φ∗µ = ν et
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– soit Φ ◦ α(n) = β(n) ◦Φ pour tout n ∈ Z,

– soit Φ ◦ α(n) = β(−n) ◦Φ pour tout n ∈ Z.

Théorème ([Bel68]). — Deux actions p.m.p. ergodiques Z y (X, µ) et Z y (Y, ν)

sont L1 orbitalement équivalentes si et seulement si elles sont flip-conjuguées.

Parmi les différents résultats du chapitre 2, nous démontrons que le théorème
de Belinskaya est optimal au sens suivant.

Théorème. — Il existe des actions p.m.p. ergodiques de Z qui sont L<1 orbitalement
équivalentes mais pas flip-conjuguées.

Ce résultat est le fruit d’un travail en commun avec Carderi, Le Maître et
Tessera [CJLMT22]. Le chapitre 3 est une annexe du chapitre 2 dans lequel nous
traduisons un résultat probabiliste dû à Liggett [Lig02] dans le langage introduit
dans le chapitre 2.

Involution non croisante

Si k, l ∈ Z, on note [[k, l]] l’intervalle de Z dont les extrémités sont k et l. Une
involution P : Z → Z est non-croisante si pour tout x, y ∈ Z, soit les intervalles
[[x, P(x)]] et [[y, P(y)]] sont disjoints, soit l’un contient l’autre. Cette définition a
une interprétation géométrique. Pour tout x ∈ Z qui n’est pas un point fixe de
P, on trace le demi-cercle dans le demi-plan supérieur, qui est perpendiculaire à
l’axe horizontal et dont les extrémités sont x et P(x). Alors P est non-croisante
si et seulement si aucun de ces demi-cercles ne se coupe.

Figure 1.4. — Une portion d’une involution non-croisante.

Soit P : Z → Z une involution non-croisante sans point fixe. Alors l’appli-
cation Q : x 7→ P(x − 1) + 1 est aussi une involution non-croisante sans point
fixe. On peut à nouveau représenter géométriquement cette application, en tra-
çant les demi-cercles dans le plan inférieur cette fois-ci. Ces demi-cercles sont
obtenus en partant des demi-cercles qui représentent P, puis en effectuant une
translation x 7→ x + 1 puis une symétrie par rapport à l’axe horizontal. Dans le
chapitre 4, nous démontrons que la réunion des demi-cercles associés à P et Q
forme une courbe connexe, comme illustré dans la Figure 1.5.
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Figure 1.5. — Les demi-cercles associés à P et Q.

Équivalence orbitale quantitative entre Z et D∞

Nous utilisons dans le chapitre 4 ce lemme combinatoire pour comparer les
actions de Z et du groupe diédral infini D∞ du point de vue de l’équivalence or-
bitale quantitative. Le groupe diédral infini est le groupe dont une présentation
est donnée par

D∞ := 〈a, b | a2 = b2 = 1〉.

Nous démontrons le résultat suivant.

Théorème. — Toute action p.m.p. essentiellement libre Z y (X, µ) est L<1 orbitale-
ment équivalente à une action p.m.p. du groupe diédral infini D∞.

À contrario, une action p.m.p. essentiellement libre Z y (X, µ) est L1 orbitale-
ment équivalente à une action de D∞ si et seulement si le sous-groupe 2Z n’agit pas
ergodiquement sur (X, µ).
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Partie III : Équivalence orbitale quantitative et gra-
phages

Graphage

L’équivalence orbitale quantitative étudie les distortions que peuvent subir les
structures métriques données par les actions p.m.p. de groupes de type fini. Ici,
nous introduisons une notion d’équivalence orbitale quantitative qui impose que
les structures métriques ne subissent aucune distorsion, mais soient au contraire
isométriques.

Soit (X, µ) un espace de probabilité. Un graphage sur (X, µ) est un graphe
dont l’ensemble des sommets est X et l’ensemble des arêtes est un sous-ensemble
symétrique mesurable de X × X qui vérifie la condition suivante : pour tous
ensembles mesurables A, B ⊆ X,∫

B
degA(x)dµ =

∫
A

degB(x)dµ, (∗)

où degE(x) désigne l’ensemble des voisins de x qui sont dans E. Les graphages
sont fondamentaux en théorie des graphes limites, car ce sont les objets limites
de graphes de valence uniformément bornée [Lov12, Chap. 18]. Les graphages
sont aussi des objets fondamentaux dans la théorie des actions p.m.p. Ce sont
par exemple les outils principaux de la théorie du coût, étudiée en détail par
Gaboriau [Gab00].

Soit Γ un groupe de type fini et SΓ un système fini de générateurs, c’est-à-dire
un sous-ensemble fini SΓ ⊆ Γ, qui est symétrique (SΓ = S−1

Γ ), qui ne contient pas
l’élément neutre eΓ et qui engendre le groupe (〈SΓ〉 = Γ). À une action p.m.p.
Γ y (X, µ), on peut associer un graphage dont l’ensemble des sommets est X et
l’ensemble des arêtes est

{(x, y) ∈ X× X : ∃s ∈ S, s · x = y}.

La condition (∗) est automatiquement satisfaite puisque le groupe Γ agit sur
(X, µ) en préservant la mesure. Lorsque l’action est essentiellement libre, ce gra-
phage retient la géométrie du groupe, puisque pour µ-presque tout x ∈ X, la
composante connexe du graphage qui contient x est isomorphe au graphe de
Cayley du groupe. Ici, le graphe de Cayley, noté (Γ, SΓ), d’un groupe Γ muni
d’un système fini de générateurs SΓ est le graphe dont l’ensemble des sommets
est Γ et l’ensemble des arêtes est

{(γ, δ) ∈ Γ× Γ : ∃s ∈ SΓ, γs = δ}.

Équivalence orbitale isométrique

Dans le chapitre 5, on étudie une notion forte d’équivalence orbitale quantitative
que l’on appelle équivalence orbitale isométrique.
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Définition. — Soient Γ et Λ deux groupes de type fini. Fixons SΓ et SΛ des
systèmes finis de générateurs pour Γ et Λ respectivement. Deux actions p.m.p.
Γ yα (X, µ) et Λ yβ (Y, ν) sont isométriquement orbitalement équivalentes s’il
existe une bijection bimesurable Φ : X → Y telle que Φ∗µ = ν et pour µ-presque
tout x ∈ X, l’application Φ induit une isométrie entre la composante connexe
de x dans le graphage associé à α et la composante connexe de Φ(x) dans le
graphage associé à β.

Contrairement aux notions d’équivalence orbitale Lp, la notion d’équivalence
orbitale isométrique dépend du choix du système fini de générateurs de façon
primordiale, puisque le graphage associé à une action en dépend.

Rigidité et flexibilité

La notion d’équivalence orbitale isométrique renforce celle d’équivalence orbi-
tale L∞. En effet, une équivalence orbitale L∞ induit presque partout une bi-
jection uniformément bi-lipschitzienne entre les composantes connexes des gra-
phages associés aux actions, alors qu’une équivalence orbitale isométrique induit
presque partout une isométrie.

Néanmoins, les différences entre ces notions sont notoires. Contrairement
au théorème de Belinskaya, qui implique que l’équivalence orbitale L1 pour les
actions ergodiques de Z est peu ou prou triviale, l’équivalence orbitale L1, et
même L∞, s’avère être riche pour les actions de Zd lorsque d ≥ 2. Par exemple,
Fieldsteel et Friedman démontrent que pour tout d ≥ 2 et toute action ergodique
Zd yα (X, µ), il existe une action mélangeante Zd yβ (Y, ν) telle que α et β sont
L∞ orbitalement équivalentes. Nous démontrons qu’un tel résultat est faux en
équivalence orbitale isométrique.

Théorème. — Soit d ≥ 2 et soit S un système de générateurs fini pour Zd. Soit
Zd yα (X, µ) une action p.m.p. mélangeante. Toute action Zd y (Y, ν) qui est isomé-
triquement orbitalement équivalente à α lui est conjuguée.

En fait, nous démontrons un résultat de rigidité du même type pour les
groupes Γ munis d’un système fini de générateurs SΓ pour lesquels le groupe
d’automorphismes du graphe de Cayley (Γ, SΓ) est dénombrable. Un théorème
de Trofimov permet de démontrer que le groupe d’automorphismes du graphe
de Cayley de Zd, muni de n’importe quel système fini de générateurs S, est en
effet dénombrable, voir [MS98, Thm. 4.3].

L’archétype d’un groupe qui admet un graphe de Cayley dont le groupe d’au-
tomorphismes est non-dénombrable est le groupe libre Fd à d ≥ 2 générateurs.
Nous démontrons que le phénomène de rigidité obtenu pour Zd ne s’applique
pas pour Fd.

Théorème. — Soit Fd le groupe libre à d ≥ 2 générateurs x1, . . . , xd et soit S le
système fini de générateurs S := {x±1

1 , . . . , x±1
d }. Alors il existe des actions p.m.p.

isométriquement orbitalement équivalentes Fd yα (X, µ) et Fd yβ (Y, ν) telles que α

est mélangeante mais β ne l’est pas.
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Dynamical systems theory is the study of the behavior of a space on which a
group of transformations acts. This PhD thesis focuses on two main branches
of this theory: topological dynamics and ergodic theory of group actions. The
former consists in the study of group actions by homeomorphisms on compact
spaces, whereas the latter consists in the study of group actions on measured
spaces which admit invariant measures.

This manuscript is divided into three independent parts. In this introduction,
which is meant to be illustrative, we explain the main notions studied during this
thesis as well as the main results that we obtained.

Outline of the thesis:

Part I: Allostery
Chapter 1: Continuum of allosteric actions for non-amenable surface groups

prepublished article arXiv:2110.01068

Part II: Quantitative orbit equivalence for Z-actions
Chapter 2: Belinskaya’s theorem is optimal

prepublished article with A. Carderi, F. Le Maître and R. Tessera, arXiv:2201.06662

Chapter 3: Cycles in ϕ-integrable full groups
Chapter 4: Quantitative orbit equivalence between Z and D∞

Part III: Quantitative orbit equivalence and graphings
Chapter 5: Isometric orbit equivalence for probability-measure preserving

actions, prepublished article arXiv:2203.14598
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Part I : Allostery

Minimality and ergodicity

This first part combines topological dynamics and ergodic theory of group ac-
tions. The main object of study is actions of countable groups on compact spaces,
for which there exists an invariant probability measure. More precisely, a mini-
mal ergodic action of a countable group Γ is an action Γ y (C, µ) such that

– Γ y C is an action by homeomorphisms on a compact Hausdorff space C
which is minimal, that is, every orbit is dense.
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– µ is a Borel probability measure on C which is Γ-invariant and ergodic,
that is, any measurable Γ-invariant has measure 0 or 1.

Minimal ergodic actions appear naturally in different contexts. For instance,
let Γ be a countable dense subgroup of a compact group G and let µ be the
Haar probability measure on G. Then the right multiplication action Γ y (G, µ)

is a minimal ergodic action. Concretely, one can think of an irrational rotation
x 7→ x + θ (mod 1), which provides a minimal ergodic action of Z on the torus
T endowed with the Lebesgue measure. Profinite actions form another class of
minimal ergodic actions. Let Γ be a countable group and let Γ > Γ1 > · · · >
Γn > . . . be a decreasing sequence of finite index subgroups. The group Γ acts
on each finite space Γ/Γn and thus on the profinite limit lim←− Γ/Γn. This is a
minimal action when the profinite limit is endowed with the profinite topology.
Moreover, there is a unique Γ-invariant probability measure µ on the profinite
limit. Then the action Γ y (lim←− Γ/Γn, µ) is a minimal ergodic action called a
profinite action. Countable groups which admit profinite faithful actions are
residually finite, that is, they admit a decreasing sequence Γ1 ≥ · · · ≥ Γn ≥ . . .
of finite index subgroups such that⋂

n≥1

Γn = {1Γ}.

Actually, any countable group admits minimal ergodic actions that are faithful.
More precisely, we have the following result.

Theorem ([Ele21]). — Any countable group Γ admits a minimal ergodic action which
is free.

Here free means that the stabilizer of every point is trivial. In the sequel, we
will mostly be interested in non-free actions. One of the interests of such actions
lies in the fact that they give families of subgroups, given by the stabilizer of
points. Equivalently, when the group is finitely generated, a non-free action
provides a family of Schreier graphs of the groups. These are fundamental
objects in spectral graph theory. We refer to the survey [Gri11] for the use of
such families of Schreier graphs.

Notions of freeness

Several notions of generic freeness exist. A minimal ergodic action Γ y (C, µ) is

– topologically free if there is a Gδ dense set of points having trivial stabilizer.

– essentially free if there is a set of full measure of points having trivial
stabilizer.

These two properties are generic properties of the action, the first one in the
topological sense, the second one in the measure sense. Indeed, a point in a
Gδ dense set is generic from the topological point of view and a point in a full
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measure set is generic from the measure point of view. We will relate these two
notions in the following lemma. Let us first make a useful observation.

Fact. — Let Γ y C be an action by homeomorphisms on a compact Hausdorff space.
Then the set of x ∈ C whose stabilizer is trivial is a Gδ set.

Proof. Let x ∈ C. Then Stab(x) = {1} if and only if for all γ ∈ Γ \ {1}, we have
γx 6= x, which proves the fact.

Therefore, it is enough to have just one point with a trivial stabilizer for a
minimal action to be topologically free.

Lemma. — A minimal ergodic action which is essentially free is topologically free.

Proof. Let Γ y (C, µ) be a minimal ergodic action which is essentially free. We
already know that the set of points with trivial stabilizer is Gδ. Since this is also
a set of full measure, it is in particular nonempty. Thus, there exists x ∈ C such
that Stab(x) is trivial, which finishes the proof by minimality of the action.

The converse is false in general, which brings us to introduce the notion of
allostery.

Allostery

Definition. — Let Γ be a countable group. A minimal ergodic Γ-action is al-
losteric 1 if it is topologically free but not essentially free. A group Γ is allosteric
if it admits a minimal ergodic action which is allosteric.

Examples of non-allosteric groups

The notion of allostery is closely related to the dynamic on the space of sub-
groups. If Γ is a countable group, we denote by Sub(Γ) the space of subgroups
of Γ, on which Γ acts by conjugation. The results in this paragraph illustrate
the following maxim: if the action Γ y Sub(Γ) is not rich enough, then Γ is not
allosteric.

Proposition. — The group Z is not allosteric.

Proof. Let Z y (C, µ) be a minimal ergodic action, which is not essentially free.
By definition

µ({x ∈ C : Stab(x) 6= {0}}) > 0.

In particular, there is a point x ∈ C whose stabilizer is not the trivial group. Since
it is a nontrivial subgroup of Z, it is isomorphic to nZ for some n ≥ 1 and thus
the cardinal of the orbit of such a point x is finite. By minimality, we deduce that
C = Orb(x) is finite and that the stabilizer of every point is nontrivial. Thus, the
action Z y (C, µ) is not topologically free and this concludes the proof.

1
ἄλλος: other, στερεός: a notion of fixity.
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Proposition. — If Sub(Γ) is countable, then Γ is not allosteric.

Proof. Let Γ be a group with only countably many subgroups. Let Γ y (C, µ)

be a minimal ergodic action which is not essentially free. Then we have µ({x ∈
C : Stab(x) 6= {1Γ}}) > 0. For any subgroup Λ ≤ Γ, let

PΛ := {x ∈ C : Stab(x) = Λ}.

The family (PΛ)Λ≤Γ forms a partition of C. By assumption on Γ, this partition
has only countably many pieces. Thus, there is a subgroup Λ ≤ Γ such that
µ(PΛ) > 0. Moreover, for all γ ∈ Γ, we have γPΛ = PγΛγ−1 . This implies that
µ(PΛ) = µ(PγΛγ−1). We deduce that Λ has only finitely many conjugates.

Let x ∈ C. By minimality and since Λ has only finitely many conjugates,
there is γ ∈ Γ and a sequence (xn)n≥0 ∈ CN such that xn → x and Stab(xn) =

γΛγ−1 for all n ≥ 0. We deduce that γΛγ−1 ≤ Stab(x). Thus, the stabilizer of
every point is nontrivial. Therefore, the action is not topologically free, which
concludes the proof.

Explicit examples of groups which admit only countably many subgroups
can be found in Figure 2.2. One can show a similar result for countable groups
which have few invariant random subgroups. Let Γ be a countable group and
let Sub(Γ) be the space of subgroups of Γ. This is a compact subspace of {0, 1}Γ,
on which Γ acts by conjugation. An invariant random subgroup (IRS) of Γ is a
Γ-invariant probability measure on Sub(Γ). The above proof can be adapted to
prove that any group whose ergodic IRS are all atomic is not allosteric. Concrete
examples of such groups can be found in Figure 2.2.

Invariant random subgroups / Uniformly recurrent subgroups

In this paragraph, we explain in greater detail the connections between allostery
and the dynamic on the space of subgroups.

Let Γ y (C, µ) be a minimal ergodic action. The map

Stab : x 7→ {γ ∈ Γ : γ · x = x}

is a measurable map C → Sub(Γ). Moreover, Stab is equivariant, because for all
x ∈ C and γ ∈ Γ,

Stab(γ · x) = γStab(x)γ−1.

Thus, the pushforward of µ by Stab yields a Γ-invariant ergodic probability
measure on Sub(Γ), that is, an ergodic IRS. By definition, the action is essentially
free if and only if this IRS is equal to the measure δ{1Γ}.

Invariant random subgroups have a topological counterpart. A uniformly
recurrent subgroup (URS) is a closed, minimal, Γ-invariant subset of Sub(Γ). Let
Γ y (C, µ) be a minimal ergodic action. The URS associated with this action is
the unique URS contained in the closure of {Stab(x) : x ∈ C}, see [GW15]. One
can show that this URS is contained in the support of the IRS associated with
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the action [Jos21, Lem. 2.2]. Moreover, this URS is equal to {{1Γ}} if and only
if the action is topologically free [LBMB18, Prop. 2.7]. We thus get the following
characterization of allostery.

Lemma. — A minimal ergodic action Γ y (C, µ) is allosteric if and only if the trivial
group {1Γ} is strictly contained in the support of the IRS associated with this action.

Examples of allosteric groups

The existence of allosteric groups was raised by Grigorchuk, Nekrashevich and
Suschanskii. More precisely, they asked the following question.

Question ([GNS00, Prob. 7.3.3]). — Does there exist countable groups which
admit profinite allosteric actions?

The first examples of allosteric groups were found by Bergeron and Gaboriau.
They moreover answer the question of [GNS00].

Theorem ([BG04]). — Let Γ and Λ be two nontrivial, finitely generated groups. Then
the free product Γ ∗ Λ is allosteric (unless Γ and Λ are isomorphic to the cyclic group
C2). More precisely, the group Γ ∗Λ admits profinite allosteric actions.

An independent proof of this result when Γ = Λ = Z was given by Abért
and Elek in [AE12]. In Chapter 1, we are interested in another class of groups:
fundamental groups π1(Σg) of closed, connected and orientable surfaces Σg.
These are one relator groups, given by a group presentation of the form

π1(Σg) := 〈x1, . . . , xg, y1, . . . , yg | [x1, y1] . . . [xg, yg] = 1〉,

where [x, y] = xyx−1y−1 is the commutator of x and y and g ≥ 1 is an integer.
The main result of Chapter 1 is the following.

Theorem. — Let Σg be a closed, connected and orientable surface of genus g ≥ 2.
Then π1(Σg) is allosteric. More precisely, it admits profinite allosteric actions.

A construction of allosteric actions for F2

We conclude this introduction to Part I by an explicit construction of allosteric
actions for the free group F2 of rank two. For this, we first construct actions of
F2 on finite sets with specific properties.

For all integer n ≥ 0 and prime p ≥ 2, let

Cp,n :=
2n⋃

l=0

[[0, p− 1]]× [[0, p− 2]]l.

A point x ∈ Cp,n can be written as x = (x0, . . . , xl) with x0 ∈ [[0, p − 1]] and
xi ∈ [[0, p− 2]] for all 1 ≤ i ≤ l. The number l is called the depth of x. We define
a permutation A on the set Cp,n. Let x ∈ Cp,n be of depth l.
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– If l is even, then A(x) :=
{

(x0, . . . , xl, 0) if l < 2n,
x if l = 2n.

– If l is odd, then A(x) :=
{

(x0, . . . , xl + 1) if xl < p− 2,
(x0, . . . , xl−1) otherwise.

We define another permutation B on the set Cp,n. Let x ∈ Cp,n be of depth l.

– If l is odd, then B(x) := (x0, . . . , xl, 0).

– If l = 0, then B(x) := x0 + 1 (mod p). If l is even and > 0, then

B(x) :=
{

(x0, . . . , xl + 1) if xl < p− 2,
(x0, . . . , xl−1) otherwise.

Let a and b be the two generators of F2. The permutations A and B induce an
action of F2 on Cp,n by letting a · x := A(x) and b · x := B(x) for all x ∈ Cp,n. This
action is illustrated in Figure 2.1.

Figure 2.1. — The set C3,1 and the permutations A in black, B in red.

We call boundary of Cp,n the set ∂Cp,n consisting of all points of depth 2n.
These are exactly the set of points that are fixed by a. Moreover, an elementary
computation yields

|∂Cp,n|
|Cp,n|

−→
n→+∞

p− 2
p− 1

.

Since (p− 2)/(p− 1)→ 1 as p→ +∞, we can fix a sequence of pairwise distinct
prime numbers (pk)k≥0 and a sequence of integers (nk)k≥0 which tends to +∞,
such that

+∞

∏
k=0

|∂Cpk,nk |
|Cpk,nk |

> 0.

Endowed with the product topology, the space C := ∏k≥0 Cpk,nk is compact. We
let µ be the product of the uniform probability measure on each Cpk,nk .
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Proposition 2.0.1. — The diagonal action of F2 on C is allosteric.

Sketch of the proof. First of all, F2 y (C, µ) is a minimal ergodic action. Indeed,
an application of the Chinese remainder theorem allows us to show that for all
K ≥ 0, the diagonal action F2 y ∏k≤K Cpk is transitive. Thus, the cylinders of C
of the form

U(y1,...,yK)
:= {(xk)k≥0 ∈ C : x0 = y0, . . . , xK = yK}

all have the same measure and intersect every orbit of the action F2 y C. This
implies that

– the measure µ is the unique F2-invariant measure on C, which is thus
ergodic,

– the action F2 y C is minimal.

Let us prove that F2 y (C, µ) is topologically free, but not essentially free. For
all k ∈ N, fix xk ∈ Cpk,nk an element of depth 0 and let x := (xk)k≥0 ∈ C. By
construction, we observe that Stab(x) = {1F2}. Since F2 y C is minimal, we
deduce that the set of points with trivial stabilizer is dense in C. Since it is also
a Gδ set, we deduce that F2 y C is topologically free. Moreover, by definition of
the measure µ, we have

µ({x ∈ C : a ∈ Stab(x)}) =
+∞

∏
k=0

|∂Cpk,nk |
|Xpk,nk |

> 0.

Therefore F2 y C is not essentially free, which implies that it is an allosteric
action. �
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Some allosteric/non-allosteric groups

Group Allostery Reason or Reference

Γ ∗Λ ( 6= C2 ∗ C2)

with Γ, Λ 6= {1}
and residually finite

3 [BG04]

π1(Σg), g ≥ 2 3 [Jos21]

Z oZ 3 Work in progress

Γ nilpotent

finitely generated
7 |Sub(Γ)| = ℵ0

BS(1, n) 7 |Sub(BS(1, n))| = ℵ0

FSym(N), group of

finitely supp. perm.

on N

7 [Ver12]

Lattices in SLn(R)

n ≥ 3
7

Ergodic IRS

are atomic [SZ94]

Lattices in PSLn(Qp)

n ≥ 2, p prime
7

Ergodic IRS

are atomic [PT16]

Figure 2.2. — A list of some allosteric and non-allosteric groups. This list is not
exhaustive. In particular, the last two lines are true in greater generality
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Part II: Quantitative orbit equivalence for Z-actions

Orbit equivalence

The main topic of this second part is orbit equivalence for actions of groups,
especially for actions of Z. Let Γ be a countable group. A p.m.p. action Γ y
(X, µ) on a probability space (X, µ) is an action by bimeasurable bijections of X
which preserve the measure µ. The action of γ ∈ Γ on x ∈ X is denoted by γ · x.
When it is necessary to give a name to the action, we will write Γ yα (X, µ) and
the action of γ ∈ Γ on x ∈ X is denoted by α(γ) · x.

Let Γ and Λ be two countable groups. Two p.m.p. actions Γ y (X, µ) and
Λ y (Y, ν) are orbit equivalent if there exists an orbit equivalence, that is a
bimeasurable bijection Φ : X → Y such that Φ∗µ = ν and for µ-almost every
x ∈ X,

Φ(Γ · x) = Λ ·Φ(x).

Example of an orbit equivalence

Let X := {0, 1}N and µ := ( 1
2(δ0 + δ1))

⊗N. The dyadic odometer is the transfor-
mation T : X → X given by

T(1, . . . , 1, 0, xk+1, xk+2, . . . ) = (0, . . . , 0, 1, xk+1, xk+2, . . . )

and T(1, 1, . . . ) = (0, 0, . . . ). This is a bimeasurable bijection, which preserves
the measure µ. This yields a p.m.p. action Z y (X, µ). Let us define two trans-
formations Teven : X → X and Todd : X → X, called the even dyadic odometer
and the odd dyadic odometer. They are defined by

Teven(x0, x1, . . . ) = (y0, y1, . . . ),

Todd(x0, x1, . . . ) = (z0, z1, . . . ),

where for all n ≥ 0, x2n+1 = y2n+1, x2n = z2n and

(y0, y2, . . . ) = T(x0, x2, . . . ),

(z1, z3, . . . ) = T(x1, x3, . . . ).

The transformations Teven and Todd preserve the measure µ and commute. Thus
they give rise to a p.m.p. action Z2 y (X, µ).

Lemma. — These two actions Z y (X, µ) and Z2 y (X, µ) are orbit equivalent.

Sketch of the proof. Let X′ be the set of all (xn)n≥0 ∈ X such that at least one of
the subsequence (x2n)n≥0 is eventually constant. Then µ(X \ X′) = 1 and for all
x ∈ X \ X′, the following properties are true:

– for all n ∈ Z, there exists (u, v) ∈ Z2 such that Tn(x) = (Teven)u(Todd)
v(x).
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– for all (u, v) ∈ Z2, there exists n ∈ Z such that (Teven)u(Todd)
v(x) = Tn(x).

This means that idX is an orbit equivalence between these two actions. �

If instead of the partition {odd} t {even}, we look at the partition of N given
by the remainder modulo n, m ≥ 1, then one obtains similarly two orbit equiva-
lent ergodic actions Zn y (X, µ) and Zm y (X, µ).

Orbit equivalence and invariants

In the preceding example, we proved that for all n, m ≥ 1, the groups Zn and
Zm admit p.m.p. ergodic actions that are orbit equivalent. Much more is true.

Theorem ([OW80]). — Any two p.m.p. ergodic actions of any two amenable infinite
groups are orbit equivalent.

Thus, orbit equivalence does not preserve any of the geometric invariants
that one can associate to amenable groups. For instance, the dimension d of the
group Zd is not preserved. Among the geometric invariants, one can cite the
growth rate of a group, the Følner function, the asymptotic cone, etc. Similarly,
in general, no ergodic invariant of p.m.p. action is preserved under orbit equiv-
alence. Among ergodic invariants, one can cite the spectrum of the Koopman
representation, Kolmogorov-Sinai entropy, etc. This lack of orbit equivalence
invariants is one of the main motivations for the introduction of quantitive re-
finement of orbit equivalence.

Quantitative orbit equivalence

Let Γ be a finitely generated group and let |·|Γ be the word length associated
with some finite generating system SΓ ⊆ Γ. Given any p.m.p. action Γ y (X, µ),
one can construct a metric structure on (X, µ), denoted by dΓ, by letting the
dΓ-distance between two points x, y ∈ X in the same Γ-orbit be equal to

dΓ(x, y) := inf{|γ|Γ : γ · x = y}.

One of the main goals of quantitative orbit equivalence is to understand how
an orbit equivalence between two p.m.p. actions can distort the associated metric
structures. More precisely, let Γ and Λ be two finitely generated groups and let
|·|Γ and |·|Λ be the word length associated with finite generating systems for Γ
and Λ respectively.

Definition. — Let p ∈]0,+∞]. An orbit equivalence Φ : (X, µ) → (Y, ν) be-
tween two p.m.p. actions Γ y (X, µ) and Λ y (Y, ν) is an Lp orbit equivalence
if for all γ ∈ Γ and λ ∈ Λ, the maps

x 7→ dΛ(Φ(x), Φ(γ · x)) and y 7→ dΓ(Φ−1(y), Φ−1(λ · y))

belong to Lp(X, µ) and Lp(Y, ν) respectively.
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By the triangle inequality, it is enough to check these conditions for γ and
λ belonging to any finite generating system of Γ and Λ respectively. Let us
mention that changing the finite generating systems leads to bilipschitz metric
structures, which does not impact the integrability conditions. Thus, the notion
of Lp orbit equivalence is independent of the choice of finite generating systems.

We say that two p.m.p. actions Γ y (X, µ) and Λ y (Y, ν) are Lp orbit
equivalent (p ∈]0,+∞]) if there exists an Lp orbit equivalence between them.
Finally, we say that two p.m.p. actions are L<p orbit equivalent if there exists an
orbit equivalence between them which is an Lq orbit equivalence for all q < p.

Example of an Lp orbit equivalence

Let X := {0, 1}N and µ := ( 1
2(δ0 + δ1))

⊗N. Let T : X → X be the dyadic
odometer and Teven, Todd be the even and odd dyadic odometers. The actions
Z y (X, µ) and Z2 y (X, µ) induced by T and the couple (Teven, Todd) are orbit
equivalent, the identity map idX : X → X being an orbit equivalence. We will
compute explicitly the integrability degree of this orbit equivalence.

In the computations below, we endow Z with the finite generating system
{±1} and Z2 with the finite generating system {(±1, 0), (0,±1)}. We denote by
dZ and dZ2 the corresponding metric structures on (X, µ).

Integrability properties for x 7→ dZ2(x, T(x)). For all n ≥ 0, let An ⊆ X
be the set of x ∈ X such that x0 = · · · = xn−1 = 1 and xn = 0. The sets
(An)n≥0 form a partition of X on which one can compute explicitly the
value of dZ2(x, T(x)).

– If x ∈ A2n, then T(x) = Teven(Todd)
1−2n

(x).

– If x ∈ A2n+1, then T(x) = (Teven)2n+1−1Todd(x).

Since the action Z2 y (X, µ) is free, we then deduce that

dZ2(x, T(x)) =
{
|1− 2n|+ 1 if x ∈ A2n,
|2n+1 − 1|+ 1 if x ∈ A2n+1.

Finally, the measure of An is equal to 1/2n+1, thus the behavior of the
integral ∫

X
dZ2(x, T(x))pdµ

comes down to the behavior of the series ∑n≥0 2(p−2)n, which converges if
and only if p < 2.

Integrability properties for x 7→ dZ(x, Teven(x)). For all n ≥ 0, let Bn ⊆ X
be the set of x ∈ X such that x0 = x2 = · · · = x2=−2 = 1 and x2n = 0. If
x ∈ Bn, then

Teven(x) = T22n−(22n−2+22n−4+···+1)(x) = T(22n+1+1)/3(x).
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Since the action Z y (X, µ) is free, we deduce that

dZ(x, Teven(x)) =
22n+1 + 1

3
if x ∈ Bn.

Finally, the measure of Bn is equal to 1/2n+1, thus the behavior of the
integral ∫

X
dZ(x, Teven(x))pdµ

comes down to the behavior of the series ∑n≥0 2(2p−1)n, which is conver-
gent if and only if 0 < p < 1/2. A similar computation yields a similar
conclusion for the integral ∫

X
dZ(x, Todd(x))pdµ.

Since it is enough to check the integrability conditions on the generators of the
groups Z and Z2, we deduce that the p.m.p. actions Z y (X, µ) and Z2 y
(X, µ) are L<1/2 orbit equivalent.

Since these actions are free and orbit equivalent, to almost every point x ∈ X
one can associate a map fx : Z → Z2, where fx(n) is the unique element (u, v) ∈
Z2 such that T(x) = (Teven)u(Todd)

v(x). If one looks carefully at the graph of
the map fx for a generic x ∈ X, one recognizes the Lebesgue curve, see Figure

2.3. This condition “p < 1/2” is not unconnected with the fact that a continuous
curve [0, 1]→ [0, 1]2 filling the square cannot be p-Hölder with p > 1/2.

x

Figure 2.3. — The graph of σ(−, x) : Z → Z2 with x = 000000∗∗ . . .

By looking at the partitions of N given by the remainder modulo n and

45



m ≥ 2, we get similarly two p.m.p. actions Zn y (X, µ) and Zm y (X, µ) which
are L<p orbit equivalent for p = min(n/m, m/n). One can find these examples
(less explicitely) in the article [DKLMT20, Thm. 6.9]. We explain below why this
condition on p is optimal.

Return of invariants

Quantitative orbit equivalence is one way to recover several invariants that were
not captured by orbit equivalence. For instance, Bowen proved that any two
finitely generated groups, which admit p.m.p. essentially free actions that are
L1 orbit equivalent, have the same growth function [Aus16b, Appen. B]. Several
other invariants are preserved by L1 orbit equivalence, such as asymptotic cones
for groups of polynomial growth [Aus16b], or else Kolmogorov-Sinai entropy
for p.m.p. actions of amenable groups [Aus16].

The condition “p < 1/2” obtained in the orbit equivalence of last paragraph
is explained by the following theorem.

Theorem. — Let n, n ≥ 1 be two integers. Let Zn y (X, µ) and Zm y (Y, ν) be two
p.m.p. essentially free actions that are Lp orbit equivalent. Then p ≤ min(n/m, m/n).

We refer to [DKLMT20, Thm. 3.2] for a more general statement. It is unknown
whether two p.m.p. essentially free actions Zn y (X, µ) and Zm y (Y, ν) can
be Lp orbit equivalent with p = min(n/m, m/n).

Belinskaya’s theorem is optimal

L1 orbit equivalence is extremely rigid when it comes to Z-actions. Two p.m.p.
actions Z yα (X, µ) and Z yβ (Y, ν) are flip-conjugate if there exists a bimea-
surable bijection Φ : X → Y such that Φ∗µ = ν and

– either Φ ◦ α(n) = β(n) ◦Φ for all n ∈ Z,

– or Φ ◦ α(n) = β(−n) ◦Φ for all n ∈ Z.

Theorem ([Bel68]). — Two p.m.p. ergodic actions Z y (X, µ) and Z y (Y, ν) are
L1 orbit equivalent if and only if they are flip-conjugate.

Among the results contained in Chapter 2, we prove that Belinskaya’s theo-
rem is optimal in the following sense.

Theorem. — There exists p.m.p. ergodic actions of Z which are L<1 orbit equivalent
but not flip-conjugate.

This result is the fruit of a joint work with Carderi, Le Maître and Tessera
[CJLMT22]. Chapter 3 is an annex of Chapter 2 in which we translate a proba-
bilistic result due to Liggett [Lig02] in the language introduced in Chapter 2.

46



Introduction in English

Non-crossing involution

For k, l ∈ Z, let [[k, l]] be the interval of Z whose extremities are k and l. An
involution P : Z → Z is non-crossing if for all x, y ∈ Z, the intervals [[x, P(x)]]
and [[y, P(y)]] are either disjoint, or one contains the other. This definition has
a geometric interpretation. For all x ∈ Z such that P(x) 6= x, we draw the
circular arc in the upper half-plane whose extremities are x and P(x), which is
perpendicular to the horizontal axis. Then the involution P is non-crossing if
and only if none of these circular arcs intersect.

Figure 2.4. — A portion of a non-crossing involution.

Let P : Z → Z be a non-crossing involution which admits no fixed point.
Then the map Q : x 7→ P(x − 1) + 1 is also a non-crossing involution without
fixed point. We can again draw geometrically this involution with circular arcs,
this time in the lower half plane. These circular arcs on the lower half plane are
obtained by taking a reflexion across the horizontal line of the arcs on the upper
half-plane, followed by a translation, see Figure 2.5.

Figure 2.5. — The circular arcs associated with P and Q

Quantitative orbit equivalence between Z and D∞

We use in Chapter 4 this combinatorial lemma to compare p.m.p. actions of Z

and of the infinite dihedral group D∞ up to quantitative orbit equivalence. The
infinite dihedral group is the group which admits the following presentation:

D∞ := 〈a, b | a2 = b2 = 1〉.
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We prove the following result.

Theorem. — Any p.m.p. essentially free action Z y (X, µ) is L<1 orbit equivalent to
some p.m.p. action of the infinite dihedral group D∞.

By contrast, a p.m.p. essentially free action Z y (X, µ) is L1 orbit equivalent to
some p.m.p. action of the infinite dihedral group D∞ if and only if the subgroup 2Z

does not act ergodically on (X, µ).

Part III: Quantitative orbit equivalence and graphings

Graphing

Quantitative orbit equivalence studies the distortions that can appear between
metric structures associated with p.m.p. actions of finitely generated groups.
Here, we introduce a notion of quantitative orbit equivalence which imposes
isometries between metric structures.

Let (X, µ) be a probability space. A graphing on (X, µ) is a graph whose
vertex set is X and whose edge set is a measurable symmetric subset of X × X,
which satisfies the following condition: for all measurable subsets A, B ⊆ X,∫

B
degA(x)dµ =

∫
A

degB(x)dµ, (∗)

where degE(x) is the set of neighbors of x which belong to E. Graphings are
fundamental in graph limit theory as they are the limit objects for sequences of
bounded degree graphs, see [Lov12, Part 4] for an introduction to this theory.
They are also one of the main objects in the cost theory of p.m.p. actions, which
was extensively studied by Gaboriau [Gab00].

Let Γ be a finitely generated group and SΓ be a finite generating system, that
is a finite subset SΓ ⊆ Γ, which is symmetric (SΓ = S−1

Γ ), which does not contain
the identity element eΓ ∈ Γ and which generated the group: 〈SΓ〉 = Γ. To any
p.m.p. action Γ y (X, µ), one can associate a graphing, whose vertex set is X
and whose edge set is

{(x, y) ∈ X× X : ∃s ∈ S, γx = y}.

Condition (∗) is satisfied because the group Γ acts in a p.m.p. manner on (X, µ).
When the action is essentially free, this graphing retains the geometry of the
group, since the connected component of µ-almost every x ∈ X is isomorphic to
the Cayley graph of the group. Here, the Cayley graph (Γ, SΓ) of a group Γ with
a finite generating system SΓ is the graph whose vertex set is Γ and whose edge
set is

{(γ, δ) ∈ Γ× Γ : ∃s ∈ SΓ, γs = δ}.
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Isometric orbit equivalence

In Chapter 5, we study a strong notion of quantitative orbit equivalence that we
call isometric orbit equivalence.

Definition. — Let Γ and Λ be two finitely generated groups. Fix SΓ and SΛ
finite generating systems Γ and Λ respectively. Two p.m.p. actions Γ yα (X, µ)

and Λ yβ (Y, ν) are isometric orbit equivalent if there exists a bimeasurable
bijection Φ : X → Y such that Φ∗µ = ν and µ-almost every x ∈ X, the map
Φ induces an isometry between the connected component of x in the graphing
associated with α and the connected component of Φ(x) associated with β.

Contrary to Lp orbit equivalence, the notion of isometric orbit equivalence
depends heavily on the finite generating systems, because the graphing associ-
ated with a p.m.p. action depends on them.

Rigidity and flexibility

Isometric orbit equivalence is a strengthening of L∞ orbit equivalence. Indeed,
an L∞ orbit equivalence induces almost everywhere a biLipschitz bijection be-
tween connected components of the graphings associated with the actions, whereas
an isometric orbit equivalence induces almost everywhere an isometry.

Nevertheless, the differences between these notions are considerable. Recall
that Belinskaya’s theorem implies that L1 orbit equivalence is more or less trivial
for ergodic actions of Z. On the contrary, the theory of L1 orbit equivalence (and
even L∞ orbit equivalence) for p.m.p. actions of Zd, d ≥ 2, is much richer. For
instance, Fieldsteel and Friedman proved that given any ergodic action Z2 yα

(X, µ), there exists a mixing action Z2 yβ (Y, ν) such that α and β are L∞ orbite
equivalent.

We show that a similar result in the context of isometric orbit equivalence is
false.

Theorem. — Let d ≥ 2 and let S be a finite generating system for Zd. Let Zd yα

(X, µ) be a mixing action. Then any p.m.p. action Zd y (Y, ν) which is isometric orbit
equivalent to α is conjugate to α.

Actually, we prove a similar rigidity result for any group Γ equipped with
a finite generating system SΓ such that the automorphism group of the Cayley
graph (Γ, SΓ) is countable. A theorem due to Trofimov implies that this is indeed
the case for any finite generating system S of Zd, see [MS98, Thm. 4.3].

The archetype of a group which admits a Cayley graph whose automorphism
group is uncountable is the free group Fd on d ≥ 2 generators. We show that the
rigidity phenomenon obtained for Zd cannot be true for Fd.

Theorem. — Let Fd be the free group of d ≥ 2 generators x1, . . . , xd and let S be
the finite generating system S := {x±1

1 , . . . , x±1
d }. Then there exists ergodic actions

Fd yα (X, µ) and Fd yβ (Y, ν) that are isometric orbit equivalent, such that α is
mixing but β is not.
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Chapter 1

Continuum of allosteric actions for
non-amenable surface groups

The content of this chapter is the same as that of the article [Jos21].

Table of contents of Chapter 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

1.2.1 Topological dynamic and URS/IRS . . . . . . . . . . . . 58

1.2.2 Profinite actions and their URS/IRS . . . . . . . . . . . . 59

1.2.3 Allostery and commensurability . . . . . . . . . . . . . . 61

1.3 Finite index subgroups of surface groups . . . . . . . . . . . . 63

1.3.1 Residual properties of surface groups . . . . . . . . . . . 63

1.3.2 Special kind of finite index subgroups in surface groups 64

1.4 Proof of the main theorem . . . . . . . . . . . . . . . . . . . . . 66

1.1 Introduction

Let Γ be a countable discrete group. Let α be a minimal action of Γ on a compact
Hausdorff space C. The action α is topologically free if for every non-trivial
element γ ∈ Γ, the set {x ∈ C | α(γ)x = x} has empty interior. This notion
of freeness can be characterized by the triviality of the URS associated with
the action α as follows. Let Sub(Γ) be the space of subgroups of Γ, and let
Stabα : C → Sub(Γ) be the Borel map defined by

Stabα(x) := {γ ∈ Γ | α(γ)x = x}.

Here Sub(Γ) is equipped with the topology of pointwise convergence which
turns it into a compact totally disconnected topological space on which Γ acts
continuously by conjugation. Glasner and Weiss proved in [GW15] that there
exists a unique closed, Γ-invariant, minimal subset in the closure of {Stabα(x) |
x ∈ C}, called the stabilizer Uniformly Recurrent Subgroup, stabilizer URS for
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short, associated with the minimal action α, that we denote by URS(α). The
stabilizer URS is trivial if it is equal to {{1Γ}}. One of the feature of the stabilizer
URS associated with a minimal action α is that its triviality is equivalent to the
topological freeness of α, see Lemma 1.2.1.

Let (X, µ) be a standard probability measure space, and let β be a probability
measure preserving (hereafter p.m.p.) action of a countable group Γ on (X, µ).
The action β is essentially free if for every non-trivial γ ∈ Γ, the set {x ∈ X |
α(γ)x = x} is µ-negligible. The measurable counterpart of the stabilizer URS
is the stabilizer Invariant Random Subgroup, stabilizer IRS for short, associated
with β. It is defined as the Γ-invariant Borel probability measure (Stabβ)∗µ
on Sub(Γ), and is denoted by IRS(β). A stabilizer IRS is the prototype of an
IRS, which is a Borel probability measure on Sub(Γ) that is invariant under
the conjugation action of Γ. The trivial IRS is the Dirac measure at the trivial
subgroup. Observe that IRS(β) is trivial if and only if β is essentially free. Abért,
Glasner and Virág proved that every IRS is in fact a stabilizer IRS for some p.m.p.
action, see [AGV14].

An ergodic minimal action Γ y (C, µ) is a minimal action of Γ on a compact
Hausdorff space C together with a Γ-invariant ergodic Borel probability measure
µ. Thus an ergodic minimal action has both a stabilizer URS and a stabilizer
IRS. It is a classical result that the essential freeness of an ergodic minimal action
implies its topological freeness, see Lemma 1.2.2. In other words, if the stabilizer
IRS of an ergodic minimal action is trivial, then its stabilizer URS is trivial. The
present article provides new counterexamples in the study of the converse.

Definition 1.1.1. — An ergodic minimal action is allosteric1 if it is topologi-
cally free but not essentially free. A group is allosteric if it admits an allosteric
action.

Main Question. — What is the class of allosteric groups?

First, let us discuss examples of groups that don’t belong to this class. It is
the case for groups whose ergodic IRS’s are all atomic, i.e., equal to the uniform
measure on the set of conjugates of a finite index subgroup. Indeed, we prove in
Proposition 1.2.3 that the IRS of an ergodic minimal action which is topologi-
cally free is either trivial, or has no atoms. Thus, if Sub(Γ) is countable, then Γ
is not allosteric, see Corollary 1.2.4. Examples of groups with only countably
many subgroups are: finitely generated nilpotent groups, more generally poly-
cyclic groups, extensions of Noetherian groups by groups with only countably
many subgroups (e.g. solvable Baumslag-Solitar groups BS(1, n)), see [BLT19],
or Tarski monsters.

There are also groups whose ergodic IRS’s are all atomic for other reasons.
For instance, this is the case for lattices in simple higher rank Lie groups [SZ94],
commutator subgroups of either a Higman-Thompson group or the full group
of an irreducible shift of finite type [DM14], lattices in projective special linear

1
ἄλλος: other, στερεός: fix, firm, solid, rigid

56



Continuum of allosteric actions for non-amenable surface groups

group PSLn(k) over an infinite countable field k [PT16]. See also [Cre17], [CP]
or [Bek20] for other examples of groups with few ergodic IRS’s. Thus, none of
these groups are allosteric, because of their lack of IRS’s.

More surprisingly, there exists non-allosteric groups with plenty of ergodic
IRS’s, such as countable abelian groups which admit uncountably many sub-
groups. Indeed, if Γ is such a group, then any Borel probability measure on
Sub(Γ) is an IRS, but Γ is not allosteric since any minimal Γ-action which is
topologically free is actually essentially free for any invariant measure, see Re-
mark 1.4.4. Another example is given by the group FSym(N) of finitely sup-
ported permutations on N, as well as its alternating subgroup Alt(N). They
both admit a lot of ergodic IRS’s, see [Ver12] and [TTD18]. However, an argu-
ment similar to that of Lemma 10.4 in [TTD18] implies that neither FSym(N)

nor Alt(N) is allosteric.
Let us now discuss examples of allosteric groups. Bergeron and Gaboriau

proved in [BG04] that if Γ is non-amenable and isomorphic to a free product
of two non-trivial residually finite groups, then Γ is allosteric. We refer to Re-
mark 1.2.12 for a more precise statement of their results. In [AE07], Abért and
Elek independently proved that finitely generated non-abelian free groups are
allosteric, and in [AE12], they proved that the free product of four copies of
Z/2Z admits an allosteric action whose orbit equivalence relation is measure
hyperfinite. In all [BG04], [AE07] and [AE12], the allosteric actions obtained are
in fact profinite, see Section 1.2.2 for a definition. These were the first known
examples answering a question of Grigorchuk, Nekrashevich and Sushchanskii
in [GNS00, Problem 7.3.3] about the existence of profinite allosteric actions.

The main result of this article is to prove that non-amenable surface groups,
that is fundamental groups of closed surfaces other than the sphere, the torus,
the projective plane or the Klein bottle, are allosteric. More precisely, we prove
the following result.

Theorem 1.1.2. — Any non-amenable surface group admits a continuum of profinite
allosteric actions that are pairwise topologically and measurably non-isomorphic.

Moreover, we prove that the IRS’s given by the non-isomorphic allosteric ac-
tions that we construct are pairwise distinct. We refer to Theorem 1.4.1 and
Theorem 1.4.2 for a precise statement of our results. Let us mention that surface
groups are known to have a large "zoo" of IRS’s. For instance, Bowen, Grig-
orchuk and Kravchenko proved in [BGK17] that any non elementary Gromov
hyperbolic group admits a continuum of IRS’s which are weakly mixing when
considered as dynamical systems on Sub(Γ). In an upcoming work (personal
communication), Carderi, Le Maître and Gaboriau prove that non-amenable sur-
face groups admit a continuum of IRS’s whose support coincides with the per-
fect kernel of Γ, i.e., the largest closed subset without isolated points in Sub(Γ).
However, our IRS’s are drastically different from the latter ones: we show that
they are not weakly mixing, and that their support is strictly smaller than the
perfect kernel, see Remark 1.4.4 and Remark 1.4.5.
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We develop in Section 1.2 the preliminary results needed about profinite ac-
tions and allosteric actions. In particular, we prove that allostery is invariant
under commensurability. In order to build ergodic profinite allosteric actions of
non-amenable surface groups, we rely on a residual property of non-amenable
surface groups in order to prove in Section 1.3 that they admit special kinds of
finite index subgroups. The proof of Theorem 1.1.2 is completed in Section 1.4.

Acknowledgments. I would like to thank A. Le Boudec for various conversa-
tions related to this article, as well as T. Nagnibeda for letting me know that
Vershik’s work implies that the group of finitely supported permutations of the
integers is not allosteric. I wish to thank particularly D. Gaboriau for his con-
stant encouragement and support, as well as for his numerous remarks on this
article.

1.2 Preliminaries

1.2.1 Topological dynamic and URS/IRS

Let C be a compact Hausdorff space, and let α be an action by homeomorphisms
of a countable discrete group Γ on C. The action α is minimal if the orbit of
every x ∈ C is dense. Recall that α is topologically free if for every non-trivial
element γ ∈ Γ, the closed set

Fixα(γ) := {x ∈ C | α(γ)x = x}

has empty interior. Since C is a Baire space, this is equivalent to saying that the
set {x ∈ C | Stabα(x) 6= {1Γ}} is meager, i.e., a countable union of nowhere
dense sets.

The set Sub(Γ) of subgroups of Γ naturally identifies with a subset of {0, 1}Γ.
It is closed for the product topology. Thus the induced topology on Sub(Γ) turns
it into a compact totally disconnected space, on which Γ acts continuously by
conjugation. A URS of Γ is a closed minimal Γ-invariant subset of Sub(Γ). The
trivial URS is the URS that only contains the trivial subgroup. Recall that the
stabilizer URS of a minimal action α of Γ on C is the unique closed, Γ-invariant
minimal subset in the closure of {Stabα(x) | x ∈ C}. If C0 ⊂ C denotes the locus
of continuity of Stabα : C → Sub(Γ), then one can prove that URS(α) is equal to
the closure of the set {Stabα(x) | x ∈ C0}, see [GW15].

A proof of the following classical result can be found in [LBMB18, Prop. 2.7].

Lemma 1.2.1. — Let α be a minimal Γ-action on a compact Hausdorff space C. Then α

is topologically free if and only if its stabilizer URS is trivial, if and only if there exists
x ∈ C such that Stabα(x) is trivial.

The following lemma clarifies the relation between the stabilizer URS and
the stabilizer IRS. Recall that the support of a Borel probability measure is the
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intersection of all closed subsets of full measure.

Lemma 1.2.2. — Let α be a minimal Γ-action on a compact Hausdorff space C and µ be
a Γ-invariant Borel probability measure on C. Then URS(α) is contained in the support
of IRS(α). In particular, if IRS(α) is trivial, then URS(α) is trivial.

Proof. Let F be a closed subset of Sub(Γ) such that µ(Stab−1
α (F)) = 1. By min-

imality of α, every non-empty open subset U of C satisfies µ(U) > 0. Thus,
Stab−1

α (F) is dense in C. Let x ∈ C be a continuity point of Stabα. Let (xn)n≥0

be a sequence of elements in Stab−1
α (F) that converges to x. Then Stabα(x) ∈ F,

and we thus obtain that URS(α) ⊂ F. By definition of the support of IRS(α), this
implies that URS(α) ⊂ supp(IRS(α)).

The following proposition gives a partial converse to Lemma 1.2.2.

Proposition 1.2.3. — Let α be a minimal Γ-action on a compact Hausdorff space C,
and µ be a Γ-invariant Borel probability measure on C. If URS(α) is trivial, then IRS(α)
is either trivial or atomless.

Proof. Assume that IRS(α) has a non-trivial atom {Λ}. By invariance, the atoms
{γΛγ−1} have equal measure for all γ ∈ Γ. Thus, Λ has only finitely many
conjugates. Thus, the closure in Sub(Γ) of the set {Stabα(x) | x ∈ C} contains
the finite set {γΛγ−1 | γ ∈ Γ}, which is closed, Γ-invariant and minimal. Thus,
URS(α) is non-trivial.

This last result implies that the converse of Lemma 1.2.2 is actually true for
groups admitting only countably many subgroups.

Corollary 1.2.4. — Let α be a minimal Γ-action on a compact Hausdorff space and
µ a Γ-invariant Borel probability measure on C. If Sub(Γ) is countable, then IRS(α) is
trivial iff URS(α) is trivial.

Thus, groups Γ such that Sub(Γ) is countable are not allosteric.

1.2.2 Profinite actions and their URS/IRS

Let Γ be a countable group. For every n ≥ 0, let αn be a Γ-action on a finite set
Xn, and assume that for every n ≥ 0, αn is a quotient of αn+1, i.e., there exists
a Γ-equivariant onto map qn : Xn+1 � Xn. The inverse limit of the finite spaces
Xn is the space

lim←−Xn :=

{
(xn)n≥0 ∈ ∏

n≥0
Xn | ∀n ≥ 0, qn(xn+1) = xn

}
.

This space is closed, thus compact, and totally disconnected in the product topol-
ogy. Let α be the Γ-action by homeomorphisms on lim←−Xn defined by

α(γ)(xn)n≥0 := (αn(γ)xn)n≥0.
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If each Xn is endowed with a Γ-invariant probability measure µn, we let µ be
the unique Borel probability measure on lim←−Xn that projects onto µk via the
canonical projection πk : lim←−Xn → Xk, for every k ≥ 0. The Γ-action α preserves
µ, and is called the inverse limit of the p.m.p. Γ-actions αn. A p.m.p. action of Γ
is profinite if it is measurably isomorphic to an inverse limit of p.m.p. Γ-actions
on finite sets. A proof of the following lemma can be found in [Gri11, Prop. 4.1].

Lemma 1.2.5. — The following are equivalent:

(i) For every n ≥ 0, αn is transitive, and µn is the uniform measure on Xn.

(ii) The action α is minimal.

(iii) The action α is µ-ergodic.

(iv) The action α is uniquely ergodic, i.e., µ is the unique Γ-invariant Borel probability
measure on lim←−Xn.

With the above notations, the following lemma is useful to compute the mea-
sure of a closed subset in an inverse limit (here, no group action is involved).

Lemma 1.2.6. — Let A be a closed subset of lim←−Xn. Then A =
⋂

n≥0 π−1
n (πn(A)).

Thus
µ(A) = lim

n→+∞
µn(πn(A)).

Proof. First, A is contained in ∩n≥0π−1
n (πn(A)) since it is contained in each

π−1
n (πn(A)). Conversely, let x be in ∩n≥0π−1

n (πn(A)). For every n ≥ 0, there
exists yn ∈ A such that πn(x) = πn(yn). By compactness of A, let y ∈ A be a
limit of some subsequence of (yn)n≥0. By definition of the product topology, for
every n ≥ 0, πn(x) = πn(y), thus x = y and x belongs to A.

Let (Γn)n≥0 be a chain in Γ, that is an infinite decreasing sequence Γ = Γ0 ≥
Γ1 ≥ . . . of finite index subgroups. If Xn = Γ/Γn and µn is the uniform probabil-
ity measure on Xn, then we get a profinite action that is ergodic by Lemma 1.2.5.
Conversely, any ergodic (equivalently minimal) profinite Γ-action Γ y lim←−Xn is
measurably isomorphic to a profinite action of the form Γ y lim←− Γ/Γn for some
chain (Γn)n≥0, by fixing a point x ∈ lim←−Xn, and letting Γn be the stabilizer of
πn(x) ∈ Xn.

Lemma 1.2.7. — Let (Γn)n≥0 be a chain in Γ, and let α be the corresponding er-
godic profinite Γ-action. Then URS(α) is trivial if and only if there exists a sequence
(γnΓn)n≥0 ∈ lim←− Γ/Γn such that

⋂
n≥0

γnΓnγ−1
n = {1Γ}.

Proof. For all x ∈ lim←− Γ/Γn, if x = (γnΓn)n≥0, then

Stabα(x) =
⋂

n≥0
γnΓnγ−1

n .
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Thus, the result is a direct consequence of Lemma 1.2.1.

Proposition 1.2.8. — Let (Γn)n≥0 be a chain in Γ, and let α be the corresponding
ergodic profinite Γ-action. If URS(α) is trivial, then either IRS(α) is trivial, or there
exists a finite index subgroup Λ ≤ Γ such that the p.m.p. Λ-action by conjugation on
(Sub(Γ), IRS(α)) is not ergodic.

Proof. Assume that the p.m.p. Γ-action by conjugation on (Sub(Γ), IRS(α)) re-
mains ergodic under any finite index subgroup of Γ. Since URS(α) is trivial,
there exists by Lemma 1.2.7 a sequence (γn)n≥0 of elements in Γ such that⋂

n≥0
γnΓnγ−1

n = {1Γ}.

For every k ≥ 0, if πk : lim←− Γ/Γn → Γ/Γk denotes the projection onto the kth

coordinate, then the set

{Stabα(x) | x ∈ lim←− Γ/Γn, πk(x) = γkΓk} ⊂ Sub(Γ)

has positive measure for IRS(α), is contained in Sub(γkΓkγ−1
k ) and is invariant

under the finite index subgroup Stabαk(γkΓk) = γkΓkγ−1
k . By ergodicity, it is a

full measure set. Thus, for a.e. x ∈ lim←− Γ/Γn, Stabα(x) is a subgroup of γkΓkγ−1
k .

Since this is true for every k ≥ 0, we conclude that IRS(α) is trivial.

1.2.3 Allostery and commensurability

Two groups Γ1 and Γ2 are commensurable if there exists finite index subgroups
Λ1 ≤ Γ1 and Λ2 ≤ Γ2 such that Λ1 is isomorphic to Λ2. In this section, we prove
the following result.

Theorem 1.2.9. — Allostery is invariant under commensurability.

We prove Theorem 1.2.9 in two steps, by showing that allostery is inherited
by finite index overgroups in Proposition 1.2.10 and by finite index subgroups
in Proposition 1.2.11. Let Γ be a countable group and Λ ≤ Γ a finite index
subgroup. Let α : Λ y (C, µ) be an action by homeomorphisms on a compact
Hausdorff space C with a Λ-invariant Borel probability measure µ on C. The
group Γ acts on X × Γ trivially on the first factor and by left multiplication on
the second factor. This action projects onto a Γ-action by homeomorphisms on
the quotient of X × Γ by the Λ-action λ · (x, γ) = (α(λ)x, γλ), and the product
of µ with the counting measure projects onto a Γ-invariant Borel probability
measure. This action is the Γ-action induced by α.

Proposition 1.2.10. — Let Γ be a countable group and Λ ≤ Γ a finite index subgroup.
Then the Γ-action induced by any allosteric Λ-action is allosteric.

Proof. Let α : Λ y (C, µ) be an allosteric action. It is an exercise to prove that the
Γ-action β induced by Λ is ergodic and minimal. Moreover, IRS(β) is non-trivial
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since the restriction of β to Λ is not essentially free. Finally, URS(α) is trivial,
thus there exists by Lemma 1.2.1 a point x ∈ C such that Stabα(x) = {1Λ}. Let
y be the projection of (x, 1) onto the quotient (C× Γ)/Λ, then Stabβ(y) = {1Γ}.
Since β is minimal, this implies by Lemma 1.2.1 that URS(β) is trivial. Thus β is
allosteric.

Proposition 1.2.11. — Any finite index subgroup of an allosteric group is allosteric.

Proof. Let Λ ≤ Γ be a finite index subgroup. We recall the following two facts.
If Γ y (X, µ) is an ergodic action, then any Λ-invariant measurable set A ⊂ X
of positive measure satisfies µ(A) ≥ 1/[Γ : Λ]. Moreover, for any Λ-invariant
measurable set B ⊂ X of positive measure, there exists a Λ-invariant measurable
set A ⊂ B of positive measure on which Λ acts ergodically.

Let Γ be an allosteric group, and let Λ ≤ Γ be a finite index subgroup. Let
N be the normal core of Λ (the intersection of the conjugates of Λ). It is a
finite index normal subgroup of Γ which is contained in Λ. We will prove that
N is allosteric. Proposition 1.2.10 will then imply that Λ is allosteric. We let
d = [Γ : N] and we fix γ1, . . . , γd ∈ Γ a coset representative system for N in
Γ. Let Γ yα (C, µ) be an allosteric action. For all x ∈ C, we define ON(x) =

{α(γ)x | γ ∈ N}. This is a closed, N-invariant subset of C. By minimality of α,
for all x ∈ C,

X =
d⋃

i=1

ON(α(γi)x).

Moreover, since N is normal in Γ, for all x ∈ C and γ ∈ Γ, we have ON(α(γ)x) =
α(γ)ON(x). This implies that µ(ON(α(γ)x)) = µ(ON(x)) and that µ(ON(x)) >
0. Let y be a point in some closed, N-invariant and N-minimal set. Then N y
ON(y) is minimal. Let A ⊂ ON(y) be a N-invariant measurable set of positive
measure on which N acts ergodically. Let µA be the Borel probability measure
on A induced by µ. Then N y (ON(y), µA) is an ergodic minimal action, which
is still topologically free. Let us prove that it is not essentially free. Since α is
allosteric, IRS(α) is atomless, see Proposition 1.2.3. Thus, for µ-a.e. x ∈ C,
Stabα(x) is infinite. Since N has finite index in Γ, this implies that for µ-a.e.
x ∈ C, Stabα(x) ∩ N is infinite. Thus N y (ON(y), µA) is not essentially free,
and thus is allosteric.

Remark 1.2.12. — It is proved in [BG04, Théorème 4.1] that if Γ is isomorphic to
a free product of two infinite residually finite groups, then Γ admits a continuum
of profinite allosteric actions. Let Γ′ be a non-amenable group which is isomor-
phic to a free product of two non-trivial residually finite groups. Then Kurosh’s
theorem [Ser77, Section 5.5] implies that Γ′ admits a finite index subgroup Γ
isomorphic to a free product of finitely many (and at least two) residually finite
infinite groups. Proposition 1.2.10 then implies that Γ′ is allosteric.
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1.3 Finite index subgroups of surface groups

1.3.1 Residual properties of surface groups

A surface group is the fundamental group of a closed connected surface. If the
surface is orientable, then its fundamental group is called an orientable surface
group, and a presentation is given by

〈x1, y1, . . . , xg, yg | [x1, y1] . . . [xg, yg] = 1〉,

for some g ≥ 1 called the genus of the surface (if g = 0, then the surface is a
sphere, and its fundamental group is trivial). If the surface is non-orientable, we
call its fundamental group a non-orientable surface group. It has a presentation
given by

〈x1, . . . , xg | x2
1 . . . x2

g = 1〉,

for some g ≥ 1 called the genus of the surface. A surface group is non-amenable
if and only if it is the fundamental group of a surface other that the sphere, the
torus (orientable surfaces of genus 0 and 1), the projective plane or the Klein
bottle (non-orientable surfaces of genus 1 and 2).

Definition 1.3.1. — Let p be a prime number. A group Γ is a residually finite
p-group if for every non-trivial element γ ∈ Γ, there exists a normal subgroup
N E Γ such that Γ/N is a finite p-group and γ /∈ N. Equivalently, Γ is a
residually finite p-group if and only if there exists a chain (Γn)n≥0 in Γ consisting
of normal subgroups such that for every n ≥ 0, the quotient Γ/Γn is a finite p-
group, and ⋂

n≥0
Γn = {1Γ}.

Baumslag proved in [Bau62] that orientable surface groups are residually
free, i.e., for every non-trivial element γ, there exists a normal subgroup N E Γ
such that Γ/N is a free group and γ /∈ N. Moreover, free groups are residually
finite p-groups for every prime p, a result independently proved by Takahasi
[Tak51] and by Gruenberg in [Gru57] (using a result of Magnus [Mag35]). This
implies the following well-known result.

Theorem 1.3.2. — Orientable surface groups are residually finite p-groups for every
prime p.

Remark 1.3.3. — By a result of Baumslag [Bau67], non-amenable non-orientable
surface groups are also residually p-finite groups for every prime p. However,
we leave as an exercise to the interested reader the fact that the fundamental
group of a Klein bottle is not residually p for some prime p. We will not require
these results.
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1.3.2 Special kind of finite index subgroups in surface groups

Let A, B be two non-empty totally ordered finite sets. In what follows, when
writing ∏i∈A or ∏j∈B we mean that the product is computed with respect to the
increasing order of A or B respectively. We let ΓA,B be the group defined by the
generators (ai, αi)i∈A and (bj, β j)j∈B, and the relation

∏
i∈A

[ai, αi] = ∏
j∈B

[bj, β j].

Then ΓA,B is isomorphic to a non-amenable orientable surface group, and every
non-amenable orientable surface group is isomorphism to ΓA,B for some non-
empty totally ordered finite sets A and B. The group ΓA,B naturally splits as an
amalgamated product

ΓA,B = ΓA ∗Z ΓB

where ΓA and ΓB are the free groups of rank 2|A| and 2|B| respectively, freely
generated by (ai, αi)i∈A and (bj, β j)j∈B respectively. If A′ ⊂ A and B′ ⊂ B, there
is a natural onto group homomorphism ΓA,B � ΓA′,B′ defined on the generators
by

ai 7→ a′i for every i ∈ A′, bj 7→ b′j for every j ∈ B′,
αi 7→ α′i for every i ∈ A′, β j 7→ β′j for every j ∈ B′,
ai, αi 7→ 1 for every i ∈ A \ A′, bj, β j 7→ 1 for every j ∈ B \ B′.

We say that this morphism erases the generators ai, αi, bj, β j for i ∈ A \ A′ and
j ∈ B \ B′, see Figure 1.1. Algebraically, ΓA′,B′ is isomorphic to the quotient of
ΓA,B by the normal closure of the set {(αi, βi) | i ∈ A \ A′} ∪ {(bj, β j) | j ∈ B \ B′}
in ΓA,B, and the homomorphism ΓA,B � ΓA′,B′ corresponds to the quotient group
homomorphism.

Figure 1.1. — An illustration of the morphism that erases generators.

Here is the main theorem of this section. In what follows, Z[1/p] denotes
the set of rational numbers of the form k/pn for k, n ∈ Z.

Theorem 1.3.4. — Let Γ be a non-amenable orientable surface group, and fix a de-
composition Γ = ΓA ∗Z ΓB as above. Let p be a prime number, and r ∈]0, 1[∩Z[1/p].
Let 〈〈Z〉〉ΓB be the normal closure of the amalgamated subgroup Z in ΓB. For every
non-trivial γ ∈ Γ and for every element δ ∈ ΓB \ 〈〈Z〉〉ΓB , there exists a finite index
subgroup Λ ≤ Γ such that
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(i) γ /∈ Λ.

(ii) The index [Γ : Λ] is a power of p.

(iii) The number of left cosets x ∈ Γ/Λ that are fixed by every element in ΓA is equal
to r[Γ : Λ].

(iv) None of the left coset x ∈ Γ/Λ is fixed by δ.

Proof. Fix A, B two non-empty totally ordered finite sets, such that Γ is isomor-
phic to ΓA,B. Let S be the set of generators (ai, αi)i∈A and (bj, β j)j∈B. Let j0 be the
smallest element in B. Let γ ∈ Γ \ {1Γ} and δ ∈ ΓB \ 〈〈Z〉〉ΓB . Let p be a prime
number, and r ∈]0, 1[∩Z[1/p].

Step 1: Cyclic covering. Let ϕ : ΓA,B � Z be the onto homomorphism defined
on the generators of ΓA,B by

ϕ(bj0) = 1, ϕ(β j0) = 0,
ϕ(ai) = ϕ(αi) = ϕ(bj) = ϕ(β j) = 0 for every i ∈ A, j ∈ B \ {j0}.

For every d ≥ 1, we let Λd be the kernel of the homomorphism Γ → Z/dZ

obtained by composing ϕ with the homomorphism of reduction modulo d. Then
Λd is a surface group. Let us describe a generating set for Λd. For every 0 ≤ k ≤
d− 1 and i ∈ A, let ai,k and αi,k be the conjugates of ai and αi respectively, by bk

j0
.

Similarly, let bj,k, and β j,k be the conjugate of bj and β j respectively, by bk
j0

. Then
Λd is generated by the set

d−1⋃
k=0

{ai,k, αi,k | i ∈ A} ∪
d−1⋃
k=0

{bj,k, β j,k | j ∈ B \ {j0}} ∪ {bd
j0 , β j0}.

So far, every left coset x ∈ Γ/Λd is fixed by every element of ΓA, and either every
or none of the left coset x ∈ Γ/Λd is fixed by δ, depending on whether δ ∈ Λd
or not.

Step 2: Erasing the right amount of generators. Let n be the length of γ ∈
Γ \ {1Γ} in the generating set S. In the sequel we let d be a (large enough)
power of the prime p such that rd is an integer, and rd + n ≤ d. Let E ⊂
{n + 1, . . . , d− 1− n} be a subset of cardinality rd, so that γ doesn’t belong to
the normal closure N of the set ∪k∈Ebk

j0
ΓAb−k

j0
in Λd. Let us prove that none of

the conjugate of δ by a power of bj0 belongs to N. Assume this is not the case,
then this would imply that δ belongs to the normal closure of ∪d−1

k=0bk
j0

ΓAb−k
j0

in
Λd, which is easily seen to be equal to the normal closure 〈〈ΓA〉〉Γ of ΓA in Γ.
But the group Γ/〈〈ΓA〉〉Γ is naturally isomorphic to ΓB/〈〈Z〉〉ΓB , in such a way
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that the following diagram commutes

ΓB

�� ((
Γ/〈〈ΓA〉〉Γ // ΓB/〈〈Z〉〉ΓB ,

which implies that ΓB ∩ 〈〈ΓA〉〉Γ is equal to 〈〈Z〉〉ΓB . This would thus imply that
δ ∈ 〈〈Z〉〉ΓB , a contradiction.

Step 3: The group Λd/N is a residually finite p-group. We let π : Λd � Λd/N
be the quotient group homomorphism. Since Λd/N is an orientable surface
group, it is a residually finite p-group by Theorem 1.3.2. Thus, there exists
a normal subgroup N′ E Λd/N whose index is a power of p, such that for
every k ∈ {0, . . . , d − 1} \ E, for every i ∈ A, π(ai,k) /∈ N′ and π(αi,k) /∈ N′.
If γ ∈ Λd, we also assume that π(γ) /∈ N, and if δ ∈ Λd, we also assume
that for all k ∈ {0, . . . , d− 1}, π(bk

j0
δb−k

j0
) /∈ N′. Let us prove that the subgroup

Λ := π−1(N′) of Γ satisfies the four conclusions of the theorem.

Proof of (i). Either γ /∈ Λd and thus γ /∈ Λ, or γ ∈ Λd and π(γ) /∈ N.

Proof of (ii). Since the index of N′ in Λd/N is a power of p, [Λd : Λ] is also a
power of p. Thus [Γ : Λ] = [Γ : Λd][Λd : Λ] is a power of p.

Proof of (iii). By construction, x ∈ Γ/Λ is fixed by every element in ΓA if and
only its image under the canonical [Λd : Λ]-to-one map Γ/Λ 7→ Γ/Λd is equal
to bk

j0
Λd for some k ∈ E. Since |E| = rd, there are exactly rd[Λd : Λ] = r[Γ : Λ]

such x ∈ Γ/Λ.

Proof of (iv). If δ /∈ Λd, then none of the coset x ∈ Γ/Λ is fixed by δ. If δ ∈ Λd,
then for all k ∈ {0, . . . , d− 1}, we have π(bk

j0
δb−k

j0
) /∈ N′, and thus δb−k

j0
Λ 6= b−k

j0
Λ.

By normality of Λ in Λd, we deduce that none of the coset x ∈ Γ/Λ is fixed by
δ.

1.4 Proof of the main theorem

In this section, we give the proof of Theorem 1.1.2. More precisely, we prove the
following results.

Theorem 1.4.1 (Orientable case). — Let Γ be a non-amenable orientable surface
group, and fix a decomposition Γ = ΓA ∗Z ΓB as above. Let 〈〈Z〉〉ΓB be the normal
closure of the amalgamated subgroup Z in ΓB. Then there exists a continuum (αt)0<t<1

of ergodic profinite allosteric actions of Γ such that for all 0 < t < 1,

1. The set of points whose stabilizer for αt contains ΓA has measure t.
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Figure 1.2. — Illustrations of the proof of Theorem 1.3.4. The above line illus-
trates the coverings corresponding to the inclusions Λ ≤ Λd ≤ Γ. The bottom
line illustrates the covering corresponding to the inclusion N′ ≤ Λd/N.

2. Each element of ΓB \ 〈〈Z〉〉ΓB acts essentially freely for αt.

In particular, for all 0 < s < t < 1, the actions αs and αt are neither topologically nor
measurably isomorphic, and the probability measures IRS(αs) and IRS(αt) are distinct.

Theorem 1.4.2 (Non-orientable case). — Let Γ′ be a non-amenable non-orientable
surface group. Then there exists an index two subgroup Γ ≤ Γ′ which is isomorphic to
an orientable surface group, and which decomposes as Γ = ΓA ∗Z ΓB, and a continuum
(βt)0<t<1 of ergodic profinite allosteric actions of Γ′ such that for all 0 < t < 1, the
set of points whose stabilizer for βt contains ΓA has measure t/2. In particular, for
all 0 < s < t < 1, the actions βs and βt are neither topologically nor measurably
isomorphic, and the probability measures IRS(βs) and IRS(βt) are distinct.

During the proof of these theorems, we will need the following lemma.

Lemma 1.4.3. — Let Γ be a group, and Λ1, . . . , Λn be finite index subgroups of Γ. If the
indices [Γ : Λi], i ∈ {1, . . . , n}, are pairwise coprime integers, then the left coset action
Γ y Γ/(Λ1 ∩ · · · ∩Λn) is isomorphic to the diagonal action Γ y Γ/Λ1× · · · × Γ/Λn

of the left coset actions Γ y Γ/Λi.

Proof. The kernel of the group homomorphism Γ→ Γ/Λ1× · · · × Γ/Λn defined
by γ 7→ (γΛ1, . . . , γΛn) is equal to Λ1 ∩ · · · ∩ Λn. Thus Γ/(Λ1 ∩ · · · ∩ Λn) is
isomorphic to a subgroup of Γ/Λ1× · · · × Γ/Λn. Moreover, for every 1 ≤ i ≤ n,

[Γ : Λ1 ∩ · · · ∩Λn] = [Γ : Λi][Λi : Λ1 ∩ · · · ∩Λn],

and since the indices [Γ : Λi] are pairwise coprime, this implies that [Γ : Λ1 ∩
· · · ∩ Λn] is divisible by [Γ : Λ1] . . . [Γ : Λn]. Thus, the group homomorphism
Γ/Λ1∩ · · · ∩Λn → Γ/Λ1×· · ·× Γ/Λn is an isomorphism, and it is Γ-equivariant.
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We are now ready to prove Theorem 1.4.1 and Theorem 1.4.2.

Proof of Theorem 1.4.1. Let Γ be a non-amenable orientable surface group, and
we fix a decomposition Γ = ΓA ∗Z ΓB. Let 0 < t < 1 be a real number. Let
(pn)n≥1 be a sequence of pairwise distinct prime numbers. We fix a sequence
(rn)n≥1 such that each rn belongs to ]0, 1[∩Z[1/pn] and ∏n≥1 rn = t. Such a
sequence exists because each Z[1/pn] is dense in R. Finally, let (γn)n≥0 be an
enumeration of the elements in Γ with γ0 = 1, and (δn)n≥1 be an enumeration
of the elements in ΓB \ 〈〈Z〉〉ΓB . For every n ≥ 1, there exists by Theorem 1.3.4 a
finite index subgroup Λt

n ≤ Γ which doesn’t contain γn, whose index [Γ : Λt
n] is

a power of pn, such that the number of left cosets x ∈ Γ/Λt
n that are fixed by any

element of ΓA is equal to rn[Γ : Λt
n], and such that none of the left coset x ∈ Γ/Λt

n
is fixed by δn. For every n ≥ 1, let Γt

n := Λt
1 ∩ · · · ∩ Λt

n. The sequence (Γt
n)n≥1

forms a chain in Γ and we denote by αt the corresponding ergodic profinite
action, and by µt the profinite Γ-invariant probability measure on lim←− Γ/Γt

n. This
is a p.m.p. ergodic minimal action and we will prove that it is allosteric. By
construction of Λt

n, we have that ⋂
n≥1

Γt
n = {1Γ}.

This implies by Lemma 1.2.7 that URS(αt) is trivial. Let us prove that each
element of ΓB \ 〈〈Z〉〉ΓB acts essentially freely for αt. Let δ ∈ ΓB \ 〈〈Z〉〉ΓB . By
Lemma 1.4.3, the number of x ∈ Γ/Γt

n such that δx = x is equal to the number of
(x1, . . . , xn) ∈ Γ/Λt

1 × · · · × Γ/Λt
n such that (δx1, . . . , δxn) = (x1, . . . , xn). If n is

large enough, then this last number is zero by construction of Λt
n. Thus, Lemma

1.2.6 implies that Fixαt(δ) is µt-negligible.
Finally, let us prove that the actions αt are not essentially free. By construc-

tion, the indices [Γ : Λt
i ] are pairwise coprime. Thus, Lemma 1.4.3 implies that

the number of x ∈ Γ/Γt
n that are fixed by every element in ΓA is equal to the

number of (y1, . . . , yn) ∈ Γ/Λt
1 × · · · × Γ/Λt

n that are fixed for the diagonal ac-
tion by every element in ΓA. By construction of Λt

i , this number is equal to
r1[Γ : Λt

1]× · · · × rn[Γ : Λt
n] which is equal to r1 . . . rn[Γ : Γt

n]. Thus, Lemma 1.2.6
implies that the µt-measure of the set of points whose stabilizer for αt contains
ΓA is t. In particular, this implies that IRS(αt) is non-trivial. Thus αt is allosteric.
Moreover, this also implies that for all 0 < s < t < 1, the actions αs and αt are
not measurably isomorphic, and thus not topologically isomorphic since every
αt is uniquely ergodic by Lemma 1.2.5, and this finally implies that the measures
IRS(αs) and IRS(αt) are distinct.

Proof of Theorem 1.4.2. Let Σ′ be a non-orientable surface of genus g ≥ 3. Con-
sider the usual embedding of an orientable surface Σ of genus g− 1 into R3 in
such a way that the reflexions in all 3 coordinate planes map the surface to itself,
and let ι to be the fixed-point free antipodal map x 7→ −x. Then Σ′ is homeo-
morphic to the quotient of Σ by ι, and the covering Σ 7→ Σ/ι ≈ Σ′ is called the
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orientation covering. We decompose Σ as the union of two surfaces ΣA and ΣB
with one boundary, of genus |A| and |B| respectively, with |A| ≤ |B|, so that
ι(ΣA) ⊂ ΣB. Fix a point p ∈ ΣA ∩ ΣB, then Van Kampen’s Theorem implies that
the fundamental group Γ of the surface Σ based at p is isomorphic to ΓA ∗Z ΓB
with ΓA = π1(ΣA, p), ΓB = π1(ΣB, p) and Z ≈ π1(ΓA ∩ ΓB, p). The fundamental
group Γ′ of Σ′ based at p′ = ι(p) naturally contains the subgroup Γ as an index-
two subgroup. Fix a curve contained in ΣB that joins p to ι(p). This produces an
element γ0 ∈ Γ′ \ Γ, that satisfies γ0ΓAγ−1

0 ≤ ΓB.
Let (αt)0<t<1 be a continuum of allosteric Γ-actions on (Xt, µt) given by Theo-

rem 1.4.1. The actions βt : Γ′ y (Yt, νt) induced by the Γ-actions αt are allosteric,
see Proposition 1.2.10. Let us prove that the set of points in Yt whose stabi-
lizer for βt contains ΓA has νt-measure t/2. Since βt is an induced action and
[Γ′ : Γ] = 2, the Γ′-action βt is measurably isomorphic to a p.m.p. Γ′-action
on (Xt × {0, 1}, µt × unif), still denoted by βt, that satisfies the following two
properties:

1. For every γ ∈ Γ′ \ Γ, the sets Xt × {0} and Xt × {1} are switched by βt(γ).

2. For every γ ∈ Γ, for every x ∈ Xt, βt(γ)(x, 0) = (αt(γ)x, 0) and βt(γ)(x, 1) =
(αt(γ0γγ−1

0 )x, 1).

This implies that for all (x, ε) ∈ Xt × {0, 1}, the subgroup ΓA is contained in
Stabβt(x, ε) if and only if either ε = 0 and ΓA is contained in Stabαt(x), or ε = 1
and γ0ΓAγ−1

0 is contained in Stabαt(x). Thus, the set of points whose stabilizer
for βt contains ΓA has νt-measure

t + µt({x ∈ Xt | γ0ΓAγ−1
0 ≤ Stabαt(x)})

2
.

In order to finish the proof, it is enough to prove that the intersection of γ0ΓAγ−1
0

and ΓB \ 〈〈Z〉〉ΓB is non-trivial, since any element in ΓB \ 〈〈Z〉〉ΓB acts essentially
freely for αt. The conjugation by γ0 induces a group automorphism ϕ : Γ 7→ Γ,
such that ϕ(ΓA) ≤ ΓB. Since ΓA is not contained in the derived subgroup D(Γ),
so is ϕ(ΓA). But the amalgamated subgroup Z is contained in D(Γ), thus so
is 〈〈Z〉〉ΓB . This implies that the intersection ϕ(ΓA) ∩ (ΓB \ 〈〈Z〉〉ΓB) is non-
empty. We deduce that the set of points whose stabilizer for βt contains ΓA
has νt-measure t/2. We conclude that the actions βt are neither measurably nor
topologically pairwise isomorphic and that their IRS are pairwise disjoint as in
Theorem 1.4.1.

Remark 1.4.4. — Let α : Γ y (C, µ) be an allosteric action. Then we have

supp(IRS(α)) ⊂ {Stabα(x) | x ∈ C}.

This implies that the support of IRS(α) doesn’t contain any non-trivial subgroup
with only finitely many conjugates, because otherwise the closure of the set
{Stabα(x) | x ∈ C} would contain a closed minimal Γ-invariant set 6= {{1Γ}}.
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Carderi, Gaboriau and Le Maître proved (personal communication) that the per-
fect kernel of a surface group coincides with the set of its infinite index sub-
groups. This implies that allosteric actions of surface groups are not totipotent
(a p.m.p. action is totipotent if the support of its IRS coincide with the perfect
kernel of the group, see [CGLM20]).

Remark 1.4.5. — A p.m.p. action Γ y (X, µ) is weakly mixing if for every ε > 0
and every finite collection Ω of measurable subsets of X, there exists a γ ∈ Γ
such that for every A, B ∈ Ω

|µ(γA ∩ B)− µ(A)µ(B)| < ε.

With this definition, it is easily seen that the restriction of a weakly mixing ac-
tion to a finite index subgroup remains weakly mixing. Thus Proposition 1.2.8
implies that the IRS’s of non-amenable surface groups we have constructed are
not weakly mixing.

Remark 1.4.6. — The proof of our main theorem applies mutatis mutandis
to branched orientable surface groups, that is fundamental groups of closed ori-
entable branched surfaces (see Figure 1.3). These groups can be written as amal-
gams. Fix an integer g ≥ 2 as well as 2g letters x1, y1, . . . , xg, yg. Fix a partition
of {1, . . . , g} into n nonempty intervals A1, . . . , An. Let Γk be the free group gen-
erated by xi and yi for every i ∈ Ak, and let Z → Γk be the injective homomor-
phism defined by sending the generator of Z to the product ∏i∈Ak

[xi, yi]. Then
the amalgam ∗ZΓi is a branched orientable surface group, and any branched
orientable surface group can be obtained this way. The fundamental group of a
closed orientable branched surface of genus ≥ 2 is a residually p-finite group for
every prime p, see [KM93, Theorem 4.2]. Thus our method of proof applies to
branched orientable surface groups, with any Γk in the role played by ΓA during
the proof of Theorem 1.4.1.

Figure 1.3. — A branched surface

Question 1.4.7. — Is the fundamental group of a compact hyperbolic 3-manifold
allosteric? More generally, is the fundamental group of a compact orientable as-
pherical 3-manifold allosteric?
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Chapter 2

Belinskaya’s theorem is optimal

The content of this chapter is the same as that of the article [CJLMT22], which is
a joint work with A. Carderi, F. Le Maître and R. Tessera.

Table of contents of Chapter 2
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
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2.1 Introduction

Given two ergodic measure-preserving (invertible) transformations T1, T2 of a
standard probability space (X, µ), the conjugacy problem asks whether there is
a third measure-preserving invertible transformation S such that ST1 = T2S.
Although the conjugacy problem is intractable in full generality, various invari-
ants have been devised over the years. Two of the most important ones are
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the spectrum and the dynamical entropy. The first completely classifies compact
transformations [HvN42], while the second completely classifies Bernoulli shifts
[Sin59, HvN42].

In this paper, we are interested in natural weakenings of the conjugacy prob-
lem obtained through the notion of orbit equivalence. Two measure-preserving
transformations T1, T2 are orbit equivalent if there is a measure-preserving
transformation S such that ST1S−1 and T2 have the same orbits (such an S is
called an orbit equivalence between T1 and T2). A stunning theorem of Dye states
that all ergodic measure-preserving transformations of a standard probability
space are orbit equivalent [Dye59], so orbit equivalence for measure-preserving
ergodic transformations is a trivial weakening of conjugacy.

In order to circumvent this indistinguishability, we will compare orbit equiv-
alences between measure-preserving transformations in a quantitative way. This
fits into the emerging field of quantitative orbit equivalence for group actions. One
of its tacit aims is to capture meaningful geometric invariants, such as Følner
functions [DKLMT20], growth rates [Aus16b], etc., or ergodic theoretic invari-
ants, such as dynamical entropy [Aus16].

In our setup of measure-preserving transformations, quantifications will be
imposed on orbit equivalence cocycles. Given an orbit equivalence S between two
ergodic measure-preserving transformations T1 and T2, the orbit equivalence
cocycles c1, c2 : X → Z are the maps uniquely defined by the following equation:
for all x ∈ X

ST1(x) = Tc2(x)
2 S(x) and T2S(x) = STc1(x)

1 (x). (2.1)

Belinskaya’s theorem is probably the first result on quantitative orbit equiv-
alence. In the literature, it is often stated as a symmetric result on integrable
orbit equivalence of ergodic measure-preserving transformations. However, her
result is asymmetric and can be stated as follows.

Theorem 2.1.1 (Belinskaya [Bel68]). — Let T1 and T2 be two ergodic measure-
preserving transformations, let S be an orbit equivalence between them and suppose
that the previously defined cocycle c1 is integrable, i.e.∫

X
|c1(x)| dµ < +∞.

Then T1 and T2 are flip-conjugate: either T1 is conjugate to T2 or T−1
1 is conjugate to

T2.

It is natural to wonder whether Belinskaya’s theorem remains valid if one
weakens the integrability assumptions. For example, one could ask that one of
the orbit equivalence cocycle belongs to Lp(X, µ) for some p ∈ (0, 1).

We will consider more general integrability assumptions. Given a function
ϕ : R+ → R+, we say that a measurable integer-valued function f is ϕ-integrable
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if ∫
X

ϕ(| f (x)|)dµ < +∞.

Our first main result concerns orbit equivalence of measure-preserving trans-
formations for which one of the orbit equivalence cocycles is ϕ-integrable, for
some sublinear function ϕ, that is satisfying limt→+∞ ϕ(t)/t = 0. This is for
example the case for ϕ(t) = tp. With this integrability condition, the conclusion
of Belinskaya’s theorem does not hold.

Theorem 2.1.2 (see Theorem 2.4.14). — Let ϕ : R+ → R+ be a sublinear func-
tion and T1 be an ergodic measure-preserving transformation. Then there is an ergodic
measure-preserving transformation T2 and an orbit equivalence S between T1 and T2

such that the associated cocycle c1 is ϕ-integrable but the transformations T1 and T2 are
not flip-conjugate.

The fact that the hypotheses on ϕ are fairly weak gives us much freedom.
For example, the above theorem even implies that Belinskaya’s theorem does
not hold if we assume that one of the two orbit equivalence cocycles belongs
to Lp(X, µ) for all p ∈ (0, 1). Indeed if we consider for instance the sublinear
function ϕ(t) = t/ ln(t + 1), then ϕ-integrability implies being in Lp(X, µ) for
all p < 1.

A symmetric way to strengthen Theorem 2.1.2 involves the concept of ϕ-
integrable orbit equivalence. We say that two measure-preserving transforma-
tions are ϕ-integrable orbit equivalent if there is an orbit equivalence S such that
both orbit equivalence cocycles c1 and c2 are ϕ-integrable. In this context, we ob-
tain a similar conclusion to Theorem 2.1.2, but we have to make one additional
assumption on T1.

Theorem 2.1.3 (see Corollary 2.3.11). — Let ϕ : R+ → R+ be a sublinear func-
tion. Let T1 be an ergodic measure-preserving transformation and assume that (T1)

n is
ergodic for some n ≥ 2. Then there is another ergodic measure-preserving transforma-
tion T2 such that T1 and T2 are ϕ-integrable orbit equivalent but not flip-conjugate.

Concrete examples of transformations to which this theorem applies are
Bernoulli shifts, irrationnal rotations on the circle and the m-odometer for any
integer m. One can show that the only ergodic measure-preserving transfor-
mations that are not covered by this theorem are the ones that factor onto the
universal odometer, that is, the transformation t 7→ t + 1 on the profinite com-
pletion Ẑ.

Let us point out that the proof of Theorem 2.1.2 uses Theorem 2.1.3, so the
two results are not independent. As we will explain later, Theorem 2.1.2 also
depends on the Baire category theorem.

However, Theorem 2.1.3 is somewhat more explicit. It relies on the following
simple construction, which was already used in [LM18, Thm. 4.8]. We begin with
an ergodic transformation T1 with (T1)

n ergodic. We also need a periodic trans-
formation P all of whose orbits have cardinality n and are contained in those of
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T1. The transformation T2 is constructed by composing P and the transformation
induced by T1 on a fundamental domain of P. Then T1 and T2 have the same
orbits. However, (T2)

n is not ergodic and thus T1 and T2 are not flip-conjugate.
As a byproduct, the transformations T1 and T2 do not have the same spectrum,
as the spectrum of T2 contains exp(2iπ/n) whereas the spectrum of T1 doesn’t.
The main task then becomes to construct P so that the orbit equivalence cocycles
between T1 and T2 satisfy the required integrability conditions.

For many concrete measure-preserving transformations, explicit examples
of such periodic transformations P with specific integrability conditions can be
obtained. We will give details in the case of the Bernoulli shift, see Example

2.3.3.

Shannon orbit equivalence and dynamical entropy A remarkable consequence
of Theorem 2.1.3 can be stated in the context of Shannon orbit equivalence, as de-
fined by Kerr and Li [KL19]. Two measure-preserving transformations are Shan-
non orbit equivalent if there exists an orbit equivalence between them whose
orbit equivalence cocycles c1 and c2 have both finite Shannon entropy. After
showing that dynamical entropy is an invariant of Shannon orbit equivalence
for measure-preserving actions of many groups, such as Zn for every n ≥ 2,
they implicitly asked whether dynamical entropy is an invariant of Shannon or-
bit equivalence for measure-preserving transformations and wondered whether
Shannon orbit equivalence could actually directly imply flip-conjugacy. We show
that it is not the case.

Theorem 2.1.4 (see Theorem 2.3.17). — Let T1 ∈ Aut(X, µ) be an ergodic trans-
formation and assume that (T1)

n is ergodic for some n ≥ 2. Then there exists T2 ∈
Aut(X, µ) such that T1 and T2 are Shannon orbit equivalent but not flip-conjugate.

The above theorem is obtained by applying Theorem 2.1.3 with any sublinear
function ϕ such that ln(1 + t) = O(ϕ(t)). Indeed, for any such function, ϕ-
integrable orbit equivalence implies Shannon orbit equivalence, see Theorem

2.3.15.
We also observe that Shannon orbit equivalence preserves finiteness of dy-

namical entropy, see Proposition 2.3.20. This is now subsumed by a recent
preprint of Kerr and Li who proved that the dynamical entropy is preserved
under Shannon orbit equivalence [KL22].

Question 2.1.5. — For which unbounded sublinear metric-compatible func-
tions ϕ is it true that dynamical entropy is an invariant of ϕ-integrable orbit
equivalence?

By the above discussion, we already know that this holds for all ϕ such
that ln(1 + t) = O(ϕ(t)). On the other hand, using Dye’s theorem, it is not
hard to see that any two ergodic measure-preserving transformations are ϕ-
integrable orbit equivalent for some sublinear unbounded function ϕ (cf. the
proof of [DKLMT20, Prop. 4.24]). So not every sublinear unbounded function
satisfies the condition of the question.
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ϕ-integrable full groups The proof of both our main results will make crucial
use of the notion of ϕ-integrable full group. Whenever T is an ergodic measure
preserving transformation of the probability space (X, µ), Dye defined a Polish
group [T], called the full group of T. This group is by definition the set of all
measure-preserving transformations U of (X, µ) whose orbits are contained in
T-orbits. More precisely, U ∈ [T] if there is a function cU, called the T-cocycle
of U, such that U(x) = TcU(x)(x) for all x ∈ X. The above stated theorem of
Dye, that all ergodic transformations are obit equivalent, was originally stated
in terms of full groups: whenever T1 and T2 are ergodic transformations, the full
groups [T1] and [T2] are conjugate.

In our context, once ϕ is fixed, the reasonable analogue of the full group
associated with this integrability condition, would be the set of transformations
U ∈ [T] such that the cocycle cU is ϕ-integrable. However, for this set to be a
subgroup of [T], we will have to impose a mild restriction on ϕ. We say that
ϕ : R+ → R+ is a metric-compatible function if

• (subadditivity) for all s, t ∈ R+, ϕ(s + t) ≤ ϕ(s) + ϕ(t).

• (separation) ϕ(0) = 0 and ϕ(t) > 0 for all t > 0.

• (monotonicity) ϕ is a non-decreasing function.

The name metric-compatible comes from the observation that whenever d is
a metric and ϕ a metric-compatible function, then ϕ ◦ d is also a metric. The
following theorem is a combination of Lemma 2.2.14 and Theorem 2.4.1.

Theorem 2.1.6. — Let ϕ be a metric-compatible function and let T be a measure
preserving transformation of the probability space (X, µ). Then the set

[T]ϕ :=
{

U ∈ [T] :
∫

X
ϕ(|cu(x)|)dµ < +∞

}
is a group. Moreover the function

dϕ,T(U, V) :=
∫

X
ϕ(|cU(x)− cV(x)|)dµ

is a complete, right-invariant and separable metric on [T]ϕ whose induced topology is a
group-topology. In particular ([T]ϕ, dϕ,T) is a Polish group.

It turns out that any sublinear function is dominated by a sublinear metric-
compatible function, see Lemma 2.2.12. This will allows us to reduce the proof
of Theorem 2.1.2 and Theorem 2.1.3 to the case where ϕ is metric-compatible
and thereby to exploit the group structure of [T]ϕ.

Genericity of weakly mixing Let us come back to Theorem 2.1.2. As the con-
clusions of Theorem 2.1.3 are stronger, we just need to show Theorem 2.1.2
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whenever (T1)
n is non-ergodic for all n ≥ 2. Observe that this condition is in-

compatible with the notion of weakly mixing, as all the powers of any weakly
mixing transformation are ergodic. Therefore our strategy is to provide for ev-
ery ergodic transformation T1 a weakly mixing transformation T2 which has the
same orbits as T1 and whose T1-cocycle is ϕ-integrable. We do not have any con-
structive argument for this and we proceed through the Baire category theorem.

Theorem 2.1.7 (see Theorem 2.4.15). — Let ϕ be a sublinear metric-compatible
function and let T ∈ Aut(X, µ) be an aperiodic element. Then the set of all measure-
preserving transformations in [T]ϕ which are weakly mixing and have the same orbits
as T is a dense Gδ set in the Polish space of aperiodic transformations of [T]ϕ.

Besides the Baire category theorem, there are two other main ingredients
in the proof of Theorem 2.1.7. One is a result of Conze [Con72] which claims
that starting from any ergodic mesure-preserving transformation, the first return
map to a generic measurable subset gives rise to a weakly mixing transformation.
The second is a sublinear ergodic theorem which may be of independent interest.

Theorem 2.1.8 (see Theorem 2.4.5). — Let ϕ : R+ → R+ be a sublinear non-
decreasing function. Let U ∈ Aut(X, µ) and f : X → C measurable such that ϕ(| f |) ∈
L1(X, µ). Then for almost every x ∈ X

lim
n

1
n

ϕ

(∣∣∣∣∣n−1

∑
k=0

f (Uk(x))

∣∣∣∣∣
)

= 0.

The convergence also holds in L1, that is

lim
n

∫
X

1
n

ϕ

(∣∣∣∣∣n−1

∑
k=0

f (Uk(x))

∣∣∣∣∣
)

dµ = 0.

Outline of the paper In Section 4.1, after a few preliminaries, we present the
framework and establish basic properties of ϕ-integrable full groups. In Section
2.3, we explain our construction of periodic transformations in ϕ-integrable full
groups and use it to prove Theorem 2.1.2. In Section 2.4, we first prove that
ϕ-integrable full groups are Polish groups. We then use the Baire category the-
orem and prove that weakly mixing elements are generic in the set of aperiodic
elements in [T]ϕ. Combining this with Theorem 2.1.2, we finally prove Theorem

2.1.3. In the appendix, we present a proof of Belinskaya’s theorem which is due
to Katznelson and is not publicly available to our knowledge.

2.2 Quantitative orbit equivalence and full groups

2.2.1 Preliminaries

Throughout the paper, (X, µ) will denote a standard probability space without
atoms. Recall that such spaces are measurably isomorphic to the interval [0, 1]
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equipped with the Lebesgue measure. A bimeasurable bijection T : X → X is a
measure-preserving transformation of (X, µ) if for all measurable sets A ⊆ X,
one has µ(T−1(A)) = µ(A). We denote by Aut(X, µ) the group of all measure-
preserving transformations of (X, µ), two such transformations being identified
if they coincide on a conull set. The group Aut(X, µ) will be equipped with the
uniform metric du defined by

du(T1, T2) := µ({x ∈ X : T1(x) 6= T2(x)}).

This metric is bi-invariant and complete [Hal17, p. 73].

Remark 2.2.1. — One can always modify measure-preserving transformations
on null-sets without changing its equivalence class in Aut(X, µ). Indeed the
saturation of any null set is still a null set. This will often be used implicitly in
the sequel.

The support of a measure-preserving transformation T ∈ Aut(X, µ) is the
measurable set supp(T) := {x ∈ X : T(x) 6= x}.

A measure-preserving transformation T ∈ Aut(X, µ) is periodic if the T-
orbit of almost every x ∈ X is finite. A fundamental domain of a periodic
transformation T ∈ Aut(X, µ) is a measurable subset A ⊆ X which intersects
almost every T-orbit at exactly one point. Every periodic transformation admits
such a fundamental domain, as can be seen by fixing a Borel linear order < on
X and taking for D the set of <-least points in each orbit of the transformation.
A measure-preserving transformation T ∈ Aut(X, µ) is aperiodic if the T-orbit
of almost every x ∈ X is infinite. It is ergodic if every T-invariant measurable set
is either null or conull.

The full group of a measure-preserving transformation T is the group

[T] := {U ∈ Aut(X, µ) : ∀x ∈ X, ∃n ∈ Z such that U(x) = Tn(x)} .

Remark 2.2.2. — Note that U ∈ [T] if and only if the U-orbit of every point
x ∈ X is contained in the T-orbit of x. By Remark 2.2.1, we actually have that
U ∈ [T] if and only if the U-orbit of almost every point x ∈ X is contained in the
T-orbit of x.

Two measure-preserving transformations T1, T2 ∈ Aut(X, µ) have the same
orbits if for almost every x ∈ X, the T1-orbit of x coincides with the T2-orbit
of x. By the above remark, this is equivalent to following condition: T1 ∈ [T2]

and T2 ∈ [T1]. We say that two measure-preserving transformations T1, T2 ∈
Aut(X, µ) are orbit equivalent if there exists S ∈ Aut(X, µ) such that ST1S−1

and T2 have the same orbits, that is ST1S−1 ∈ [T2] and T2 ∈ [ST1S−1].
Fix an aperiodic transformation T ∈ Aut(X, µ). Any U ∈ [T] is completely

determined by its T-cocycle, defined as the unique function cU : X → Z satis-
fying the equation U(x) = TcU(x)(x) for all x ∈ X. The T-cocycle satisfies the
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so-called cocycle identity: given U, V ∈ [T], we have

cUV(x) = cU(V(x)) + cV(x) for all x ∈ X. (2.2)

Let T ∈ Aut(X, µ) and A ⊆ X be a measurable subset. The first return time
of T to A is the map nT,A : A→ N∗ defined by

nT,A(x) := min{n ∈ N∗ : Tn(x) ∈ A}.

This function is well-defined up to measure zero by Poincaré’s recurrence theo-
rem. For convenience, we extend nT,A to all X, setting it to be 0 on X \ A. Kac’s
lemma [Kac47] yields the following inequality∫

X
nT,A(x)dµ ≤ 1. (2.3)

The first return map of T with respect to A is the transformation TA ∈ [T] ≤
Aut(X, µ) defined by

TA(x) := TnT,A(x)(x).

By definition, we have supp(TA) = A and x, y ∈ A are in the same T-orbit if and
only if they are in the same TA-orbit. Whenever T is aperiodic, the first return
time nT,A coincides with the T-cocycle cTA of TA.

Lemma 2.2.3. — Let T ∈ Aut(X, µ), let P ∈ Aut(X, µ) be a periodic transformation
and D a fundamental domain of P. Let U := TDP. Then the following are true.

(i) UD = TD.

(ii) If x ∈ D and n(x) is the cardinality of the P-orbit of x, then nU,D(x) = n(x).

(iii) If P ∈ [T], then T and U have the same orbits.

Proof. We first prove (i) and (ii). Clearly UD(x) = TD(x) = x for every x /∈ D.
Since D is a fundamental domain for P, for all x ∈ D and i ∈ {1, . . . , n(x)− 1},
we have Pi(x) /∈ D. Since TD(x) = x for all x /∈ D, we deduce by induction that

Ui(x) = Pi(x) /∈ D for all x ∈ D and i ∈ {1, . . . , n(x)− 1}.

So for all x ∈ D, one has Un(x)(x) = UUn(x)−1(x) = TDPn(x)(x) = TD(x). This
shows Item (i) and (ii).

We now prove Item (iii). Clearly, U ∈ [T]. We need to show that T ∈ [U].
Observe that for almost every x, the U-orbit of x meets D: indeed, if x ∈ Pi(D)

for i ∈ {1, . . . , n(x)− 1}, then U−i(x) = P−i(x) ∈ D. Since being in the same
orbit is an equivalence relation, it is enough to show that any two points in D,
which belong to the same T-orbit, are in the same U-orbit. This follows directly
from (i).

We will also need the following lemma which can be proven with the same
kind of arguments as above.
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Lemma 2.2.4. — Let U ∈ Aut(X, µ) and let A be a measurable subset of X which
intersects every U-orbit. Then (UA)

−1U is periodic and A is a fundamental domain for
it.

Proof. Since A intersects every U-orbit, for almost every x ∈ X \ A there ex-
ists a smallest n ≥ 1 such that U−n(x) ∈ A. Remark that ((UA)

−1U)−n(x) =

U−n(x) ∈ A and hence A intersects every (UA)
−1U-orbit. If x ∈ A, then for

every 0 ≤ n < nU,A(x) we have that

((UA)
−1U)n(x) = Un(x) /∈ A and ((UA)

−1U)nU,A(x)(x) = U−1
A UUnU,A(x)−1(x) = x.

Since A intersects every (UA)
−1U-orbit, we obtain both that every (UA)

−1U-
orbit is finite and that A is a fundamental domain for (UA)

−1U.

2.2.2 ϕ-integrable orbit equivalence and full groups

We first define the notion of ϕ-integrable orbit equivalence.

Definition 2.2.5. — Fix ϕ : R+ → R+. Two aperiodic transformations T1, T2 ∈
Aut(X, µ) are ϕ-integrable orbit equivalent if there exists S ∈ Aut(X, µ) such
that ST1S−1 and T2 have the same orbits and their respective cocycles are ϕ-
integrable. To be more precise, we ask that∫

X
ϕ(|cST1S−1(x)|)dµ < +∞ and

∫
X

ϕ(|cT2(x)|)dµ < +∞,

where cST1S−1 is the T2-cocycle of ST1S−1 and cT2 is the ST1S−1-cocycle of T2,
defined for all x ∈ X by the equations

ST1S−1(x) = T
cST1S−1 (x)

2 (x) and T2(x) = (ST1S−1)cT2 (x)(x).

When ϕ(t) = tp for some p ∈ (0,+∞), we recover the notion of Lp orbit
equivalence.

Remark 2.2.6. — We warn the reader that even though the term Lp orbit equiva-
lence is often used in the literature, this terminology may sound a bit deceptive.
Indeed, since the integrability condition has no reason to be preserved under
composition of orbit equivalences, we do not expect ϕ-integrable (even Lp) orbit
equivalence to be an equivalence relation for every concave function ϕ, although
we don’t have any counterexample. The fact that it is the case for p = 1 seems
to be a rather artificial consequence of Belinskaya’s theorem.

In our work, the function ϕ is at most linear and for our main theorems the
function is assumed to be sublinear, that is limt→+∞ ϕ(t)/t = 0. For example
we are interested in the case of Lp orbit equivalence for p ≤ 1, or in the case of
ϕ(t) = log(1 + t).
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In the context of ϕ-orbit equivalence, it is natural to consider the the set
of measure-preserving transformations U whose cocycle cU is ϕ-integrable. In
order for this set to be a group, the following conditions on ϕ are required.

Definition 2.2.7. — A function ϕ : R+ → R+ is metric-compatible if:

• (subadditivity) for all s, t ∈ R+, ϕ(s + t) ≤ ϕ(s) + ϕ(t).

• (separation) ϕ(0) = 0 and ϕ(t) > 0 for all t > 0.

• (monotonicity) ϕ is a non-decreasing function.

Example 2.2.8. — Any concave function ϕ : R+ → R+ that satisfies ϕ(0) = 0
and ϕ(t) > 0 for all t > 0 is metric-compatible. In particular for every p ≤ 1,
the function ϕ(t) = tp is metric-compatible. It is moreover sublinear whenever
p < 1. Other examples of sublinear metric-compatible functions are given by
ϕ(t) = log(1 + t) or ϕ(t) = t/ log(2 + t).

The term “metric-compatible” was coined because of the following property:
whenever d is a metric on a set X, then ϕ ◦ d is also a metric on X.

Convention. — For all t ∈ R, we use the notation

|t|ϕ := ϕ(|t|).

The map (s, t) 7→ |s− t|ϕ is a metric on R.

Definition 2.2.9. — Let ϕ : R+ → R+ be a metric-compatible function. The
ϕ-integrable full group of an aperiodic transformation T ∈ Aut(X, µ) is

[T]ϕ :=
{

U ∈ [T] :
∫

X
|cU(x)|ϕdµ < +∞

}
,

where cU : X → Z denotes the T-cocycle of U.

Given a metric-compatible function ϕ, the ϕ-integrable full group [T]ϕ is
indeed a group: given U, V ∈ [T]ϕ, the cocycle identity implies that

cUV−1(x) = cU(V−1(x)) + cV−1(x) = cU(V−1(x))− cV(V−1(x)).

We then get that∫
X
|cUV−1(x)|ϕdµ ≤

∫
X
|cU(V−1(x))|ϕdµ +

∫
X
|cV(V−1(x))|ϕdµ

=
∫

X
|cU(x)|ϕdµ +

∫
X
|cV(x)|ϕdµ < +∞. (2.4)

Example 2.2.10. — If ϕ is any metric-compatible function which is bounded,
then [T]ϕ = [T] and if ϕ is the identity map, then we recover the L1 full group
[T]1 defined by the third named author in [LM18]. Any other such ϕ gives rise
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to new1 examples of full groups, such as Lp full groups [T]p for 0 < p < 1
obtained with the function ϕ(t) = tp, or else [T]log obtained with the function
ϕ(t) = log(1 + t).

Remark 2.2.11. — Given a metric-compatible function ϕ, it is now straight-
forward to check that two aperiodic transformations T1, T2 ∈ Aut(X, µ) are
ϕ-integrable orbit equivalent if and only if there is S ∈ Aut(X, µ) such that
ST1S−1 ∈ [T2]ϕ and T2 ∈ [ST1S−1]ϕ. However, the notion of ϕ-orbit equivalence
is a priori weaker than conjugacy of ϕ-integrable full groups. Indeed conju-
gacy of ϕ-integrable full groups is an equivalence relation but ϕ-integrable orbit
equivalence may not be, see Remark 2.2.6. This is in contrast with the case of
classical orbit equivalence, see [Kec10, Thm. 4.1].

In our two main results, namely Theorem 2.1.2 and Theorem 2.1.3, the sub-
linear function ϕ is not assumed to be metric-compatible. The following lemma
will allow us to reduce to the case where ϕ is in addition metric-compatible.

Lemma 2.2.12. — Let ϕ : R+ → R+ be a sublinear function. Then there is a sublinear
metric-compatible function ψ : R+ → R+ such that ϕ(t) ≤ ψ(t) for all t large enough.

Proof. Set

θ : R∗+ → R+, θ(t) := min

(
1, sup

s≥t

ϕ(s) + 1
s

)
;

ψ : R+ → R+, ψ(t) :=
∫ t

0
θ(s)ds.

Noting that θ is positive-valued and non-increasing, it is straightforward to
check that ψ is non-decreasing, subadditive and that ψ(t) = 0 if and only if
t = 0. Moreover the fact that θ(t) tends to 0 as t approaches +∞ implies that ψ

is sublinear. Now remark that for every t ∈ R∗+

ψ(t) =
∫ t

0
θ(s)ds ≥

∫ t

0
θ(t)ds = tθ(t).

For t ∈ R∗+ large enough so that sup
s≥t

ϕ(s) + 1
s

≤ 1 we finally have

tθ(t) = t sup
s≥t

ϕ(s) + 1
s

= t sup
s≥t

ϕ(s) + 1
s

≥ t
ϕ(t) + 1

t
= ϕ(t) + 1 ≥ ϕ(t)

so we are done.

Remark 2.2.13. — Given a sublinear function ϕ, Lemma 2.2.12 grants us a sub-
linear metric-compatible function ψ such that ϕ(t) ≤ ψ(t) for all t large enough.

1We can actually characterize when [T]ϕ = [T]ψ and more generally when [T]ϕ ≤ [T]ψ, see
Proposition 2.4.2.
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Therefore, for any measurable function f : X → Z we have∫
X

ψ(| f (x)|)dµ < +∞ implies that
∫

X
φ(| f (x)|)dµ < +∞.

In particular, ψ-integrable orbit equivalence implies ϕ-orbit equivalence and
any element in a ψ-integrable full group will have ϕ-integrable cocycle.

We will state most of our results in the comfortable context of (sublinear)
metric-compatible functions. However, many of our statement could be easily
generalized to the general context of sublinear functions through Remark 2.2.13.
We will explicitly do so only in our main theorems, Theorem 2.1.2 and Theorem

2.1.3.

2.2.3 Metric properties of ϕ-integrable full groups

We now introduce and study a natural extended pseudo-metric on full groups
from which ϕ-integrable full groups naturally arise.

Lemma 2.2.14. — Let ϕ : R+ → R+ be a metric-compatible function and let T ∈
Aut(X, µ) be an aperiodic transformation. Let dϕ,T : [T]× [T] → R+ ∪ {+∞} be the
function defined by

dϕ,T(U, V) :=
∫

X
|cU(x)− cV(x)|ϕdµ.

Then the following are true.

(i) The group [T]ϕ is determined by dϕ,T:

[T]ϕ = {U ∈ [T] : dϕ,T(U, id) < +∞}.

(ii) The restriction of dϕ,T to [T]ϕ × [T]ϕ is a metric on [T]ϕ which is right-invariant,
that is, for all U, V, W ∈ [T]ϕ,

dϕ,T(UW, VW) = dϕ,T(U, V).

Proof. Item (i) is an immediate consequence of the definition of [T]ϕ.

Let us now prove Item (ii). The fact that dϕ,T is a metric is a straightfor-
ward consequence of the fact that (s, t) 7→ |s− t|ϕ is a metric on R. The right-
invariance follows from the cocycle identity (2.2) and the fact that the transfor-
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mation W is measure-preserving:

dϕ,T(UW, VW) =
∫

X
|cUW(x)− cVW(x)|ϕ dµ

=
∫

X
|cU(W(x))− cV(W(x))|ϕ dµ

=
∫

X
|cU(x)− cV(x)| dµ

= dϕ,T(U, V).

Example 2.2.15. — Consider the metric-compatible function ϕ := min(idR+ , 1).
Then it is straightforward to check that dϕ,T = du is the uniform metric on
[T] = [T]ϕ.

Another example is obtained by taking ϕ := idR+ ; we then recover the L1

metric on the L1 full group [T]1 = [T]ϕ.

In order to compare ϕ-integrable full groups, we are led to compare asymp-
totically metric-compatible functions. We will use the following standard nota-
tion: given two real-valued functions f and g, we write f (t) = O(g(t)) as t →
+∞ if there exist t0 > 0 and C > 0 such for all t > t0, we have | f (t)| ≤ C|g(t)|.
Since the functions we consider are subadditive, it is enough to compare them
on the integers.

Lemma 2.2.16. — Let ϕ, ψ be two metric compatible function. Then the following are
equivalent.

(i) ϕ(t) = O(ψ(t)) as t→ +∞.

(ii) There exists C > 0 such that ϕ(t) ≤ Cψ(t) for all t ≥ 1.

(iii) There exists C > 0 such that ϕ(k) ≤ Cψ(k) for all integer k ∈ N.

Proof. We first prove that (i) implies (ii). Let t0 ≥ 1 and D > 0 such that for all
t > t0, we have ϕ(t) ≤ Dψ(t). Set C := max(D, ϕ(t0)/ψ(1)) and observe that
since ϕ and ψ are non-decreasing, ϕ(t) ≤ Cψ(t) for all t ≥ 1.

The implication (ii) =⇒ (iii) is straightforward, so we are left with proving
(iii) =⇒ (i). Let C > 0 such that ϕ(k) ≤ Cψ(k) for all integer k ∈ N. Fix a real
number t ≥ 2 and let n ∈ N∗ such that n ≤ t < n + 1. Then we have

ϕ(t) ≤ ϕ(n + 1) ≤ Cψ(n + 1) ≤ C(ψ(t) + ψ(1)) ≤ C
(

1 +
ψ(1)
ψ(t)

)
ψ(t),

and since ψ(t) ≥ ψ(1) for every t ≥ 1, the proof is complete.

We now compare ϕ-integrable full groups for different metric-compatible
functions.

Lemma 2.2.17. — Let ϕ and ψ be two metric-compatible functions and fix an aperiodic
transformation T ∈ Aut(X, µ). If ϕ(t) = O(ψ(t)) as t → +∞, then [T]ψ ≤ [T]ϕ.
Moreover, the inclusion map is Lipschitz.
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Proof. By Lemma 2.2.16, there is C > 0 such that ϕ(k) ≤ Cψ(k) for all integer
k ∈ N. Let U, V ∈ [T]. Then for almost every x ∈ X,

|cU(x)− cV(x)|ϕ ≤ C|cU(x)− cV(x)|ψ.

Integrating over X, we get that dϕ,T(U, V) ≤ Cdψ,T(U, V). The lemma now
follows immediatly.

Corollary 2.2.18. — Whenever T is an aperiodic measure-preserving transformation,
we have

[T]1 ≤ [T]ϕ ≤ [T],

and the inclusion maps are Lipschitz,

Proof. Since ϕ is subadditive, we have ϕ(t) = O(t) as t → +∞. Moreover
min(1, t) = O(ϕ(t)) as t → +∞. The conclusion now follows from Lemma

2.2.17.

We will show in Proposition 2.4.2 that Lemma 2.2.17 is an equivalence. For
this, we will make a crucial use of the fact that the topologies induced by these
metrics are Polish group topologies, see Theorem 2.4.1.

Remark 2.2.19. — Let dT : X × X → R+ ∪ {+∞} be the extended metric on X
defined by

dT(x, y) := inf{n ∈ N : Tn(x) = y or Tn(y) = x}.

Then by definition of the T-cocycle of any U ∈ [T], we have that for all x ∈ X,
dT(U(x), x) = |cU(x)|. For all U, V ∈ [T]ϕ, the cocycle identity implies that
cUV−1(x) = cU(V−1(x))− cV(V−1(x)). Since V preserves the measure, we obtain

dϕ,T(U, V) =
∫

X
|cU(V−1(x))− cV(V−1(x))|ϕ

=
∫

X
|cUV−1(x)|ϕdµ

=
∫

X
ϕ(dT(UV−1(x), x))dµ

=
∫

X
ϕ(dT(U(x), V(x))dµ.

We won’t use this formula thereafter. However, this point of view allows one
to define ϕ-integrable full groups of non-necessarily free actions of finitely gen-
erated groups. Some of the arguments given in this paper work in this wider
context; this will be examined in an upcoming work.
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2.3 Flexibility of ϕ-integrable orbit equivalence

2.3.1 Construction of cycles in ϕ-integrable full groups

An n-cycle, n ≥ 2, is a periodic transformation P ∈ Aut(X, µ) whose orbits have
cardinality either 1 or n. The aim of this section is to prove the following result.

Theorem 2.3.1. — Let ϕ : R+ → R+ be a sublinear metric-compatible function. Let
T ∈ Aut(X, µ) be aperiodic. Then for all measurable A ⊆ X and all integer n ≥ 2,
there exists an n-cycle P ∈ [T]ϕ whose support is equal to A.

Remark 2.3.2. — The hypothesis that ϕ is sublinear is necessary, as the result
is false for L1 full groups of certain aperiodic transformations. Indeed if T ∈
Aut(X, µ) is ergodic, then there exists an n-cycle in [T]1 whose support is A ⊆ X
if and only if exp(2iπ/n) is in the spectrum of the restriction of TA to A [LM18,
Thm. 4.8]. In particular the L1 full group of the Bernoulli shift contains no n-
cycle with full support for any n ≥ 2. By contrast, Theorem 2.3.1 says that as
soon as p < 1, its Lp full group contains an n-cycle of full support for every
n ≥ 2.

Example 2.3.3. — In certain concrete situations, we can exhibit explicit invo-
lutions. Let T be the Bernoulli shift on ({0, 1}, κ)⊗Z, where κ is the uniform
measure on {0, 1}. Then for every 0 < p < 1/2, there exists an involution in [T]p
with full support and fundamental domain X0 := {(xn)n∈Z ∈ {0, 1}Z : x0 = 0}.

Indeed, for all x ∈ X0, let N(x) be the infimum of n ≥ 1 such that 1 appears
strictly more often than 0 in {x1, . . . , xn}. Then the map π : x ∈ X0 7→ TN(x)(x) ∈
{0, 1}Z \ X0 is almost everywhere well-defined and injective. Thus it can be
extended to an involution P ∈ [T] with full support and fundamental domain
X0. Standard estimates on the simple random walk on Z imply that P belongs
to [T]p for all 0 < p < 1/2.

Remark 2.3.4. — Theorem 2.3.1 tells us that any measurable subset A ⊆ X is
the support of an involution. The situation is less flexible regarding fundamen-
tal domains. For example, the subset X0 introduced in the previous example
cannot be the fundamental domain of any involution in the Lp full group of the
Bernoulli shift for 1/2 ≤ p ≤ 1, as a consequence of a result of Liggett [Lig02].
Note that his result is more general and stated in probabilistic terms; the con-
nection to our context and a purely ergodic-theoretic version of his proof will be
presented in the second named author’s PhD thesis.

A partial measure-preserving transformation of (X, µ) is a bimeasurable
measure-preserving bijection π between two measurable subsets dom(π) and
rng(π) of X, called respectively the domain and the range of π. The support of π

is the set

supp(π) := {x ∈ dom(π) : π(x) 6= x} ∪ {x ∈ rng(π) : π−1(x) 6= x}.
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A pre-cycle of length n ≥ 2 is a partial measure-preserving transformation
π : dom(π)→ rng(π) of (X, µ) such that if we set B := dom(π) \ rng(π), then

• {π0(B), . . . , πn−2(B)} is a partition of dom(π),

• {π1(B), . . . , πn−1(B)} is a partition of rng(π).

The set B = dom(π) \ rng(π) is called the basis of the pre-cycle π.
A pre-cycle π of length n can be extended to an n-cycle P and called the

closing cycle of π, as follows:

P(x) :=


π(x) if x ∈ dom(π),
π−(n−1)(x) if x ∈ rng(π) \ dom(π),
x else.

Observe that the support of P coincides with the support of the pre-cycle π and
that the basis B is a fundamental domain for the restriction of P to its support.
A pre-cycle π is induced by T ∈ Aut(X, µ) if for all x ∈ dom(π), we have
π(x) = Tsupp(π)(x).

Lemma 2.3.5. — Let ϕ : R+ → R+ be a metric-compatible function. Let T ∈
Aut(X, µ) be an aperiodic transformation, let π be a pre-cycle induced by T and let
P be its closing cycle. Then

dϕ,T(P, id) ≤ 2dϕ,T(Tsupp(π), id).

In particular P belongs to [T]ϕ.

Proof. Let n be the length of the pre-cycle π, let A := supp(π) and let B :=
dom(π) \ rng(π) the basis of π. Since π is induced by T, for all x ∈ dom(π), one
has π(x) = P(x) = TA(x). This implies that cP(x) = cTA(x) for all x ∈ dom(π).
Thus,

dϕ,T(P, id) =
∫

dom(π)
|cTA(x)|ϕdµ +

∫
Pn−1(B)

|cP−(n−1)(x)|ϕdµ

≤ dϕ,T(TA, id) +
∫

B
|cPn−1(x)|ϕdµ.

Moreover, for all x ∈ B, the cocycle identity yields

|cPn−1(x)|ϕ ≤ |cP(x)|ϕ + |cP(P(x))|ϕ + . . . |cP(Pn−2(x))|ϕ.

We now use the fact that P preserves the measure and that dom(π) = Bt P(B)t
· · · t Pn−2(B) to get∫

B
|cPn−1(x)|ϕdµ ≤

∫
dom(π)

|cP(x)|ϕdµ ≤
∫

X
|cTA(x)|ϕdµ,

which concludes the proof.

92



Belinskaya’s theorem is optimal

Kac’s lemma, that is Equation (2.3), implies that for every measurable A ⊆ X,
the first return map TA belongs to [T]1, which is contained in [T]ϕ for every
metric-compatible function ϕ by Corollary 2.2.18. We will need a more quan-
titative version of this fact.

Lemma 2.3.6. — Let ϕ : R+ → R+ be a metric-compatible function. Let T ∈
Aut(X, µ) be an aperiodic transformation, let A ⊆ X be a measurable subset and let
C > 0. Then

dϕ,T(TA, id) ≤ Cϕ(1)µ(A) + sup
t>C

ϕ(t)
t

.

Proof. Recall that the T-cocycle of TA is the return time nT,A, which is non-
negative. Set B := {x ∈ A : nT,A(x) ≤ C}. We have

dϕ,T(TA, id) =
∫

B
ϕ(nT,A(x))dµ +

∫
A\B

ϕ(nT,A(x))dµ

≤ Cϕ(1)µ(B) +
∫

A\B

ϕ(nT,A(x))
nT,A

nT,A(x)dµ

≤ Cϕ(1)µ(A) +

(
sup
t>C

ϕ(t)
t

) ∫
A\B

nT,A(x)dµ

and the last integral is at most 1 by Kac’s lemma, see Equation (2.3).

Corollary 2.3.7. — Let ϕ : R+ → R+ be a sublinear metric-compatible function
and let T ∈ Aut(X, µ) be an aperiodic transformation. Then dϕ,T(TA, id) tends to 0 as
µ(A) approaches 0.

Proof. Fix ε > 0. By sublinearity, let C > 0 such that for all t > C, we have
ϕ(t)/t < ε. For all measurable A ⊆ X, if µ(A) < ε/Cϕ(1), then dϕ,T(TA, id) <
2ε, which concludes the proof.

Remark 2.3.8. — In particular, by taking ϕ bounded, we recover the well-known
fact that du(TA, id) tends to 0 as µ(A) approaches 0 (see Lemma 2.4.9).

The following lemma is a direct consequence of Rokhlin’s lemma.

Lemma 2.3.9. — Let T ∈ Aut(X, µ) be aperiodic and A ⊆ X be measurable. For all
ε > 0 and all integer n ≥ 2, there exists a pre-cycle π of length n, induced by T, such
that supp(π) ⊆ A and µ(A \ supp(π)) ≤ ε.

Proof. Since T is aperiodic, TA is aperiodic on its support. We apply Rokhlin’s
lemma to TA to find a measurable subset B ⊆ A such that B, TA(B), . . . , (TA)

n−1(B)
are pairwise disjoint and

µ
(

A \
(

B t · · · t (TA)
n−1(B)

))
≤ ε.

Then the restriction of TA to B t · · · t (TA)
n−2(B) is a pre-cycle of length n,

which is induced by TA and thus by T. Finally, its support satisfies the desired
assumptions.
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We are now ready to prove the existence of n-cycles with prescribed support
in ϕ-integrable full groups.

Proof of Theorem 2.3.1. Let T ∈ Aut(X, µ) be an aperiodic element, let A ⊆ X
be a measurable subset and let n ≥ 2. Since ϕ is sublinear, we can and do fix a
sequence (Ck)k≥1 of strictly positive numbers such that

sup
t>Ck

ϕ(t)
t
≤ 2−k for all k ≥ 1.

Then, we use Lemma 2.3.9 to construct inductively a sequence (πk)k≥0 of pre-
cycles of length n induced by T, whose supports are pairwise disjoint subsets of
A and such that for all k ≥ 1,

µ
(

A \
(
supp(π0) t · · · t supp(πk−1)

))
≤ 1

2kCk
.

This inequality implies in particular that for all k ≥ 1, we have µ(supp(πk)) ≤
1/(2kCk). Let Pk be the closing cycle of πk and let P ∈ Aut(X, µ) be the n-cycle
defined by P(x) := Pk(x) for x ∈ supp(Pk) and P(x) := x for x /∈ A. The support
of P is equal to A and by Lemma 2.3.5 and Lemma 2.3.6, we have

dϕ,T(P, id) = ∑
k≥0

dϕ,T(Pk, id)

≤ 2 ∑
k≥0

dϕ,T(Tsupp(πk)
, id)

≤ 2dϕ,T(Tsupp(π0), id) + 2 ∑
k≥1

(
ϕ(1)Ckµ(supp(πk)) + sup

t>Ck

ϕ(t)
t

)
.

The second term is by construction a converging series, so we are done.

2.3.2 Construction of ϕ-integrable orbit equivalences

Let us now prove Theorem 2.1.3.

Theorem 2.3.10. — Let ϕ : R+ → R+ be a sublinear function. Let T ∈ Aut(X, µ) be
ergodic. For all n ≥ 2, there exists U ∈ Aut(X, µ) such that T and U are ϕ-integrable
orbit equivalent and Un is not ergodic.

Proof. By Lemma 2.2.12, there is a sublinear metric-compatible function ψ such
that ϕ(t) ≤ ψ(t) for all t large enough. In particular, ψ-integrable orbit equiv-
alence implies ϕ-orbit equivalence (cf. Remark 2.2.13). Hence if the theorem
holds for ψ then it holds for ϕ. Therefore, by replacing ϕ by ψ, we may and do
assume that ϕ is a metric-compatible function.

By Theorem 2.3.1, there exists an n-cycle P ∈ [T]ϕ whose support is X. We
fix a fundamental domain D for P and we let U := TDP. By Lemma 2.2.3 the
following hold:
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• the first return maps UD and TD coincide: UD = TD;

• for all x ∈ D, we have UD(x) = Un(x);

• T and U have same orbits.

By the second item, the set D is Un-invariant. So Un is not ergodic.
We will now prove that T and U are ϕ-integrable orbit equivalent. Since T

and U have same orbits, we are left to show that T ∈ [U]ϕ and U ∈ [T]ϕ. As a
direct consequence of Kac’s lemma, see Equation (2.3), we have that TD ∈ [T]1 ≤
[T]ϕ and therefore U = TDP ∈ [T]ϕ.

We now prove that T ∈ [U]ϕ. In the sequel, if a measure-preserving transfor-
mation V belongs to [T] = [U], we shall denote by cT

V the T-cocycle of V and by
cU

V the U-cocycle of V.

Claim. — Let V ∈ [T]. Then for all y ∈ D such that V(y) ∈ D,∣∣∣cU
V (y)

∣∣∣ ≤ n
∣∣∣cT

V(y)
∣∣∣ .

Proof of Claim. Note that since y and V(y) belong to D, any i ∈ Z such that
Ui(z) = V(z) must be a multiple of n. If we combine this with the fact that
UD(z) = Un(z) for all z ∈ D and that UD = TD, we obtain:∣∣∣cU

V (y)
∣∣∣ =min{|i| : Ui(y) = V(y)}

=n min{|i| : Ui
D(y) = V(y)}

=n min{|i| : Ti
D(y) = V(y)}

≤n min{|i| : Ti(y) = V(y)}

≤n
∣∣∣cT

V(y)
∣∣∣ .

Let x ∈ X. By definition of U, there are two integers 0 ≤ k, l ≤ n− 1 such
that Uk(x) ∈ D and Ul(T(x)) ∈ D. By the cocycle identity,

cU
Ul TU−k(Uk(x)) = cU

Ul(T(x)) + cU
T (x) + cU

U−k(Uk(x)) = l + cU
T (x)− k.

Hence ∣∣∣cU
T (x)

∣∣∣ ≤ ∣∣∣cU
Ul TU−k(Uk(x))

∣∣∣+ n.

Using the claim for V = UlTU−k and y = Uk(x), we obtain∣∣∣cU
T (x)

∣∣∣ ≤ n
∣∣∣cT

Ul TU−k(Uk(x))
∣∣∣+ n.

Integrating over X, we get∫
X

∣∣∣cU
T (x)

∣∣∣
ϕ

dµ ≤ max
0≤k,l≤n−1

∫
X

n
∣∣∣cT

Ul TU−k(Uk(x))
∣∣∣

ϕ
dµ + ϕ(n),
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which is bounded since UlTU−k ∈ [T]ϕ. Hence T ∈ [U]ϕ and this concludes the
proof of the theorem.

The following direct corollary says that the analogue of Belinskaya’s theorem
for ϕ-integrable orbit equivalence does not hold as soon as ϕ is sublinear.

Corollary 2.3.11. — Let ϕ : R+ → R+ be a sublinear function. Let T ∈ Aut(X, µ)

be an ergodic transformation and assume that Tn is ergodic for some n ≥ 2. Then
there exists U ∈ Aut(X, µ) such that T and U are ϕ-integrable orbit equivalent but not
flip-conjugate.

Proof. Let n ≥ 2 such that Tn is ergodic. By the previous theorem, we find
U ∈ Aut(X, µ) such that U is ϕ-integrable orbit equivalent to T and Un is not
ergodic. In particular U cannot be flip-conjugate to T because otherwise Un

would be flip-conjugate to Tn which is ergodic.

Question 2.3.12. — Let ϕ : R+ → R+ be a sublinear metric-compatible func-
tion. Let T ∈ Aut(X, µ) be an ergodic transformation such that Tn is non-ergodic
for all n ≥ 2. Does there exist U ∈ Aut(X, µ) such that T and U are ϕ-integrable
orbit equivalent but not flip-conjugate?

As we will see in Section 2.4.5, a weaker result holds in full generality: for
every ergodic T ∈ Aut(X, µ) and every sublinear metric-compatible function,
there is U ∈ [T]ϕ such that U and T have the same orbits, but are not flip-
conjugate. This relies on the Baire category theorem, using the fact that [T]ϕ is a
Polish group (see Section 2.4.1).

2.3.3 Connection to Shannon orbit equivalence

Let I be a countable set and f : X → I a measurable map. The Shannon entropy
of f is the quantity

H( f ) := −∑
i∈I

µ( f−1{i}) log µ( f−1{i}).

Definition 2.3.13 (Kerr-Li). — Two aperiodic transformations T1, T2 ∈ Aut(X, µ)

are Shannon orbit equivalent if there exists S ∈ Aut(X, µ) such that ST1S−1 and
T2 have the same orbits and

H(cST1S−1) < +∞ and H(cT2) < +∞,

where cST1S−1 is the T2-cocycle of ST1S−1 and cT2 is the ST1S−1-cocycle of T2.

Lemma 2.3.14. — There are two positive constants C1, C2 > 0 such that for any
measurable function f : X → Z, we have

H( f ) ≤ C1

∫
X

log(1 + | f (x)|)dµ + C2.
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The proof we propose is inspired by a classical proof that integrable func-
tions have finite Shannon entropy, see for instance [Aus16, Lem. 2.1] or [Dow11,
Fact 1.1.4].

Proof. Let f+ := max( f , 0) and f− := min( f , 0), so that f = f+ + f−. We have∫
X

log(1 + | f |)dµ =
∫

X
log(1 + f+)dµ +

∫
X

log(1− f−)dµ.

By subadditivity, see for instance [Dow11, Chap. 1],

H( f ) = H( f+ + f−) ≤ H( f+) + H(− f−).

Hence, it is enough to prove the lemma for f : X → N. So let us fix f : X → N.
For all n ∈ N, let pn := µ( f−1{n}). By definition of the Shannon entropy,

H( f ) = − ∑
n≥0

pn log pn.

Studying the variations of the function gt(s) = st + e−s−1, one checks that for
all t > 0 and s ∈ R, −t log t ≤ st + e−s−1. Applying this for t = pn and
s = 2 log(n + 1) and summing over n, we get

H( f ) ≤ 2 ∑
n≥0

pn log(1 + n) + ∑
n≥0

e−1

(n + 1)2 .

To conclude, we observe that ∑n≥0 pn log(1 + n) =
∫

X log(1 + f (x))dµ.

We immediately deduce the following comparison between ϕ-integrable orbit
equivalence and Shannon orbit equivalence.

Theorem 2.3.15. — Let ϕ : R+ → R+ be a function such that log(1+ t) = O(ϕ(t))
as t → +∞. Then for any aperiodic transformation T ∈ Aut(X, µ), every S ∈ [T]
whose T-cocycle is ϕ-integrable has finite Shannon entropy.

In particular, if two aperiodic transformations S, T ∈ Aut(X, µ) are ϕ-integrable
orbit equivalent, then they are Shannon orbit equivalent.

Remark 2.3.16. — Note that for every p ∈ (0,+∞), we have log(1 + t) = O(tp)

as t → +∞. Therefore Lp orbit equivalence implies Shannon orbit equivalence
for measure-preserving transformations.

In [KL19], Kerr and Li asked whether Shannon orbit equivalence of ergodic
transformations implies flip-conjugacy. We prove that it is not the case.

Theorem 2.3.17. — Let T ∈ Aut(X, µ) be an ergodic transformation, assume that Tn

is ergodic for some n ≥ 2. Then there exists U ∈ Aut(X, µ) such that T and U are
Shannon orbit equivalent but not flip-conjugate.
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Proof. Let us consider the sublinear metric-compatible function ϕ : R+ → R+

given by ϕ(t) := log(1 + t). By Corollary 2.3.11, there exists U ∈ Aut(X, µ)

such that T and U are ϕ-integrable orbit equivalent, but not flip-conjugate. On
the other hand, the transformations T and U are Shannon orbit equivalent by
Theorem 2.3.15.

2.3.4 Finiteness of entropy and Shannon orbit equivalence

Kerr and Li implicitly asked whether dynamical entropy is an invariant of Shan-
non orbit equivalence for ergodic measure-preserving transformations. Shortly
after a first version of our paper appeared, they obtained a positive answer
[KL22, Thm. A]. In this section, we provide a short proof that finiteness of dynam-
ical entropy is an invariant of Shannon orbit equivalence. We start by recalling
a definition of dynamical entropy of measure-preserving transformations which
is convenient for our purposes.

Definition 2.3.18. — Let T ∈ Aut(X, µ). A measurable map f : X → I, where
I is countable, is called T-dynamically generating if there is a full measure set
X0 ⊆ X such that for all distinct x, y ∈ X0, there is n ∈ Z such that f (Tn(x)) 6=
f (Tn(y)).

Definition 2.3.19. — The dynamical entropy of a measure-preserving trans-
formation T ∈ Aut(X, µ) is the infimum of the Shannon entropies of its T-
dynamically generating functions.

The above definition is not the standard definition, however it is equivalent
by a theorem of Rokhlin [Rok67, Thm. 10.8]. Also note that by definition, the dy-
namical entropy of T ∈ Aut(X, µ) is finite if and only if T admits a dynamically
generating function of finite entropy.

Proposition 2.3.20. — Let T ∈ Aut(X, µ) be an aperiodic transformation with infi-
nite dynamical entropy and let U ∈ [T] be a transformation whose T-cocycle has finite
Shannon entropy. Then U has infinite dynamical entropy.

Proof. Let f : X → I be a U-dynamically generating function and denote by
cU the T-cocycle of U. We claim that the couple ( f , cU) : X → I × Z is T-
dynamically generating. Indeed, let x, y ∈ X such that

cU(Tn(x)) = cU(Tn(y)) and f (Tn(x)) = f (Tn(y)) for all n ∈ Z.

The first equality and the cocycle identity imply that cUn(x) = cUn(y) for all
n ∈ Z. So for all n ∈ Z

f (Un(x)) = f (TcUn (x)(x)) = f (TcUn (y)(y)) = f (Un(y)).

Since f is U-dynamically generating, the above equation implies that x = y.
Assume by contradiction that U has finite entropy. This implies that there

exists a U-generating function f with finite Shannon entropy. Since cU has finite
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Shannon entropy, then so does the function ( f , cU). But we have seen that ( f , cU)

is a T-generating function, hence we deduce that T has finite dynamical entropy
and the proof is complete.

Corollary 2.3.21. — Suppose T1, T2 are two aperiodic measure-preserving transfor-
mations which are Shannon orbit equivalent. Then T1 has finite dynamical entropy if
and only if T2 has finite dynamical entropy.

Remark 2.3.22. — As explained before, Kerr and Li recently obtained that
dynamical entropy itself is preserved under Shannon orbit equivalence [KL22,
Thm. A]. Suppose now that ϕ : R+ → R+ is a function that satisfies log(1+ t) =
O(ϕ(t)) as t → +∞, such as ϕ(t) = log(1 + t) or ϕ(t) = tp. By Kerr and Li’s
result and Theorem 2.3.15, dynamical entropy is an invariant of ϕ-integrable
orbit equivalence. In particular it is an invariant of Lp orbit equivalence for
p ∈ (0,+∞). When ϕ is moreover sublinear, this is the only invariant of ϕ-
integrable orbit equivalence that we know for ergodic transformations, even for
Lp orbit equivalence where p ∈ (0, 1).

2.4 Weakly mixing elements are generic in [T]ϕ
This last section is dedicated to the proof of Theorem 2.1.2: we are going to
show that for every sublinear metric-compatible function ϕ and ergodic trans-
formation T, there is an element U ∈ [T]ϕ which has the same orbit as T but is
not flip-conjugated to T.

Note that we have shown in Corollary 2.3.11 that this is already the case if
T is an ergodic transformation such that Tn is ergodic for some n ≥ 2. Therefore
we will restrict ourselves to the case when there exists n ≥ 2 such that Tn is not
ergodic. For such transformations, we will not construct any explicit U ∈ [T]ϕ,
but we will use the Baire category theorem. We will show that given an aperiodic
transformation T, the possible candidates of such U are generic, see Theorem

2.4.15.
We start with three preparatory sections to introduce the required material.

We believe them to be of independent interest. In the first one, we show that
the metric dϕ,T is a complete separable metric inducing a Polish group topology
on [T]ϕ, see Theorem 2.4.1. In the second one, we prove a sublinear ergodic
theorem in the context of ϕ-integrability which will play a crucial role later on.
In the third one, we study continuity properties of the first return map.

2.4.1 Polish group topology

Recall that the full group [T] ≤ Aut(X, µ) is closed and separable for the topol-
ogy induced by the uniform metric du and therefore it is a Polish group [Kec10,
Prop. 3.2]. We shall see that ϕ-integrable full groups provide further interesting
classes of Polish groups.
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Let ϕ : R+ → R+ be a metric-compatible function and let T ∈ Aut(X, µ) be
an aperiodic transformation. We introduced the ϕ-integrable full group [T]ϕ as
the group of measure-preserving transformation whose cocycle is ϕ-integrable.
In Lemma 2.2.14, we defined a metric dϕ,T on [T]ϕ. The goal of this section is to
prove that the topology induced by dϕ,T on [T]ϕ is a Polish group topology.

Theorem 2.4.1. — The metric dϕ,T is complete, separable and right-invariant on [T]ϕ
and the topology generated by dϕ,T is a group topology. In particular [T]ϕ is a Polish
group.

Proof. We have already shown in Lemma 2.2.14 that dϕ,T is right-invariant. Corol-
lary 2.2.18 tells us that the inclusion [T]ϕ ↪→ [T] is Lipschitz and in particular
any dϕ,T-Cauchy sequence is du-Cauchy. Since du is complete, any dϕ,T-Cauchy
sequence has a du-limit.

Claim. — Let (Un)n≥0 be a dϕ,T-Cauchy sequence of elements of [T]ϕ and let
U ∈ [T] be its du-limit. Then U ∈ [T]ϕ and limn dϕ,T(Un, U) = 0. In particular
dϕ,T is complete.

Proof of the claim. Since (Un)n≥0 is dϕ,T-Cauchy, there is m such that for all n ≥ m,∫
X
|cUn(x)|ϕdµ = dϕ,T(Un, id) ≤ dϕ,T(Un, Um) + dϕ,T(Um, id) ≤ 1 + dϕ,T(Um, id).

Moreover since limn du(Un, U) = 0, we have that (cUn)n≥0 converges in measure
to cU and thus a subsequence of (cUn)n≥0 converges pointwise to cU. Fatou’s
lemma then implies that U ∈ [T]ϕ. The triangle inequality for |·|ϕ gives∫

X

∣∣|cUn(x)− cU(x)|ϕ − |cUm(x)− cU(x)|ϕ
∣∣dµ ≤

∫
X
|cUn(x)− cUm(x)|ϕdµ

= dϕ,T(Un, Um),

hence the sequence (|cUn − cU|ϕ)n≥0 is Cauchy with respect to the L1-metric.
Since (cUn − cU)n≥0 converges in measure to 0, we must have that

lim
n

dϕ,T(Un, U) = lim
n

∫
X
|cUn(x)− cU(x)|ϕdµ = 0

so the claim is proved. �claim

Let us now show that the topology induced by dϕ,T is a group topology. We
start by proving the continuity of the inverse map. Let (Un)n≥0 be a sequence of
elements of [T]ϕ converging to U ∈ [T]ϕ. Then the cocycle identity gives us that
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0 = cUU−1(x) = cU(U−1(x)) + cU−1(x) and hence

dϕ,T(U−1
n , U−1) =

∫
X
|cU−1

n
(x)− cU−1(x)|ϕdµ

=
∫

X
|cUn(U

−1
n (x))− cU(U−1(x))|ϕdµ

=
∫

X

∣∣∣cUn(x)− cU(U−1Un(x))
∣∣∣

ϕ
dµ

≤
∫

X
|cUn(x)− cU(x)|ϕdµ +

∫
X
|cU(x)− cU(U−1Un(x))|ϕdµ.

Since (Un)n≥0 converges to U for the metric dϕ,T and thus for the uniform metric,
the right hand side converges to 0 and hence the inverse map is continuous.

We now prove that the multiplication map is continuous. Let (Un)n≥0 and
(Vm)m≥0 be two sequences which dϕ,T-converge to U and V respectively. Then
by the triangle inequality and right-invariance,

dϕ,T(UnVn, UV) ≤ dϕ,T(Un, U) + dϕ,T(UVn, UV).

Now remark that since the inverse map is continuous, UVn converges to UV if
and only if V−1

n U−1 converges to V−1U−1. By right-invariance and continuity of
the inverse limn dϕ,T(V−1

n U−1, V−1U−1) = 0, which finishes the proof that dϕ,T
induces a group topology on [T]ϕ.

We are left to show that this topology is separable. Consider the following
abelian group where we identify functions up to a null set

Lϕ(X, Z) :=
{

f : X → Z :
∫

X
| f (x)|ϕdµ < +∞

}
,

endowed with the metric ( f , g) 7→
∫

X| f (x)− g(x)|ϕdµ. The function which takes
U ∈ [T]ϕ to cU ∈ Lϕ(X, Z) is an isometry. So [T]ϕ is isometric to a metric sub-
space of Lϕ(X, Z). We now prove that Lϕ(X, Z) is separable: identify X with
[0, 1] equipped with the Lesbegue measure and observe that the subgroup gen-
erated by characteristic functions of rational intervals is dense. Since subspaces
of separable metric spaces are separable, we conclude that [T]ϕ is separable.

We now exploit the Polish group topology to characterize the inclusion be-
tween ϕ-integrable full groups in terms of metric comparisons. In particular
[T]ϕ 6= [T]ψ as soon as ϕ and ψ are not bi-Lipschitz. However we do not know
how to construct any explicit element in [T]ϕ \ [T]ψ.

Proposition 2.4.2. — Let ϕ and ψ be two metric-compatible functions and let T ∈
Aut(X, µ) be an aperiodic measure-preserving transformation. Then the following are
equivalent:

(i) ϕ(t) = O(ψ(t)) as t→ +∞.

(ii) [T]ψ ≤ [T]ϕ.
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The proof uses the following well-known lemma.

Lemma 2.4.3. — Let G be a Polish group, let H1 ≤ H2 ≤ G be two subgroups of G.
Suppose that H1 and H2 are endowed with a Polish topology which refines the topology
induced by G. Then the topology of H1 refines the topology induced by H2.

Proof. By hypothesis, the inclusions H1 ↪→ G and H2 ↪→ G are continuous. In
particular, the Borel structure induced by each of their topology refines the Borel
structure induced by the one of G. The Lusin-Souslin theorem states that given
any two Polish spaces X and Y, if f : X → Y is Borel and injective then for
every Borel A ⊆ X, the set f (A) is Borel, see [Kec95, Thm. 15.1]. Therefore, we
can apply it to the inclusions H1 ↪→ G and H2 ↪→ G to obtain that the Borel
structures induced by the respective topologies of H1 and H2 coincide with the
σ-algebra induced by the Borel subsets of G. This in particular tells us that the
inclusion map H1 ↪→ H2 is Borel, so it is automatically continuous by Pettis’
lemma [Kec95, Thm. 9.9] which proves the lemma.

Proof of Proposition 2.4.2. The implication (i)⇒(ii) follows from Lemma 2.2.17,
so we only need to prove (ii)⇒(i). We argue by contradiction: assume that
[T]ψ ≤ [T]ϕ but (i) does not hold. By Lemma 2.2.16, there exists a sequence
(kn)n≥0 of positive integers such that

lim
n→+∞

ψ(kn)

ϕ(kn)
= 0. (2.5)

Corollary 2.2.18 tells us that [T]ϕ and [T]ψ embed continuously in [T]. There-
fore Lemma 2.4.3 yields that the inclusion map of [T]ψ into [T]ϕ is continuous.
We will obtain our contradiction by constructing a sequence (Un)n≥0 of elements
of [T]ψ such that

dϕ,T(Un, id)→ 0 but dψ,T(Un, id) 6→ 0.

By Rokhlin’s lemma, one can find for every n ∈ N, a measurable subset
An ⊆ X such that An, T(An), . . . T2kn−1(An) are pairwise disjoint and µ(An) ≥

1
4kn

. Note that

µ

(
kn−1⊔
i=0

Ti(An)

)
≥ 1

4
.

Hence, for all n such that ϕ(kn) ≥ 4, we can pick a measurable subset Bn ⊆⊔kn−1
i=0 Ti(An) of measure exactly 1

ϕ(kn)
. We then define Un ∈ [T]ϕ by

Un(x) :=


Tkn(x) if x ∈ Bn;
T−kn(x) if x ∈ Tkn(Bn);
x otherwise.

By construction dϕ(Un, id) = 2µ(Bn)ϕ(kn) = 1
2 but Equation (2.5) implies that

dψ(Un, id) = 2µ(Bn)ψ(kn)→ 0, a contradiction.
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Corollary 2.4.4. — Let ϕ and ψ be two metric-compatible functions, let T ∈
Aut(X, µ) be aperiodic. Then [T]ϕ = [T]ψ if and only if ϕ(t) = O(ψ(t)) and
ψ(t) = O(ϕ(t)) as t→ +∞.

2.4.2 A sublinear ergodic theorem for ϕ-integrable functions

In this section, we prove the following sublinear ergodic theorem, which will
be a key tool in our analysis of the first return map. Given a measurable func-
tion ϕ : R+ → R+, a measurable function f : X → C is ϕ-integrable when∫

X ϕ(| f (x)|)dµ < +∞.

Theorem 2.4.5. — Let ϕ : R+ → R+ be a sublinear non-decreasing function. Let
U ∈ Aut(X, µ) and f : X → C a measurable function f which is ϕ-integrable. Then
for almost every x ∈ X

lim
n

1
n

ϕ

(∣∣∣∣∣n−1

∑
k=0

f (Uk(x))

∣∣∣∣∣
)

= 0.

The convergence also holds in L1, that is

lim
n

∫
X

1
n

ϕ

(∣∣∣∣∣n−1

∑
k=0

f (Uk(x))

∣∣∣∣∣
)

dµ = 0.

Proof. We start by restricting ourselves to the subadditive case. For this, we first
use Lemma 2.2.12 to find a sublinear metric-compatible function ψ and C > 0
such that ϕ(t) ≤ ψ(t) for all t ≥ C. We define ϕ̃(t) := ψ(t) + ϕ(C), then ϕ̃ is still
sublinear, non-decreasing and subadditive. Moreover, since ψ is non-decreasing
we now have ψ(t) ≤ ϕ̃(t) for all t ≥ 0. Up to replacing ϕ by ϕ̃, we thus may and
do assume that ϕ is subadditive.

Given n ≥ 1 and a ϕ-integrable function f , let for all x ∈ X

gn(x) :=
1
n

ϕ

(∣∣∣∣∣n−1

∑
k=0

f (Uk(x))

∣∣∣∣∣
)

.

Using the fact that ϕ is subadditive, we deduce that the sequence of functions
(gn)n≥1 satisfies Kingman’s subadditivity property: for all n, m ≥ 1 and all x ∈
X,

gn+m(x) ≤ gn(x) + gm(Un(x)).

Kingman’s subadditive theorem [Kin68] implies that (gn)n≥0 converges almost
everywhere to some function g and our aim becomes to show that g = 0. Recall
that a sequence that converges in L1 admits an almost surely converging subse-
quence. In order to prove that g = 0, it is therefore enough to prove that ‖gn‖1

converges to 0, namely to establish the second part of the theorem.
To this end, let f be a ϕ-integrable function and let ε > 0. Since ϕ(| f |) is

integrable and ϕ is non-decreasing, we find a measurable subset A ⊆ X and
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K ≥ 0 such that
∫

X\A ϕ(| f (x)|)dµ ≤ ε and | f (x)| ≤ K for every x ∈ A. For
every measurable subset B ⊆ X, we denote fB := f1B, where 1B is the indicator
function of B. With this notation at hand, using first that ϕ is subadditive non-
decreasing and then that U preserves the measure we obtain:

lim sup
n

∫
X

1
n

ϕ

(∣∣∣∣∣n−1

∑
k=0

fX\A(U
k(x))

∣∣∣∣∣
)

dµ ≤ lim sup
n

∫
X

1
n

n−1

∑
k=0

ϕ
(
| fX\A(U

k(x))|
)

dµ

=
∫

X
ϕ
(
| fX\A(x)|

)
dµ

≤ ε.

Besides, since fA is bounded by K, we have for all x ∈ X

1
n

ϕ

(∣∣∣∣∣n−1

∑
k=0

fA(Uk(x))

∣∣∣∣∣
)
≤ ϕ(nK)

n
= K

ϕ(nK)
nK

.

Integrating over X, we obtain

∫
X

1
n

ϕ

(∣∣∣∣∣n−1

∑
k=0

fA(Uk(x))

∣∣∣∣∣
)

dµ ≤ K
ϕ(nK)

nK
.

Using that f = fX\A + fA and subadditivity, we deduce

lim sup
n

∫
X

1
n

ϕ

(∣∣∣∣∣n−1

∑
k=0

f (Uk(x))

∣∣∣∣∣
)

dµ ≤ ε + lim sup
n

K
ϕ(nK)

nK

Since ϕ is sublinear, we finally obtain

lim sup
n

∫
X

1
n

ϕ

(∣∣∣∣∣n−1

∑
k=0

f (Uk(x))

∣∣∣∣∣
)

dµ ≤ ε.

This proves that ‖gn‖1 converges to 0, thus ending the proof of the theorem.

Here is our main application, which will be a key tool in the following sec-
tion.

Corollary 2.4.6. — Let ϕ be a sublinear metric-compatible function and let T ∈
Aut(X, µ) be an aperiodic transformation. Then for every U ∈ [T]ϕ,

lim
n

dϕ,T(Un, id)
n

= 0.

Proof. For all integer n ≥ 0 and all x ∈ X, by the cocycle identity and the
triangular inequality we have

|cUn(x)| ≤
n−1

∑
k=0
|cU(Uk(x))|.
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We apply Theorem 2.4.5 to the function f (x) := |cU(x)| and get that

dϕ,T(Un, id)
n

≤
∫

X

1
n

∣∣∣∣∣n−1

∑
k=0

f (Uk(x))

∣∣∣∣∣
ϕ

−→
n→+∞

0.

Remark 2.4.7. — We do not fully understand the asymptotic of the sequence
(dϕ,T(Un, id))n≥0. For instance, when does the sequence (dϕ,T(Un, id)/ϕ(n))n≥0

converge?

2.4.3 Continuity properties of the first return map

In the coming section we are primarily interested in continuity properties of the
first return map. An important preliminary step is the following analogue of
Kac’s Lemma, saying that ϕ-integrable full groups are stable under first return
maps.

Lemma 2.4.8. — Let T ∈ Aut(X, µ) be an aperiodic transformation and let ϕ : R+ → R+

be a metric-compatible function. For all U ∈ [T]ϕ and all measurable subset A ⊆ X, we
have dϕ,T(UA, id) ≤ dϕ,T(U, id). In particular, UA ∈ [T]ϕ.

Proof. For every integer j ≥ 1, set Aj := {x ∈ A : nU,A(x) = j} where nU,A is the
first return time of U to A as defined in Section 4.1. Then,

∫
X
|cUA(x)|ϕdµ =

∫
A

∣∣cUA(x)
∣∣

ϕ
dµ =

+∞

∑
j=1

∫
Aj

|cUA(x)|ϕdµ =
+∞

∑
j=1

∫
Aj

|cU j(x)|ϕdµ

By the cocycle identity, for every j ≥ 1 we have cU j(x) = ∑
j−1
i=0 cU(Ui(x)), so by

the triangle inequality we obtain

∫
X
|cUA(x)|ϕdµ ≤

+∞

∑
j=1

j−1

∑
i=0

∫
Aj

|cU(Ui(x))|ϕdµ

≤
+∞

∑
j=1

j−1

∑
i=0

∫
Ui(Aj)

|cU(x)|ϕdµ

≤
∫

X
|cU(x)|ϕdµ,

the last inequality being a consequence of the fact that the sets Ui(Aj) are disjoint
for j ∈ N and i ∈ {0, . . . , j− 1}.

In order to state the continuity properties of the first return map, let us first
observe that since we are working up to measure zero, the first return map
with respect to a set A only depends on A up to a null set. It is therefore
natural to introduce the measure algebra MAlg(X, µ), defined as the algebra of
measurable subsets modulo identifying subsets which differ on a null set. We
endow MAlg(X, µ) with the metric dµ(A, B) := µ(A4 B).
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We can now recall a continuity property satisfied by the first return map in
the full group, which was first observed by Keane.

Lemma 2.4.9 ([Kea70, Lem. 3]). — Let T be a measure-preserving transformation,
then the map

[T]×MAlg(X, µ) → [T]
(U, A) 7→ UA

is continuous.

It is worth noting that the analogue of Lemma 2.4.8 fails for the L1-full group.
Indeed, let T ∈ Aut(X, µ) be ergodic and let ϕ := idR+ Then Kac’s Lemma yields
that for all measurable A ⊆ X of positive measure, dϕ,T(TA, id) = dϕ,T(T, id) =
1. Since T∅ = id, this shows that the map MAlg(X, µ)→ [T]1 defined by A 7→ TA
is not continuous.

However, the situation is not that clear when ϕ is sublinear.

Question 2.4.10. — Let ϕ : R+ → R+ be a sublinear metric-compatible function.
Is the map MAlg(X, µ)→ [T]ϕ defined by A 7→ TA continuous? More generally,
is the map [T]ϕ ×MAlg(X, µ)→ [T]ϕ given by (U, A) 7→ UA continuous?

In this section we give two partial answers to the above questions. We first
prove that the map A 7→ UA satisfies a continuity property “from below”. For
this, we need the following version of Scheffé’s lemma for sequences of Z-valued
ϕ-integrable functions.

Lemma 2.4.11. — Let f : X → Z be a measurable function and let ( fn)n≥0 be a
sequence of measurable functions fn : X → Z that converge in measure to f . If

lim sup
∫

X
| fn|ϕ dµ ≤

∫
X
| f |ϕ dµ,

then limn
∫

X | fn − f |ϕ dµ = 0.

Proof. It suffices to show that given ε > 0, there is δ > 0 such that for all mea-
surable function g : X → Z satisfying

µ({x ∈ X : f (x) 6= g(x)}) ≤ δ and
∫

X
|g|ϕ dµ ≤

∫
X
| f |ϕ dµ + δ, (2.6)

one has that
∫

X | f − g|ϕ dµ ≤ ε. To this end, fix ε > 0. Since
∫

X| f |ϕdµ < +∞, by
Lebesgue’s dominated convergence theorem there exists δ0 > 0 such that for all
measurable subset A ⊆ X, if µ(A) < δ0 then

∫
A| f |ϕdµ < ε. Take δ := min{δ0, ε}.

Let g : X → Z be a measurable function satisfying (2.6). If we let A := {x ∈
X : f (x) 6= g(x)}, we have∫

A
|g|ϕdµ =

∫
X
|g|ϕdµ−

∫
X\A
|g|ϕdµ ≤

∫
X
| f |ϕdµ−

∫
X\A
| f |ϕdµ + δ ≤ 2ε
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and we can therefore conclude the proof∫
X
| f − g|ϕ dµ =

∫
A
| f − g|ϕ dµ ≤

∫
A
| f |ϕ dµ +

∫
A
|g|ϕ dµ ≤ 3ε.

We can now prove the following proposition which is the ϕ-integrable ana-
logue of [LM18, Prop. 3.9].

Proposition 2.4.12. — Let ϕ be a metric-compatible function and T ∈ Aut(X, µ) an
ergodic transformation. Consider U ∈ [T]ϕ and consider a measurable subset A ⊆ X. If
(An)n≥0 is a sequence of measurable subsets of A such that limn µ(A \ An) = 0, then
limn dϕ,T(UAn , UA) = 0.

Proof. Since limn µ(A \ An) = 0 and since the first return map is continuous with
respect to the uniform metric by Lemma 2.4.9, we get that limn du(UAn , UA) =

0. This means that (cUAn
)n≥0 converges in measure to cUA and therefore that

(|cUAn
|ϕ)n≥0 converges in measure to |cUA |ϕ. Thanks to Lemma 2.4.8, we have

for all n ≥ 0, dϕ,T(UAn , id) ≤ dϕ,T(UA, id). In other words∫
X
|cUAn

(x)|ϕdµ ≤
∫

X
|cUA(x)|ϕdµ.

Hence we can apply Lemma 2.4.11, yielding

lim
n

∫
X
|cUAn

(x)− cUA(x)|ϕdµ = 0.

This precisely means that limn dϕ,T(UAn , UA) = 0, so we are done.

Let ϕ : R+ → R+ be a sublinear metric-compatible function and T ∈ Aut(X, µ)

be an aperiodic transformation. In Corollary 2.3.7, we proved that for any ape-
riodic transformation T ∈ Aut(X, µ), the quantity dϕ,T(TA, id) tends to 0 as µ(A)

approaches 0. It is natural to ask whether this holds for all aperiodic U ∈ [T]ϕ,
i.e. does dϕ,T(UA, id) tends to 0 as µ(A) approaches 0? We were not able to
answer this question, but we can prove the following much weaker statement.
Its proof relies on our sublinear ergodic theorem (Theorem 2.4.5), or rather on
Corollary 2.4.6.

Proposition 2.4.13. — Let ϕ be a sublinear metric-compatible function. Let T ∈
Aut(X, µ) be an aperiodic transformation. Then for any aperiodic transformation U ∈
[T]ϕ and for any measurable subset A ⊆ X, there exists a sequence (Ak)k≥0 of measur-
able subsets contained in A which intersect every U-orbit, such that limk µ(Ak) = 0
and limk dϕ,T(UAk , id) = 0.

Proof. Put V := UA and remark that for every measurable B ⊆ A, we have that
VB = UB. As an immediate consequence of Alpern’s multiple Rokhlin theorem
[Alp79]2, for every k ≥ 0, one can find a measurable subset Bk ⊆ A which meets

2We actually only need Step 1 from the simpler proof given in [EP97].
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every V-orbit in A and such that nV,Bk(Bk) = {k, k + 1}. The latter implies that
the Vi(Bk) are disjoint for i ∈ {0, ..., k− 1}. Observe that for all x ∈ X and i ∈ Z

we have nV,Vi(Bk)
(x) = nV,Bk(V

−i(x)). This implies that for all x ∈ Vi(Bk), either
VVi(Bk)

(x) = Vk(x) or VVi(Bk)
(x) = Vk+1(x). Therefore by integrating over the

disjoint union of the Vi(Bk) for i ∈ {0, ..., k− 1} we get that

k−1

∑
i=0

dϕ,T(VVi(Bk)
, id) ≤ dϕ,T(Vk, id) + dϕ,T(Vk+1, id),

whence there exists 0 ≤ ik ≤ k− 1 such that

dϕ,T(VVik (Bk)
, id) ≤

dϕ,T(Vk, id) + dϕ,T(Vk+1, id)
k

.

The set Ak := Vik(Bk) has measure less than 1/k. Corollary 2.4.6 implies that
the right hand side in the above formula tends to zero, which implies

lim
k

dϕ,T(UAk , id) = lim
k

dϕ,T(VAk , id) = 0.

2.4.4 Optimality of Belinskaya’s theorem

We are now ready to prove Theorem 2.1.2: for any sublinear function ϕ, Belin-
skaya’s theorem fails if we replace integrability by ϕ-integrability.

Theorem 2.4.14. — Let ϕ : R+ → R+ be a sublinear function and let T1 ∈ Aut(X, µ)

be ergodic. Then there exists an ergodic transformation T2 ∈ [T1] whose cocycle is ϕ-
integrable such that T1 and T2 have the same orbits but are not flip-conjugate.

The proof of the theorem depends on whether T1 is weakly mixing. Indeed if
it is the case, then we can use Corollary 2.3.11. Otherwise, we have to use the
Baire category theorem. Indeed the candidate for T2 is generic for the topology
induced by dϕ,T1 .

Theorem 2.4.15. — Let ϕ be a sublinear metric-compatible function and let T ∈
Aut(X, µ) be an aperiodic element. Then the set of all elements of [T]ϕ which are weakly
mixing and have the same orbits as T is a dense Gδ set in the Polish space of aperiodic
elements of [T]ϕ with respect to the topology induced by dϕ,T.

We delay the proof of the above theorem to Section 2.4.5. Let us first explain
how to deduce Theorem 2.4.14 from Theorem 2.4.15.

Proof of Theorem 2.4.14. By Lemma 2.2.12, there is a sublinear metric-compatible
function ψ such that ϕ(t) ≤ ψ(t) for all t large enough. In particular, ψ-
integrability implies ϕ-integrability for Z-valued functions (cf. Remark 2.2.13).
Hence if the theorem holds for ψ then it holds for ϕ. Therefore, by replacing ϕ

by ψ, we may and do assume that ϕ is a metric-compatible function.
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If T1 is weakly mixing, then all its nontrivial power are ergodic. Thus Corol-
lary 2.3.11 implies that there exists T2 ∈ [T1]ϕ such that T1 and T2 have the same
orbits but are not flip-conjugate.

If T1 is not weakly mixing, then Theorem 2.4.15 grant us the existence of
some weakly mixing T2 ∈ [T1]ϕ such that T1 and T2 have the same orbits. Since
T2 is weakly mixing and T1 isn’t, they cannot be flip-conjugated.

2.4.5 Weakly mixing elements form a dense Gδ set

This section is dedicated to the proof of Theorem 2.4.15. Before starting the
proof, we will need some terminology and preliminary propositions.

In this section we will consider the ϕ-integrable full groups both with the
topology induced by the uniform metric du and the their natural topology in-
duced by dϕ,T. The metric dϕ,T is complete so we can apply the Baire category
theorem in ([T]ϕ, dϕ,T), see Theorem 2.4.1. Moreover, the topology induced
by dϕ,T refines the topology induced by du, see Corollary 2.2.18. Note that
([T]ϕ, du) is not complete, indeed one can show that [T]ϕ is dense in the com-
plete metric space ([T], du).

Denote by APER ⊆ Aut(X, µ) the set of aperiodic transformations.

Lemma 2.4.16. — Let ϕ be a metric-compatible function and let T ∈ Aut(X, µ) be
an aperiodic element. Then the set APER ∩ [T]ϕ is closed in the complete metric space
([T]ϕ, dϕ,T) and hence it is a complete metric space itself.

Proof. Note that T is aperiodic if and only if for all n ≥ 1 we have du(Tn, id) = 1.
So the set APER is closed in (Aut(X, µ), du). In particular, APER∩ [T]ϕ is closed
in ([T]ϕ, du), so it is also closed in ([T]ϕ, dϕ,T).

Proposition 2.4.17. — Let ϕ be a sublinear metric-compatible function and consider
an aperiodic element T ∈ Aut(X, µ). Then the set

{U ∈ APER∩ [T]ϕ : T and U have the same orbits}

is a dense Gδ set in (APER∩ [T]ϕ, dϕ,T).

Proof. We first prove that this set is Gδ. For all ε > 0 and n ≥ 1, let

Oε,n :=
{

U ∈ [T]ϕ : µ({x ∈ X : T(x) ∈ {U−n(x), . . . , Un(x)}}) > 1− ε
}

.

Each Oε,n is open in ([T]ϕ, du) and thus also in ([T]ϕ, dϕ,T). Moreover, we have

{U ∈ APER∩ [T]ϕ : T and U have the same orbits} =
⋂

ε∈Q∗+

⋃
n≥1

Oε,n,

which is a countable intersection of open sets, thus by definition a Gδ set.
We now prove the density. Let U ∈ APER ∩ [T]ϕ. Fix a sequence (Ak)k≥0 of

measurable subset of X which intersect every S-orbits, such that limk µ(Ak) = 0
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and limk dϕ,T(UAk , id) = 0 as in Proposition 2.4.13. If we set Pk := (UAk)
−1U,

then we get that (Pk)k≥0 tends to U. Moreover, Corollary 2.3.7 implies that
(TAk)k≥0 tends to the identity, which implies that (TAk Pk)k≥0 tends to U. On the
other hand, Lemma 2.2.4 yields that the transformation Pk is periodic and Ak is
a fundamental domain for it. Thus, the transformations TAk Pk and T have the
same orbits by Lemma 2.2.3 and the proof is completed.

Let ERG denote the set of ergodic transformations in Aut(X, µ).

Proposition 2.4.18. — Let ϕ be a sublinear metric-compatible function and fix an
ergodic transformation T ∈ Aut(X, µ). Then ERG∩ [T]ϕ is a dense Gδ set in (APER∩
[T]ϕ, dϕ,T).

Proof. By [Kec10, Thm. 3.6], ERG ∩ [T] is a Gδ set in (APER ∩ [T], du). Thus
ERG∩ [T]ϕ is a Gδ set in (APER∩ [T]ϕ, dϕ,T). Finally, since T is ergodic,

ERG∩ [T]ϕ ⊇ {S ∈ APER∩ [T]ϕ : S and T have the same orbits}.

Thus, Proposition 2.4.17 yields that ERG∩ [T]ϕ is dense in (APER∩ [T]ϕ, dϕ,T)

and the proof is complete.

Remark 2.4.19. — The hypothesis that ϕ is sublinear is necessary, as for any
ergodic T ∈ Aut(X, µ), we have that ERG ∩ [T]1 is not dense in APER ∩ [T]1.
Indeed, one can define a continuous index map I : [T]1 → Z by integrating the
cocycle (see [LM18, Cor. 4.20] for the fact that it takes values in Z). Then note
that I(U) 6= 0 for every ergodic U ∈ [T]1: by [LM18, Prop. 4.13] every ergodic
U ∈ [T]1 is either almost positive or almost negative. Then combining [LM18,
Prop. 4.17 and Prop. 3.4] yields that U has positive or negative index, so I(U) 6=
0. Finally, there are aperiodic elements with index 0: take A ⊆ X measurable
with 0 < µ(A) < 1, then the aperiodic transformation U := TAT−1

X\A has index
zero (using again [LM18, Prop. 3.4]). By continuity of the discrete-valued index
map, we conclude that ERG∩ [T]1 cannot be dense in APER∩ [T]1.

Definition 2.4.20. — A transformation S ∈ Aut(X, µ) is weakly mixing if for
all finite subset F ⊆ MAlg(X, µ) and all ε > 0, there exists n ∈ Z such that for
all A, B ∈ F ,

|µ(Vn(A) ∩ B)− µ(A)µ(B)| < ε.

Given a measurable subset of positive measure A ⊆ X we will denote by
µA the probability measure on A defined by µA(B) := µ(A ∩ B)/µ(A). We say
that a transformation T ∈ Aut(X, µ) is weakly mixing on A if T(A) = A and
the restriction of T to A is weakly mixing as an element of Aut(A, µA). The
following result will be crucial in the proof of Theorem 2.4.15.

Theorem 2.4.21 (Conze [Con72]). — Let T ∈ Aut(X, µ) be an ergodic transforma-
tion. Then the set

{A ∈ MAlg(X, µ) : TA is weakly mixing on A}
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is a dense Gδ set in (MAlg(X, µ), dµ) where dµ(A, B) := µ(A4 B).

Denote by WMIX the set of weakly mixing transformations of Aut(X, µ). We
are finally ready to prove Theorem 2.4.15 which can be reformulated as follows.

Theorem 2.4.22. — Let ϕ be a sublinear metric-compatible function and let T ∈
Aut(X, µ) be an ergodic transformation. Then the set

{U ∈WMIX∩ [T]ϕ : T and U have the same orbits}

is a dense Gδ set in (APER∩ [T]ϕ, dϕ,T).

Proof. By the Baire category theorem, the intersection of two dense Gδ subsets
is a dense Gδ subset. Hence by Proposition 2.4.17, it suffices to show that
WMIX ∩ [T]ϕ is a dense Gδ set in (APER ∩ [T]ϕ, dϕ,T), which will occupy the
remainder of the proof.

By definition, a transformation U is weakly mixing if and only if for all finite
subset F ⊆ MAlg(X, µ) and all ε > 0, it belongs to the set OF ,ε defined by:

OF ,ε := {V ∈ Aut(X, µ) : ∃n ∈ Z, ∀A, B ∈ F , |µ(Vn(A) ∩ B)− µ(A)µ(B)| < ε} .

Observe that each OF ,ε is open in (Aut(X, µ), du). As before, denote by dµ the
metric on MAlg(X, µ) defined by dµ(A, B) = µ(A4 B).

Claim 1. — Let F = {A1, ..., An} and F ′ = {A′1, ..., A′n} be subsets of MAlg(X, µ).
Fix ε > 0. If for every i ∈ {1, . . . , n} one has µ(Ai4 A′i) < ε, then

OF ,ε ⊆ OF ′,5ε.

Proof of the claim. Let V ∈ OF ,ε. Fix n ∈ Z such that for all i, j ∈ {1, . . . , n}
we have |µ(Vn(Ai) ∩ Aj) − µ(Ai)µ(Aj)| < ε. We first remark that for every
measurable B ⊂ X and i ∈ {1, . . . , n}, we have |µ(B)µ(Ai) − µ(B)µ(A′i)| < ε

and |µ(B ∩ A′i) − µ(B ∩ Ai)| < ε. The result now follows from the triangular
inequality and the fact V preserves µ:

|µ(Vn(A′i) ∩ A′j)− µ(A′i)µ(A′j)| < |µ(Vn(A′i) ∩ A′j)− µ(A′i)µ(Aj)|+ ε

< |µ(Vn(A′i) ∩ A′j)− µ(Ai)µ(Aj)|+ 2ε

< |µ(Vn(A′i) ∩ Aj)− µ(Ai)µ(Aj)|+ 3ε

= |µ(A′i ∩V−n(Aj))− µ(Ai)µ(Aj)|+ 3ε

< |µ(Ai ∩V−n(Aj))− µ(Ai)µ(Aj)|+ 4ε

= |µ(Vn(Ai) ∩ Aj)− µ(Ai)µ(Aj)|+ 4ε

< 5ε. �claim

Since (X, µ) is standard, we can fix a countable dense subsetM of (MAlg(X, µ), dµ).
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It follows from the Claim 1 that

WMIX =
⋂

ε∈Q∗+

⋂
F⊆M finite

OF ,ε. (2.7)

In particular WMIX is a Gδ set in (Aut(X, µ), du) and hence WMIX∩ [T]ϕ is a Gδ

set in ([T]ϕ, dϕ,T).
We now prove that WMIX is dense. By the Baire category theorem, it is

enough to show that each OF ,ε is dense in (APER∩ [T]ϕ, dϕ,T). By Proposition

2.4.18 the set ERG∩ [T]ϕ is dense in APER∩ [T]ϕ, so it is enough to prove that

ERG∩ [T]ϕ ⊆ OF ,ε ∩APER∩ [T]ϕ. (2.8)

So let us fix a finite subset F ⊆ MAlg(X, µ), a positive real ε > 0 and an
ergodic transformation U ∈ ERG∩ [T]ϕ.

We let (Xk)k≥0 be a sequence of measurable subsets such that µ(Xk) = 1−
2−k. For all k ≥ 0, we apply Conze’s Theorem to the transformation UXk , which
is ergodic on Xk, to find a measurable subset Yk ⊆ Xk such that µ(Yk) > 1−
2−k+1 and UYk is weakly mixing on Yk. Set Vk := UYk TX\Yk

. We claim that
(Vk)k≥0 tends to U. Indeed since limk µ(Yk) = 1, Proposition 2.4.12 yields that
UYk tends to U while Corollary 2.3.7 gives us that TX\Yk

tends to the identity.

Claim 2. — For k large enough, we have that Vk ∈ OF ,ε.

Proof of the claim. For all k ≥ 0, put Fk := {A ∩ Yk : A ∈ F}. Since UYk is weakly
mixing on Yk, we have UYk ∈ OFk,ε/5. By construction, the transformations UYk

and Vk coincide on Yk, so we also have Vk ∈ OFk,ε/5. Since limk µ(Yk) = 1, for k
large enough and all A ∈ F , we have µ(A4 (A ∩ Yk)) < ε/5. We thus get that
Vk ∈ OF ,ε for k large enough by Claim 1. �claim

It follows immediately from Claim 2 that any ergodic element in [T]ϕ is a
limit of aperiodic elements in OF ,ε ∩ [T]ϕ. This shows the inclusion (2.8), ending
the proof of the theorem.

2.A Proof of Belinskaya’s theorem

In this appendix, we present a short proof of Belinskaya’s theorem due to Katznel-
son which is not publicly available to our knowledge. As in Belinskaya’s original
proof, a key step is the following theorem, of independent interest. The proof
we present here is mainly due to Katznelson. To lighten notation, given a point
x ∈ X, a map T : X → X, and a subset I ⊆ Z, we will write

T I(x) := {Ti(x) : i ∈ I}.

Theorem 2.A.1. — Let T be an aperiodic measure-preserving transformation, suppose
U ∈ Aut(X, µ) has the same orbits as T and that for almost every x ∈ X, the symmetric

112



Belinskaya’s theorem is optimal

difference of the respective positive T and U orbits TN(x)4UN(x) is finite. Then T
and U are conjugate.

Proof (Katznelson). We will explicitly define an element S in [T] such that U =

S−1TS. This will be done thanks to the following claim.

Claim. — For almost every x ∈ X, there exists a unique j(x) ∈ Z such that∣∣∣TN+j(x)(x) \UN(x)
∣∣∣ = ∣∣∣UN(x) \ TN+j(x)(x)

∣∣∣
Proof of the claim. For almost every x ∈ X, consider the function τx : Z → Z

defined by

τx(j) :=
∣∣∣TN+j(x) \UN(x)

∣∣∣− ∣∣∣UN(x) \ TN+j(x)
∣∣∣ .

Remark that by assumption for almost every x, the value τx(j) is finite for all
j ∈ Z. By considering the two cases T j(x) ∈ UN(x) and T j(x) 6∈ UN(x), we see
that τx(j + 1) = τx(j) + 1 for all j ∈ Z. It follows that τx(j) = τx(0) + j for all
j ∈ Z so j(x) := −τx(0) is the unique element we seek. �claim

We set S(x) := T j(x)(x). By the above claim, S(x) is the unique element of
the T-orbit of x satisfying∣∣∣TN(S(x)) \UN(x)

∣∣∣ = ∣∣∣UN(x) \ TN(S(x))
∣∣∣ . (2.9)

By considering whether none, only one, or both of the points x and S(x) belong
to TN(S(x)) ∩UN(x), we see that removing the point S(x) from TN(S(x)) and
the point x from UN(x) does not perturb the above equation, so that∣∣∣TN+1(S(x)) \UN+1(x)

∣∣∣ = ∣∣∣UN+1(x) \ TN+1(S(x))
∣∣∣ .

This can be rewritten as∣∣∣TN(TS(x)) \UN(U(x))
∣∣∣ = ∣∣∣UN(U(x)) \ TN(TS(x))

∣∣∣ ,

which by equation (2.9) yields the desired equivariance condition

SU(x) = TS(x).

We now have to check that S ∈ [T]. Using that T and U are invertible and a
straightforward induction, we obtain that SUn(x) = TnS(x) for all n ∈ Z. In
particular S induces a bijection from the T-orbit of x to the U-orbit of S(x). Since
S(x) = T j(x)(x) belongs to the T-orbit of x, which coincides with the U-orbit of x,
we conclude that S induces a bijection on each T-orbit, in particular S is bijective.
Finally we check that S is measure-preserving. The sets An := {x ∈ X : S(x) =
Tn(x)} for n ∈ Z form a partition of X. If B ⊆ X is measurable, we write
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B =
⊔

n An ∩ B so that µ(S(B)) = ∑n µ(Tn(An ∩ B)) = ∑n µ(An ∩ B) = µ(B).
This ends the proof of Theorem 2.A.1

Given T ∈ Aut(X, µ), denote by RT ⊆ X× X the equivalence relation whose
classes are the T-orbits. Before proceeding with the proof of Belinskaya’s theo-
rem, we recall the following well-known lemma. Its usefulness towards proving
Belinskaya’s theorem was pointed out to us by Todor Tsankov.

Lemma 2.A.2 (Mass-transport principle). — Let T ∈ Aut(X, µ) and f : RT → N

be a measurable map. Then∫
X

∑
n∈Z

f (x, Tn(x))dµ =
∫

X
∑

n∈Z

f (Tn(x), x)dµ.

Proof. Since f is non-negative, Tonelli’s theorem tells us that∫
X

∑
n∈Z

f (x, Tn(x))dµ = ∑
n∈Z

∫
X

f (x, Tn(x))dµ

= ∑
n∈Z

∫
X

f (T−n(x), x)dµ

= ∑
n∈Z

∫
X

f (Tn(x), x)dµ

=
∫

X
∑

n∈Z

f (Tn(x), x)dµ.

Theorem 2.A.3 (Belinskaya’s theorem). — Let T ∈ Aut(X, µ) be ergodic, let U ∈
[T]1. Then T and U are flip-conjugate.

Proof. Define a T-invariant total order ≤T on each T-orbit by setting x ≤T y if
there is n ≥ 0 such that y = Tn(x). We will write x <T y whenever x 6= y and
x ≤T y. Define f : RT → N by:

f (x, y) :=
{

1 if x ≤T y <T U(x) or U(x) <T y ≤T x,
0 otherwise.

Let us denote by cU the T-cocycle of U. By assumption, cU is integrable. Re-
mark that f (x, Tn(x)) = 1 if and only if 0 ≤ n < cU(x) or cU(x) < n ≤ 0, so
∑n∈Z f (x, Tn(x)) = |cU(x)|. We thus have∫

X
∑

n∈Z

f (x, Tn(x))dµ =
∫

X
|cU(x)| dµ < +∞.

Using the mass-transport principle (Lemma 2.A.2), we deduce that∫
X

∑
n∈Z

f (Tn(x), x)dµ < +∞,

in particular for almost every x ∈ X, the sum ∑n∈Z f (Tn(x), x) is finite.
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This implies that for almost every x ∈ X, there are only finitely many integers
n ∈ Z such that Un(x) ≤T x <T Un+1(x) or Un+1(x) <T x ≤T Un(x). Since the
U-orbit of almost every point is infinite, for almost every x, we must have that
either Un(x) ≤T x or Un(x) ≥T x for all but finitely many n ≥ 0. By ergodicity
of U and up to replacing U with its inverse, we can assume that for almost all
x ∈ X we have Un(x) ≥T x for all but finitely many n ≥ 0.

By the symmetric argument, for all but finitely many n ≤ 0, we have that
Un(x) ≤T x and therefore we must have that {Tn(x) : n ≥ 0} 4 {Un(x) : n ≥ 0}
is finite. The conclusion now follows from Theorem 2.A.1.
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Cycles in ϕ-integrable full groups
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This chapter is devoted to exploring consequences of the shift-coupling in-
equality in the context of ϕ-integrable full groups. This inequality is due to
Thorisson [Tho95] and was used by Liggett to prove the following probabilistic
theorem.

Theorem 3.0.1 ([Lig02, Thm. 1.1]). — Let (Xn)n∈Z be a sequence of i.i.d. random
variables whose distribution is the Bernoulli distribution of parameter 1/2. Let µ be the
conditional law of (Xn)n∈Z given that X0 = 1. Then any Z-valued random variable N
such that the law of (Xn+N)n∈Z is equal to µ satisfies E[|N|1/2] = ∞.

The proof provided by Liggett in [Lig02] is probabilistic. We propose here to
follow the lines of Liggett’s proof with the language of ϕ-integrable full groups
introduced in [CJLMT22]. The aim is to state Theorem 3.0.1 in terms of cycles
in ϕ-integrable full groups of Bernoulli shifts, see Theorem 3.2.3. Apart from
the shift of point of view and the use of new objects such as ϕ-integrable full
groups, no originality is claimed in this chapter.

3.1 Shift-coupling inequality

3.1.1 The inequality

Let X be a standard Borel space. If µ and ν are two Borel measures on X, we
denote by ‖µ− ν‖TV the total variation distance between µ and ν, defined by

‖µ− ν‖TV := sup
{∣∣∣∣∫X

f (x)dµ−
∫

X
f (x)dν

∣∣∣∣ , f : X → [−1, 1] measurable
}

.
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Let µ and ν be two Borel measures. Then ν is absolutely continuous with re-
spect to µ if for all Borel subset A ⊆ X, µ(A) = 0 implies ν(A) = 0. If ν

is absolutely continuous with respect to µ and µ, ν are σ-finite measures, then
Radon-Nikodym Theorem states that there exists a function dν/dµ : X → R+

called the Radon-Nikodym derivative of ν with respect to µ, which is unique up
to equality µ-almost everywhere, such that for all A ⊆ X,

ν(A) =
∫

A

dν

dµ
(x)dµ.

There is a useful formula to compute the total variation distance between two
measures when one is absolutely continuous with respect to the other.

Lemma 3.1.1. — Let µ and ν be two σ-finite Borel measures on X. If ν is absolutely
continuous with respect to µ, then

‖µ− ν‖TV =
∫

X

∣∣∣∣1− dν

dµ
(x)
∣∣∣∣ dµ.

Proof. For any measurable function f : X → [−1, 1],∣∣∣∣∫X
f (x)dµ−

∫
X

f (x)dν

∣∣∣∣ = ∣∣∣∣∫X
f (x)

(
1− dν

dµ
(x)
)

dµ

∣∣∣∣
≤
∫

X

∣∣∣∣1− dν

dµ
(x)
∣∣∣∣ dµ.

Since the last quantity is independent of f , we then get that

‖µ− ν‖TV ≤
∫

X

∣∣∣∣1− dν

dµ
(x)
∣∣∣∣ dµ.

For the reverse inequality, let f : X → [−1, 1] be defined by f (x) = 1 if
(dν/dµ)(x) ≤ 1 and f (x) = −1 if (dν/dµ)(x) > 1. Then we obtain

‖µ− ν‖TV ≥
∣∣∣∣∫X

f (x)dµ−
∫

X
f (x)dν

∣∣∣∣ = ∣∣∣∣∫X
f (x)

(
1− dν

dµ
(x)
)

dµ

∣∣∣∣
=
∫

X

∣∣∣∣1− dν

dµ
(x)
∣∣∣∣ dµ,

which proves the lemma.

In the sequel, if T : X → X is a Borel bijection and c : X → Z a Borel map,
we denote by Tc : X → X the map defined by Tc(x) := Tc(x)(x).

Proposition 3.1.2 (Shift-coupling inequality). — Let T : X → X be a Borel bijec-
tion. Let µ be a Borel measure on X and let c : X → Z be a Borel map. For all n ≥ 1,
let νn be the measure defined by νn := T∗µ + · · ·+ (Tn)∗µ. Then

‖νn − (Tc)∗νn‖TV ≤ 2
∫

X
min(|c(x)|, n)dµ.
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Proof. If k ≤ l are two integers, we denote by [[k, l]] the interval {k, k + 1, . . . , l}
and by 1A the indicator function of a set A. Let f : X → [−1, 1] be a measurable
function. Then we have∣∣∣∣∫X

( f (x)− f (Tc(x)(x)))dνn

∣∣∣∣ =
∣∣∣∣∣ n

∑
k=1

∫
X

f (Tk(x))dµ−
n

∑
k=1

∫
X

f (Tk+c(x)(x))dµ

∣∣∣∣∣
=

∣∣∣∣∣∑k≥0

∫
X

f (Tk(x))(1[[1,n]](k)− 1[[c(x)+1,c(x)+n]](k))dµ

∣∣∣∣∣
≤ ∑

k≥0

∫
X
|1[[1,n]](k)− 1[[c(x)+1,c(x)+n]](k)|dµ.

Now, observe that if A and B are two sets, then 1A4B = |1A − 1B|. Thus, we
are left to prove that the cardinal of the set [[1, n]]4[[c(x) + 1, c(x) + n]] is equal
to 2 min(|c(x)|, n). There are two cases to check. If n ≤ |c(x)|, then the intervals
[[1, n]] and [[c(x) + 1, c(x) + n]] are disjoint, thus the cardinal of their symmet-
ric difference is 2n = 2 min(|c(x)|, n). If |c(x)| < n, then the cardinal of the
intersection of [[1, n]] and [[c(x) + 1, c(x) + n]] is n − |c(x)| and the cardinal of
their union is n + |c(x)|. Thus, the cardinal of their symmetric difference is
2|c(x)| = 2 min(|c(x)|, n), which finishes the proof.

3.1.2 Shift-coupling inequality and ϕ-integrability

With the same notations as in Proposition 3.1.2, our goal in the sequel is to
prove that if the function c : X → Z satisfies some kind of integrability condition,
then it forces the behavior of ‖νn − (Tc)∗νn‖TV to be slow as n goes to +∞. The
integrability conditions in question are obtained by metric-compatible function.

Definition 3.1.3. — A function ϕ : R+ → R+ is metric-compatible if:

• (subadditivity) for all s, t ∈ R+, ϕ(s + t) ≤ ϕ(s) + ϕ(t).

• (separation) ϕ(0) = 0 and ϕ(t) > 0 for all t > 0.

• (monotonicity) ϕ is a non-decreasing function.

A metric-compatible function ϕ : R+ → R+ is sublinear if lim
t→+∞

ϕ(t)/t = 0.

Observe that if ϕ is a metric-compatible function and d is a metric on some
set, then ϕ ◦ d is still a metric. Examples of metric-compatible functions are
concave functions ϕ : R+ → R+ such that ϕ(0) = 0.

The following lemma is a useful technicality on metric-compatible functions.

Lemma 3.1.4. — Let ϕ : R+ → R+ be a metric-compatible function. Then for all
0 < s ≤ t, we have ϕ(t)/t ≤ 2ϕ(s)/s.

Proof. Let n = bt/sc. Since s ≤ t, we have n ≥ 1. Since t < (n + 1)s, we get that

ϕ(t) ≤ ϕ((n + 1)s) ≤ (n + 1)ϕ(s).
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Finally, we divide by t and use the inequality ns ≤ t to obtain

ϕ(t)
t
≤ n + 1

t
ϕ(s) ≤ n + 1

n
ϕ(s)

s
≤ 2

ϕ(s)
s

.

Definition 3.1.5. — Let ϕ : R+ → R+ be a metric-compatible function. A
measurable map f : X → R is ϕ-integrable if∫

X
ϕ(| f (x)|)dµ < +∞.

Proposition 3.1.6. — Let ϕ : R+ → R+ be a sublinear metric-compatible function.
Let T : X → X be a Borel bijection and µ a Borel measure on X. For all n ≥ 1, let νn

be the measure defined by νn := T∗µ + · · ·+ (Tn)∗µ. If c : X → Z is any ϕ-integrable
map, then

lim
n

ϕ(n)
n
‖νn − (Tc)∗νn‖TV = 0.

Proof. For all x ∈ X and n ≥ 1, let cn(x) := ϕ(n)
n min(|c(x)|, n). The sequence

of positive functions (cn)n≥0 converges pointwise to 0. Let n ≥ 1. If x ∈ X
is such that |c(x)| > n, then cn(x) = ϕ(n) ≤ ϕ(|c(x)|). If x ∈ X is such that
0 < |c(x)| ≤ n, then we have by Lemma 3.1.4

cn(x) = |c(x)|ϕ(n)
n

= ϕ(|c(x)|)ϕ(n)
n

|c(x)|
ϕ(|c(x)|) ≤ 2ϕ(|c(x)|).

Thus, for all x ∈ X, we obtain that cn(x) ≤ 2ϕ(|c(x)|). Lebesgue’s dominated
convergence theorem applied to the sequence (cn)n≥0 yields

lim
n

ϕ(n)
n

∫
X

min(|c(x)|, n)dµ = 0.

Finally, the shift-coupling inequality of Proposition 3.1.2 leads to the desired
conclusion.

3.2 Application to ϕ-integrable full groups

In this section, we apply the shift-coupling inequality, or more precisely its
consequence obtained in Proposition 3.1.6 to get constraints on the existence
of cycles with prescribed properties in ϕ-integrable full groups. Let us first
give the definition of these groups, which were introduced in [CJLMT22]. Let
T ∈ Aut(X, µ) be an aperiodic transformation. We denote by [T] the full group
of T, that is, the group of all measure-preserving transformations U ∈ Aut(X, µ)

such that for all x ∈ X, there exists n ∈ Z such that U(x) = Tn(x). Any
U ∈ [T] is completely determined by its T-cocycle, defined as the unique func-
tion cU : X → Z satisfying the equation U(x) = TcU(x)(x) for all x ∈ X.

Definition 3.2.1. — Let ϕ : R+ → R+ be a metric-compatible function. The
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ϕ-integrable full group of an aperiodic transformation T ∈ Aut(X, µ) is

[T]ϕ :=
{

U ∈ [T] :
∫

X
ϕ(|cU(x)|)dµ < +∞

}
,

where cU : X → Z denotes the T-cocycle of U.

This is in fact a group, which is one of the main objects of study of [CJLMT22].

3.2.1 Fundamental domains of cycles

The support of a measure-preserving transformation T ∈ Aut(X, µ) is the mea-
surable set supp(T) := {x ∈ X : T(x) 6= x}. A measure-preserving transforma-
tion P ∈ Aut(X, µ) is periodic if the P-orbit of almost every x ∈ X is finite. A
fundamental domain of a periodic transformation P ∈ Aut(X, µ) is a measur-
able subset A ⊆ X which intersects almost every P-orbit at exactly one point.
Let m ≥ 2. A measure-preserving transformation P ∈ Aut(X, µ) is a m-cycle if
for almost every x ∈ X, the cardinality of the P-orbit of x is either 1 or m. Here
we prove the following result.

Theorem 3.2.2. — Let ϕ : R+ → R+ be a sublinear metric-compatible function. Let
T ∈ Aut(X, µ) be an aperiodic transformation. Fix an integer m ≥ 2 and let P ∈ [T]ϕ
be a m-cycle with full support. For any fundamental domain D ⊆ X of P, we have

lim
n

ϕ(n)
n

∫
X

∣∣∣∣∣n−m
n

∑
k=1

1D(T−k(x))

∣∣∣∣∣ dµ = 0.

Proof. Since P is a m-cycle with full support, the sets D, P(D), . . . , Pm−1(D) form
a partition of X. For all k ∈ {0, . . . , m− 1} and x ∈ Pk(D), let c(x) := cP−k(x),
where we recall that cP−k denotes the T-cocycle of P−k ∈ [T].

Claim. — For all A ⊆ X, we have (Tc)∗µ(A) = µ(A ∩ D)/µ(D).

Proof. Let A ⊆ X be measurable subset. We know that D, P(D), . . . , Pm−1(D)

form a partition of X. Moreover, if x ∈ Pk(D) for some k ∈ {0, . . . , m− 1}, then
Tc(x)(x) = P−k(x). Thus,

µ({x ∈ X : Tc(x)(x) ∈ A}) =
m−1

∑
k=0

µ({x ∈ Pk(D) : P−k(x) ∈ A})

=
m−1

∑
k=0

µ(Pk(D) ∩ Pk(A))

= mµ(D ∩ A).

Finally, D is a fundamental domain of a m-cycle with full support, thus µ(D) =

1/m, which concludes the proof of the claim.
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We apply the claim to get that for all k ≥ 1, the measure (Tk+c)∗µ is abso-
lutely continuous with respect to (Tk)∗µ and its Radon-Nikodym derivative is
given by

d(Tk+c)∗µ

d(Tk)∗µ
(x) = µ(D)−11D(T−k(x)).

Since T preserves the measure µ, we have (Tk)∗µ = µ for all k ∈ Z, thus

n

∑
k=1

(Tk)∗µ = nµ.

Finally, Lemma 3.1.1 yields∥∥∥∥∥ n

∑
k=1

(Tk)∗µ−
n

∑
k=1

(Tk+c)∗µ

∥∥∥∥∥
TV

=
∫

X

∣∣∣∣∣1− 1
n

n

∑
k=1

µ(D)−11D(T−k(x))

∣∣∣∣∣ ndµ.

=
∫

X

∣∣∣∣∣n−m
n

∑
k=1

1D(T−k(x))

∣∣∣∣∣ dµ.

To conclude, we observe that c : X → Z is ϕ-integrable. Indeed, on each piece
Pk(D) of the finite partition D, P(D), . . . , Pm−1(D), the map c coincides with
cP−k , which is ϕ-integrable since P−k ∈ [T]ϕ. Proposition 3.1.6 then yields to
the desired conclusion.

3.2.2 Cycles in the full group of a Bernoulli shift

In this section, we apply Theorem 3.2.2 in the concrete case of Bernoulli shifts.

Theorem 3.2.3. — Let ϕ be a metric-compatible function. Let A be a finite space,
κ the uniform measure on A, and m := |A|. Let T ∈ Aut(AZ, κZ) be the Bernoulli
shift. Let P ∈ [T]ϕ be a m-cycle with full support. If there exists a ∈ A such that
{(xn)n∈Z ∈ AZ : x0 = a} is a fundamental domain for P, then

lim
n

ϕ(n)√
n

= 0.

Proof. Let X := AZ and µ := κZ. Let a ∈ A such that the set D := {(xn)n∈Z ∈
X : x0 = a} is a fundamental domain for P. For all k ≥ 0, we let Xk be the random
variable defined by Xk(x) := 1D(T−k(x)). Then Xk is a Bernoulli random vari-
able with parameter P(Xk = 1) = µ(Tk(D)) = µ(D) = 1/m. Moreover, (Xk)k≥0
is a sequence of i.i.d. random variables. For all n ≥ 0, let Sn := X1 + . . . Xn. By
the central limit theorem, there is a constant C > 0 such that

lim
n

P

(∣∣∣∣n−mSn√
n

∣∣∣∣ ≤ 1
)
= C.
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Thus, for all n ≥ 1, we have

C ≤ E

[∣∣∣∣n−mSn√
n

∣∣∣∣] .

Moreover, by definition of Sn, we have

E

[∣∣∣∣n−mSn√
n

∣∣∣∣] = 1√
n

∫
X

∣∣∣∣∣n−m
n

∑
k=1

1D(T−k(x))

∣∣∣∣∣ dµ.

Finally, Theorem 3.2.2 implies that limn
ϕ(n)√

n = 0, as claimed.

Remark 3.2.4. — If ϕ is a metric-compatible function such that ϕ(n)/
√

n 6→ 0,
Theorem 3.2.3 yields that there is no m-cycle P in the ϕ-integrable full group of
the Bernoulli shift with base ({1, . . . , m}, κ) and with fundamental domain

{(xn)n∈Z : x0 = a}.

When m = 2, this result is optimal. In this case, one can construct an explicit
involution which belongs to the Lp full group of the Bernoulli shift for all p <

1/2, as follows. Let T be the Bernoulli shift on ({0, 1}, κ)⊗Z, where κ is the
uniform measure on {0, 1}. Let X0 := {(xn)n∈Z ∈ {0, 1}Z : x0 = 0}. For all
x ∈ X0, let N(x) be the infimum of n ≥ 1 such that 1 appears strictly more often
than 0 in {x1, . . . , xn}. Then the map π : x ∈ X0 7→ TN(x)(x) ∈ {0, 1}Z \ X0 is
well-defined and injective almost everywhere. Thus it can be extended to an
involution P ∈ [T] with full support and fundamental domain X0. Standard
estimates on the simple random walk on Z imply that P belongs to [T]p for all
0 < p < 1/2.
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Quantitative orbit equivalence
between Z and D∞
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In this chapter, we focus on quantitative aspects of orbit equivalences between
p.m.p. essentially free actions of two particular groups: the group of integers Z

and the infinite dihedral group D∞ , which admits the presentation

D∞ := 〈a, b | a2 = b2 = 1〉.

These groups are both infinite and amenable, so the theorem of Ornstein and
Weiss [OW80] implies that any p.m.p. ergodic action of Z is orbit equivalent to
any p.m.p. ergodic action of D∞. We prove the following quantitative result.

Theorem 4.0.1. — Let Z yα (X, µ) be an ergodic action. Then the following state-
ments holds.

(i) There exists an ergodic action D∞ yβ (Y, ν) such that α and β are L<1 orbit
equivalent.

(ii) By contrast, the action α is L1 orbit equivalent to some ergodic action of D∞ if and
only if the subgroup 2Z doesn’t act ergodically on (X, µ).

We refer to Section 4.1 for the definitions of L1 and L<1 orbit equivalence. We
prove item (ii) of Theorem 4.0.1 in Section 4.2. For this we use a result due to
Bowen, which says that any L1 orbit equivalence extends to the end compactifi-
cations of the groups [Bow17]. In Section 4.3, we prove a combinatorial result on
a special kind of involutions defined on Z that we call non-crossing. In Section
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4.4, we use this combinatorial result and the existence of non-crossing involution
in L<1 full-groups of ergodic transformations to prove item (i) of Theorem 4.0.1.

4.1 Preliminaries

Let Γ and Λ be two countable groups. Let Γ y (X, µ) be a p.m.p. action. A
cocycle into Λ is a map σ : Γ× X → Λ such that for all γ, δ ∈ Γ, x ∈ X,

σ(γδ, x) = σ(γ, δ · x)σ(δ, x).

Cocycles naturally appear with orbit equivalent actions. Two p.m.p. essen-
tially free actions Γ y (X, µ) and Λ y (Y, ν) are orbit equivalent if there exists
an orbit equivalence between them, that is, a bimeasurable bijection Φ : X → Y
such that Φ∗µ = ν and for µ-almost every x ∈ X, we have Φ(Γ · x) = Λ ·Φ(x).
The map Φ is called an orbit equivalence between the actions. By freeness of the
actions, there are two measurable maps σ : Γ×X → Λ and τ : Λ×Y → Γ, which
are called the orbit equivalence cocycles associated with Φ and are defined for
all γ ∈ Γ, λ ∈ Λ and µ-almost every x ∈ X by

Φ(γ · x) = σ(γ, x) ·Φ(x),

Φ(τ(λ, Φ(x)) · x) = λ ·Φ(x).

Assume that Γ and Λ are finitely generated groups and fix |·|Γ and |·|Λ word
lengths associated with finite generating systems for Γ and Λ respectively. We
say that an orbit equivalence Φ : (X, µ) → (Y, ν) is an Lp orbit equivalence
(p ∈]0,+∞[) if the following two conditions are satisfied:

(i)
∫

X
|σ(γ, x)|pΓdµ < +∞ for all γ ∈ Γ,

(ii)
∫

X
|τ(λ, x)|pΛdµ < +∞ for all λ ∈ Λ.

We say that Φ is an L∞ orbit equivalence if for all γ ∈ Γ and λ ∈ Λ, the
maps |σ(γ,−)|Γ et |τ(λ,−)|Λ are essentially bounded. In both cases, the condi-
tions are independent of the choice of the word length |·|Γ and |·|Λ associated
with finite generating systems. Moreover, the cocycle identity implies that it
is enough to check these integrability conditions for γ and λ belonging to any
finite generating system of Γ and Λ respectively.

We say that two p.m.p. actions Γ y (X, µ) and Λ y (Y, ν) are Lp orbit
equivalent (p ∈]0,+∞]) if there exists an Lp orbit equivalence between them.
Finally, we say that the p.m.p. actions are L<p orbit equivalent if there exists an
orbit equivalence which is an Lq orbit equivalence for all q < p.
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4.2 L1 orbit equivalence between Z and D∞

Let D∞ be the infinite dihedral group which is defined as the free product of two
copies of the cyclic group of order two. A presentation of D∞ is given by

D∞ := 〈a, b | a2 = b2 = 1〉.

Our aim in this section is to understand when an ergodic action of Z can be
L1 orbit equivalent to an ergodic action of D∞.

Proposition 4.2.1. — Let Z yα (Y, ν) be an ergodic action. If there exists a p.m.p.
essentially free action D∞ yβ (X, µ) such that α and β are L1 orbit equivalent, then the
subgroup 2Z doesn’t act ergodically on (X, µ).

Proof. Let Φ : (X, µ) → (Y, ν) be an L1 orbit equivalence between α and β.
Let σ : Z × X → D∞ and τ : D∞ × Y → Z be the orbit equivalence cocycles
associated with Φ. Let us define τ̃ : D∞ × Y → Z by τ̃(γ, y) = −τ(γ−1, y). By
Bowen’s theorem on extension of L1 orbit equivalence cocycles on the space of
ends [Bow17, Thm. 3.1], τ̃ extends to a continuous map

τ̃ : D∞ ∪ {ξab, ξba} ×Y → Z ∪ {−∞,+∞}

where ξab = (ab)∞, ξba = (ba)∞ are the two ends of D∞ and −∞,+∞ the two
ends of Z. The map τ̃ satisfies the extended cocycle identity: for all γ ∈ D∞,
ξ ∈ D∞ ∪ {ξab, ξba} and for ν-almost every y ∈ Y

τ̃(γξ, y) = τ̃(γ, y) + τ̃(ξ, β(γ−1)y).

Moreover, for ν-almost every y ∈ Y, we have {τ̃(ξab, y), τ̃(ξba, y)} = {−∞,+∞}.
In our case, the action of Z on its space of ends {−∞,+∞} is trivial, thus for
ν-almost every y ∈ Y and all γ ∈ D∞, we have

τ̃(γξab, y) = τ̃(ξab, β(γ−1)y) and τ̃(γξba, y) = τ̃(ξba, β(γ−1)y).

Therefore, for ν-almost every y ∈ Y,

τ̃(ξab, β((ab)−1)y) = τ̃(ξab, y).

This proves that the measurable sets

Y+∞ := {y ∈ Y : τ̃(ξab, y) = +∞} and Y−∞ := {y ∈ Y : τ̃(ξab, y) = −∞}

are both invariant under the action of ab. Moreover, if τ̃(ξab, y) = +∞, then
τ̃(ξba, y) = −∞. This implies that β(a)Y+∞ = Y−∞. Thus, the measures of Ya

and of Yb are non null. This shows that the subgroup of D∞ generated by ab
doesn’t act ergodically. We construct a new p.m.p. action of Z on (Y, ν) that we
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call α′. It is enough to define α′(1): for all y ∈ Y, let

α′(1)y :=
{

β(a)y if y ∈ Y+∞,
β(b)y if y ∈ Y−∞.

The action α′ is L∞ orbit equivalent to β (actually, α′ and β′ are isometric orbit
equivalent, see Chapter 5 for the definition of this notion). Since α and β are L1

orbit equivalent, we obtain that α and α′ are L1 orbit equivalent. By Belinskaya’s
theorem [Bel68], the ergodic actions α and α′ are flip conjugate. Since the sub-
group 2Z doesn’t act ergodically for α′, we deduce that it doesn’t act ergodically
for α, which concludes the proof.

Remark 4.2.2. — Another way to prove Proposition 4.2.1 would be to use a
result due to Le Maître. He proved that given any ergodic measure-preserving
transformation T ∈ Aut(X, µ), if there exists an involution P in the L1 full group
of T with full support, then T2 is not ergodic [LM18, Thm. 4.8]. Proposition

4.2.1 is then a direct consequence of this result.

Proposition 4.2.3. — Let Z yα (X, µ) be an ergodic action. If 2Z doesn’t act
ergodically on (X, µ), then α is L∞ orbit equivalent to an ergodic action of D∞.

Proof. Since 2Z does not act ergodically, there is a partition X = A t B into
measurable sets of measure 1/2 that are both invariant under 2Z. We define
a p.m.p. action D∞ yβ (X, µ) by the actions of its generators a and b. For all
x ∈ X, we let

β(a)x =

{
α(1)x if x ∈ A,
α(−1)x if x ∈ B,

β(b)x =

{
α(−1)x if x ∈ A,
α(1)x if x ∈ B.

By construction, the actions α and β are L∞ orbit equivalent (they are even iso-
metric orbit equivalent), which concludes the proof.

4.3 Non-crossing involutions

4.3.1 Definition and first properties

In this section, we denote by T the addition by 1 in Z, that is T(x) := x + 1 for
all x ∈ Z. For all k, l ∈ Z, we denote by [[k, l]] the interval of Z whose extremities
are k and l. In other words, if k ≤ l, then [[k, l]] := {k, k + 1, . . . , l} and if l ≤ k,
then [[k, l]] := {l, l + 1, . . . , k}.

Definition 4.3.1. — An involution P : Z → Z is non-crossing if for all x ∈ Z,
P([[x, P(x)]]) = [[x, P(x)]].
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Remark 4.3.2. — This is equivalent to saying that for all x, y ∈ Z, the intervals
[[x, P(x)]] and [[y, P(y)]] are either disjoint or one is contained in the other. The
non-crossing property has the following pictorial interpretation. For all x ∈ Z

such that P(x) 6= x, we draw the circular arc in the upper half-plane whose
extremities are x and P(x), which is perpendicular to the horizontal axis. Then
the involution P is non-crossing if and only if none of these circular arcs intersect.
We refer to these arcs as the P upper arcs in the sequel.

Figure 4.1. — A part of a non-crossing involution P.

We will focus on fixed-point free involutions P : Z → Z, that is, satisfying
P(x) 6= x for all x ∈ Z. We explain below some properties of fixed-point free,
non-crossing involutions that will be useful in the sequel.

Lemma 4.3.3. — Let P : Z → Z be a fixed-point free, non-crossing involution. Then
TPT−1 is a fixed-point free, non-crossing involution.

Proof. The map TPT−1 is an involution. Let us prove that it is non-crossing. For
all x ∈ Z, we have

y ∈ [[x, TPT−1(x)]]⇔ T−1(y) ∈ [[T−1(x), PT−1(x)]] = P([[T−1(x), PT−1(x)]])

⇔ PT−1(y) ∈ [[T−1(x), PT−1(x)]]

⇔ TPT−1(y) ∈ [[x, TPT−1(x)]].

This proves that TPT−1 is non-crossing. Finally TPT−1(x) = x if and only if
PT−1(x) = T−1(x). Since P has no fixed point, this proves that TPT−1 has no
fixed point.

Lemma 4.3.4. — Let P : Z → Z be a fixed-point free, non-crossing involution. Then
for all x ∈ Z, the number P(x)− x is odd.

Proof. Let x ∈ Z. Since P is non-crossing, we have P([[x, P(x)]]) = [[x, P(x)]]. This
implies that P induces an involution of the interval [[x, P(x)]]. This implies that
the cardinal of [[x, P(x)]] is even, because P has no fixed point. In other words,
P(x)− x is odd.

Lemma 4.3.5. — Let P : Z → Z be a fixed-point free, non-crossing involution. Let
x, y ∈ Z such that x < y and P([[x, y]]) = [[x, y]]. Then there exist x1, . . . , xk ∈ Z such
that x = x1 < P(x1) < · · · < xk < P(xk) = y and

[[x, y]] = [[x1, P(x1)]] t · · · t [[xk, P(xk)]].
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Proof. Let z ∈ [[x, y]]. Since P([[x, y]]) = [[x, y]], we get that P(z) ∈ [[x, y]] and thus
[[z, P(z)]] ⊆ [[x, y]] because P is non-crossing. This implies that for all z ∈ [[x, y]],
there exists a maximal interval of the form [[t, P(t)]] which contains z and is
contained in [[x, y]]. Since P is non-crossing, intervals of this form are either
disjoint, or equal by maximality. Thus, there are x1, . . . , xk ∈ [[x, y]] such that

[[x, y]] = [[x1, P(x1)]] t · · · t [[xk, P(xk)]].

By permuting the elements x1, . . . , xk and changing xi to P(xi) if necessary, we
may assume that x = x1 < P(x1) < · · · < xk < P(xk) = y.

4.3.2 A combinatorial result

Let P : Z → Z be a fixed-point free, non-crossing involution. By Lemma 4.3.3,
the map TPT−1 is a fixed-point free, non-crossing involution. Thus we can
represent it with non-crossing circular arcs but this time drawn in the lower
half-plane. We refer to these arcs as the TPT−1 lower arcs. Observe that the
TPT−1 lower arcs are obtained as the image of the P upper arcs by a reflexion
across the horizontal line, followed by the translation T : x 7→ x + 1.

Figure 4.2. — The P upper arcs and the TPT−1 lower arcs

In the following result, we prove that the graph with vertex set Z and edge
set {P upper arcs} ∪ {TPT−1 lower arcs} is connected.

Theorem 4.3.6. — Let P : Z → Z be a fixed-point free, non-crossing involution.
Then the action of the infinite dihedral group D∞ = 〈a, b | a2 = b2 = 1〉 on Z defined
by a · x = P(x) and b · x = TPT−1(x) is free and transitive.

Proof. Let G be the graph with vertex set Z and egde set {P upper arcs} ∪
{TPT−1 lower arcs}. We define the length of an arc to be the distance between
its extremities.

Claim. — For x ∈ Z such that a · x− x ≥ 1, there exists an integer n ≥ 1 such
that (ba)n · x = a · x + 1 and

{x, a · x, (ba) · x, (aba) · x, . . . , (ba)n · x} = [[x, a · x + 1]].
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This claim says that for such a point x, the path in the graph G which starts
at x, then takes a P upper arc, then a TPT−1 lower arc, etc., will visit exactly
every point in the interval [[x, a · x]] and then reach a · x + 1.

Proof of the claim. We prove this claim by induction on the length l of the P upper
arc with extremities x and a · x, which is odd by Lemma 4.3.4. If l = 1, then n = 1
works. Assume that the result of the claim holds for all P upper arcs of length
< 2d + 1. Let us prove that the result holds for any P upper arc of length
l := 2d + 1. Let x ∈ Z such that a · x − x = l. We apply Lemma 4.3.5 to the
interval [[x + 1, a · x− 1]], which is P-invariant. There is x1, . . . , xk ∈ Z such that
x + 1 = x1 < P(x1) < · · · < xk < P(xk) and

[[x + 1, a · x− 1]] = [[x1, P(x1)]] t · · · t [[xk, P(xk)]].

The P upper arcs with extremities xi and P(xi) are the P upper arcs located
immediately below the P upper arc with extremities x and a · x. The length of
any of these arcs is < l, thus one can use the induction hypothesis. There exists
integers n1, . . . , nk ≥ 1 such that for all 1 ≤ i ≤ k, we have (ba)ni · xi = a · xi + 1
and

{xi, a · xi, (ba) · xi, . . . , (ba)ni · x} = [[xi, a · xi + 1]].

By concatenating these results, we obtain the claim with n := n1 + · · ·+ nk + 1.
�claim

In order to prove that the graph G is connected, it is enough to prove that for
all x ∈ Z, the points x and x + 1 are connected. Let x ∈ Z. In both of the cases
a · x− x ≥ 1 and x− a · x ≥ 1, the fact that x and x + 1 are connected is a direct
consequence of the claim. Thus, G is connected, which proves the theorem.

4.4 L<1 orbit equivalence between Z and D∞

Let (X, µ) be a probability space. Let Aut(X, µ) be the group of all measure-
preserving transformations of (X, µ). The support of an element T ∈ Aut(X, µ)

is the set
supp(T) := {x ∈ X : T(x) 6= x}.

Let T ∈ Aut(X, µ) be ergodic. The full group of T, denoted by [T], is the group of
all bimeasurable bijections U : X → X such that U∗µ = µ and for all x ∈ X, there
exists nx ∈ Z such that U(x) = Tnx x. By ergodicity of T, every T-orbit is infinite
and thus the integer nx is unique. The map x 7→ nx is called the T-cocycle of U
and is denoted by cU. The L1 full group of T, denoted by [T]1 is the group of all
U ∈ [T] such that ∫

X
|cU(x)|dµ < +∞.

This group was introduced by Le Maître who proved that this is a complete
invariant of flip-conjugacy for ergodic actions of Z [LM18].
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The L<1 full group of T, denoted by [T]<1, is the group of all U ∈ [T] such
that for all p < 1, ∫

X
|cU(x)|pdµ < +∞.

Let x, y ∈ X be two points in the same T-orbit. Then there is a unique n ∈ Z

such that Tn(x) = y. We denote by [[x, y]]T the interval with extremities x and y,
which is defined by

[[x, y]]T :=
{
{x, T(x), . . . , Tn−1(x), y} if n ≥ 0,
{x, T−1(x), . . . , T−n+1(x), y} otherwise.

The length of the interval [[x, y]]T is equal to |n|. We say that a measurable subset
B ⊆ X is l-separated for T if for all x, y ∈ B distinct, the length of the interval
[[x, y]]T is ≥ l. The following result is an easy consequence of Rokhlin’s lemma
[Rok67].

Lemma 4.4.1. — Let T ∈ Aut(X, µ) be ergodic. Then for all l ≥ 1, there exists B ⊆ X
of positive measure which is l-separated for T.

The measure of such a set B satisfies µ(B) ≤ 1/l. We will use l-separated
sets to construct involutions in full groups which are non-crossing.

Definition 4.4.2. — Let T ∈ Aut(X, µ) be ergodic. An involution P ∈ [T] is
non-crossing if for µ-almost every x ∈ X, we have P([[x, P(x)]]T) = [[x, P(x)]]T.

Let T ∈ Aut(X, µ) be ergodic and let A ⊆ X be of positive measure. The first
return time of T to A is the map nT,A : A→ N ∪ {+∞} defined for all x ∈ A by

nT,A(x) := inf{n ∈ N : Tn(x) ∈ A}.

By Poincaré recurrence theorem, nT,A(x) is finite for µ-almost every x ∈ A. The
first return map of T to A is the map TA : A→ A given for µ-almost every x ∈ A
by

TA(x) := TnT,A(x)(x).

If we denote by µA the measure on A induced by µ, that is, the measure defined
for all B ⊆ A by µA(B) := µ(B)/µ(A), then TA ∈ Aut(XA, µA) is ergodic. We
recall that by Kac’s Lemma [Kac47], we have∫

A
nT,A(x)dµ = 1.

We now prove that there exist non-crossing involutions with full support in
L<1 full groups. This result is implicitly contained in the proof of [CJLMT22,
Thm. 3.1]. We provide here a complete proof.

Theorem 4.4.3. — Let T ∈ Aut(X, µ) be ergodic. Then there exists a non-crossing
involution P ∈ [T]<1 with full support.
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Proof. Let T1 := T and A1 = X. By Lemma 4.4.1, we fix an 2-separated subset
B1 ⊆ A1 of positive measure. For all x ∈ A1, let n1(x) be the smallest integer
n ≥ 0 such that x ∈ Tn

1 (B1). This is finite for µ-almost every x ∈ X by the
Poincaré recurrence theorem. Let A2 ⊆ A1 be the measurable subset given by

A2 := {x ∈ A1 : n1(x) is even and n1(T1(x)) = 0}.

If µ(A2) > 0, then we construct n2. We denote by T2 : A2 → A2 the first
return map of T1 with respect to A2. By Lemma 4.4.1, one gets B2 ⊆ A2 a 22-
separated subset for T2 of positive measure. Then for all x ∈ A2, we define
n2(x) as the smallest integer n ≥ 0 such that x ∈ Tn

2 (B2). Let A3 ⊆ A2 be the
measurable subset given by

A3 := {x ∈ A2 : n2(x) is even and n2(T2(x)) = 0}.

If µ(A3) > 0, we next construct n3. We let T3 be the first return map of T2

with respect to A3 and we consider B3 ⊆ A3 a 23-separating subset for T3 of
positive measure. Then for all x ∈ A3 we define n3(x) as the smallest integer
n ≥ 0 such that x ∈ Tn

3 (B3).

Assume that this construction can be run indefinitely. We then obtain a
sequence of decreasing subsets of positive measure X = A1 ⊇ A2 ⊇ . . . , a
sequence of measure preserving transformations Tk : Ak → Ak, a sequence
Bk ⊆ Ak of 2k-separated sets for Tk of positive measure, and a sequence of maps
nk : Ak → N. For all k ≥ 1, the map Tk+1 is the first return time of Tk on Ak+1,
where

Ak+1 := {x ∈ Ak : nk(x) is even and nk(Tk(x)) = 0}.

Thus we deduce that Tk(Ak+1) ⊆ Bk. Since Bk is 2k-separated for Tk, we obtain
that µ(Ak+1) ≤ µ(Bk) ≤ µAk(Bk) ≤ 1/2k. This implies that the sequence of
sets (Ak \ Ak+1)k≥1 forms a partition of X. We now define the non-crossing
involution P. For all k ≥ 1 and all x ∈ Ak \ Ak+1, we let

P(x) :=
{

Tk(x) if nk(x) is even and nk(Tk(x)) 6= 0,
(Tk)

−1(x) if nk(x) is odd.

By construction, P is a non-crossing involution with full support contained in
the full group [T]. We need to prove that P ∈ [T]<1. Let cP be the T-cocycle of
P. For all x ∈ A1 \ A2, we have |cP(x)| = 1. Let k ≥ 2 and let x ∈ Ak \ Ak+1. The
facts that Bk−1 is 2k−1-separated for Tk−1 and that Tk−1(Ak) ⊂ Bk−1 yields

2k−1 ≤ |cP(x)|.
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Thus, for all 0 < p < 1, we have∫
X
|cP(x)|pdµ = µ(A1 \ A2) + ∑

k≥2

∫
Ak\Ak+1

|cP(x)|p−1|cP(x)|dµ

≤ µ(A1 \ A2) + ∑
k≥2

2(k−1)(p−1)
∫

Ak\Ak+1

|cP(x)|dµ.

Claim. — For all k ≥ 1, we have
∫

Ak\Ak+1

|cP(x)|dµ ≤ 2.

Proof of the claim. For all k ≥ 1, we define

Lk := {x ∈ Ak : nk(x) is even and nk(Tk(x)) 6= 0}.

Set Rk := P(Lk). Then Ak \ Ak+1 = Lk t Rk. Moreover, for all x ∈ Lk we have
cP(x) = nT,Ak(x) and for all x ∈ Rk we have cP(x) = −nT,Ak(P(x)). Thus∫

Ak\Ak+1

|cP(x)|dµ = 2
∫

Lk

nT,Ak(x)dµ

≤ 2
∫

Ak

nT,Ak(x)dµ

= 2,

where the last equality is given by Kac’s lemma. �claim

Therefore, we get that
∫

X|cP(x)|pdµ is finite for every 0 < p < 1, which
proves that P ∈ [T]<1.

If along the above construction we get µ(An) = 0 for some n ≥ 1, then we
define P := P1 t · · · t Pn. By the same computation, this yields a non-crossing
involution with full support in [T]<1.

Theorem 4.4.4. — Let Z yα (X, µ) be an ergodic action. Then there exists an ergodic
action D∞ yβ (Y, ν) such that α and β are L<1 orbit equivalent.

Proof. Let T := α(1). By Theorem 4.4.3, let P ∈ [T]<1 be a non-crossing involu-
tion with full support. Then TPT−1 is also a non-crossing involution with full
support, which belongs to [T]<1. Let D∞ yβ (X, µ) be the p.m.p. action defined
by β(a)x := P(x) and β(b)x := TPT−1(x). By Theorem 4.3.6, for µ-almost every
x ∈ X, the restriction of β to the T-orbit of x is transitive. This proves that idX
is an orbit equivalence between α and β. Moreover, the fact that P and TPT−1

belong to [T]<1 implies right away that α and β are L<1 orbit equivalent.

It is unclear how to prove a “dual” result to Theorem 4.4.4. That is, given
an ergodic action D∞ yα (X, µ), is there a way to construct an ergodic action
Z yβ (Y, ν) such that α and β are L<1 orbit equivalent?
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Isometric orbit equivalence for
probability-measure preserving

actions

The content of this chapter is the same as that of the article [Jos22]
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5.1 Introduction

The purpose of this chapter is to compare probability-measure preserving ac-
tions of finitely generated groups via the graphings they define. A graphing on
a probability space (X, µ) is a graph G whose vertex set is X and whose edge set
is a measurable, symmetric subset of X × X, such that the equivalence relation
R "belonging to the same connected component of G" satisfies the following
two conditions: (i) each R-class is countable, (ii) any bimeasurable bijection
T : A→ B between measurable subsets A, B ⊆ X, such that (x, T(x)) ∈ R for all
x ∈ X, preserves the measure µ.

Graphings have seen recently a sharp rise in interest as they play an impor-
tant role in graph limit theory. Indeed, they serve as limit objects for sequences
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of bounded degree graphs, see [Lov12, Part 4] for an introduction to this theory.
They are also one of the main objects in the cost theory of p.m.p. actions, which
was extensively studied by Gaboriau [Gab00].

Graphings are closely related to probability measure preserving actions of
countable groups. A probability measure preserving action (p.m.p. action for
short) Γ yα (X, µ) of a countable group Γ on a standard probability space (X, µ)

is a collection (α(γ))γ∈Γ of bimeasurable bijections α(γ) : X → X which preserve
the probability measure µ, such that for all γ, δ ∈ Γ, we have α(γδ) = α(γ)α(δ).
A p.m.p. action is essentially free if the set of points with trivial stabilizer has
full measure. A p.m.p. action is ergodic if any measurable set, which is invariant
under the action, has measure 0 or 1. Assume that Γ is finitely generated and fix
S a finite generating system for Γ, that is, a finite symmetric set which generates
the group and which does not contain the identity element 1Γ. To any p.m.p.
action Γ yα (X, µ), one can associate a graphing, denoted by α(SΓ), whose
vertex set is X, and whose edge set is the symmetric set {(x, x′) ∈ X × X : ∃s ∈
S, α(s)x = x′}.

The spirit of this article fits into the framework of quantitative orbit equiva-
lence and more generally quantitative measure equivalence, [DKLMT20]. These
nascent areas aim to understand how metric structures on p.m.p. actions are
distorted under orbit and measure equivalences.

Bounded orbit equivalence appears to be an important notion of quantitative
orbit equivalence. For instance, in the entropy theory, Austin proved that any
two p.m.p. essentially free actions of amenable groups that are bounded orbit
equivalent (and even integrable orbit equivalent) have the same Kolmogorov-
Sinai entropy [Aus16]. Bowen and Lin proved that any two p.m.p. essentially free
actions of a free group of finite rank, which are bounded orbit equivalent, have
the same f -invariant [BL22]. Let Γ and Λ be two finitely generated groups and
fix two finite generated systems SΓ and SΛ for Γ and Λ respectively. We say that
two p.m.p. actions Γ yα (X, µ) and Λ yβ (Y, ν) are bounded orbit equivalent
if there exists a constant C > 0 and a bimeasurable bijection Φ : X → Y such
that Φ∗µ = ν and for µ-almost every x ∈ X, the map Φ is a C-biLipschitz
map between the connected component of x ∈ X in the graphing α(SΓ) and the
connected component of Φ(x) ∈ Y in the graphing β(SΛ). It is straightforward
to check that bounded orbit equivalence does not depend on the choice of finite
generating systems for the groups.

This notion retains the geometry of the group. For instance, the follow-
ing result can be extracted from Shalom’s work [Sha04]: two finitely generated
amenable groups Γ and Λ admit p.m.p. essentially free actions that are bounded
orbit equivalent if and only if Γ and Λ are biLipschitz equivalent. This result
is very specific to the amenable realm, as for instance free groups of different
finite ranks are biLipschitz equivalent [Pap95] but not bounded orbit equivalent
because they are not even orbit equivalent [Gab00]. While bounded orbit equiv-
alence is related to the study of graphings which are uniformly biLipschitz, we
propose here to study graphings associated with p.m.p. actions up to isometry.
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Definition 5.1.1. — Let Γ and Λ be two finitely generated groups and fix
two finite generating systems SΓ and SΛ respectively. Two p.m.p. actions Γ yα

(X, µ) and Λ yβ (Y, ν) are isometric orbit equivalent if the graphings α(SΓ) and
β(SΛ) are isometric in a measurable sense, that is, if there exists a bimeasurable
bijection Φ : X → Y such that Φ∗µ = ν and for µ-almost every x ∈ X, the map
Φ is an isometry between the connected component of x ∈ X in the graphing
α(SΓ) and the connected component of Φ(x) ∈ Y in the graphing β(SΛ).

Beware that contrary to bounded orbit equivalence, the notion of isometric
orbit equivalence heavily depends on the choice of generating systems. In each
of the statements in this article, when we say that two actions are isometric orbit
equivalent, it refers to the generating systems of the groups that are fixed and
clear in the context.

Consider Γ a finitely generated group and fix SΓ a finite generating system
of it. The Cayley graph (Γ, SΓ) is the graph whose vertex set is Γ and whose
edge set is the symmetric set {(γ, δ) ∈ Γ2 : ∃s ∈ SΓ, δ = γs}. We endow the
Cayley graph with its graph distance. Two Cayley graphs (Γ, SΓ) and (Λ, SΛ)

are isometric if there exists a bijective isometry between them. Our first result
shows that the existence of isometric orbit equivalent actions that are essentially
free is connected to the isometry class of the Cayley graph.

Theorem 5.1.2 (see Theorem 5.3.3). — Let Γ and Λ be two finitely generated groups
and fix two finite generating systems SΓ and SΛ respectively. Then Γ and Λ admit
p.m.p. essentially free actions that are isometric orbit equivalent if and only if the Cayley
graphs (Γ, SΓ) and (Λ, SΛ) are isometric.

One direction of this result is immediate, because in the graphing associated
with any p.m.p. essentially free action, almost every connected component is iso-
metric to the Cayley graph of the acting group. Thus, an isometric orbit equiv-
alence between p.m.p. essentially free actions leads to an isometry between the
Cayley graphs on almost every connected components of the associated graph-
ings. The converse is proved using the space Iso(Γ, Λ) of bijective isometries
from (Γ, SΓ) to (Λ, SΛ). The group Λ acts by postcomposition on Iso(Γ, Λ). Sim-
ilarly, the group Γ acts by postcomposition on the space Iso(Λ, Γ) of bijective
isometries from Λ to Γ. We prove that the quotient actions Γ y Iso(Γ, Λ)/Λ and
Λ y Iso(Λ, Γ)/Γ, endowed with their respective Haar probability measures, are
isometric orbit equivalent, see Corollary 5.3.2.

This connection between Cayley graph and isometric orbit equivalence leads
to interesting rigidity results. Given a finitely generated group Γ with a generat-
ing system SΓ, we denote by Iso(Γ) the group of bijective isometries of the Cayley
graph (Γ, SΓ). Equivalently, Iso(Γ) is isomorphic to the group of all graph auto-
morphisms of the Cayley graph. We prove the following result using techniques
introduced by Furman in [Fur99].

Theorem 5.1.3 (see Theorem 5.4.1). — Let Γ and Λ be two finitely generated groups
and fix two finite generating systems SΓ and SΛ respectively. Assume that the Cayley
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graphs (Γ, SΓ) and (Λ, SΛ) are isometric. Let Γ yα (X, µ) and Λ yβ (Y, ν) be two
p.m.p. essentially free actions that are isometric orbit equivalent. If Iso(Γ) (equivalently
Iso(Λ)) is countable, then

(i) There exists finite index subgroups Γ0 ≤ Γ and Λ0 ≤ Λ which are isomorphic.

(ii) There exists a Γ0-invariant subset X0 ≤ X of positive measure and a Λ0-invariant
subset Y0 ≤ Y of positive measure such that the p.m.p. actions Γ0 y (X0, µX0)

and Λ0 y (Y0, νY0) are measurably isomorphic.

If in addition, every finite index subgroup of Γ acts ergodically on (X, µ), then Γ and Λ
are isomorphic and α and β are measurably isomorphic.

We discuss concrete examples of finitely generated groups Γ = 〈SΓ〉 such
that Iso(Γ) is countable in Example 5.4.3. For instance, if Zd is equipped with
any finite generating set SZd , then the Cayley graph (Zd, SZd) has only count-
ably many bijective isometries. The ergodicity constraint on any finite index
subgroup is fulfilled for instance by Bernoulli shifts, or more generally by any
mixing action. A p.m.p. action Γ yα (X, µ) is mixing if for any measurable
subset A, B ⊆ X,

µ(α(γ)A ∩ B) −→
γ→+∞

µ(A)µ(B).

The isometric orbit equivalence rigidity result obtained in Theorem 5.1.3 is false
in the context of bounded orbit equivalence. Indeed, Fieldsteel and Friedman
proved that for any d ≥ 2 and any ergodic action Zd yα (X, µ), there exists a
mixing p.m.p. action Zd yβ (Y, ν) such that α and β are bounded orbit equiva-
lent [FF86, Thm. 3].

Let Fd be the free group on d ≥ 2 generators x1, . . . , xd with its generating set
SFd = {x

±1
1 , . . . , x±1

d }. Then the Cayley graph (Fd, SFd) has uncountably many bi-
jective isometries. We prove the following statement, which shows in particular
that Theorem 5.1.3 is false in general if Iso(Γ) is uncountable.

Theorem 5.1.4. — There exists ergodic actions Fd yα (X, µ) and Fd yβ (Y, ν) that
are isometric orbit equivalent, such that α is not mixing but β is.

Therefore, mixing is not invariant under isometric orbit equivalence. Theo-
rem 5.1.4 is false for F1 ' Z. In fact, for ergodic actions of Z, Belinskaya proved
in [Bel68] that any two p.m.p. ergodic actions of Z that are L1 orbit equivalent
are flip-conjugate, that is, measurably isomorphic up to an automorphism of the
group Z.

Theorem 5.1.4 is proved using a general construction of isometric orbit equiv-
alent actions that we explain now. For a concrete illustration of Theorem 5.1.4,
we refer to Section 5.5.3.

Let Γ be a finitely generated group and fix SΓ a finite generating system.
Let Λ ≤ Γ be a finite index subgroup. The groups Λ and Γ both act by post-
composition on Iso(Γ). Then we prove in Section 5.5.1 that the quotient action
Γ y Iso(Γ)/Λ, equipped with its Haar probability measure, is isometric orbit
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equivalent to the diagonal action Γ y Iso(Γ)/Γ× Γ/Λ, equipped with the prod-
uct of the Haar probability measure and the uniform probability measure. The
aim in order to prove Theorem 5.1.4 becomes to show that for some subgroups
Λ ≤ Fd, the action Fd y Iso(Fd)/Λ is mixing. We actually give a complete char-
acterization of such subgroups Λ in Section 5.5.2. Along the proof, we use the
Howe-Moore property satisfied by the group Iso(Fd), a result due independently
to Lubotzky and Mozes [LM92] and to Pemantle [Pem92].

5.2 Preliminaries

5.2.1 Cayley graph

In the text, if we write Γ = 〈S〉, we always mean that Γ is a countable group
and S a generating system for Γ, that is, a symmetric set which generates Γ,
and which does not contain the identity element 1Γ of Γ. In the case where the
generating system S is finite, then we say that Γ is finitely generated. When
we say that Γ = 〈S〉 is finitely generated, we implicitly mean that S is a finite
generating system.

Let Γ = 〈S〉 be a countable group. We denote by |·|S the word length on Γ
with respect to the generating system S. It is defined by |1Γ|S = 1 and for all
γ ∈ Γ \ {1Γ},

|γ|S := min{n ∈ N : ∃s1, . . . , sn ∈ S, γ = s1 . . . sn}.

The Cayley graph of Γ = 〈S〉, denoted (Γ, S), is the simplicial graph whose
vertex set is Γ endowed with the metric (γ, δ) 7→ |γ−1δ|S, called the word metric.
In practice, this means that (Γ, S) is a graph without multiple edges or loops and
there is an edge between two vertices γ, δ ∈ Γ if and only if there is s ∈ S such
that γ = δs. A map f : Γ→ Γ is an isometry if for all γ, δ ∈ Γ we have

|γ−1δ|S = | f (γ)−1 f (δ)|S.

The group of bijective isometries of a Cayley graph (Γ, S) is the group denoted
by Iso(Γ, S) of all bijections f : Γ → Γ which are isometries. The action of Γ
by left multiplication on itself yields a canonical injective group homomorphism
Γ ↪→ Iso(Γ, S). Thus, Γ identifies naturally as a subgroup of Iso(Γ, S). Each time
the generating set is clear in the context, we will write Iso(Γ) instead of Iso(Γ, S).
In the literature, the group Iso(Γ) is often referred to as the automorphism group
of the Cayley graph (Γ, SΓ) and denoted by Aut(Γ, SΓ).

Let Γ = 〈SΓ〉 and Λ = 〈SΛ〉 be two countable groups. A map f : Γ→ Λ is an
isometry if for all γ, δ ∈ Γ we have

|γ−1δ|SΓ = | f (γ)−1 f (δ)|SΛ .

Let Iso((Γ, SΓ), (Λ, SΛ)) be the space of bijective isometries between the Cayley
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graphs (Γ, SΓ) and (Λ, SΛ). We say that the Cayley graphs (Γ, SΓ) and (Λ, SΛ) are
isometric if Iso((Γ, SΓ), (Λ, SΛ)) is nonempty. Again, if the generating systems
are clear in the context, we will write Iso(Γ, Λ) instead of Iso((Γ, SΓ), (Λ, SΛ)).

Example 5.2.1. — Here are some examples of finitely generated groups with
isometric Cayley graphs.

1. Let Γ = Z be equipped with its usual generating system SΓ = {−1,+1}.
Let Λ be the infinite dihedral group D∞, that is, the free product of two
copies of the cyclic group C2 of order two. A presentation of D∞ is given
by

D∞ := 〈a, b | a2 = b2 = 1〉.

Let SΛ be the usual generating system {a, b}. Then the Cayley graphs
(Γ, SΓ) and (Λ, SΛ) are isometric.

2. More generally, let Γ = Fd be the free group on d ≥ 2 generators x1, . . . , xd,
and let SΓ be the generating system {x±1

1 , . . . , x±1
d }. Let Λ be the free

product of 2d copies of C2, whose presentation is given by

Λ = 〈a1, . . . , a2d | a2
1 = · · · = a2

2d = 1〉,

and SΛ be the usual generating system {a1, . . . , a2d}. Then the Cayley
graphs (Γ, SΓ) and (Λ, SΛ) are isometric.

3. Let m, n ≥ 2 be two integers. Let Fm and Fn be the free group on m
generators x1, . . . , xm and on n generators y1, . . . , yn respectively. Let Γm,n

be the direct product Fm × Fn and SΓm,n be the generating system

SΓm,n := {(x±1
1 , 1Fn), . . . , (x±1

m , 1Fn), (1Fm , y±1
1 ), . . . , (1Fm , y±1

n )}.

It follows from the work of Burger and Mozes [BM00a, BM00b] that for
appropriate values of m and n, the Cayley graph (Γm,n, SΓm,n) is isometric
to the Cayley graph of some virtually simple group.

4. Dyubina observed in [Dyu00] that there exist finitely generated groups Γ =

〈SΓ〉 and Λ = 〈SΛ〉 with isometric Cayley graphs, such that Γ is solvable
but Λ not virtually solvable. This illustrates the fact that several algebraic
properties are not preserved under the property of having isometric Cayley
graphs.

5.2.2 Definition of isometric orbit equivalence

Let (X, µ) be a standard probability space. A bimeasurable bijection T : X → X
is a p.m.p. automorphism of (X, µ) if for all measurable set A ⊆ X, one has
µ(T−1(A)) = µ(A). We denote by Aut(X, µ) the group of all p.m.p. automor-
phisms of (X, µ), two such automorphisms being identified if they coincide on
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a conull set. A bimeasurable bijection T : (X, µ) → (Y, ν) between two stan-
dard probability spaces is a p.m.p. isomorphism if T∗µ = ν. A p.m.p. auto-
morphism T ∈ Aut(X, µ) is aperiodic if the T-orbit of µ-almost every x ∈ X is
infinite. A p.m.p. action of a countable group Γ on (X, µ) is a homomorphism
α : Γ → Aut(X, µ). It is essentially free if for each γ ∈ Γ \ {1Γ}, the p.m.p.
automorphism α(γ) is aperiodic. If there is no need to give a name to the p.m.p.
action α, we simply write γx instead of α(γ)x.

A p.m.p. partial automorphism on (X, µ) is a bimeasurable bijection T : A→
B between measurable subsets A, B ⊆ X, which preserves the measure, that
is, for all measurable subset C ⊆ A, one has µ(T(C)) = µ(C). A graphing
on (X, µ) is a countable set Θ := {Ti : Ai → Bi | i ∈ I} of p.m.p. partial
automorphisms. The shortest path distance dΘ(x, y) between two distinct points
x, y ∈ X is the smallest integer n ∈ N ∪ {+∞} such that there exists i1, . . . , in ∈ I
and ε1, . . . , εn ∈ {±1} such that y = Tε1

i1
. . . Tεn

in (x). This defines an (extended)
metric dΘ : X× X → N ∪ {+∞}.

Definition 5.2.2 (Isometric graphings). — Two graphings Θ on (X, µ) and Ξ
on (Y, ν) are measurably isometric if there exists a p.m.p. isomorphism Φ :
(X, µ)→ (Y, ν) such that for µ-a.e. x, x′ ∈ X we have

dΞ(Φ(x), Φ(x′)) = dΘ(x, x′).

Definition 5.2.3 (Isometric orbit equivalence). — Let Γ = 〈SΓ〉 and Λ = 〈SΛ〉
be two countable groups. Two p.m.p. actions Γ yα (X, µ) and Λ yβ (Y, ν) are
isometric orbit equivalent if the graphings α(SΓ) on (X, µ) and β(SΛ) on (Y, ν)

are measurably isometric.

In the definition of isometric orbit equivalence, both groups Γ and Λ come
with their fixed generating system. It is thus noteworthy that the notion of
isometric orbit equivalence heavily depends on the generating systems of the
groups.

Example 5.2.4. — Let T ∈ Aut(X, µ) be an aperiodic transformation. Let C2 be
the cyclic group of order two, and ν be the uniform probability measure on C2.
Let α be the p.m.p. Z-action on (X× C2, µ⊗ ν) defined by

α(n)(x, ε) :=
{

(Tn(x), ε) if n is even,
(Tn(x), 1− ε) if n is odd.

Let β be the p.m.p. action of the infinite dihedral group D∞ := 〈a, b | a2 = b2 = 1〉
on (X× C2, µ⊗ u) defined by the action of the two generators

β(a)(x, 0) := (T(x), 1), β(a)(x, 1) := (T−1(x), 0),

β(b)(x, 1) := (T(x), 0), β(b)(x, 0) := (T−1(x), 1).

Then the graphings α({±1}) and β({a, b}) are measurably isometric. Thus, if Z
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is equipped with the generating system SZ := {±1} and D∞ with the generating
system SD∞ , then the p.m.p. actions α and β are isometric orbit equivalent.

Example 5.2.5. — Let Γ = 〈SΓ〉 be a finitely generated group. Let Γ yα (X, µ)

be a p.m.p. action and define

E := {(x, x′) ∈ X× X : ∃s ∈ SΓ, α(s)x = x′}.

Fix a proper d-coloring on E, that is, a measurable map c : E → {1, . . . , d} such
that for µ-almost every x, x′, x′′ ∈ X, if (x, x′) and (x, x′′) are distinct elements
of E, then c(x, x′) 6= c(x, x′′). This always exists when d is large enough (see
[CLP16] for a precise statement) and the smallest such d is called the measurable
edge chromatic number of the graphing α(SΓ). Let Λ be the group given by the
presentation

Λ := 〈a1, . . . , ad | a2
1 = · · · = a2

d = 1〉

and let SΛ be the generating system {a1, . . . , ad}. Let β be the p.m.p. action of Λ
defined by the action of its generators

β(ai)(x) :=
{

x′ if (x, x′) ∈ E is such that c(x, x′) = i,
x else.

Then the p.m.p. actions α and β are isometric orbit equivalent.

We now explain a way to prove that p.m.p. actions are isometric orbit equiv-
alent. For this, we need to introduce the notion of length-preserving cocycle.
Let Γ and Λ be two countable groups. Let Γ y (X, µ) be a p.m.p. action. A
measurable function σ : Γ× X → Λ is a cocycle if for all γ, δ ∈ Γ,

σ(γδ, x) = σ(γ, δx)σ(δ, x) for µ-almost every x ∈ X.

If Γ = 〈SΓ〉 and Λ = 〈SΛ〉, we say that a cocycle σ : Γ × X → Λ is length-
preserving if for all γ ∈ Γ,

|σ(γ, x)|SΛ = |γ|SΓ for µ-almost every x ∈ X.

Lemma 5.2.6. — Let Γ = 〈SΓ〉 and Λ = 〈SΛ〉 be two countable groups. Let
Γ yα (X, µ) and Λ yβ (Y, ν) be two p.m.p. actions. Assume that there is a p.m.p.
isomorphism Φ : (X, µ) → (Y, ν) and two length-preserving cocycles σ : Γ× X → Λ
and τ : Λ×Y → Γ such that for all γ ∈ Γ, λ ∈ Λ,

Φ(α(γ)x) = β(σ(γ, x))Φ(x), for µ-almost every x ∈ X,

Φ(α(τ(λ, y))Φ−1(y)) = β(λ)y, for ν-almost every y ∈ Y.

Then α and β are isometric orbit equivalent.

Proof. Let us prove that for µ-almost every x, x′ ∈ X, we have dα(SΓ)(x, x′) =

dβ(SΛ)
(Φ(x), Φ(x′)). Let x, x′ ∈ X. First, we have dα(SΓ)(x, x′) = +∞ if and only
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if dβ(SΛ)
(Φ(x), Φ(x′)) = +∞. Thus, we can assume that dα(SΓ)(x, x′) < +∞. Let

γ ∈ Γ such that dα(SΓ)(x, x′) = |γ|SΓ and α(γ)x = x′. We have

dβ(SΛ)
(Φ(x), Φ(x′)) = dβ(SΛ)

(Φ(x), β(σ(γ, x))Φ(x))

≤ |σ(γ, x)|SΛ

= |γ|SΓ

= dα(SΓ)(x, x′).

The reverse inequality is proved in a similar way, using the fact that τ is length-
preserving. We thus obtain that

dβ(SΛ)
(Φ(x), Φ(x′)) = dα(SΓ)(x, x′),

which proves that α and β are isometric orbit equivalent.

5.2.3 Isometric orbit equivalence for essentially free actions

Two p.m.p. actions of two countable groups Γ y (X, µ) and Λ y (Y, ν) are
orbit equivalent if there exists an orbit equivalence between them, that is, a
p.m.p. isomorphism Φ : (X, µ)→ (Y, ν) such that for µ-almost every x ∈ X,

Φ(Γx) = ΛΦ(x).

Consider now two p.m.p. essentially free actions Γ y (X, µ) and Λ y (Y, ν)

and let Φ : (X, µ) → (Y, ν) be an orbit equivalence between them. We therefore
have two maps, which are uniquely defined by freeness of the actions:

σ : Γ× X → Λ, Φ(γx) = σ(γ, x)Φ(x),

τ : Λ×Y → Γ, Φ(τ(λ, y)Φ−1(y)) = λy.

They are called the orbit equivalence cocycles associated with Φ. Moreover, they
satisfy the following properties.

Lemma 5.2.7 (Properties of the orbit equivalence cocycles). — For µ-almost every
x ∈ X and ν-almost every y ∈ Y, the following are true.

(i) (Cocycles) The maps σ : Γ× X → Λ and τ : Λ× X → Γ are cocycles.

(ii) (Bijections) The maps σ(−, x) : Γ→ Λ and τ(−, y) : Λ→ Γ are bijections which
are inverse one of each other: for all γ ∈ Γ, λ ∈ Λ,

σ(τ(λ, y), Φ−1(y)) = λ and τ(σ(γ, x), Φ(x)) = γ.

(iii) (Fixing the identity) We have σ(1Γ, x) = 1Λ and τ(1Λ, y) = 1Γ.
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Remark 5.2.8. — Let [Γ, Λ] be the set of maps f : Γ → Λ such that f (1Γ) =

f (1Λ). There is a natural action Γ y [Γ, Λ] defined by

(γ · f )(δ) := f (γ−1)−1 f (γ−1δ).

A randomorphism from Γ to Λ is a Γ-invariant probability measure on [Γ, Λ],
see [Mon06, Def. 5.2]. Monod observed that randomorphisms supported on
bijections can be obtained via orbit equivalences as follows. Let Φ be an orbit
equivalence between p.m.p. essentially free actions Γ y (X, µ) and Λ y (Y, ν).
Let σ : Γ×X → Λ and τ : Λ×Y → Γ be the orbit equivalence cocycles associated
with Φ. For x ∈ X and y ∈ Y, let σx : Γ→ Λ and τy : Λ→ Γ be defined by

σx(γ) := σ(γ−1, x)−1,

τy(λ) := τ(λ−1, y)−1.

We deduce by Lemma 5.2.7 that σx is a bijection such that σx(1Γ) = 1Λ. Similarly,
we get that τy is a bijection such that τy(1Λ) = 1Γ. Moreover, the cocycle identity
for σ and τ implies that x ∈ X 7→ σx ∈ [Γ, Λ] is Γ-equivariant and that y ∈
Y 7→ τy ∈ [Λ, Γ] is Λ-equivariant. Thus, the pushforward of µ by x 7→ σx is a
randomorphism from Γ to Λ supported on bijections. Similarly, the pushforward
of ν by y 7→ τy is a randomorphism from Λ to Γ supported on bijections.

Isometric orbit equivalent actions was defined in Definition 5.2.3 thanks to
the graphings associated with the actions. We now characterize isometric orbit
equivalent actions in terms of cocycles. In Lemma 5.2.11, we will prove that two
essentially free actions are isometric orbit equivalent if and only if there exists
an orbit equivalence whose associated cocycles are length-preserving.

Definition 5.2.9. — Let Γ = 〈SΓ〉 and Λ = 〈SΛ〉 be two countable groups. Let
Φ : (X, µ) → (Y, ν) be an orbit equivalence between two p.m.p. essentially free
actions Γ y (X, µ) and Λ y (Y, ν). We say that Φ is a length-preserving orbit
equivalence if the orbit equivalence cocycles σ : Γ× X → Λ and τ : Λ× X → Γ
associated with Φ are length-preserving.

Remark 5.2.10. — Let Γ = 〈SΓ〉 and Λ = 〈SΛ〉 be two countable groups. Let
Iso1(Γ, Λ) be the set of f ∈ Iso(Γ, Λ) such that f (1Γ) = 1Λ. This is a subspace of
[Γ, Λ] which is invariant under the action Γ y Iso1(Γ, Λ) defined by

(γ · f )(δ) := f (γ−1)−1 f (γ−1δ).

Inspired by the language of randomorphism proposed by Monod [Mon06], we
say that a Γ-invariant probability measure on Iso1(Γ, Λ) is a randisometry from
Γ to Λ. Randisometries can be obtained via length-preserving orbit equivalence
as follows. Let Φ be a length-preserving orbit equivalence between two p.m.p.
essentially free actions Γ y (X, µ) and Λ y (Y, ν). Let σ : Γ× X → Λ and τ :
Λ× Y → Γ be the orbit equivalence cocycles associated with Φ. Let σx ∈ [Γ, Λ]
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and τy ∈ [Λ, Γ] be defined as in Remark 5.2.8. Since Φ is length-preserving, we
get by the cocycle identity that for all γ, δ ∈ Γ,

|σx(γ)
−1σx(δ)|SΛ = |σ(γ−1δ, δ−1x)|SΛ

= |γ−1δ|SΓ .

This means that σx ∈ Iso1(Γ, Λ). Similarly, we have τy ∈ Iso1(Γ, Λ). Moreover,
the map x ∈ X 7→ σx ∈ Iso1(Γ, Λ) is Γ-equivariant and the map y ∈ Y 7→
τy ∈ Iso1(Λ, Γ) is Λ-equivariant. Thus, the pushforward of µ by x 7→ σx is
a randisometry from Γ to Λ. Similarly, the pushforward of ν by y 7→ τy is a
randisometry from Λ to Γ.

Lemma 5.2.11. — Let Γ = 〈SΓ〉 and Λ = 〈SΛ〉 be two countable groups. Two p.m.p.
essentially free actions Γ yα (X, µ) and Λ yβ (Y, ν) are isometric orbit equivalent if
and only if there exists a length-preserving orbit equivalence between them.

Proof. If there exists a length-preserving orbit equivalence Φ between α and β,
then we conclude by Lemma 5.2.6 that α and β are isometric orbit equivalent.
Let us prove the converse. Assume that α and β are isometric orbit equivalent.
Let Φ : (X, µ) → (Y, ν) be a pmp isomorphism such that for µ-almost every
x, x′ ∈ X,

dα(SΓ)(x, x′) = dβ(SΛ)
(Φ(x), Φ(x′)).

This implies that dα(SΓ)(x, x′) is finite if and only if x and x′ are in the same Γ-
orbit. Similarly, the distance dβ(SΛ)

(Φ(x), Φ(x′)) is finite if and only if Φ(x) and
Φ(x′) are in the same Λ-orbit. Thus, we deduce that Φ is an orbit equivalence.
Let σ : Γ×X → Λ and τ : Λ×Y → Γ be the orbit equivalence cocycles associated
with Φ. By definition, for all γ ∈ Γ and µ-almost all x ∈ X, we have

dα(SΓ)(x, α(γ)x) = dβ(SΛ)
(Φ(x), β(σ(γ, x))Φ(x)).

Since the actions are essentially free, then the left hand side is equal to |γ|SΓ

while the right hand side is equal to |σ(γ, x)|SΛ . We thus get that |σ(γ, x)|SΛ =

|γ|SΓ . Similarly, we get that |τ(λ, y)|SΓ = |λ|SΛ for all λ ∈ Λ and ν-almost every
y ∈ Y. This proves that Φ is a length-preserving orbit equivalence.

5.3 A canonical isometric orbit equivalence

Let Γ = 〈SΓ〉 and Λ = 〈SΛ〉 be two finitely generated groups. The space Iso(Γ, Λ)

of bijective isometries between the Cayley graphs (Γ, SΓ) and (Λ, SΛ) is a locally
compact, totally disconnected space when equipped with the topology of point-
wise convergence. The space Iso(Γ) of bijective isometries of the Cayley graph
(Γ, SΓ) is a totally disconnected, locally compact group when endowed with the
topology of pointwise convergence. Moreover, it contains naturally Γ as a lattice,
and thus is unimodular.
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Assume that Iso(Γ, Λ) is nonempty. Then the group Iso(Γ) acts simply tran-
sitively on Iso(Γ, Λ) by precomposition by the inverse. The group Iso(Λ) also
acts simply transitively on Iso(Γ, Λ) by postcomposition. This implies that there
exists a unique measure (up to a multiplicative constant) on Iso(Γ, Λ) which
is invariant by the actions Iso(Γ) y Iso(Γ, Λ) and Iso(Λ) y Iso(Γ, Λ). We
call it the Haar measure on Iso(Γ, Λ). The inverse map Iso(Γ, Λ) → Iso(Λ, Γ)
is a bimeasurable bijection, which sends the Haar measure to the Haar mea-
sure. The pushforward of the Haar measure on Iso(Γ, Λ) by the quotient map
Iso(Γ, Λ) → Iso(Γ, Λ)/Λ, rescaled to have mass 1, is called the Haar probabil-
ity measure on Iso(Γ, Λ)/Λ. Let Iso1(Γ, Λ) be the compact open subspace of
Iso(Γ, Λ) defined by

Iso1(Γ, Λ) := { f ∈ Iso(Γ, Λ) : f (1Γ) = 1Λ}.

This is a fundamental domain for the action Λ y Iso(Γ, Λ). Let m be the
Haar measure on Iso(Γ, Λ) such that m(Iso1(Γ, Λ)) = 1. The restriction of m
to Iso1(Γ, Λ) is called the Haar probability measure on Iso1(Γ, Λ). Let mΛ be the
Haar probability measure on Iso(Γ, Λ)/Λ. We then obtain that the p.m.p. action
Iso(Γ, Λ) y (Iso(Γ, Λ)/Λ, mΛ) is measurably isomorphic to the p.m.p. action
Iso(Γ, Λ) y (Iso1(Γ, Λ), m) defined by

(g · f ) := f (g−1(1Γ))
−1 f ◦ g−1.

The restriction of this action to Γ ≤ Iso(Γ, Λ) boils down to the p.m.p. action
Γ y (Iso1(Γ, Λ), m) encountered in Remark 5.2.10 and given by

(γ · f )(δ) := f (γ−1)−1 f (γ−1δ).

Let mΓ denote the Haar probability measure on Iso(Λ, Γ)/Γ. One of the aim
of this section is to prove that the actions Γ y (Iso(Γ, Λ)/Λ, mΛ) and Λ y
(Iso(Λ, Γ)/Γ, mΓ) are isometric orbit equivalent. In order to prove this, we will
work with the Γ-action on Iso1(Γ, Λ) and the Λ-action on Iso1(Λ, Γ) instead.

Lemma 5.3.1. — Let Γ = 〈SΓ〉 and Λ = 〈SΛ〉 be two finitely generated groups, such
that the Cayley graphs (Γ, SΓ) and (Λ, SΛ) are isometric. Let µ be the Haar probability
measure on Iso1(Γ, Λ) and ν the Haar probability measure on Iso1(Λ, Γ). Then the
following are true.

(i) The map σ : Γ× Iso1(Γ, Λ) → Λ defined by σ(γ, f ) := f (γ−1)−1 is a length-
preserving cocycle.

(ii) The map τ : Λ× Iso1(Λ, Γ) → Γ defined by τ(λ, f ) := f (λ−1)−1 is a length-
preserving cocycle.

(iii) The inverse map Φ : (Iso1(Γ, Λ), µ) → (Iso1(Λ, Γ), ν) is a p.m.p. isomorphism,
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such that for all γ ∈ Γ, λ ∈ Λ, we have

Φ(γ · f ) = σ(γ, f ) ·Φ( f ), for all f ∈ Iso1(Γ, Λ),

Φ(τ(λ, f ) ·Φ−1( f )) = λ · f , for all f ∈ Iso1(Λ, Γ).

Proof. We start by proving (i). The fact that σ is a cocycle is a straightforward
computation:

σ(γδ, f ) = f (δ−1γ−1)−1 = f (δ−1γ−1)−1 f (γ−1) f (γ−1)−1 = σ(γ, δ · f )σ(γ, f ).

Moreover, since f ∈ Iso1(Γ, Λ), we get that

|σ(γ, f )|SΛ = | f (γ−1)−1 f (1Γ)|SΛ = |γ|SΓ .

This proves that σ is length-preserving. The proof of (ii) is identical. For the
proof of (iii), it is clear that Φ is a bimeasurable map. Moreover, since the inverse
map sends Haar measure to Haar measure, we obtain that Φ∗µ = ν. Finally, the
two formulas left to prove are straightforward computations.

We obtain the following result as a corollary.

Corollary 5.3.2. — Let Γ = 〈SΓ〉 and Λ = 〈SΛ〉 be two finitely generated groups,
such that the Cayley graphs (Γ, SΓ) and (Λ, SΛ) are isometric. Let mΛ be the Haar prob-
ability measure on Iso(Γ, Λ)/Λ and mΓ the Haar probability measure on Iso(Λ, Γ)/Γ.
Then the p.m.p. actions Γ y (Iso(Γ, Λ)/Λ, mΛ) and Λ y (Iso(Λ, Γ)/Γ, mΓ) are
isometric orbit equivalent.

Proof. Let σ : Γ × Iso1(Γ, Λ) → Λ be defined by σ(γ, f ) := f (γ−1)−1 and
τ : Λ× Iso1(Λ, Γ)→ Γ be defined by τ(λ, f ) := f (λ−1)−1. By Lemma 5.3.1, these
are length-preserving cocycles. Let µ and ν be the Haar probability measures on
Iso1(Γ, Λ) and Iso1(Λ, Γ) respectively. Then by Lemma 5.2.6 we get that the ac-
tions Γ y (Iso1(Γ, Λ), µ) and Λ y (Iso1(Λ, Γ), ν) are isometric orbit equivalent.
Thus, the p.m.p. actions Γ y (Iso(Γ, Λ)/Λ, mΛ) and Λ y (Iso(Λ, Γ)/Γ, mΓ) are
isometric orbit equivalent.

In general, the action Γ y (Iso(Γ, Λ)/Λ, mΛ) is not essentially free. However,
a standard trick can be used to obtain p.m.p. essentially free actions that are
isometric orbit equivalent.

Theorem 5.3.3. — Let Γ = 〈SΓ〉 and Λ = 〈SΛ〉 be two finitely generated groups.
Then Γ and Λ admit p.m.p. essentially free actions that are isometric orbit equivalent if
and only if the Cayley graphs (Γ, SΓ) and (Λ, SΛ) are isometric.

Proof. Assume that Γ y (X, µ) and Λ y (Y, ν) are p.m.p. essentially free ac-
tions that are isometric orbit equivalent. By Lemma 5.2.11, there exists a length-
preserving orbit equivalence Φ : (X, µ) → (Y, ν). Let σ : Γ × X → Λ and
τ : Λ× Y → Γ be the orbit equivalence cocycles associated with Φ. For x ∈ X,
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let σx : Γ→ Λ be defined by σx(γ) := σ(γ−1, x)−1. By Remark 5.2.10, we obtain
that σx ∈ Iso1(Γ, Λ) for µ-almost every x ∈ X. Thus, there exists a bijective
isometry between the Cayley graphs (Γ, SΓ) and (Λ, SΛ).

Conversely, assume that the Cayley graphs (Γ, SΓ) and (Λ, SΛ) are isomet-
ric. Let µ and ν be the Haar probability measures on Iso1(Γ, Λ) and Iso1(Λ, Γ)
respectively. By Corollary 5.3.2, the p.m.p. actions Γ y (Iso1(Γ, Λ), mΓ) and
Λ y (Iso1(Λ, Γ), ν) are isometric orbit equivalent. If these actions are essentially
free, then the proof is complete. Else, we fix two p.m.p. essentially free actions
Γ y (X, µX) and Λ y (Y, µY) and consider the p.m.p. actions.

Γ y (Iso1(Γ, Λ)× X×Y, µ⊗ µX ⊗ µY), γ( f , x, y) := (γ · f , γx, f (γ−1)−1y),

Λ y (Iso1(Λ, Γ)× X×Y, ν⊗ µX ⊗ µY), λ( f , x, y) := (λ · f , f (λ−1)−1x, λy).

These actions are essentially free. Moreover, as a direct consequence of Lemma

5.3.1, there is a length-preserving orbit equivalence between them, which implies
by Lemma 5.2.11 that they are isometric orbit equivalent.

Remark 5.3.4. — The trick used at the end of the proof for getting essentially
free actions while staying (isometric) orbit equivalent is due to Gaboriau [Gab02,
Thm. 2.3].

5.4 Rigidity of isometric orbit equivalence

The aim of this section is to understand isometric orbit equivalence when the
space of bijective isometries Iso(Γ, Λ) between Γ = 〈SΓ〉 and Λ = 〈SΛ〉 is count-
able. Observe that the cardinality of Iso(Γ), Iso(Λ) and Iso(Γ, Λ) coincide, be-
cause the groups Iso(Γ) and Iso(Λ) acts simply transitively on Iso(Γ, Λ).

We say that two countable groups Γ and Λ are virtually isomorphic if there
exists finite index subgroups Γ0 ≤ Γ and Λ0 ≤ Λ which are isomorphic. We
say that two p.m.p. actions Γ y (X, µ) and Λ y (Y, ν) are virtually measurably
isomorphic if there exist finite index subgroups Γ0 ≤ Γ and Λ0 ≤ Λ, as well
as a Γ0-invariant subset X0 ⊆ X of positive measure and a Λ0-invariant subset
Y0 ⊆ Y of positive measure, such that the p.m.p. actions Γ0 y (X0, µX0) and
Λ0 y (Y0, νY0) are measurably isomorphic.

We prove a rigidity result for isometric orbit equivalence. The strategy of the
proof is modeled on the proof of orbit equivalence rigidity phenomena due to
Furman [Fur99].

Theorem 5.4.1. — Let Γ = 〈SΓ〉 and Λ = 〈SΛ〉 be two finitely generated groups,
such that the Cayley graphs (Γ, SΓ) and (Λ, SΛ) are isometric. Let Γ yα (X, µ) and
Λ yβ (Y, ν) be two p.m.p. essentially free actions that are isometric orbit equivalent.
Assume that Iso(Γ), equivalently Iso(Λ), is countable. Then Γ and Λ are virtually
isomorphic groups and the p.m.p. actions α and β are virtually measurably isomorphic.
If in addition, every finite index subgroup of Γ acts ergodically on (X, µ), then Γ and Λ
are isomorphic and α and β are measurably isomorphic.
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Proof. Thanks to Lemma 5.2.11, we fix a length-preserving orbit equivalence Φ :
(X, µ) → (Y, ν) between α and β. Let σ : X × Γ → Λ and τ : Λ× Y → Γ be the
orbit equivalence cocycles associated with Φ. For x ∈ X and y ∈ Y, let σx : Γ →
Λ and τy : Λ → Γ be the maps defined by σx(γ) := σ(γ−1, x)−1 and τy(λ) :=
τ(λ−1, y)−1. By Remark 5.2.10, we know that σx ∈ Iso1(Γ, Λ) and τy ∈ Iso1(Λ, Γ)
for µ-almost every x ∈ X and ν-almost every y ∈ Y. Moreover, the map x 7→ σx

is Γ-invariant and the map y 7→ τy is Λ-invariant. Since Iso(Γ) is countable,
the space Iso(Γ, Λ) is countable and thus the compact subset Iso1(Γ, Λ) is finite.
Thus there is f0 ∈ Iso1(Γ, Λ) such that the set

X0 := {x ∈ X : σx = f0}

satisfies µ(X0) > 0. We define

Γ0 := {γ ∈ Γ : γ · f0 = f0}.

This is a finite index subgroup of Γ, which leaves X0 invariant. Indeed, for all
γ ∈ Γ0 and x ∈ X0, we have σα(γ)x = γ · σx = γ · f0 = f0. Let g0 ∈ Iso1(Λ, Γ) be
the inverse of f0 and let

Y0 := {y ∈ Y : τy = g0}.

We define
Λ0 := {λ ∈ Λ : λ · g0 = g0}.

This is a finite index subgroup of Λ, which leaves Y0 invariant. We know by
Lemma 5.2.7, that for µ-almost every x ∈ X, for all γ ∈ Γ and λ ∈ Λ,

τ(σ(γ, x), Φ(x)) = γ and σ(τ(λ, Φ(x)), x) = λ.

Thus, the maps σx and τΦ(x) are inverses of one another, that is σx ◦ τΦ(x) = idΛ
and τΦ(x) ◦ σx = idΓ. Therefore, we have Φ(X0) = Y0. Thus the map Φ induces
an orbit equivalence (still denoted by) Φ : (X0, µX0) → (Y0, µY0) between the
p.m.p. actions Γ0 y (X0, µX0) and Λ0 y (Y0, νY0). The orbit equivalence cocycles
σ0 : Γ0 × X0 → Y0 and τ0 : Λ0 × Y0 → Γ0 associated with this orbit equivalence
are independent of the space variable. Indeed for all γ ∈ Γ0, λ ∈ Λ0,

σ0(γ, x) = σ(γ, x) = f0(γ
−1)−1 for µ-almost every x ∈ X0,

τ0(λ, y) = τ(λ, y) = g0(λ
−1)−1 for ν-almost every y ∈ Y0.

Thus, the groups Γ0 and Λ0 are isomorphic and the p.m.p. actions Γ0 y (X0, µX0)

and Λ0 y (Y0, νY0) are measurably isomorphic. This proves that the groups
Γ and Λ are virtually isomorphic and that the actions α and β are virtually
isomorphic.

If in addition, every finite index subgroup of Γ acts ergodically on (X, µ), then
µ(X0) = 1. Since Φ is a p.m.p. isomorphism, we deduce that ν(Y0) = 1. In order
to prove that α and β are measurably isomorphic, it remains to show that Γ0 = Γ
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and Λ0 = Λ. Up to null set, one can assume that X0 is a Γ-invariant full measure
set. Thus, for all γ ∈ Γ and x ∈ X0, we have γ · f0 = γ · σx = σα(γ)x = f0.
Thus Γ0 = Γ. One proves similarly that Λ0 = Λ. We therefore conclude that
Γ and Λ are isomorphic and that the p.m.p. actions α and β are measurably
isomorphic.

Weakly mixing actions are examples of p.m.p. actions for which every finite
index subgroup acts ergodically. Concrete examples of weakly mixing actions
are Bernoulli shifts. Therefore, we have the following result.

Corollary 5.4.2. — Let Γ = 〈SΓ〉 be a finitely generated group. Assume that Iso1(Γ)
is finite. Let (A, κ) be a probability space. Any p.m.p. action Λ yβ (Y, ν) of some
finitely generated group Λ = 〈SΛ〉 which is isometric orbit equivalent to the Bernoulli
shift Γ y (A, κ)Γ is actually measurably isomorphic to it and Λ is isomorphic to Γ.

Example 5.4.3. — Here are examples of finitely generated groups Γ = 〈S〉
such that Iso1(Γ, S) is finite. Leemann and de la Salle proved that any finitely
generated group Γ admits a finite generating system S such that Iso1(Γ, S) is
finite [LdlS21]. For some finitely generated groups Γ, the set Iso1(Γ, S) is finite
for all finite generating systems S. For instance, let Γ be a finitely generated,
torsion free group which is either of polynomial growth, or a lattice in a simple
Lie group G (in case G ' SL2(R), assume that Γ is uniform in G). Then for
any finite generating system S of Γ, the space Iso1(Γ, S) is finite. These facts are
due to Trofimov for groups with polynomial growth [Tro85] and to Furman for
lattice in simple Lie groups [Fur01]. We refer to [dlST19, Sec. 6] for a discussion
about these results. Other examples of such groups are obtained by Guirardel
and Horbez. They proved the following result: if Γ is a torsion-free finite index
subgroup of the group of outer automorphisms of the free group Fd on d ≥ 3
generators, then for any finite generating systems S of Γ, the space Iso1(Γ, S) is
finite [GH21].

Remark 5.4.4. — The result of Corollary 5.4.2 is false if Iso1(Γ, Λ) is infinite.
For instance, let Λ1 and Λ2 be two non-isomorphic finite groups. Let Γ = 〈SΓ〉 be
an infinite, finitely generated group and let Γi := Λi ∗ Γ for i ∈ {1, 2}, equipped
with the finite generating set Λi ∪ SΓ. By a co-induction argument, one can show
that the Bernoulli shifts Γ1 y ([0, 1], Leb)Γ1 and Γ2 y ([0, 1], Leb)Γ2 are isometric
orbit equivalent, see for instance [Bow11, Thm. 1.1]. However, one can choose
Λ1, Λ2 and Γ so that Γ1 and Γ2 are not isomorphic.

Question 5.4.5. — Let Fd be the free group on d ≥ 2 generators x1, . . . , xd and
let SΓ := {x±1

1 , . . . , x±1
d }. Let Λ = 〈SΛ〉 be a finitely generated group. Consider

a p.m.p. essentially free action Λ y (Y, ν) which is isometric orbit equivalent to
the Bernoulli shift Fd y ([0, 1], Leb)Fd . Does this imply that Λ is isomorphic to
Fd and that the p.m.p. actions are measurably isomorphic?

This question is related to the following problem. The measurable edge chro-
matic number of the graphing given by the Bernoulli shift Fd y ([0, 1], Leb)Fd is
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known to be either 2d or 2d + 1 [CLP16]. However, its exact value is unknown
[KM16, Prob. 5.39]. As explained in Example 5.2.5, the measurable edge chro-
matic number is equal to 2d if and only if the Bernoulli shift Fd y ([0, 1], Leb)Fd

is isometric orbit equivalent to some p.m.p. essentially free action of the group

〈a1, . . . , a2d | a2
1 = · · · = a2

2d = 1〉.

Remark 5.4.6. — Let Γ = 〈SΓ〉 be either a finitely generated amenable group, or
the free group Fd on d ≥ 2 generators with SΓ any free generating system. Then
nontrivial Bernoulli shifts over Γ are all orbit equivalent. This is a consequence
of Ornstein and Weiss’ theorem [OW80] if Γ is amenable and a consequence of
Bowen’s theorem [Bow11] if Γ is a free group. The picture is very different when
it comes to isometric orbit equivalence. Let (A, κA) and (B, κB) be two nontrivial
probability spaces. Then the Bernoulli shifts Γ y (A, κA)

Γ and Γ y (B, κB)
Γ

are isometric orbit equivalent if and only if they are measurably isomorphic.
This is a consequence of the fact that there is a notion of entropy which dis-
tinguishes Bernoulli shifts up to measure-isomorphism and which is preserved
under bounded orbit equivalence. For amenable groups, Kolmogorov-Sinai en-
tropy is preserved under bounded orbit equivalence [Aus16], whereas for free
groups, the f -invariant is preserved under bounded orbit equivalence [BL22].

5.5 Construction of isometric orbit equivalent actions

5.5.1 The general construction

Given a finitely generated group Γ = 〈SΓ〉 and a finite index subgroup Λ ≤ Γ, we
explain in this section a construction of p.m.p. isometric orbit equivalent actions
of Γ. In the sequel, we will use the following notation. For all g ∈ Iso(Γ) and all
f ∈ Iso1(Γ), we denote by g · f the element of Iso1(Γ) defined by

g · f : δ 7→ f (g−1(1Γ))
−1 f (g−1(δ)).

We explained in Section 5.3 why the action (g, f ) 7→ g · f is measurably isomor-
phic to the action Iso(Γ) y Iso(Γ)/Γ. Beware here, that Iso(Γ)/Γ means the
quotient of Iso(Γ) under the Γ-action on Iso(Γ) by postcomposition.

Lemma 5.5.1. — Let Γ = 〈SΓ〉 be a finitely generated group. Let Λ ≤ Γ be a finite
index subgroup. Let mΛ be the Haar probability measure on Iso(Γ)/Λ. Let µ be the
Haar probability measure on Iso1(Γ) and u be the uniform probability measure on Γ/Λ.
Then the p.m.p. action Iso(Γ) y (Iso(Γ)/Λ, mΛ) is measurably isomorphic to the
p.m.p. action Iso(Γ) y (Iso1(Γ)× Γ/Λ, µ⊗ u) defined by

g( f , q) := (g · f , f (g−1(1Γ))
−1q).

Proof. We fix a section s : Γ/Λ → Γ. For all f ∈ Iso1(Γ) and q ∈ Γ/Λ, we let
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ψ f ,q ∈ Iso(Γ) be the map defined by ψ f ,q(γ) := s(q) f (γ). We define the subset
D ⊆ Iso(Γ) by

D := {ψ f ,q : f ∈ Iso1(Γ), q ∈ Γ/Λ}.

Claim. — The set D is a fundamental domain for Iso(Γ)/Λ, that is, for all
f ∈ Iso(Γ), there exists a unique λ ∈ Λ such that the map γ 7→ λ−1 f (γ) belongs
to D.

Proof of the claim. Let f ∈ Iso(Γ). Let δ = f (1Γ). Then there exists λ ∈ Λ and q ∈
Γ/Λ such that δ = λs(q). Observe that γ 7→ δ−1 f (γ) belongs to Iso1(Γ). Then
the map γ 7→ λ−1 f (γ) belongs to D, because it coincides with ψδ−1 f ,q. �claim

This yields an action Iso(Γ) y D, defined for all g ∈ Iso(Γ) and ψ ∈ D by

(g, ψ) 7→ (γ 7→ λ−1ψ(g−1(γ))),

where λ is the unique element of Λ such that the map γ 7→ λ−1ψ(g−1(γ)) be-
longs to D. If we denote by µD the Haar measure on Iso(Γ) which satisfies
µD(D) = 1, then the action Iso(Γ) y D preserves µD and is measurably isomor-
phic to the p.m.p. action Iso(Γ) y (Iso(Γ)/Λ, mΛ).

Let us prove that the action Iso(Γ) y (D, µD) is measurably isomorphic to
the action Iso(Γ) y (Iso1(Γ)× Γ/Λ, µ⊗ u) defined for g ∈ Iso(Γ) and ( f , q) ∈
Iso1(Γ)× Γ/Λ by

g( f , q) := (g · f , f (g−1(1Γ))
−1q).

Let us define a map Φ : Iso1(Γ)× Γ/Λ→ D by the formula

Φ( f , q) := γ 7→ ψ f ,q(γ).

This is a bijection, as it is a surjective map by definition of D and it is straight-
forward to check that it is an injective map. Moreover, by definition of µ and
µD, we get Φ∗(µ⊗ u) = µD. It is a straightforward computation to check that Φ
intertwines the actions Iso(Γ) y Iso1(Γ)× Γ/Λ and Iso(Γ) y D, which finishes
the proof of the lemma.

Theorem 5.5.2. — Let Γ = 〈SΓ〉 be a finitely generated group. Let Λ ≤ Γ be a finite
index subgroup. Let µΓ be the Haar probability measure on Iso(Γ)/Γ and u be the
uniform probability measure on Γ/Λ. Then the p.m.p. action Γ y (Iso(Γ)/Λ, mΛ) is
isometric orbit equivalent to the diagonal action Γ y (Iso(Γ)/Γ× Γ/Λ, mΓ ⊗ u).

Proof. In this proof, we will denote by ∗ the p.m.p. action Γ y (Iso(Γ)/Λ, mΛ)

and by ? the diagonal action Γ y (Iso(Γ)/Γ× Γ/Λ, mΓ ⊗ u).
Let u be the uniform probability measure on Γ/Λ. We know by Lemma 5.5.1

that ∗ is measurably isomorphic to the action Γ y (Iso1(Γ)× Γ/Λ, µ⊗ u), still
denoted by ∗ and given by

γ ∗ ( f , q) := (γ · f , f (γ−1)−1q).
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Let Φ : Iso1(Γ) → Iso1(Γ) be the inverse map, defined by f ◦ Φ( f ) = Φ( f ) ◦
f = idΓ. This is a p.m.p. isomorphism by Lemma 5.3.1. Morever, we have
Φ(γ · f ) = f (γ−1)−1Φ( f ). Therefore, if Ψ : Iso1(Γ)× Γ/Λ → Iso1(Γ)× Γ/Λ is
defined by Ψ( f , q) = (Φ( f ), q), then Ψ is a p.m.p. isomorphism which satisfies

Ψ(γ ∗ ( f , q)) = f (γ−1)−1 ? Ψ( f , q),

Ψ( f (γ−1)−1 ∗Ψ( f , q)) = γ ? ( f , q).

By Lemma 5.3.1, the map (γ, f ) 7→ f (γ−1)−1 is a length-preserving cocycle, thus
we obtain by Lemma 5.2.6 that the p.m.p. actions ∗ and ? are isometric orbit
equivalent, which concludes the proof.

5.5.2 The case of the free group

In this section, we characterize the subgroups Λ ≤ Fd for which the p.m.p.
action Fd y (Iso(Fd)/Λ, mΛ) is mixing. Here, mΛ denotes the Haar probability
measure. Before this, we need to give some properties of mixing actions of
locally compact groups.

Let G be a locally compact, non-compact, second countable group. A function
f : G → C vanishes at infinity if for all ε > 0, the set {g ∈ G : | f (g)| ≥ ε} is
compact. A p.m.p. action G y (X, µ) is mixing if for all measurable subsets
A, B ⊆ X, the function

g 7→ |µ(gA ∩ B)− µ(A)µ(B)|

vanishes at infinity. With this definition, the proof of the following two lemmas
is straightforward.

Lemma 5.5.3. — Let G y (X, µ) be a p.m.p. mixing action. Then for any closed
subgroup H ≤ G, the action H y (X, µ) is mixing.

Lemma 5.5.4. — Let H ≤ G be a finite index closed subgroup. Let G y (X, µ) be a
p.m.p. action. If H y (X, µ) is mixing, then so is G y (X, µ).

In this section, we fix an integer d ≥ 2 and we let Fd be the free group on d
generators x1, . . . , xd with the generating system S := {a±1

1 , . . . , a±1
d }. The even

subgroup of Fd is the normal subgroup of index two, denoted by Fev
d , consisting

of all elements γ ∈ Fd such that |γ|S is even. The even subgroup of Iso(Fd) is
the closed, normal subgroup of index two of Iso(Fd), denoted by Isoev(Fd) and
defined by

Isoev(Fd) := { f ∈ Iso(Fd) : f (Fev
d ) = Fev

d }.

This group satisfies the Howe-Moore property.

Theorem 5.5.5 (Lubotzky-Mozes [LM92], Pemantle [Pem92]). — Any p.m.p. er-
godic action of Isoev(Fd) on a standard probability space is mixing.
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The following lemma characterizes the finite index subgroups of the even
subgroup Fev

d .

Lemma 5.5.6. — Let Λ ≤ Fd be a finite index subgroup. Then the following are
equivalent.

(i) Λ is not contained in Fev
d .

(ii) For all γ ∈ Fd, the index [Fev
d : γΛγ−1 ∩ Fev

d ] is equal to [Fd : Λ].

(iii) The action Fev
d y Fd/Λ is transitive.

(iv) There is no bipartition Fd/Λ = U tV such that for all s ∈ S, sU = V.

Proof. Let us prove (i)⇒(ii). Since Λ is not contained in Fev
d , there is λ ∈ Λ \ Fev

d .
Let γ ∈ Fd. Since Fev

d is normal in Fd, the element γλγ−1 is not in Fev
d . Since Fev

d
has index two in Fd, we deduce that γΛγ−1Fev

d = Fd. Thus, we obtain

[Fd : γΛγ−1 ∩ Fev
d ] = [Fd : γΛγ−1][Fd : Fev

d ].

We obtain (ii) by dividing both sides of the equality by [Fd : Fev
d ].

We now prove (ii)⇒(iii). Observe that for all γ ∈ Fd, the group γΛγ−1 ∩ Fev
d

is equal to the stabilizer of the coset γΛ under the action Fev
d y Fd/Λ. Thus,

the index [Fev
d : γΛγ−1 ∩ Fev

d ] is equal to the cardinal of the orbit of the coset γΛ
under the action Fev

d y Fd/Λ. If we assume (ii), then we get that the cardinal of
each orbit of the action Fev

d y Fd/Λ is equal to [Fd : Λ]. This exactly means that
the action is transitive.

Let us prove the contrapositive of (iii)⇒(iv). Assume that there exists a par-
tition Fd/Λ = U tV such that for all s ∈ S, sU = V. Then we also have sV = U
for all s ∈ S. By induction, we get that γU = U and γV = V for all γ ∈ Fev

d .
Thus, the action Fev

d y Fd/Λ is not transitive.
Finally, let us prove the contrapositive of (iv)⇒(i). Assume that Λ ≤ Fev

d . Let
γ ∈ Fd \ Fev

d . Let n := [Fev
d : Λ]. Then there are γ1, . . . , γ2n ∈ Fd such that

Fev
d =

n⊔
i=1

γiΛ and Fd \ Fev
d =

2n⊔
i=n+1

γiΛ.

But for all s ∈ S, we have sFev
d = Fd \ Fev

d . Thus, this decomposition of Fev
d and

Fd \ Fev
d into a disjoint union of Λ-coset yields a bipartition Fd/Λ = U tV such

that for all s ∈ S, sU = V.

We can now characterize the subgroups Λ ≤ Fd for which the p.m.p. action
Fd y (Iso(Fd)/Λ, mΛ) is mixing.

Theorem 5.5.7. — Let Λ ≤ Fd be a finite index subgroup. Let mΛ be the Haar
probability measure on Iso(Fd)/Λ. Then the following are equivalent.

(i) The p.m.p. action Iso(Fd) y (Iso(Fd)/Λ, mΛ) is mixing.
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(ii) The p.m.p. action Fd y (Iso(Fd)/Λ, mΛ) is mixing.

(iii) Λ is not contained in the even subgroup Fev
d .

Proof. In this proof, we denote by µ the Haar probability measure on Iso1(Fd).
Let · be the p.m.p. action Iso(Fd) y (Iso1(Fd), µ) given by

(g · f ) := f (g−1(1F2))
−1 f ◦ g−1.

If u denotes the uniform probability measure on Fd/Λ, then by Lemma 5.5.1,
the p.m.p. action Iso(Fd) y (Iso(Fd)/Λ, mΛ) is measurably isomorphic to the
p.m.p. action Iso(Fd) y (Iso1(Fd)× Fd/Λ, µ⊗ u) given by

g( f , q) := (g · f , f (g−1(1Γ))
−1q).

The proof of (i)⇒(ii) is a direct consequence of Lemma 5.5.3.
Let us prove (ii)⇒(iii). We prove the contrapositive. Assume that Λ is con-

tained in Fev
d . Then by Lemma 5.5.6, there is a bipartition Fd/Λ = UtV such that

for all s ∈ S, we have sU = V. By induction, we get that γU = U and γV = V
for all γ ∈ Fev

d . For all f ∈ Iso1(Fd) and all γ ∈ Fd, we have | f (γ−1)−1|S = |γ|S.
Thus we obtain that the sets Iso1(Fd)×U and Iso1(Fd)×V are invariant by Fev

d .
Thus, the p.m.p. action Fd y (Iso1(Fd)× Fd/Λ, µ⊗ u) is not mixing, which is
equivalent to saying that Fd y (Iso(Fd)/Λ, mΛ) is not mixing.

We now prove (iii)⇒(i). We prove the contrapositive. Assume that Iso(Fd) y
(Iso(Fd)/Λ, mΛ) is not mixing. That is, the action Iso(Fd) y (Iso1(Fd)×Fd/Λ, µ⊗
u) is not mixing. By Lemma 5.5.4, the p.m.p. action Isoev(Fd) y (Iso1(Fd) ×
Fd/Λ, µ ⊗ u) is not mixing and thus not ergodic by Theorem 5.5.5. Let A ⊆
Iso1(Fd) × Fd/Λ be a measurable subset of measure 1/2 which is Isoev(Fd)-
invariant. We define the following set

U := {q ∈ F2/Λ : µ⊗ u(A ∩ (Iso1(Fd)× {q}) > 0}.

Observe that the subgroup Iso1(Fd) is contained in Isoev(Fd). Moreover, for all
g ∈ Iso1(Fd) and for all ( f , q) ∈ Iso1(Fd)× Fd/Λ, we have

g( f , q) = ( f ◦ g−1, q).

Thus, the group Iso1(Fd) acts transitively on each Iso1(Fd) × {q}. Since A is
Isoev(Fd)-invariant, we obtain that A = Iso1(Fd)×U up to a conull set. We claim
that the set U and its complement V form a partition of Fd/Λ such that for all
s ∈ S, sU = V. Indeed, for s ∈ S, the facts that s /∈ Isoev(Fd) and that Isoev(Fd)

is normal in Iso(Γ) imply that sA is Isoev(Fd)-invariant. But sA cannot be equal
to A, because otherwise A would be a Iso(Fd)-invariant set of measure 1/2,
contradicting the ergodicity of Iso(Fd) y (Iso(Fd)/Λ, mΛ). Moreover, the inter-
section sA ∩ A cannot be of positive measure, otherwise it would be a Isoev(Fd)-
invariant set of measure < 1/2, which is impossible since Isoev(Fd) has index
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two in Iso(Fd). Thus, up to conull set, we have sA = (Iso1(Fd) × Fd/Λ) \ A.
Therefore sU = V. By Lemma 5.5.6, we obtain that Λ is not contained in Fev

d ,
which concludes the proof.

Corollary 5.5.8. — Let Λ ≤ Fd be a finite index subgroup which is not included
in the even subgroup Fev

d . Then the p.m.p. action Fd y (Iso(Fd)/Λ, mΛ) and the
diagonal action Fd y (Iso(Fd)/Fd × Fd/Λ, mFd ⊗ u) are isometric orbit equivalent
but the former is mixing, whereas the latter is not.

5.5.3 A concrete isometric orbit equivalence for F2

We finish this section with a concrete example of two p.m.p. ergodic actions of
F2 that are isometric orbit equivalent but not measurably isomorphic.

Let F2 be the free group on two generators a and b and let S = {a±1, b±1}
be the standard generating system. Let |·|S be the word length associated with
S. The Cayley graph (F2, S) is isomorphic to the 4-regular tree. Let Iso(F2) be
the group of bijective isometries of (F2, S), that is, the group of all bijections
f : F2 → F2 such that for all γ, δ ∈ F2,

| f (γ)−1 f (δ)|S = |γ−1δ|S.

Let C be the space of proper colorings with five colors on the vertex set of the
Cayley graph (F2, S). That is, an element of C is a map col : F2 → {1, 2, 3, 4, 5}
such that for all γ ∈ F2 and for all s ∈ S, we have col(γ) 6= col(γs). The set C is
a closed, thus compact, subspace of {1, 2, 3, 4, 5}F2 . The group Iso(F2) acts on C
and we denote by ∗ the action, which is defined as follows: for all f ∈ Iso(F2)

and c ∈ C, the coloring f ∗ col is given by γ 7→ col( f−1(γ)). This action is
simply transitive and it admits a unique invariant probability measure µ, which
can be constructed as follows. First, choose uniformly at random the color of
the identity element 1F2 . Then, by moving radially outwards 1F2 in the Cayley
graph, extend the coloring at each vertex by choosing the color uniformly at
random among the admissible ones, independently at each vertex. Thus we get
a p.m.p. action ∗ of F2 on (C, µ). Let us explain briefly why this action is mixing.
Fix two distinct 5-cycles A, B ∈ Sym({1, . . . , 5}) such that for all i ∈ {1, . . . , 5},
A(i) 6= B(i). For instance, take

A := (1 2 3 4 5) and B := (1 3 5 2 4).

This yields a transitive action F2 y {1, 2, 3, 4, 5} by letting the generator a act
like A and b act like B. Let Λ be the stabilizer of the point 1. If mΛ denotes
the Haar probability measure on the quotient Iso(F2)/Λ, then it can be proved
that the p.m.p. action ∗ of F2 on (C2, µ) is measurably isomorphic to F2 y
(Iso(F2)/Λ, mΛ). By definition, F2 y {1, . . . , 5} is isomorphic to the action
F2 y F2/Λ. As there is no bipartition of {1, . . . , 5} whose pieces are exchanged
by any element s ∈ S, we get by Lemma 5.5.6 and Theorem 5.5.7 that the p.m.p.
action ∗ of F2 on (C, µ) is mixing.
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Let us construct another p.m.p. action of F2 on (C, µ), that we denote by ?,
which is isometric orbit equivalent to ∗, but which is not mixing. We define ? by
the action of the generators a and b of F2. For col ∈ C, we let

a ? col := s ∗ col,

where s is the unique element in {a±1, b±1} such that (s ∗ col)(1F2) = A(col(1F2)).
Such an element s exists because c is a proper vertex coloring. Similarly, we de-
fine

b ? col := t ∗ col,

where t is the unique element in {a±1, b±1} such that (t ∗ col)(1F2) = B(col(1F2)).
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a
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a−1b

a−1b−1
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b−1

b−1a

b−2

b−1a−1

ba−1

b2

ba

b

Figure 5.1. — On the left, black arrows represent the permutation A, red arrows
B. On the right, the portion of an element c ∈ C, for which a ? col = b ∗ col,
a−1 ? col = a−1 ∗ col, b ? col = b−1 ∗ col and b−1 ? col = a ∗ col.

This defines a p.m.p. action ? of F2 on (C, µ). Observe that for each i ∈
{1, . . . , 5}, the set

{col ∈ C : col(1Γ) = i}

is invariant by Λ. Thus, the p.m.p. action ? is not mixing. Moreover, by construc-
tion, the actions ∗ and ? are isometric orbit equivalent. This yields a concrete
illustration of Theorem 5.5.2. Indeed, it can be showed that:

– the p.m.p. action ∗ is measurably isomorphic to F2 y (Iso(F2)/Λ, mΛ),
where mΛ is the Haar probability measure on Iso(F2)/Λ,

– the p.m.p. action ? is measurably isomorphic to the diagonal action F2 y
(Iso(F2)/F2 × F2/Λ, mF2 ⊗ u) where mF2 is the Haar probability measure
on Iso(F2)/F2 and u is the uniform probability measure on F2/Λ.
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Résumé : Cette thèse se situe à l’interface entre dynamique topologique et dy-
namique mesurée. Premièrement, j’y étudie la notion d’action allostérique. Ce
sont des actions génériquement libres au sens topologique mais pas générique-
ment libres au sens de la mesure. Ce comportement étonnant met en valeur les
nuances entre sous-groupes aléatoires invariants et sous-groupes uniformément
récurrents. Un second sujet d’étude est l’équivalence orbitale quantitative, qui
renforce l’équivalence orbitale. Il s’agit de comprendre comment les structures
métriques sur les orbites des actions peuvent être distordues par équivalence
orbitale. Une grande partie des travaux de cette thèse gravite autour d’un des
théorèmes fondateurs de cette théorie : le théorème de Belinskaya.

Mots clés : Dynamique topologique, dynamique mesurée, sous-groupes aléa-
toires invariants, allostérie, équivalence orbitale quantitative, théorème de Belin-
skaya.

Abstract : This PhD thesis lies at the interface between topological dynamics
and measurable dynamics. First, I study the notion of allosteric actions. These
actions are generically free in the sense of the topology but not generically free
in the sense of the measure. This surprising behavior highlights the differences
between invariant random subgroups and uniformly recurrent subgroups. The
nascent theory of quantitative orbit equivalence is the second topic of this thesis.
This is a strengthening of orbit equivalence, which aims to understand how
metric structures on the orbits of the actions can be distorted. A large part of my
work gravitates around one of the founding result of this theory: Belinskaya’s
theorem.

Keywords : Topological dynamics, measurable dynamics, invariant random
subgroups, allostery, quantitative orbit equivalence, Belinskaya’s theorem
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