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DIRECT SIMULATION OF AGGREGATION PHENOMENA

BERTRAND MAURY ∗

Abstract. We present here an algorithm to simulate the motion of rigid bodies subject to a
non–overlapping constraint, and which tend to aggregate when they get close to each other. The
motion is induced by external forces. Two types of forces are considered here: drift force induced
by the action of a surrounding fluid whose motion is prescribed, and stochastic forces modelling
random shocks of molecules on the surface of the bodies. The numerical approach fits into the
general framework of granular flow modelling.

1. Introduction
We propose a numerical algorithm to simulate the motion of particles submitted

to an external force (like gravity, or the force exerted by a surrounding fluid), and
such that two particles put in contact tend to aggregate. What we call a particle here
is a rigid sphere. The two main features of the present approach are

1. No particle is destroyed nor created. When two particles collide, they stick
together, but each of them keeps its properties.

2. Collisions are not treated as events. The non–overlapping constraint is treated
numerically as a set of affine conditions which are to be verified by the veloc-
ities at each time step. One may say that collisions are captured, whereas in
most other methods, they are tracked.

The algorithm we propose belongs to the class of Contact Dynamics methods, in-
troduced by Moreau [3]. In the present case, all contacts occuring during a time step
are handled globally, and reactions associated to contacts are computed as a field of
Lagrange multipliers associated to first order approximations of non–penetration con-
straints. Actual computation relies on a Uzawa algorithm, by which approximations
of primal (velocity) and dual (impulses) solutions are build iteratively.

Aggregation shall be taken into account by an attraction, short-range force be-
tween particles, whose intensity dominates other forces which might tend to fragment
the aggregates.

2. Continuous problem

2.1. Evolution equation. We consider the mechanical system of p rigid
spheres of radii r1, r2, . . . , rp and masses m1, m2, . . . , mp. We introduce the config-
uration space

Q = {q = (q1, q2, · · · , qp) ∈ R
3p} (2.1)

and associated feasible set

Q0 = {q ∈ Q, Dij(q) ≥ 0 ∀i, j , 1 ≤ i < j ≤ p} (2.2)

where

Dij(q) = |qi − qj | − (ri + rj) (2.3)

is the distance between spheres i and j. Although the tangent space at any q ∈ Q
can be identified to Q itself, we will denote by TQ = R

3p this tangent space in order
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to distinguish velocities from positions. We introduce the outward normal cone

Nq =

⎧⎨
⎩−

∑
i<j

µijGij(q), µij = 0 if Dij(q) > 0, µij ∈ R
+ if Dij(q) = 0

⎫⎬
⎭ , (2.4)

where Gij = ∇Dij is the gradient of the distance between two spheres i and j. Given
a pathline t �−→ q(t), we shall denote by

u = (q̇1, q̇2, · · · , q̇p) ∈ TQ (2.5)

the generalized velocity vector.
We introduce a time interval I =]0, T [ and the following functional spaces:
W 1,1 = set of those 3p vector–valued functions which are absolutely continuous

over the time interval I;
BV = set of 3p vector–valued functions with bounded variation over I: BV is the

set of functions t �→ u(t) ∈ TQ, such that each component u of u verifies

sup
S∈Λ

NS∑
n=1

|u(tn) − u(tn−1)| < ∞,

where S = (t0, t1, . . . , tNS) runs over the set Λ of increasing subdivisions of the time
interval I;

M1 = set of p(p − 1)/2 vector1 valued bounded measures on I: it contains all

µ = (µij)1≤i<j≤p

such that µij is a continuous linear functional over the set C0(I) of continuous func-
tions over I, vanishing at 0 and T . For any µ ∈ M1, which shall define its norm
||µ||M1 as

||µ||M1 = max
1≤i<j≤p

||µij ,|| (2.6)

where ||µij || is defined as the supremum of 〈µij , ϕ〉 over the set of functions ϕ ∈ C0(I)
with L∞–norm less than 1.

The set of those measures which are positive will be denoted by

M1
+ =

{
µ = (µij)1≤i<j≤p ∈ M1 , 〈µij , ϕ〉 ≥ 0 ∀ϕ ∈ C0(I) , ϕ ≥ 0

}
.

The action of a surrounding fluid, with given velocity U(x, t), is taken into account
by adding a viscous friction term, acting on particle i as

−ξi(ui − U(qi, t)), (2.7)

so that τi = mi/ξi can be seen as a relaxation time. Parameter τi shall be taken equal
to 6πriν, where ν is the viscosity of the surrounding fluid. We shall use abusively the
notation −ξ(u − U(q, t)) to represent the corresponding vector in R

3p.
Aggregation is integrated into the model by adding an short–range attraction

force, which we define as

F(q) = −κ
∑
i<j

∇ (Ψ ◦ Dij) (q(t)) (2.8)

1p(p − 1)/2 is the number of possible contacts.
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where Ψ is the function

δ �−→ Ψ(δ) = κ tanh
(

δ

ε

)
. (2.9)

Parameter ε > 0 is the distance below which particles are considered in contact, and
κ/ε can be seen as a penalty parameter: it has to be set such that the latter force
dominates other forces which might tend to separate particles. We shall not address
here the problem of adding a stochastic term (like white noise) to the forcing terms.
This will be done at the discrete level only (see section 4.2).

We may now state the problem: Given a time interval I =]0, T [ and initial con-
ditions (q0,u0) ∈ Q0 × TQ,

Find (q,u, µ) ∈ W 1,1 × BV ×M1
+ such that (2.10)

u+(0) = u0, (2.11)

q(t) = q0 +
∫ t

0

u(s)ds ∈ Q0 ∀ t ∈ I (2.12)

Mu̇ = −ξ(u− U(q, t)) + F(q) +
∑
i<j

µijGij(q(t)), (2.13)

∀ i < j supp(µij) ⊂ {t, Dij(q(t)) = 0}, (2.14)

u+(t) = u−(t) − PNqu
−(t) ∀t ∈ I, (2.15)

where M is the mass matrix diag(m1, m1, m1, m2, m2, · · · , mp, mp),

Gij = (· · · , 0,−eij, 0, · · · , 0, eij, 0, · · · ), (2.16)

and PNq is the Euclidian projection onto the closed convex cone Nq. Equation (2.13)
is to be understood in the sense of distributions.
Remark 2.1. We shall disregard here problems possibly caused by “non feasible” ini-
tial conditions (q0 ∈ ∂Q0 and u0 /∈ V (q0), where V is the set of admissible directions,
polar cone of Nq0).
Remark 2.2. Obstacles like walls or fixed bodies may be taken into account. For the
sake of simplicity, we shall not introduce new notations. These obstacles can actually
be handled within this framework by considering that they are “special” particles with
infinite mass. Wall–sphere contacts activate a Lagrange multiplier which prevents
overlapping, exactly as for sphere–sphere contacts.

2.2. Theoretical remarks. The model we propose, in its deterministic
version (the external force depends explicitly on time, position, and velocity), fits
into the general framework of differential measure inclusions (see Schatzman [5], or
Moreau [4]). From the theoretical point of view, the critical point is uniqueness, which
can be established only under strong regularity assumptions on the data: analiticity
is required. Uniqueness is lost as soon as the external force is no longer analytic (see
in Schatzman [5] or Ballard [1] counter–examples to uniqueness with a C∞ force).
Note that continuity with respect to initial conditions does not hold in general, even
in the case of analytic forcing terms.
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3. Numerical scheme

3.1. Approximation spaces. Let h = T/N be the time step. We introduce
the following spaces:

Vh = {uh : I −→ TQ , constant in [(n − 1)h, nh[ , n = 1, . . . , N} , (3.1)

Rh =
{

µh : I −→ R
p(p−1)/2 , constant in [(n − 1)h, nh[ , n = 1, . . . , N

}
, (3.2)

Xh = {qh : I −→ Q , continuous on I, affine in [(n − 1)h, nh[ , n = 1, . . . , N} .
(3.3)

For any uh ∈ Vh we will denote by un
h its constant value in the subinterval [(n −

1)h, nh[. Similarly, qn
h = qh(nh), for any qh ∈ Xh. Note that any uh is completely

determined by its values (u1
h,u2

h, . . . ,uN
h ) and any motion qh by (q0

h,q1
h, . . . ,qN

h ).
The approximated contact force field is completely determined by the Np(p − 1)/2
values2

µn
ij , n = 1, . . . , N , 1 ≤ i < j ≤ p.

3.2. Time stepping. (qh,uh, µh) ∈ Xh × Vh × Rh is built as follows
1. Initialization

(q0
h,u0

h) = (q0,u0). (3.4)

2. Compute un+1
h and (µn+1

ij )1 ≤ i < j ≤ N as primal and dual solutions, re-
spectively, of the constrained minimization problem:

min
u∈Kn

|Mu− Mun
h + h ξ(un

h − U(qn
h , t)) − hF(qn

h)|2 (3.5)

with

Kn = {u ∈ TQ, Dij(qn
h) + hGij(qn

h) · u ≥ 0}, (3.6)

so that un+1
h and the µn+1

ij ’s are related by

Mun+1
h = Mun

h − hξ(un
h − U(qn

h , t)) + hF(qn
h) + h

∑
i<j

µn+1
ij Gij(qn

h). (3.7)

Remark 3.1. Aggregation forces are taken into account explicitly, whereas they are
stiff. Such a situation usually leads to instabilities and prevents us from using large
time steps. The situation here is different, because this attraction force opposes the
contact reaction, which is computed implicitly. High values for this attraction force
may deteriorate the convergence of the Uzawa algorithm (see next section), but the
overall time stability shall not be harmed.

2In order to alleviate notations, we shall drop the dependence on h in the values of the discrete
reaction forces µn

ij .
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3.3. Saddle–point problem. The constrained optimization problem (3.5)–
(3.6) which has to be solved at each time step is put into a saddle–point form. We
introduce the vectors and matrices (fn+1

h stands for the sum of drift and attraction
forcing terms)

u = un+1
h ∈ R

3p , F = Mun
h + hfn+1

h ∈ R
3p , µ = (µn+1

ij )1≤i<j≤p, (3.8)

C ∈ R
(p−1)p/2×3p such that − CT µ = h

∑
i<j

µn+1
ij Gij(qn

h), (3.9)

and D = (Dij(qn
h))1≤i<j≤p. The problem can be put in the classical saddle point

form

Minimize J(u) =
1
2
(Mu,u) − (F,u), (3.10)

over K = {u , Cu ≤ D}. (3.11)

The Lagrangian of the problem is

L(v, λ) =
1
2
(Mv,v) − (F,v) + (λ,Cv − D), (3.12)

and any saddle–point of L, i.e. any couple (u, µ) verifying

sup
λ∈R

(p−1)p/2
+

L(u, λ) = L(u, µ) = inf
v∈R3p

L(v, µ),

is such that u minimizes J over K.
The Uzawa algorithm (see Ciarlet [2]) consists in approximating a saddle–point

(u, µ) of L by sequences (uk) and (µk). A step decomposes into two substeps:
1. Solve the primal problem

Muk+1 = F− CT µk. (3.13)

2. Update the Lagrange multipliers field

(µk+1)ij = Π+ (µk + ρ(Cuk+1 − D)) ,

where Π+ is the orthogonal projection onto R
(p−1)p/2
+ :

µ ∈ R
(p−1)p/2 �−→ Π+(µ) = (max(µij , 0))1≤i<j≤p .

Sequence uk is known to converge to the solution of the constrained minimization
problem as soon as

0 < ρ <
2α

‖CCT ‖ (3.14)

where α is the smallest eigenvalue of the matrix M. In the present case α= min(mi)
1≤i≤N

.
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4. Numerical experiments
We considered slightly polydispersed populations, in order to avoid crystal–like

arrangements. In all computations we considered a distribution of radii in the neigh-
bourhood of a reference value r, between 0.85 r and 1.15 r. The mass of a particle
with radius ri is taken equal to (ri/r)3.

4.1. Deterministic forcing term. As a first test case we considered a given
velocity field U which corresponds to an oscillating shear flow:

U(x, t) = sin(ωt)
(

x2

0

)
x = (x1, x2). (4.1)

Figure 1 presents the particle cloud at different times, for a computation based on the
following numerical values

N = 1000 , r = 0.01 , τ = m/ξ = 0.2 , ω = π , h = 0.02 , κ = ε = 3.10−3. (4.2)

4.2. Stochastic forcing term. We apply now the presented technique to the
situation where external forces are of the white-noise type. We consider the situation
where the motion of a single particle (without any geometrical constraint) would obey
a Langevin equation

du(t) = −1
τ
u(t) dt + σ dW(t).

where dW is a random vector, each component of which is the increment of a Wiener
process. In order to integrate this model to the multi–body simulation, we propose
the following algorithm: compute un+1

h as the solution of

min
u∈Kn

∣∣∣Mu− Mun
h + h ξun

h −
√

hF(qn
h) − σ

√
hWn

∣∣∣2 (4.3)

where

Kn = {u ∈ TQ, Dij(qn
h) + hGij(qn

h) · u ≥ 0}, (4.4)

Wn is a random vector in R
3p, all components of which follow independent nor-

mal laws, and F is the aggregation force defined by (2.8). Numerical values for the
computation are

r = 0.01 , τ = m/ξ = 0.2 , σ = 0.5 , κ = ε = 3.10−3. (4.5)

Note that term hF is scaled by 1/
√

h is order to ensure that aggregation dominates
stochastic forcing.

Figures 2, 3, and 4 show the particle distributions obtained for various numbers
of particles, at different times. Note that the set of times at which the pictures are
taken differs from a case to the other: characteristic times at which particles aggregate
depend strongly on the particle density.
Remark 4.1. As it has been said previously, numerical parameter ε represents the
distance below which particles attract each other. Changing its value does not affect
strongly the numerical results, as soon as κ/ε remains constant. The value for κ/ε
has to be chosen large enough to prevent separation of particles which have collided3.

3This phenomenon cannot be completely avoided in the stochastic version of the algorithm,
because the support of the random force is not compact.
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Fig. 1. N = 1000, shear flow, times 0, 0.4, 0.5, 0.75, 1.0, 1.25, 1.5, 10.
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Fig. 2. N = 500, times 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
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Fig. 3. N = 2000, times 0, 0.4, 0.6, 0.8, 1.0, 1.2, 1.8, 3.
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Fig. 4. N = 5000, times 0, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 3.

On the other hand, increasing κ/ε leads to higher computational costs, as it increases
the attraction force between particles, which makes the saddle–point problem stiffer.
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In concrete terms, its value is set in order to dominate the forcing terms, so that most
particle contacts cannot be broken.
Remark 4.2. As soon as the computation of interparticle distances is performed in
an efficient way (note that special methods should be added to the present approach
in the case of highly polydisperse populations), the computational cost is linear in
the number of particles. Indeed, numerical parameter ρ for the Uzawa algorithm is
approximately independent of the number of particles, so that the number of iterations
needed to achieve a given accuracy is itself independent of this number. Only the cost
of each Uzawa step varies (linearly) with the number of particles.

5. Conclusion, future prospects
We have proposed a basic algorithm to simulate aggregation phenomena. This al-

gorithm makes it possible to compute directly quantities which are involved in macro-
scopic models, like the size distribution of the created aggregates, as functions of the
parameters (mainly the initial density of single particles, and the type and intensity
of external forces). This link between microscopic and macroscopic level, in which lies
the real potential interest of the present approach, still has to be carried out.

From the theoretical point of view, a rigorous analysis of the continuous evolution
equation in its stochastic version (white noise is added to the right–hand side) is also
to be made, in order to justify the proposed model.

As for the time–discretization algorithm we propose, in the deterministic case, a
proof of convergence (up to a subsequence of time steps and in the case of a single
contact) will be proposed in a future paper.
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