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Abstract

We investigate the behaviour of fluid-particle mixtures subject to shear stress, by mean of direct simulation. This
approach is meant to give some hints to explain the influence of interacting red cells on the global behaviour of the
blood. We concentrate on the apparent viscosity, which we define as a macroscopic quantity which characterizes
the resistance of a mixture against externally imposed shear motion. Our main purpose is to explain the non-
monotonous variations of this apparent viscosity when a mixture of fluid and interacting particles is submitted
to shear stress during a certain time interval. Our analysis of these variations is based on preliminary theoretical
remarks, and some computations for some well-chosen static configurations.
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Résumé Nous présentons une étude du comportement global d’un mélange de fluide newtonien et de particules
rigides par la simulation directe. Cette approche apporte des éléments d’analyse de l’influence d’inclusions rigides
en interaction (comme dans le cas des globules rouges dans le sang) sur le comportement global du mélange
complexe. Nous nous sommes concentrés ici sur la viscosité apparente, que nous définissons comme une quantité
macroscopique qui caractérise la résistance d’un fluide complexe à un mouvement de cisaillement imposé. Notre
objectif principal est d’expliquer les variations non monotones de cette viscosité apparente au cours du temps,
lorsque les particules interagissent. Notre analyse se base sur des remarques théoriques préliminaires et sur un
certain nombre de calculs de cette viscosité pour des configurations représentatives.
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1. Introduction

The viscosity of a diluted suspension can be estimated from the exact solution to the Stokes equations
for a single particle in an infinite fluid domain (this approach dates back to Einstein [5] in 1906). In many
situations, e.g. red cells in the blood, the dilution asumption is no longer valid, and inclusions are likely
to interact with each other in a complex way. Under some assumptions the behaviour of neighbouring
particles can be described by mean of analytic expressions or asymptotic development. See e.g. [2] where
the motion of two spheres in a shear flow is described. More recently, Stokesian Dynamics has been applied
to compute the motion of spheres in a linear Stokes flow for particular geometries (see [4], [8]). But the
overall behaviour of nonhomogeneous, many-body mixtures under general shear conditions calls for the
use of direct numerical methods.

As a consequence, direct simulation of fluid-particle mixtures motivated a great amount of research
during the last decade. Some authors, like Glowinski (see [6,7]) use a cartesian mesh which covers the
overall computational domain, and the rigid motion is taken into account by a Lagrange multiplier. The
other class of approaches relies on a moving mesh which follows the geometry of the fluid domain. This
approach has been followed by [10], [9], and [13].

The present work is based on this second approach, which we think is more adapted to shear flow of
highly concentrated suspension, as the presence of a (possibly) fine mesh which covers interparticle gaps
makes it possible to compute accurately in these high stress regions. Moreover, integrating the degrees
of freedom for the particles into the finite element space allows to compute highly viscous flows with
unconditional stability, whereas other methods which decouple fluid and particles are more adapted to
situations where inertia (at least inertia of the rigid bodies) plays a significant role. Although the numerical
approach we follow would make it possible to handle Navier-Stokes flows and general geometries, we chose
to limit ourselves here to Stokes flow, in order to show how a globally nonlinear behaviour can be recovered
even though the instantaneous fluid model is itself linear.

2. Continuous model

We consider a rectangular domain Ω filled with a mixture of a Newtonian fluid and N rigid particles.
The viscosity of the fluid is denoted by µ. All particles are circular, and their common radius is r. We
denote by Fi the force exerted on particle i. We shall consider the situation where Fi is a sum of forces
exerted by the other particles. The mixture domain Ω is a rectangle 2a × L (see figure 1). The flow is
periodic in the y−direction. Left and right walls are supposed to move vertically with velocities −U0ey

and +U0ey, respectively. Origin of the reference frame (x, y) is set on the centerline.
Let Xi = Xi(t) be the center of particle i. We denote the fluid domain by

ΩF (t) = Ω \

N
⋃

i=1

B(Xi(t), r).

The surrounding fluid is supposed to obey the incompressible Stokes equations in the moving fluid domain
ΩF (t),







−µ4u + ∇p = 0,

∇ · u = 0,
(1)

while equilibrium of the particles at each time gives
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





















∫

Γi

σ · n = Fi,

∫

Γi

ri × σ · n = 0,
(2)

where ri is the position vector relatively to the center Xi of particle i, and σ the stress tensor (Id is the
identity matrix)

σ = µ(∇u + t∇u) − p Id. (3)

The no-slip conditions on the particles surface (denoted by Γi(t) for the i-th particle) are

u(x) = Vi + ωi × ri on Γi for 1 ≤ i ≤ N, (4)

where Vi is the translational velocity of particle i and wi is the angular velocity of particle i.
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Figure 1 : Notations. Notations.

We shall denote by V = (V1, . . . ,VN ) and ω = (ω1, . . . , ωN) the vectors corresponding to the transla-
tional and rotational degrees of freedom. Let X = (X1, . . . ,XN ) be given. Denoting by H1

] (ΩF ) the set

of all those fields in H1(ΩF ) which are periodic in the vertical direction, we introduce the space

Π =
{

U = (u,V, ω) = (u,V1, . . . ,VN , ω1, . . . , ωN ) such that u ∈ H1

] (ΩF )2, Vi ∈ R
2, ωi ∈ R,

u(x) = Vi + ωi × ri on Γi,u |Γ`
= −U0ey, u |Γr

= U0ey}

and its homogeneous counterparts Π0 (space Π for U0 = 0). The instantaneous variational formulation
reads
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





































Find U = (u,V, ω) ∈ Π and p ∈ L2

0(ΩF ) such that :

µ

2

∫

ΩF

(∇u +t∇u) : (∇ũ +t∇ũ) −

∫

ΩF

p∇ · ũ −

N
∑

i=1

Ṽi · Fi = 0, ∀Ũ = (ũ, Ṽ, ω̃) ∈ Π0,

∫

ΩF

p̃∇ · u = 0 ∀p̃ ∈ L2

0(ΩF ),

(5)

where L2
0(ΩF ) is the set of L2 functions with zero mean value over ΩF .

The velocity field U = (u,V, ω) is also the unique solution to the following constrained minimization
problem:



















Minimize J(W) =
µ

4

∫

ΩF

|∇w +t∇w|2 −

N
∑

i=1

Yi · Fi

over Πdiv = {W = (w,Y, θ) ∈ Π such that ∇ · w = 0 in ΩF }.

(6)

Note that, as we neglect inertia, the evolution problem for the particles can be written as a system of
ordinary differential equations: Ẋ = V(X), where the mapping X 7→ V(X) is the particle part of the
solution to problem (5).

2.1. Apparent viscosity

The notion of apparent viscosity on which we shall base our approach corresponds to what is actually
measured by most viscosimeters. It is defined as follows: we consider the pure Couette flow of an homoge-
neous fluid of viscosity µ̃ under the same conditions. For a certain value of µ̃, the vertical forces exerted
on the walls are identical to the forces exerted by the actual mixture. The apparent viscosity is defined
as this very value.

The vertical components of those forces exerted on the walls are :

Fl =

∫

Γ`

ey · σ · ex and Fr =

∫

Γr

ey · σ · (−ex).

In case of a newtonian fluid, the exact solution (u, p) being






u(x, y) = U0

x

a
ey

p(x, y) ≡ 0,

we have F0 = F` − Fr = 2µU0

a
L. The apparent viscosity can therefore be expressed as

µapp =
a

2LU0

F0 where F0 =

∫

Γ`∪Γr

ey · σ · ex. (7)

3. Theoretical considerations

We summarize here some simple properties of the apparent viscosity which are direct consequences of
its definition.
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3.1. Passive particles

We suppose in this section that there are no forces exerted on the particles. In this case, there is an
equivalent expression for the apparent viscosity, which relates to dissipated energy. We multiply momen-
tum equation (1) by u and integrate it over ΩF . Integration by parts gives

µ

2

∫

ΩF

|∇u + t∇u|2 =

∫

Γ`∪Γr

u · (σ · n) = U0F0,

so that

µapp =
µa

4LU2
0

∫

ΩF

|∇u + t∇u|2,

which is proportional to the functional which u minimizes (see formulation (6)). As a consequence, if we
consider two sets of particles, the second one being larger in the sense that it covers the first one, there
are obviously more constraints in the second one, and the minimum of the functional is larger. Finally, in
accordance with intuition, if there are no forces, apparent viscosity increases when particules are added.
As we shall see, it does not mean that the apparent viscosity is an increasing function of the solid fraction.

3.2. Non-zero forces

These considerations are no longer valid if we consider a system of particles submitted to forces. In
that case, apparent viscosity may either increase or decrease with the intensity of the forces. Indeed, the
energy balance now takes into account the action of these forces and the apparent viscosity expresses

µapp =
µa

4LU2
0

∫

ΩF

|∇u + t∇u|2 −
a

2LU2
0

∑

Vi · Fi.

In order to investigate the variations of this quantity with respect to F and U0, we separate their respective
contributions to the solution U. Let us denote by U0 = (u0,V0, ω0) the solution to problem (5) with
F = 0 and U0 = 1, and by uF = (uF ,VF , ωF ) the solution to the same problem with U0 = 0. By
linearity of the problem, it holds U = U0U

0 + UF . Using this expression for U as well as the variational
formulations for U0 and UF , we obtain another expression for the apparent viscosity:

µapp =
µa

4L

∫

ΩF

|∇u0 + t∇u0|2 −
a

2LU0

∑

V0

i · Fi = µ0 −
a

2LU0

∑

V0

i · Fi. (8)

Note that µ0 is the apparent viscosity in the case F = 0. It does not depend on U0.
The influence of interaction (or external) forces is expressed by the scalar product

∑

V0
i ·Fi, whose sign

depends on the configuration only. Fig. 2 illustrates this alternative. We consider two particles submitted
to an attractive force. In the first case (on the left in figure 2), the forces tend to increase the apparent
viscosity, whereas they make it decrease in the other case. In some situations, the apparent viscosity
might even become negative, as can be checked for the second configuration if we have the force modulus
go to infinity.

Another direct consequence of expression (8) is that, when the forces tend to increase µapp, then µapp

is a decreasing function of U0 (for a fixed force field F).
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We shall finish this section by considering another situation where the dependence of the apparent
viscosity with respect to attractive forces is predictable. Suppose all interparticle forces derive from a
convex potential of their distances:

Fi =
∑

j 6=i

Fji , Fji = −k∇Ψ(Dij).

Consider now a static, stable configuration, corresponding to an equilibrium of the system of particles in
a quiescent fluid. This means that the configuration minimizes the global potential energy

E =
k

2

∑

j 6=i

Ψ(Dij),

over the set of feasible configuration (i.e. configurations with no overlapping). In this situation, any
feasible motion V (i.e. any motion which respects the non-overlapping constraints) of the set of particles
has non-negative scalar product with the gradient of E, i.e. V · F ≤ 0. As the actual velocity field V0 is
itself necessarily feasible, we are in a situation where forces tend to increase the apparent viscosity.
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Figure 2 : Opposite effects of an attractive force upon µapp depending on the configuration.
Effets opposés d’une force attractive sur µapp, selon la configuration.

4. Numerical strategy

Our approach is based on a direct discretization of space Π. It is thouroughly described in [13], and we
shall simply indicate here the main features of the method we use:

1) the computation is performed on a mesh which is itself periodic, so that periodicity is taken into
account in a strong way;

2) a structured, thin, layer of elements is added around each particle, in order to ensure an accu-
rate computation of lubrication forces. Furthermore, the global mesh is coarser far away from the
particles, where the velocity gradients are expected to be smaller (see Fig. 3);
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3) the degrees of freedom associated to the particles are integrated within the discretization space for
the velocity, so that we end up with a standard symmetric positive definite stiffness matrix;

4) for non-stationary computation, as the fluid domain is likely to undergo large deformation, the mesh
has to be regenerated from time to time. For Navier-Stokes flow, a projection of the velocity from
the old mesh onto the new one is necessary. As for the computations which are presented here, this
step is not necessary, because we neglect inertia.

We must add a few comments concerning the problem of particles getting close to each other. It is
especially sensitive in the situation we consider, as we add attractive forces between particles, and those
forces tend to put particles in contact. Different strategies have been used to overcome this problem. Some
authors add a short-range repulsive force between neighbouring particles (see Glowinski [6]). Another
strategy consists in refining the mesh in the neighbourhood of the interparticle gap (see Hu [9]). The
latter approach is justified by the following considerations, which applies to particles with a mass, and a
fortiori to particles with no mass. Considering two smooth spheres in a viscous fluid, approaching each
other at velocity ε̇, where ε is the distance, the lubrication force (which acts on both spheres with opposite
directions) is known to be of order ε̇/ε (see Kim [11]). Therefore, if we denote by F the modulus of a
force which tend to approach them, the distance ε obeys an equation like

ε̈ = −
ε̇

ε
+ F,

so that ε can be checked easily to remain positive, as soon as F is bounded (or even locally integrable
in time). Consequently, particles can be expected to avoid actual contact if the computation respects
the physical model. Experiments suggest that the global behaviour of the mixture is not too sensitive to
what is done at the local level, as far as reasonably diluted suspensions are concerned. Nevertheless, for
high concentrations (say, solid fractions above 50%), lubrication forces begin to play a crucial role in the
overall behaviour. We chose here to use a fine mesh in the neighbourhood of the particles. Nevertheless,
as interaction forces tend to put particles in contact, which would imply a breakdown of the computation
(if particle boundary intersect, a new mesh cannot be generated), we perfom a projection-like step which
ensures that interparticle distances are larger than a given parameter ε. This heuristic procedure is
described in [13].
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Figure 3 : Zoom of the mesh. Détail du maillage.
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5. Numerical experiments

5.1. Passive particles

This section presents results concerning the apparent viscosity of some mixtures when there is no
interaction forces.

We first consider configurations with “uniform” distribution of the particles where the mimimal distance
between the particles is bounded away from zero, and we plot apparent viscosity with respect to the solid
fraction. By uniform distribution we mean the following: in a first step, particles centers are disposed
randomly (according to a uniform law) in the computational domain, and a relative overlap (corresponding
to 25% of the diameter) is tolerated, which means that if a new particle violates this condition, it is not
created. In a second step, particles are swept away from each other according to the very same procedure
which is used at each time step to ensure a minimal distance between particles. This correction can be
thought of as a projection onto the set of feasible configurations, i.e. such that the minimal distance
between particles is greater than a prescribed value ε. Note that a procedure based on a simple exclusion
of any overlap excludes the creation of solid fractions above 45%, whereas the acceptance of a certain
amount of initial overlapping makes it possible to reach more than 60%.
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Figure 4 : Apparent viscosity with respect to solid fraction for uniform distributions.
Viscosité apparente en fonction de la fraction solide pour des distributions uniformes.

We recover the fact that apparent viscosity increases with respect to solid fraction and tends to blow
up as this fraction approaches its maximal value (see [1]). For higher solid fraction, the lubrication forces
between particles play an increasing role, the dependance of µapp upon solid fraction has to be investigated
more carefully.

The next set of results illustrates the fact that apparent viscosity is not a monotonuous function of
the solid fraction as soon as non-uniform distributions are considered. To that purpose, we considered
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non-uniform distributions with the same solid fraction (25%), but with different overall distributions. We
computed the apparent viscosity in 4 cases. Firstly, the distribution is uniform, in the sense indicated
in the beginning of this section, and we find µapp = 2. The second computation corresponds to an
aggregate. The apparent viscosity is found to be greater (2.45), which illustrates the well-known fact
that, in general, non-uniformity tends to increase the viscosity. The third computation indicates that
the opposite behaviour is observed for some special types of aggregates. Indeed, when the particles are
located in the neighbourhood of the centerline, the computed viscosity is found to be lower than in the
two previous cases (µapp = 1.62), which can be explained by the presence of two “empty” zones in the
neighbourhood of the walls. Note that the apparent viscosity would be almost the same if the cloud of
particles were replaced by a rigid body covering the same zone. In this situation the apparent viscosity
is therefore quite stable with respect to small perturbations of the particle distribution. In the 4th case,
we built a bridge of particles between the two walls. The situation is now completely different, as the
shear necessarily induces a deformation of the agglomerate of particles. These deformations are expensive
from the energetic point of view because all particles are close to their neighbours, so that lubrication
forces act against the deformation. In this case, the apparent viscosity is very sensitive to infinitesimal
transformations of the configuration. We ran a 5th computation by tuning up the minimal distance
parameter to 15% of the particle radius (whereas it is 5% for configuration 4). We did not represent
the configuration, as it cannot be distinguished from configuration 4. The apparent viscosity dropped
down to 3.47 (to be compared to 6.54 for the apparently identical situation). This type of situation has
been investigated by Berlyand [3], from a theoretical point of view, but we are not yet able to perform
quantitative comparisons between the computations and their results.
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Figure 5 : Apparent viscosities 2.0, 2.45, 1.62, and 6.54. Viscosités apparentes 2.0, 2.45, 1.62, et 6.54.
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5.2. Case with interaction forces

We compute here the evolution of a mixture of fluid and 150 interacting particles. The interaction force
between particles is attractive:

if dij ≤ 20r then Fij =
0.1

d3
ij

else Fij = 0,

and geometrical parameters are r = 0.02, L = 2, a = 1/2. The time step is chosen such that the largest
displacement of a particle between two time iterates is 20% of the radius r. We prescribed the following
shear history: at the beginning (from time label (1) to time label (2) on Fig. 6), U0 = 1; then from (2) to
(6), it is set to 50; and finally, from (6) to point (12), it is set back to 1.

The first curve of figure 6 plots the apparent viscosity with respect to the time. We plotted a second
curve to exhibit the part of geometrical parameters in the overall apparent viscosity. This second curve
(dotted line) correspond to the apparent viscosity associated to the current configuration, as if there
were no interaction forces. As previously, we shall denote this latter quantity by µ0 (see section 3.2). The
configurations corresponding to time labels from (1) to (12) are represented in Figs. 7 and 8.
– From (1) to (2), the configuration is close to a minimum of the potential energy. According to the

remark which was made at the end of section 3.2, the apparent viscosity is greater than if there were
no forces.

– From (2) to (6), the velocity is much larger. As a consequence, the forces have a very small impact on
the instantaneous apparent viscosity (see expression (8)), and µapp is close to µ0. During this period of
time, the aggregate is pulled apart by shear forces and the configuration becomes closer to the uniform
distribution, which explains the fact that µ0 decreases (see figure 5, cases 1 and 2), and so does µapp.
The slight increase of both µapp and µ0 between (5) and (6) can be explained by the fact that particles
begin to reaggregate.

– From (6) to (12), the velocity is set back to a smaller value, so that shear forces are dominated by
attraction forces, and particules tend to aggregate again, which induces an overall increase of µ0. The
behaviour of µapp is more complicated, because of the effect which was illustrated by figure 2. We can
observe that µapp begins to decrease and becomes lower than µ0 between (8) and (10), which means
that the corresponding configurations are such that the scalar product in equation (8) is positive. Then
µapp increases while particles aggregate again and go closer to a minimum of the interaction energy.

6. Conclusion

We presented a numerical approach to investigate the complex dependence of the apparent viscosity
of an active fluid-particle mixture upon geometrical distribution and interactions forces. The tool we
developed provides what those simulations necessitate at a reasonable computational cost: an accurate
description of close-range particle interactions, and the ability to deal with periodic geometries in order
to perform long time simulations at constant solid fraction.

We show how non-monotonous variations of the apparent viscosity can be explained by a competition
between geometrical effects (global properties of the particle distribution and local “closeness” of particles)
and interactions forces. The approach we propose extends straightforwardly to more general situations:
Navier-Stokes flows, domains with curved boundaries, non-circular particles.
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Figure 6 : Apparent viscosity versus time. Viscosité apparente en fonction du temps.
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Figure 7 : Configurations (1) to (6). Configurations (1) à (6).
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Figure 8 : Configurations (7) to (12). Configurations (7) à (12).
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