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Abstract. We present here a method to simulate the motion of a rigid body in a fluid. The method
is based on a variational formulation on the whole fluid/solid domain, with some constraints on the
unknown and the test functions. These constraints are relaxed by introducing a penalty term, which
leads to a minimization problem over unconstrained functional spaces. This makes the method straight-
forward to implement from any finite element Stokes/Navier-Stokes solver. It is shown that, as the
penalty parameter goes to infinity, we recover the coupled fluid-solid equations. We apply this approach
to a simplified 2D model of the aortic valve.

Résumé. Nous présentons ici une méthode de simulation du mouvement d’un corps rigide dans un
fluide. Cette méthode est basée sur une formulation variationnelle sur tout le domaine fluide/solide,
avec des contraintes sur l’inconnue et sur les fonctions test. On relaxe ces contraintes en introduisant
un terme de pénalisation, qui conduit à un problème de minimisation sur des espaces fonctionnels
non contraints. Ainsi, tout solveur éléments finis pour Stokes/Navier Stokes permet de programmer
aisément cette méthode. On montre que, quand le paramètre de pénalisation tend vers l’infini, on
retrouve le système d’équations couplées fluide/solide. Cette approche est appliquée à un modèle 2D
simplifié de la valve aortique.

Introduction

We consider a connected bounded, regular domain Ω ⊂ R
2 and we denote by B a subset of Ω strongly

contained in Ω. We shall restrict ourselves to the case where B is connected (see figure 1), but one can
easily generalize to any domain B with several connected components. We suppose that Ω \ B̄ is filled with a
Newtonian fluid governed by the Navier-Stokes equations and that B is a rigid inclusion in Ω. We suppose that
B is attached at one of its points x0. We shall apply our approach to a situation where the rotating rigid body
is submitted to an angular pull-back moment.

Numerical simulations of such a problem can be carried out in many different ways, which we may classify
into two main classes. The first one relies on a moving mesh which fits the moving part of the boundary (see
e.g. [4], [5], and [7]). In the second approach, the whole domain is covered by a static mesh. Those methods
are known as fictitious domain or embedded domain methods, as the actual computational domain (the fluid
component) is extended to a larger domain which covers the area of interest (zones which are likely to be
occupied by the fluid). To our knowledge, all fictitious domain approaches which have been applied to problems
like the one we consider are based on Lagrange multipliers (see [3]), which enforce the velocity in the solid part
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Figure 1. Model problem

to identify to the velocity of the rigid body. We propose here a penalty method to handle the rigid motion. As
the penalty changes the stiffness operator, we loose an advantage of the Lagrange multiplier method, which is
the possibility to use Fast Fourier Transform-like solvers. On the other hand, this method can be implemented
straightforwardly on a general Finite Element solver like FreeFem++ (see [1]), which we used to run numerical
experiments.

1. Continuous problem and Variational Formulation

For the sake of simplicity, we will consider here homogeneous Dirichlet conditions on ∂Ω. The fluid obeys
Navier-Stokes equations in Ω\ B̄ = Ω\ B̄(t) at every time t, and the body motion follows the Newton law, which
reduces here to an equation on the angular velocity around x0. Those equations are coupled by hydrodynamic
forces exerted by the fluid on the solid. Finally, viscosity imposes no-slip conditions on the boundary of B: at
each point of ∂B, the velocity on the fluid side is equal to the velocity on the rigid side.

We denote by ω = θ̇ the angular velocity of B, so that we have to find a velocity field u = (u1, u2) defined
in Ω \ B̄, ω ∈ R and a pressure field p defined in Ω \ B̄ such that :






ρf
Du
Dt

− µ�u + ∇p = ff in Ω \ B̄

∇ · u = 0 in Ω \ B̄

u = 0 on ∂Ω

u(x) = ω(x − x0)⊥ on ∂B

Jx0 ω̇ =
∫

B
(x − x0)⊥ · fB − ∫

∂B
(x − x0)⊥ · σnds

(1)

where ff and fB are the external forces exerted on the fluid and the rigid body respectively, ρf and ρB are their
respective densities, µ is the viscosity of the fluid, n is the external normal to Ω \ B̄, σ is the Cauchy stress
tensor, Jx0 is the kinetic momentum of B at point x0 and Du/Dt is the total derivative of u :

σ = 2µD(u) − pId and D(u) =
∇u + (∇u)T

2
,
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Jx0 =
∫

B

ρB |x − x0|2 ,

Du
Dt

=
∂u
∂t

+ (u · ∇)u,

and x⊥ denotes (−x2, x1).
Our first step will consist in establishing a variational formulation easily tractable from the numerical point

of view, i.e. involving functions which are defined on the whole domain Ω. This can be achieved by prescribing
the constraints on both the unknown velocity field and its test counterpart, at (almost) every time. In what
follows, we consider the problem at a given time t, and we drop the dependence of the domain Ω \ B̄ upon t, in
order to alleviate notations. We introduce the following spaces:

Kx0 =
{

u ∈ H1
0 (Ω)2,

∫

D

u = 0
}

, Kx0,∇ = {u ∈ Kx0 ,∇ · u = 0} ,

KB = {u ∈ H1
0 (Ω)2, ∃(V, ω) ∈ R

2 × R s.t. u = V + ω(x − x0)⊥ a.e. in B},
where D is a disc included in B and centered at x0. As for KB, which is the space of velocity fields which do
not deform B, it can be written

KB = {u ∈ H1
0 (Ω)2,D(u) = 0 a.e. on B}.

Note that KB depends on the position of B, and therefore it is likely to vary over time. For the sake of clarity,
we shall occasionally denote an element of KB by expliciting the real degrees of freedom: U = (u,V, ω) ∈ KB.
Note that if U = (u,V, ω) ∈ KB ∩ Kx0 then V is necessarily equal to zero, which expresses the fact that B is
fixed at x0. We nevertheless keep V as an unknown, because both contraints will be dealt with in different ways
in actual computations. The subspaces we have introduced are closed in H1

0 (Ω)2 and they are consequently
Hilbert spaces for the H1norm. Let now U = (u,V, ω) ∈ Kx0 ∩ KB be a solution of the problem at a certain
time t. We multiply the Navier Stokes equation by Ũ = (ũ, Ṽ, ω̃) ∈ Kx0 ∩ KB and integrate it over Ω \ B̄ :

∫

Ω\B̄

ρf
Du
Dt

· ũ− µ

∫

Ω\B̄

∆u · ũ +
∫

Ω\B̄

∇p · ũ =
∫

Ω\B̄

ff · ũ.

Integration by parts gives

∫

Ω\B̄

ρf
Du
Dt

· ũ + 2µ

∫

Ω\B̄

D(u) : D(ũ) −
∫

Ω\B̄

p∇ · ũ −
∫

∂(Ω\B̄)

σn · ũ =
∫

Ω\B̄

ff · ũ.

Then, using the fact that ũ = ω̃(x − x0)⊥ in B and using the boundary conditions on ∂B, we obtain :

∫

Ω\B̄

ρf
Du
Dt

· ũ + Jx0ω̇ω̃ + 2µ

∫

Ω\B̄

D(u) : D(ũ) −
∫

Ω\B̄

p∇ · ũ =
∫

Ω\B̄

ff · ũ +
∫

B

fB · ũ.

Since ũ ∈ KB, the third term can be written over Ω and, since D(u) = 0 implies ∇·u = 0, so can be the fourth
one : ∫

Ω\B̄

ρf
Du
Dt

· ũ + Jx0ω̇ω̃ + 2µ

∫

Ω

D(u) : D(ũ) −
∫

Ω

p∇ · ũ =
∫

Ω

f · ũ

where f = ffχΩ\B̄ + fBχB. Finally, using that u = ω(x − x0)⊥ and ũ = ω̃(x − x0)⊥ in B we can prove that

Jx0ω̇ω̃ =
∫

B

ρBω̇ω̃ |x − x0|2 =
∫

B

ρB
Du
Dt

· ũ,
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which leads to the variational formulation





∫

Ω

ρ
Du
Dt

· ũ + 2µ

∫

Ω

D(u) : D(ũ) −
∫

Ω

p∇ · ũ =
∫

Ω

f · ũ ∀ũ ∈ Kx0 ∩ KB,

∫

Ω

q∇ · u = 0 ∀q ∈ L2(Ω),
(2)

where ρ = ρfχΩ\B̄ + ρBχB.

2. Time discretization and penalty Method

2.1. Time discretization

We use the method of characteristics to discretize the total derivative. Note that, as ρ is constant along
trajectories, we have

ρ
Du
Dt

=
Dρu
Dt

.

We denote by Xn(x) an approximation of X(x, (n + 1)∆t, n∆t) where X is the characteristic associated to u.
It can be expressed as the solution to the following problem:






∂X
∂τ

(x, t, τ) = u(X(x, t, τ), τ)

X(x, t, t) = x

So, the time discretized problem is written at each time step :






un+1 ∈ Kx0 ∩ KBn+1 and pn+1 ∈ L2(Ω)

α

∫

Ω

ρn+1un+1 · ũ + 2µ

∫

Ω

D(un+1) : D(ũ) −
∫

Ω

pn+1∇ · ũ

= α
∫

Ω(ρnun) ◦ Xn · ũ +
∫

Ω fn+1 · ũ ∀ũ ∈ Kx0 ∩ KBn+1 ,
∫

Ω

q∇ · un+1 = 0 ∀q ∈ L2(Ω),

(3)

where α = 1/∆t and Bn+1 is computed using θn+1 = θn + ∆tωn.

2.2. Penalty method

The previous formulation involves test functions in the constrained space of rigid motions on B. In order to
relax this constraint, and make the algorithm easily implementable, we propose here a penalty method. Note
that the rigid motion constraint can also be taken into account by mean of tensorial Lagrange multipliers, as it
is done in [9].

Firstly, we write problem (3) as a minimization problem:





un+1 ∈ Kx0,∇ ∩ KBn+1

Jn(un+1) = min
v∈Kx0,∇∩KBn+1

Jn(v) (4)

where

Jn(v) =
α

2

∫

Ω

ρn+1v2 + µ

∫

Ω

D(v) : D(v) − α

∫

Ω

(ρnun) ◦Xn · v −
∫

Ω

fn+1 · v
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Problems (3) and (4) are equivalent, in the sense that (un+1, pn+1) solves (3) implies that un+1 is a solution
to (4), and if un+1 is a solution to (4), there exists pn+1 such that (un+1, pn+1) is a solution to (3). Uniqueness
of the pressure is of course out of reach, as it is clearly underdetermined within the rigid body. Existence and
uniqueness of a solution to (4) is a direct consequence of Korn’s second inequality (see [8]) and Lax Milgram
theorem.

We are now going to approach that minimization problem with another minimization problem by penalizing
the rigid motion constraint:






un+1
ε ∈ Kx0,∇

Jn
ε (un+1

ε ) = min
v∈Kx0,∇

Jn
ε (v) (5)

where

Jn
ε (v) = Jn(v) +

1
ε

∫

Bn+1
D(v) : D(v)

Note that, as before, we can prove that problem (5) admits a unique solution.

2.3. Convergence of the penalty method

We establish here the convergence of the penalty method at each time step. To that purpose, we introduce the
following abstract framework. We denote by V a Hilbert space, a and b two bilinear, symmetric and continuous
forms on V , a being coercive and b being positive (b(u,u) ≥ 0), and φ a linear form on V . We consider the
following problems :






u ∈ {w ∈ V s.t. b(w,w) = 0}
J(u) = min

v∈{w∈V s.t. b(w,w)=0}
J(v) (6)

and





uε ∈ V

Jε(uε) = min
v∈V

Jε(v)
(7)

where

J(v) =
1
2
a(v,v) − 〈φ,v〉 , Jε(v) = J(v) +

1
ε
b(v,v)

It is shown in [6] that :

Theorem 1. If u and uε are respectively solution to problem (6) and problem (7) then uε tends (strongly) to
u as ε goes to 0. Moreover, if b can be written b(u,v) = (Ψu, Ψv)Γ where Γ is a Hilbert space and Ψ is a
continuous linear mapping from V to Γ, with closed range, we have the following error estimate :

∃C > 0 s.t. |uε − u| ≤ Cε

Our problem fits into this framework, with (up to multiplicative constants)

V = Kx0,∇

a(u,v) =
∫

Ω u · v + 2µ
∫

Ω D(u) : D(v)

b(u,v) =
∫

B D(u) : D(v)

The linear convergence in ε is then a consequence of the following lemma
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Lemma 1. The mapping u 
−→ D(u)|B is linear and continuous from Kx0,∇ to
(
L2(B)

)4
, and its range is

closed.

Proof. We consider a sequence (un)n∈N ∈ Kx0,∇ such that D(un)|B tends to z in
(
L2(B)

)4
as n goes to

infinity. We are going to build u ∈ Kx0,∇ such that z = D(u)|B . We consider ūn ∈ Kx0,∇(B), the orthogonal
projection of un|B on (Kx0,∇(B) ∩ KB)⊥. Since ūn is orthogonal to the space of rigid motions on B we have
(see [8]) :

‖ūn‖H1(B) ≤ C‖D(ūn)‖L2(B)

As D(ūn) = D(un)|B , it follows that (ūn)n is bounded in H1(B). We now want to extend ūn over Ω. Since∫

∂B
ūn · n = 0, we can construct (see [2]) a divergence free extension on Ω bounded in H1(Ω) by ‖ūn‖H1(B).

Up to an extracted subsequence, this last sequence converges weakly to u ∈ Kx0,∇ as n goes to infinity and it
follows immediately that z = D(u)|B .

3. Numerical results

In this section we describe how the penalty method introduced in section 2.3 can be used to simulate the
motion of an idealized aortic valve.

3.1. Description of the model

In this somewhat over-simplified model, the “valve” is supposed to be rigid. We furthermore assume it is
rotating around x0, center of D1. The geometry outlined in Figure 2 arises from some geometric simplifications
of the real physical geometry of the aortic valve that can be found in [10]. The elastic complex behaviour that

v h

6h

D1

D2

r

e α
�

Figure 2. Geometry of the model problem

makes the valve return to an equilibrium position has been modeled adding a pull-back moment. More precisely,
we added an external force term, acting on D2, whose moment is proportionnal to α − αeq where αeq is the
angle of equilibrium. Therefore, the external force term including gravity and pull-back moment is :

f1 =
C

�
(α − αeq) sin αχD2 , f2 = (ρf − ρs)χB − C

�
(α − αeq) cos αχD2 .

where C is a constant.
As for boundary conditions we have prescribed a pulsatile Poiseuille-type velocity profile on the left-hand

side of the boundary, natural outlet conditions on the right-hand side, no-slip conditions on the top boundary
and symmetry conditions on the bottom boundary.
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3.2. Variational Formulation, implementation and results

We use the variational formulation associated with the minimization problem (5), that reads for each time
step






un+1 ∈ Kx0 and pn+1 ∈ L2(Ω)

α

∫

Ω

ρn+1un+1 · ũ + 2µ

∫

Ω

D(un+1) : D(ũ) +
2
ε

∫

Bn+1
D(un+1) : D(ũ) −

∫

Ω

pn+1∇ · ũ

= α
∫

Ω(ρnun) ◦ Xn · ũ +
∫

Ω fn+1 · ũ ∀ũ ∈ Kx0 ,
∫

Ω

q∇ · un+1 = 0 ∀q ∈ L2(Ω),

(8)

The only constraint still present in the functional spaces is the one related to the existence of a fixed point
in B for all time, i.e. un+1 ∈ Kx0 .

One way of enforcing this condition is to look for solutions satisfying
∫

D1
u = 0. Even though we could

enforce this condition by penalization, there would be terms in the corresponding variational formulation that
cannot be handled easily by standard solvers. So we enforce the zero mean velocity condition by duality. This
amounts to add the extra term

∫

D1
λ · ũ in the variational formulation (8), where λ is a Lagrange multiplier

associated with zero mean velocity condition over D1. Taking advantage of the linearity of the mapping λ 
→ uλ,
one just has to solve three generalized stokes problems, for instance for λ1 = (0, 0), λ2 = (1, 0) and λ3 = (0, 1),
obtaining solutions u1, u2 and u3. The solution is then a convex combination of the three precomputed ones:

u = αu1 + βu2 + (1 − α − β)u3

where the coefficients α and β can be computed by solving the 2 × 2 linear system
∫

D1

u = 0 ⇔
∫

D1

αu1 + βu2 + (1 − α − β)u3 = 0 ⇔
(∫

D1

u1 − u3

)

α +
(∫

D1

u2 − u3

)

β = −
∫

D1

u3.

Finally, we have to compute Bn+1 from Bn and un+1. In order to do that, as explained before, we use the real
degree of freedom ωn and write θn+1 = θn +∆tωn where ωn is computed from the velocity of the center of D2 :

Vn =
4

πe2

∫

D2

un and ωn =
cos(α)Vn

2 − sin(α)Vn
1

�
.

The geometric parameters used in our simulation are h = 20, r = 20, � = 14, µ = 1 and e = 5. The
Navier-Stokes equations are written in dimensionless form using h as the characteristic length and choosing
the maximum mainstream velocity at the left boundary in such a way that the Reynolds number becomes
Re = Umax/(ρfh) = 400.

The code was written in FreeFem++ version 1.44 and at each time step the generalized stokes problem is
solved using standard finite elements. The source code can be downloaded from [1]. The initial velocity field
was obtained by solving a Stokes problem. Figure 3 shows velocity fields and streamlines at different time steps.
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Figure 3. Velocity field and Streamlines at time steps 295–305–310–320–335–340–345
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[7] B. Maury, Direct simulations of 2D fluid-particle flows in biperiodic domains Journal of computational physics 156, 1999, pp.

325-351.
[8] O.A. Oleinik, A.S. Shamaev, and G.A. Yosifian, Mathematical Problems in Elasticity and Homogenization North-Holland,

Amsterdam, 1992.
[9] T.N. Randrianarivelo, G. Pianet, S. Vincent, J.P. Caltagirone, Numerical modelling of solid particle motion using a new

penalty method, Int. J. Numer. Meth. Fluids 2005, 47, 1245-1251.
[10] F.K. Wippermann, On the fluid dynamics of the aortic valve Journal of Fluid Mechanics (1985), 159, pp. 487-501.


