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Abstract
In this article, we consider a reaction-diffusion equation where the reaction term is given by a

cubic function and we are interested in the numerical reconstruction of the time-independent part
of the source term from measurements of the solution. For this identification problem, we present
an iterative algorithm based on Carleman estimates which consists of minimizing at each iteration
strongly convex cost functionals. Despite the nonlinear nature of the problem, we prove that our
algorithm globally converges and the convergence speed evaluated in weighted norm is linear. In
the last part of the paper, we illustrate the effectiveness of our algorithm with several numerical
reconstructions in dimension one or two.
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1 Introduction

Let Ω be a C2 bounded domain of Rd for d = 1, 2 or 3 and T > 0. We consider the following
reaction-diffusion equation

∂tu(t, x)−∆u(t, x) + u3(t, x) = σ(x)h(t, x), (t, x) ∈ (0, T )× Ω,
u(t, x) = g(t, x), (t, x) ∈ (0, T )× ∂Ω,
u(0, x) = u◦(x), x ∈ Ω,

(1.1)
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where g is the Dirichlet boundary data and u◦ is the initial condition. In the right hand side of the first
equation, we assume that the time-dependent function h is known and we focus on the reconstruction
of σ which is assumed to depend only on the spatial variable. To identify this unknown, we have two
kinds of measurements, the flux of the solution on a part of a boundary and the solution in the whole
domain at a given time: {

m(t, x) := ∇u(t, x) · n(x), (t, x) ∈ (0, T )× Γ,
r(x) := u(T0, x), x ∈ Ω,

(1.2)

where Γ ⊂ ∂Ω, T0 ∈ (0, T ) and n is the outward-pointing unit normal vector defined on ∂Ω.
Regarding the applications, this model can represent the evolution of a pollutant in the atmosphere.
The source in the right hand side corresponds to a spill of pollutant and we want to localise it. This
model can also be viewed as a simplified model to represent the evolution of the electrical potential
in the heart (we refer to [7] for a detailed presentation of this application domain and more precisely
to [7, Subsection 2.9.7] for cubic-like reaction models). In our model, the natural propagation of the
potential is initiated by the initial condition and the source in the right hand side may correspond to
a secondary undesirable source that we want to identify.

Let σmax > 0 be a fixed constant. We assume that the source term σ that we want to reconstruct
belongs to L∞(Ω) and satisfies the following a priori bound:

‖σ‖L∞(Ω) ≤ σmax. (1.3)

For this problem, according to Bukhgeim-Klibanov method, σ is uniquely determined by the measure-
ments and a Lipschitz stability estimate holds under appropriate assumptions on the data (the precise
result is stated in Proposition 2.6). Bukhgeim-Klibanov method [4] is a classical theoretical method
to prove the uniqueness and stability for parameter identification problems. For a presentation of this
method which relies on Carleman estimates and for a survey on its applications, we refer to [16] and in
particular to section 3.3 on parabolic equations. For the inverse problem of coefficients identification
in nonlinear parabolic equations, let us in particular mention that [3] and [8] deal with the theoretical
stability of the reaction term in a semi-linear PDE.

In this paper, our aim is to tackle the numerical reconstruction of σ and to propose for this nonlinear
problem a globally convergent algorithm. Our work is drawn from a numerical algorithm presented in
[1] for the identification of a potential in a wave equation. The method strongly relies on Carleman
inequalities and it consists of an iterative algorithm minimizing at each iteration a cost functional
involving Carleman weights. The main strength of this numerical method is that it globally converges
to the exact solution i.e. it converges independently of the initialization. In particular, contrary
to classical minimization techniques like Tikhonov methods [14], it is not necessary to add a priori
knowledge on the source term through the data of a background state to convexify the cost functional.

As pointed out in the introduction of [2], this method induces several numerical challenges. In
particular, the classical Carleman weights have very strong variations due to the presence of a double
exponential involving large coefficients. That is why, as in [2] for the wave equations, we need to
construct new Carleman weights for the heat equation which involve single exponentials (these weights
are given by (2.3) and (2.4)).
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The presence of a nonlinearity in our PDE leads to additional difficulties in the study of the
algorithm and in the numerical methods. In particular, the strong convexity properties of the cost
functional are restricted to bounded spaces. Moreover, the operator appearing in the cost functional
has to be modified by adding truncation operators in the nonlinear terms to tackle these terms in the
proof of the convergence of the algorithm. At last, contrary to [2] where the PDE is linear, introducing
a conjugate variable esϕz does not allow to overcome the fact that, even with single exponentials, the
minimization of the cost functional is challenging.

Let us mention that we could have considered general cubic functions of the form

a3u
3 + a2u

2 + a1u

with a3 > 0 instead of a simple cubic monomial in this semi-linear parabolic partial differential equa-
tions (1.1). By this way, the study includes the bistable equation or Allen-Cahn equation. At last,
we refer to Remark 2.4 for some remarks on the case of other boundary data (Neumann boundary
conditions instead of the second equation in (1.1) and boundary measurements on the solution itself).

For numerical studies applying Carleman estimates to controllability problems, we refer to [6] for
the numerical controllability of the wave equation and [11] for the numerical controllability of the
heat, Stokes and Navier-Stokes equation. In [17], the authors are interested by the reconstruction of
a coefficient in a parabolic equation and present a gradient method applied to a strictly convex cost
functional involving Carleman weights.

The paper is organized as follows. Sections 2 give some preliminary results. First, in Section 2.1,
we present a Carleman estimate for the heat operator with Dirichlet boundary conditions. In this
estimate, we consider two kinds of Carleman weights: the classical weights for the heat equation with
a double exponential and new weights involving single exponentials which are introduced for numerical
purposes. Then, in Section 2.2, we state a regularity result satisfied by the solution of equation (1.1).
The proofs of the Carleman estimate and the regularity result are presented in Annexes A and B
respectively. At last, in Section 2.3, we state the stability inequality associated to our inverse problem.

Section 3.1 is the core of the paper and presents the reconstruction algorithm of the source term.
The latter is an iterative process which requires at each iteration the minimization of a functional
based on the Carleman estimate. This section also states the well-posedness of the algorithm (Lemma
3.2) as well as its global convergence (Theorem 3.3). The proofs of these results are given in Section
3.3 and 3.4 respectively.

In Section 4, we give a simplified version of the algorithm that is able to reconstruct the source
term in a faster way but only in a restricted case. The iterative process is much simpler because it is
no more necessary to minimize a functional at each step. For this algorithm, the convergence result
(Proposition 4.1) is limited to the case of small data.

Finally, Section 5 is devoted to the implementation of the algorithm and the numerical results
obtained for various 1d and 2d test cases. In particular, we show examples where the simplified
algorithm fails whereas our initial algorithm identifies accurately the source.
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2 Preliminary results

2.1 Carleman inequality for the heat equation

Without loss of generality, from now on, we assume that T0 =
T

2
.

In this section, we state a Carleman inequality for the heat equation in two cases. The first case
corresponds to the classical weights with a double exponential while, in the second case, the weights
only involve single exponentials as for instance in [22, Section 3]. Let us specify these two cases :

• Case 1: For λ > 0, we define θ and ϕ by: for all (t, x) ∈ (0, T )× Ω

θ(t, x) =
eλ(2‖η0‖∞+η0(x))

t(T − t)
ϕ(t, x) =

eλ(2‖η0‖∞+η0(x)) − e4λ‖η0‖∞

t(T − t)
(2.1)

where η0 satisfies the following properties:

η0 > 0 in Ω, |∇η0| ≥ C > 0 in Ω and η0 = 0 on ∂Ω \ Γ. (2.2)

• Case 2: For all (t, x) ∈ (0, T )× Ω, we define

θ(t) =
1

t(T − t)
− 1− ρ

T 2
0

(2.3)

and
ϕ(t, x) = ψ(x)θ(t) with ψ(x) = |x− x0|2 − 2 sup

x∈Ω

|x− x0|2, (2.4)

where x0 is an arbitrary point in Rd \Ω and ρ is a constant satisfying 0 < ρ < 1. We notice that
θ > 0 and ψ < 0. In this case, we assume in addition that x0 and Γ are such that

{x ∈ ∂Ω | (x− x0) · n(x) > 0} ⊂ Γ. (2.5)

This last condition inCase 2 is unusual for the heat equation and is linked to this new choice of weights.
With these weights, we have less flexibility in the computations and we need an extra condition on the
measurement domain compared to the classical weights corresponding to Case 1. On the other hand,
if we take the classical weights, the presence of a double exponential in the functional to minimize
(see (3.11)) is prohibitive to address numerical applications (we refer to Remark 2.3 for additional
comments). In all our numerical tests presented in Section 5.2, we have considered the weights given
by Case 2.

Let us now formulate the Carleman inequality in Case 1 and Case 2.

Theorem 2.1. We assume that θ and ϕ are given by (2.1) where λ is fixed and large enough or by
(2.4). In this last case, we assume that Γ is such that (2.5) holds. Then, there exists s0 > 0 and C > 0
such that, for all s ≥ s0:∫ T

0

∫
Ω
e2sϕ

(
1

sθ
|∂tz|2 +

1

sθ
|∆z|2 + sθ|∇z|2 + s3θ3|z|2

)
dxdt

≤ C
∫ T

0

∫
Ω
e2sϕ|∂tz −∆z|2 dxdt+ Cs

∫ T

0

∫
Γ
e2sϕθ|∇z · n|2 dγdt, (2.6)

for all z ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω) ∩H1
0 (Ω)).
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Here and in all the paper, we denote by C a positive constant which depends on T and Ω, λ in
Case 1 and ρ in Case 2, unless specified otherwise where appropriated. The proof of this theorem is
given in Appendix A. A consequence of Theorem 2.1 is the following lemma:

Lemma 2.2. Under the same assumptions as Theorem 2.1, there exist s0 > 0 and C > 0 such that,
for all s ≥ s0 :

s

∫
Ω
e2sϕ(T0)|z(T0)|2 dx ≤ C

∫ T

0

∫
Ω
e2sϕ|∂tz −∆z|2 dxdt+ Cs

∫ T

0

∫
Γ
e2sϕθ|∇z · n|2 dγdt, (2.7)

for all z ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω) ∩H1
0 (Ω)).

Proof. We have∫
Ω
e2sϕ(T0)|z(T0)|2 dx =

∫ T0

0

d

dt

(∫
Ω
e2sϕ|z|2 dx

)
dt =

∫ T0

0

∫
Ω
∂t(e

2sϕ|z|2) dxdt

=

∫ T0

0

∫
Ω
e2sϕ

(
2z

(
sθ1/2 1

sθ1/2

)
∂tz + 2s∂tϕ|z|2

)
dxdt

≤
∫ T0

0

∫
Ω
e2sϕ 1

s2θ
|∂tz|2 dxdt+

∫ T0

0

∫
Ω
e2sϕ(s2θ + 2s|∂tϕ|)|z|2 dxdt

≤ C

s

[∫ T0

0

∫
Ω
e2sϕ 1

sθ
|∂tz|2 dxdt+

∫ T0

0

∫
Ω
e2sϕs3θ2|z|2 dxdt

]
where we have used that |∂tϕ| ≤ Cθ2. Thus, the result follows from (2.6).

Remark 2.3. To better design Carleman weights for numerical purposes, it would be interesting to
make a comprehensive comparison between different possible choices of Carleman weights for the heat
equation. In particular, in such a study which is beyond the scope of our paper, it would be necessary
to spell the lower bound on s in the associated Carleman inequality.

Remark 2.4. We could have considered other kinds of boundary data by completing the first equation
of (1.1) with Neumann conditions instead of Dirichlet conditions and by replacing the first measurement
in (1.2) by a measurement on a part of the boundary of u itself. In this case, following [12] and [10],
we still have a Carleman inequality with the classical weights (2.1) and we can still prove the global
convergence of the algorithm. For the numerical tests, it would be interesting to see if we can get a
Carleman inequality with weights similar to the ones of Case 2.

2.2 Regularity result

Let us give a regularity result for problem (1.1). The proof of this result is presented in Appendix B.

Proposition 2.5. Assume that u◦ ∈ H3(Ω), σ ∈ L∞(Ω), h ∈ H1(0, T ;L2(Ω)) and g ∈ H1(0, T ;H3/2(∂Ω))∩
H2(0, T ;H1/2(∂Ω)). Moreover, we assume that h(0, ·) = 0 in Ω.

Then the solution u of (1.1) belongs to

u ∈ C1(0, T ;H1(Ω)) ∩H2(0, T ;L2(Ω)) ∩H1(0, T ;H2(Ω))
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with the estimate

‖u‖C1(0,T ;H1(Ω)) + ‖u‖H2(0,T ;L2(Ω)) + ‖u‖H1(0,T ;H2(Ω))

≤ C
(
‖σ‖L∞(Ω) + ‖σ‖pL∞(Ω)

)(
‖h‖H1(0,T ;L2(Ω)) + ‖h‖p

H1(0,T ;L2(Ω))

)
+ C

(
‖u◦‖H3(Ω) + ‖u◦‖pH3(Ω)

)
+ C

(
‖g‖H1(0,T ;H3/2(∂Ω))∩H2(0,T ;L2(∂Ω)) + ‖g‖p

H1(0,T ;H3/2(∂Ω))∩H2(0,T ;H1/2(∂Ω))

)
(2.8)

where the power p is a fixed positive integer and C only depends on T and Ω.

Let us note that, in the above proposition, the regularity assumed for g is not optimal, it would
indeed be sufficient to assume that g ∈ H1(0, T ;H3/2(∂Ω)) ∩ H2(0, T ;Hκ(∂Ω)) with κ > 0 (see [19,
Chapter 1, Subsection 9.2]). In this result, if we do not make the assumption that h(0, ·) = 0 in Ω, it
is necessary to assume that σ belongs to H1(Ω) (since we need an initial condition in H1(Ω) for the
problem satisfied by ∂tu). But this additional regularity assumption on σ leads to difficulties in the
construction of the iterations in Algorithm 1.

2.3 Stability inequality

In this paragraph, we state a Lipschitz stability inequality for our inverse problem. This result asserts
in particular that the unknown σ is identifiable from the measurements given by (1.2). It is obtained
thanks to a direct application of Bukhgeim-Klibanov method [4] and relies on the Carleman inequality
given by Theorem 2.1 and the regularity result given by Proposition 2.5. We do not give the proof
here and refer to [15] and [13] for a closely related result.

Proposition 2.6. We assume that u◦ ∈ H3(Ω), g ∈ H1(0, T ;H3/2(∂Ω)) ∩ H2(0, T ;H1/2(∂Ω)) and
h ∈ H1(0, T ;L∞(Ω)) is such that h(0, ·) = 0 in Ω and |h(T0, ·)| ≥ β > 0 in Ω. We consider σ1 and σ2

in L∞(Ω) which satisfy (1.3). Then, for i = 1, 2, if we denote by ui the solution of (1.1) associated to
σi, we have the following inequality: there exists C > 0 such that

‖σ1 − σ2‖L2(Ω) ≤ C(‖u1(T0)− u2(T0)‖H2(Ω) + ‖∇(u1 − u2) · n‖H1(0,T ;L2(Γ))).

3 Reconstruction algorithm and theoretical study

3.1 Presentation of the algorithm and convergence

In this subsection, we construct a sequence (σk)k∈N which approximates the unknown σ and we state
the convergence of this sequence. We make the following assumptions:

Hypotheses 3.1. • u◦ ∈ H3(Ω) and g ∈ H1(0, T ;H3/2(∂Ω)) ∩H2(0, T ;H1/2(∂Ω)).

• σ ∈ L∞(Ω) satisfies (1.3).

• h satisfies
h ∈ H1(0, T ;L∞(Ω)), h(0, ·) = 0 in Ω (3.1)

and
|h(T0, ·)| ≥ β > 0 in Ω. (3.2)
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• The weights θ and ϕ are given by Case 1 or Case 2 described at the beginning of paragraph
2.1. In Case 1, the parameter λ is fixed and large enough.

In our paper, we denote byM an arbitrary constant which only depends on T , Ω, σmax, ‖u◦‖H3(Ω),
‖h‖H1(0,T ;L∞(Ω)) and ‖g‖H1(0,T ;H3/2(∂Ω))∩H2(0,T ;H1/2(∂Ω)).

First, we initialize the algorithm with σ0 = 0 (or any guess such that ‖σ0‖L∞(Ω) ≤ σmax).
Now, let us assume that we are at step k and that we have constructed σk which satisfies

‖σk‖L∞(Ω) ≤ σmax. (3.3)

We denote by uk the solution of (1.1) associated to σk and by uσ the solution of (1.1) associated to
the unknown σ. Moreover, we set vk = uσ − uk.

We then use Proposition 2.5 and we denote by M > 0 a fixed constant depending on T , Ω, σmax,
‖u◦‖H3(Ω), ‖h‖H1(0,T ;L2(Ω)) and ‖g‖H1(0,T ;H3/2(∂Ω))∩H2(0,T ;H1/2(∂Ω)) such that

‖vk‖C([0,T ]×Ω) + ‖vk‖C1(0,T ;H1(Ω)) + ‖vk‖H2(0,T ;L2(Ω)) + ‖vk‖H1(0,T ;H2(Ω)) ≤M. (3.4)

The function vk is solution of
∂tvk(t, x)−∆vk(t, x) + vk(t, x)q[vk, uk](t, x) = (σ(x)− σk(x))h(t, x), (t, x) ∈ (0, T )× Ω,
vk(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω,
vk(0, x) = 0, x ∈ Ω,

(3.5)
where we have set q[v, u] = 3u2 + 3uv+ v2. Let us differentiate the equation with respect to time. We
introduce wk = ∂tvk which satisfies:

∂twk(t, x)−∆wk(t, x) + wk(t, x)q[vk, uk](t, x) + vk(t, x)∂tq[vk, uk](t, x) = fk(t, x), (t, x) ∈ (0, T )× Ω,
wk(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω,
wk(0, x) = 0, x ∈ Ω,

(3.6)
where, for all (t, x) ∈ (0, T )× Ω,

fk(t, x) = (σ(x)− σk(x))∂th(t, x). (3.7)

We notice that

wk(T0, x) = ∂tvk(T0, x) = ∆vk(T0, x)− vk(T0, x)q[vk, uk](T0, x) + (σ(x)− σk(x))h(T0, x), x ∈ Ω.
(3.8)

Hence, thanks to hypothesis (3.2), knowing wk(T0, ·) gives access to σ−σk, the other terms being given
observations thanks to (1.2).

For the constant M > 0 introduced in estimate (3.4), we consider the following function:

TM : R −→ R

X 7−→ XΦ

(
X

M

)
,

(3.9)
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where Φ ∈ C1
0 (R) is such that 0 ≤ Φ ≤ 1 and

Φ(X) =

{
1, if |X| ≤ 1,

0, if |X| ≥ 2.
(3.10)

The properties satisfied by TM are given in section 3.2. For any µ in L2((0, T )× Γ), we introduce the
functional J0[µ] by

J0[µ](z) =
1

2

∫ T

0

∫
Ω
e2sϕ|Pkz|2 dxdt+

s

2

∫ T

0

∫
Γ
e2sϕθ|∇z · n− µ|2 dγdt, (3.11)

with

Pkz = ∂tz −∆z + 3(uk)
2z + 6∂tukukTM (y) + 3∂tukTM (y)2 + 6ukz TM (y) + 3z TM (y)2 (3.12)

where

y(t, x) = vk(T0, x) +

∫ t

T0

z(t′, x)dt′, (t, x) ∈ (0, T )× Ω.

By this way, since vk satisfies (3.4), TM (vk) = vk and Pk(wk) corresponds to the left hand side of the
first equation of (3.6).

We consider the functional J0[µ] on the function space

Ẽ =
{
z : esϕ(∂tz −∆z) ∈ L2((0, T )× Ω), esϕθ1/2∇z · n ∈ L2((0, T )× Γ),

esϕθ3/2z ∈ L2((0, T )× Ω), esϕθ−1/2z ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω) ∩H1
0 (Ω))

}
(3.13)

endowed with its natural norm.
The next iteration σk+1 is defined by following four steps:

Algorithm 1. Iteration: From k to k + 1
• Step 1 - We set µk = ∂t (m−∇uk · n) on (0, T )× Γ, where m is the measurement defined in (1.2).
• Step 2 - According to Lemma 3.2, J0[µk] (defined in (3.11)) admits a global minimizer in Ẽ. We
denote it by Zk (it depends on s but we drop this dependence to simplify the notations).
• Step 3 - We set

σ̃k+1(x) = σk(x) +
Zk(T0, x)−∆vk(T0, x) + vk(T0, x)q[vk, uk](T0, x)

h(T0, x)
, x ∈ Ω. (3.14)

This is well-defined because h satisfies the positivity condition (3.2) and h(T0, ·) ∈ L2(Ω). Moreover,
in this expression, vk(T0, ·) is known and given by vk(T0, ·) = r− uk(T0, ·) where r is the measurement
defined in (1.2). Since uk(T0) and vk(T0) belong to H2(Ω) and Zk(T0) belongs to L2(Ω), σ̃k+1 belongs
to L2(Ω).
• Step 4 - At last, we define

σk+1 = Πσmax(σ̃k+1),

where Πσmax is given by

Πσmax(σ) =

{
σ, if |σ| ≤ σmax,

sign(σ)σmax, otherwise.

By this way, σk+1 satisfies (3.3) at step k + 1.
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The following lemma ensures the existence of Zk at Step 2 of Algorithm 1.

Lemma 3.2. Let µ be given in L2((0, T )×Γ) and assume that Hypotheses 3.1 hold. There exists s0 > 0
which depends on T , Ω, σmax, ‖u◦‖H3(Ω), ‖h‖H1(0,T ;L2(Ω)), and ‖g‖H1(0,T ;H3/2(∂Ω))∩H2(0,T ;H1/2(∂Ω)) such
that for all s ≥ s0, J0[µ] admits a global minimizer in Ẽ. Moreover, if we define, for any C > 0

EC :=
{
z ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω) ∩H1

0 (Ω)), ‖z‖L2(0,T ;H2(Ω)) ≤ C
}
, (3.15)

then, for s0 large enough, J0[µ] is strongly convex and admits a unique minimizer in EC for any s ≥ s0.

This lemma will be proved in Subsection 3.3. Due to the nonlinearities in our equation, the strong
convexity of J0[µ] can only be stated in EC where the bound in L2(0, T ;H2(Ω)) allows to deal with
the nonlinearities. Contrary to the wave equations where the weights stay far from 0 (see [1, Section
4]), our weights, as usual for the heat equation, vanish at 0 and T and it is not clear that a minimizer
of J0[µ] in Ẽ will belong to EC for some C > 0. Therefore, it is not possible to deduce in a direct way
the uniqueness in Ẽ from the strong convexity in EC .

Now we state the main theoretical result which gives the global linear convergence in the weighted
L2-norm of the sequence (σk)k∈N:

Theorem 3.3. Under Hypotheses 3.1, there exist s0 > 0 and M > 0 such that for all s ≥ s0, for all
k ∈ N ∫

Ω
e2sϕ(T0)|σk+1 − σ|2dx ≤

M

s

∫
Ω
e2sϕ(T0)|σk − σ|2dx. (3.16)

Thus, for s large enough, (σk)k∈N tends to σ when k goes to +∞.

This theorem will be proved in Subsection 3.4.

3.2 Properties satisfied by the function TM

Proposition 3.4. The function TM defined by (3.9) satisfies the following properties:

a) For all X ∈ R, ∣∣TM (X)
∣∣ ≤ 2M. (3.17)

b) TM ∈ C1
0 (R) and there exists L > 0 such that

|T ′
M

(X)| ≤ Lχ[−2M,2M ](X), ∀X ∈ R, (3.18)

where χA is the characteristic function of a set A.

c) For all X1, X2 ∈ R,
|TM (X1)− TM (X2)| ≤ L|X1 −X2|, (3.19)

which implies in particular that TM is a Lipschitz operator.

Proof. a) For X ∈ R, we have

∣∣TM (X)
∣∣ =

∣∣∣∣XΦ

(
X

M

)∣∣∣∣ =

{
≤ |X|, if |X| ≤ 2M

= 0, if |X| > 2M

}
≤ 2M.
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b) By definition (3.9), TM ∈ C1
0 (R) and T ′

M
(X) = 0 for all |X| ≥ 2M . Moreover, for all |X| ≤ 2M ,

we have
|T ′
M

(X)| =
∣∣∣∣Φ(XM

)
+
X

M
Φ′
(
X

M

)∣∣∣∣
≤ 1 + 2‖Φ′‖C0(R).

c) This is a direct consequence of (3.18) and the mean value inequality.

3.3 Proof of Lemma 3.2

According to Proposition 2.5, there exists a constant M > 0 such that

‖uk‖C1(0,T ;H1(Ω)) + ‖uk‖H2(0,T ;L2(Ω)) + ‖uk‖H1(0,T ;H2(Ω)) ≤M. (3.20)

Using this estimate and (3.19), we have the continuity of J0[µ] in Ẽ. Moreover, since J0[µ] is positive,
it admits an infimum in Ẽ and we can introduce a sequence (zn)n∈N such that

J0[µ](zn) −→
n→+∞

inf
z∈Ẽ

J0[µ](z).

Let us study the convergence properties of the sequence (zn)n∈N. Using inequality (3.20), we have

J0[µ](zn) ≥ 1

4

∫ T

0

∫
Ω
e2sϕ|∂tzn −∆zn|2dx dt+

s

4

∫ T

0

∫
Γ
e2sϕθ|∇zn · n|2 dγdt

− s

2

∫ T

0

∫
Γ
e2sϕθµ2 dγdt−M −M

∫ T

0

∫
Ω
e2sϕ|zn|2dx dt.

Thus, according to the Carleman inequality given by (2.6) and using the fact that se2sϕθ ≤ C in
(0, T )× Ω for the third term in the right hand side, we get that, for s large enough,∫ T

0

∫
Ω
e2sϕ

(
1

sθ
|∂tzn|2 +

1

sθ
|∆zn|2 + sθ|∇zn|2 + s3θ3|zn|2

)
dxdt ≤ J0[µ](zn) +M + C‖µ‖2L2((0,T )×Γ).

(3.21)
By construction of (zn)n∈N, the sequence (J0[µ](zn))n∈N is bounded and thus the left hand side of

this last inequality is bounded. According to the definitions of θ and ϕ which are given by (2.1) or by
(2.4), we have in (0, T )× Ω

|∂tθ|+ |∂tϕ| ≤ Cθ2 and |∇θ|+ |∇ϕ|+ |D2θ|+ |D2ϕ| ≤ Cθ

and thus (esϕθ−1/2zn)n∈N is bounded inH1(0, T ;L2(Ω))∩L2(0, T ;H2(Ω)). We deduce that, (esϕθ−1/2zn)n∈N
weakly converges to some element in H1(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω)) that we denote esϕθ−1/2z̃ (all
the convergence results given in this proof are valid up to a subsequence but we do not specify it in or-
der to lighten the writing). Moreover, since H1(0, T ;L2(Ω))∩L2(0, T ;H2(Ω)) is compactly embedded
in L2((0, T )× Ω),

esϕθ−1/2zn → esϕθ−1/2z̃ in L2((0, T )× Ω) (3.22)
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and, by identification of the limit, since θ−1 belongs to L∞((0, T )× Ω), we also have

esϕθ3/2zn ⇀ esϕθ3/2z̃ weakly in L2((0, T )× Ω)

and
esϕθ1/2∇zn ⇀ esϕθ1/2∇z̃ weakly in L2(0, T ;H1(Ω)). (3.23)

Let us now prove that lim
n→+∞

J0[µ](zn) = J0[µ](z̃) which will imply that z̃ minimizes J0[µ]. Since

(J0[µ](zn))n∈N is bounded, (esϕθ1/2(∇zn ·n))n∈N weakly converges in L2((0, T )×Γ) and (esϕPkzn)n∈N
weakly converges in L2((0, T )× Ω) and it is sufficient to identify their weak limits. The fact that

esϕθ1/2(∇zn · n) ⇀ esϕθ1/2(∇z̃ · n) weakly in L2((0, T )× Γ)

directly comes from (3.23). To identify the limit of (esϕPkzn)n∈N, we will prove that

esϕθ−1/2Pkzn ⇀ esϕθ−1/2Pkz̃ weakly in L2((0, T )× Ω). (3.24)

We first consider in the definition (3.12) of Pk the three first terms which correspond to the linear part.
The weak convergence of (esϕθ−1/2zn)n∈N to esϕθ−1/2z̃ in H1(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω)) implies
that

esϕθ−1/2(∂tzn−∆zn + 3(uk)
2zn) ⇀ esϕθ−1/2(∂tz̃−∆z̃+ 3(uk)

2z̃) weakly in L2((0, T )×Ω). (3.25)

Now we define, for all t ∈ (0, T )

yn(t) = vk(T0) +

∫ t

T0

zn(t′)dt′ and ỹ(t) = vk(T0) +

∫ t

T0

z̃(t′)dt′.

For the other terms in the operator Pk, let us first prove that (esϕθ−1/2TM (yn))n∈N strongly converges
to esϕθ−1/2TM (ỹ) in L∞(0, T ;L2(Ω)). To do so, we observe that∫

Ω
e2sϕθ−1/2|yn − ỹ|2dx =

∫
Ω
e2sϕθ−1/2

∣∣∣∣∫ t

T0

(zn − z̃)(t′, x)dt′
∣∣∣∣2 dx

≤ C
∫

Ω
e2sϕθ−1/2

∣∣∣∣∫ t

T0

|zn − z̃|2(t′, x)dt′
∣∣∣∣ dx.

By definition (2.4) of ϕ and θ and since T0 = T
2 , we have, for all t′ between T0 and t, for all x ∈ Ω

ϕ(t, x) ≤ ϕ(t′, x) and θ(t, x) ≥ θ(t′, x). (3.26)

This implies that

‖esϕθ−1/2(yn − ỹ)‖2L∞(0,T ;L2(Ω)) ≤ C
∫ T

0

∫
Ω
e2sϕθ−1/2|zn − z̃|2dx dt.

Thus, according to (3.22), (esϕθ−1/2yn)n∈N strongly converges to esϕθ−1/2ỹ in L∞(0, T ;L2(Ω)) and
since TM satisfies (3.19), this implies that

esϕθ−1/2TM (yn)→ esϕθ−1/2TM (ỹ) in L∞(0, T ;L2(Ω)). (3.27)
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We can now study the limit of the remaining terms of esϕPkzn when n tends to +∞ : using (3.17),
(3.20) and (3.27), we have

esϕθ−1/2∂tukukTM (yn)→ esϕθ−1/2∂tukukTM (ỹ) in L2((0, T )× Ω). (3.28)

and
esϕθ−1/2∂tukTM (yn)2 → esϕθ−1/2∂tukTM (ỹ)2 in L2((0, T )× Ω). (3.29)

Let us now prove that

esϕθ−1/2ukzn TM (yn)→ esϕθ−1/2ukz̃ TM (ỹ) in L2((0, T )× Ω). (3.30)

The strong convergence (3.22) of (esϕθ−1/2zn)n∈N implies the almost everywhere convergence of (zn)n∈N
to z̃ and the existence of a function zb in L2((0, T )× Ω) such that, for all n ∈ N

|esϕθ−1/2zn| ≤ zb.

Moreover, the strong convergence of (esϕθ−1/2yn)n∈N in L2((0, T )×Ω) implies the almost everywhere
convergence of (yn)n∈N to ỹ. Thus, we deduce that

esϕθ−1/2ukzn TM (yn)→ esϕθ−1/2ukz̃ TM (ỹ) a.e.

and
|esϕθ−1/2ukzn TM (yn)| ≤Mzb.

And these two properties imply (3.30) according to Lebesgue’s dominated convergence theorem. At
last, we use the same arguments to prove that

esϕθ−1/2zn TM (yn)2 → esϕθ−1/2ukz̃ TM (ỹ) in L2((0, T )× Ω). (3.31)

Finally, gathering (3.25) and (3.28) to (3.31), we obtain (3.24) and we conclude that z̃ is a mini-
mizer of J0[µ].

Let us now prove the end of Lemma 3.2. On Ẽ, we consider the norm ‖ · ‖s defined by

‖z‖2s =

∫ T

0

∫
Ω
e2sϕ

(
1

sθ
|∂tz|2 +

1

sθ
|∆z|2 + sθ|∇z|2 + s3θ3|z|2

)
dxdt.

For any fixed C > 0, the set EC defined by (3.15) is convex and closed in (Ẽ, ‖ · ‖s) and we can
prove that, for s large enough, J0[µ] is strongly convex in EC i.e. that there exists δ > 0 such that, for
all z1 and z2 in EC

DJ0[µ](z1)(z1 − z2)−DJ0[µ](z2)(z1 − z2) ≥ δ
∫ T

0

∫
Ω
e2sϕ|z1 − z2|2 dxdt.

We do not detail the proof of this inequality because it follows exactly the same steps as in the next
paragraph to deal with the terms in the left hand side of (3.35) (with respectively z1 and z2 replaced
by wk and Zk) and we have chosen to give these details in the next paragraph to present a complete
proof for the convergence of the algorithm. At last, the strong convexity of J0[µ] implies that it admits
a unique minimizer in EC .

12



3.4 Proof of the convergence of the algorithm given by Theorem 3.3

For µk = ∂t (m−∇uk · n) on (0, T )× Γ, we define the functional

J [µk](z) =
1

2

∫ T

0

∫
Ω
e2sϕ|Pkz − fk|2 dxdt+

s

2

∫ T

0

∫
Γ
e2sϕθ|∇z · n− µk|2 dγdt,

where Pk is given by (3.12) and fk is defined by (3.7). We notice that wk, solution of the equation
(3.6) is the unique function in Ẽ which minimizes J [µk]. Indeed, according to (3.4), TM (vk) = vk and
this implies that J [µk](wk) = 0.

Let us now compute the Gâteaux derivative of Pk at point w, for any w ∈ Ẽ. Let z ∈ Ẽ,

DPk(w)(z) = lim
ε→0

Pk(w + εz)− Pk(w)

ε

= ∂tz −∆z + 3z
(
(uk)

2 + 2ukTM (v) + TM (v)2
)

+ 6T ′
M

(v)y
(
∂tukuk + ∂tukTM (v) + ukw + wTM (v)

)
,

(3.32)

where v(t) = vk(T0) +

∫ t

T0

w(t′)dt′, y(t) =

∫ t

T0

z(t′)dt′.

Then, wk satisfies the first order optimality condition given by∫ T

0

∫
Ω
e2sϕ(Pkwk − fk)DPk(wk)(z) dxdt+ s

∫ T

0

∫
Γ
e2sϕθ(∇wk · n− µk)(∇z · n) dγdt = 0, ∀z ∈ Ẽ.

(3.33)
Similarly, Zk satisfies the first order optimality condition∫ T

0

∫
Ω
e2sϕ(PkZk)DPk(Zk)(z) dxdt+s

∫ T

0

∫
Γ
e2sϕθ(∇Zk ·n−µk)(∇z·n) dγdt = 0, ∀z ∈ Ẽ. (3.34)

Let us define zk = wk − Zk. We compute the difference between (3.33) and (3.34) and take z = zk.
We get∫ T

0

∫
Ω
e2sϕ(PkwkDPk(wk)(zk)− PkZkDPk(Zk)(zk)) dxdt+ s

∫ T

0

∫
Γ
e2sϕθ|∇zk · n|2 dγdt

=

∫ T

0

∫
Ω
e2sϕfkDPk(wk)(zk) dxdt.

(3.35)

For the first term in the left hand-side, we have:

PkwkDPk(wk)(zk)−PkZkDPk(Zk)(zk) = (Pkwk−PkZk)DPk(Zk)(zk)+Pkwk(DPk(wk)(zk)−DPk(Zk)(zk)).

Thus, (3.35) implies∫ T

0

∫
Ω
e2sϕ(Pkwk − PkZk)DPk(Zk)(zk) dxdt+ s

∫ T

0

∫
Γ
e2sϕθ|∇zk · n|2 dxdt ≤

∫ T

0

∫
Ω
e2sϕ|fk|2 dγdt

+
1

4

∫ T

0

∫
Ω
e2sϕ|DPk(wk)(zk)|2 dxdt+

∫ T

0

∫
Ω
e2sϕ|Pkwk||DPk(wk)(zk)−DPk(Zk)(zk)| dxdt.

(3.36)
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We will estimate separately the different terms of this inequality. For what follows, we define, for all
t ∈ (0, T )

Yk(t, ·) = vk(T0, ·) +

∫ t

T0

Zk(t
′, ·)dt′ and yk(t, ·) = vk(t, ·)− Yk(t, ·) =

∫ t

T0

zk(t
′, ·)dt′.

• Let us first find a lower bound for the first term in the left-hand side.

Pkwk − PkZk =∂tzk −∆zk + 3(uk)
2zk + 6∂tukuk(TM (vk)− TM (Yk))

+ 3∂tuk(TM (vk)
2 − TM (Yk)

2) + 6uk(TM (vk)wk − TM (Yk)Zk)

+ 3(TM (vk)
2wk − TM (Yk)

2Zk)

=∂tzk −∆zk + 3(uk)
2zk + 6∂tukuk(TM (vk)− TM (Yk))

+ 3∂tuk(TM (vk)− TM (Yk))(TM (vk) + TM (Yk)) + 6ukzkTM (Yk)

+ 6uk(TM (vk)− TM (Yk))wk + 3zkTM (Yk)
2

+ 3(TM (vk) + TM (Yk))(TM (vk)− TM (Yk))wk

:=∂tzk −∆zk +R1,k.

Using (3.17), (3.19) and (3.20), we can estimate R1,k

|R1,k| ≤M |zk|+M |yk|(|∂tuk|+ |wk|).

Moreover, from (3.32), we can write DPk(Zk)(zk) = ∂tzk−∆zk+R2,k where, according to (3.17),
(3.18) and (3.20)

|R2,k| ≤M |zk|+M |T ′
M

(Yk)||yk|(|∂tuk|+ |Zk|) ≤M |zk|+Mχ[−2M,2M ](Yk)|yk|(|∂tuk|+ |Zk|).

We deduce from these inequalities that∫ T

0

∫
Ω
e2sϕ(Pkwk − PkZk)DPk(Zk)(zk)dxdt ≥

3

4

∫ T

0

∫
Ω
e2sϕ|∂tzk −∆zk|2dxdt

−M
∫ T

0

∫
Ω
e2sϕ|zk|2dxdt−M

∫ T

0

∫
Ω
e2sϕ|yk|2(|∂tuk|2 + |wk|2 + χ[−2M,2M ](Yk)|Zk|

2)dxdt.

(3.37)

For the last term, we use that Zk = wk − zk and that χ[−2M,2M ](Yk) ≤ χ[−3M,3M ](yk), according
to (3.4). Thus, we get∫ T

0

∫
Ω
e2sϕ|yk|2(|∂tuk|2 + |wk|2 + χ[−2M,2M ](Yk)|Zk|

2)dxdt

≤ C
∫ T

0

∫
Ω
e2sϕ|yk|2(|∂tuk|2 + |wk|2 + χ[−3M,3M ](yk)|zk|

2)dxdt.

(3.38)

Let us estimate this last integral. We first notice that∫ T

0

∫
Ω
e2sϕ|yk|2χ[−3M,3M ](yk)|zk|

2dxdt ≤M
∫ T

0

∫
Ω
e2sϕ|zk|2dxdt. (3.39)
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Next, according to (3.20) and (3.4), we have∫ T

0

∫
Ω
e2sϕ|yk|2(|∂tuk|2 + |wk|2) dxdt ≤ ‖esϕyk‖2L∞(0,T ;L2(Ω))(‖∂tuk‖

2
L2(0,T ;L∞(Ω)) + ‖wk‖2L2(0,T ;L∞(Ω)))

≤M‖esϕyk‖2L∞(0,T ;L2(Ω)).

We have, for all t ∈ (0, T )∫
Ω
e2sϕ(t,x)|yk(t, x)|2dx =

∫
Ω
e2sϕ(t,x)

∣∣∣∣∫ t

T0

zk(t
′, x)dt′

∣∣∣∣2 dx
≤ C

∫
Ω
e2sϕ(t,x)

∣∣∣∣∫ t

T0

|zk(t′, x)|2dt′
∣∣∣∣ dx ≤ C ∫ T

0

∫
Ω
e2sϕ|zk|2dx dt′

using inequality (3.26) for ϕ. By this way, we deduce that∫ T

0

∫
Ω
e2sϕ|yk|2(|∂tuk|2 + |wk|2) dxdt ≤M

∫ T

0

∫
Ω
e2sϕ|zk|2dx dt. (3.40)

Using, (3.38), (3.39) and this last inequality, (3.37) becomes∫ T

0

∫
Ω
e2sϕ(Pkwk − PkZk)DPk(Zk)(zk)dxdt ≥

3

4

∫ T

0

∫
Ω
e2sϕ|∂tzk −∆zk|2dxdt

−M
∫ T

0

∫
Ω
e2sϕ|zk|2dxdt.

(3.41)

• To bound the second term in the right-hand side of (3.36), by definition (3.32) of DPk, we have,
according to (3.18) and (3.20)

|DPk(wk)(zk)|2 ≤ 2|∂tzk −∆zk|2 +M |zk|2 +M |yk|2(|∂tuk|2 + |wk|2).

Thus, using again (3.40), we get

1

4

∫ T

0

∫
Ω
e2sϕ|DPk(wk)(zk)|2dxdt ≤

1

2

∫ T

0

∫
Ω
e2sϕ|∂tzk −∆zk|2dxdt+M

∫ T

0

∫
Ω
e2sϕ|zk|2dxdt.

(3.42)

• To bound the last term of (3.36), we notice that

DPk(wk)(zk)−DPk(Zk)(zk) = 3zk
(
2ukTM (vk) + TM (vk)

2
)
− 3zk

(
2ukTM (Yk) + TM (Yk)

2
)

+ 6T ′
M

(vk)yk
(
∂tukuk + ∂tukTM (vk) + ukwk + wkTM (vk)

)
− 6T ′

M
(Yk)yk

(
∂tukuk + ∂tukTM (Yk) + ukZk + ZkTM (Yk)

)
=6zkuk

(
TM (vk)− TM (Yk)

)
+ 3zk

(
TM (vk)

2 − TM (Yk)
2
)

+ 6∂tukukyk
(
T ′
M

(vk)− T ′M (Yk)
)

+ 6∂tukyk
(
T ′
M

(vk)− T ′M (Yk)
)
TM (vk) + 6∂tukT

′
M

(Yk)yk(TM (vk)− TM (Yk))

+ 6ukyk
(
T ′
M

(vk)− T ′M (Yk)
)
wk + 6ukT

′
M

(Yk)ykzk + 6yk
(
T ′
M

(vk)− T ′M (Yk)
)
wkTM (vk)

+ 6T ′
M

(Yk)ykwk(TM (vk)− TM (Yk)) + 6T ′
M

(Yk)ykzkTM (Yk).
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Hence, using that |T ′
M

(Yk)| ≤ Lχ[−2M,2M ](Yk) ≤ Lχ[−3M,3M ](yk)

|DPk(wk)(zk)−DPk(Zk)(zk)| ≤M |zk|+M |yk|(|∂tuk|+ |wk|+ |zk|χ[−3M,3M ](yk)).

This implies that∫ T

0

∫
Ω
e2sϕ|Pkwk||DPk(wk)(zk)−DPk(Zk)(zk)|dxdt

≤ 1

2

∫ T

0

∫
Ω
e2sϕ|Pkwk|2dxdt+

1

2

∫ T

0

∫
Ω
e2sϕ|DPk(wk)(zk)−DPk(Zk)(zk)|2dxdt

≤ 1

2

∫ T

0

∫
Ω
e2sϕ|fk|2 dxdt+M

∫ T

0

∫
Ω
e2sϕ|zk|2dxdt

(3.43)

according to (3.39) and (3.40).
Using (3.41), (3.42) and (3.43), inequality (3.36) becomes:

1

4

∫ T

0

∫
Ω
e2sϕ|∂tzk −∆zk|2 dxdt+ s

∫ T

0

∫
Γ
e2sϕθ|∇zk · n|2 dγdt

≤ 3

2

∫ T

0

∫
Ω
e2sϕ|fk|2 dxdt+M

∫ T

0

∫
Ω
e2sϕ|zk|2 dxdt.

(3.44)

Using Theorem 2.1, we can eliminate the last term in the right hand-side of (3.44) for s larger than
some constant s0. Thus, using inequality (2.7), we get the following bound on z(T0):

s

∫
Ω
e2sϕ(T0)|zk(T0)|2 dx ≤M

∫ T

0

∫
Ω
e2sϕ|fk|2 dxdt. (3.45)

In the left hand-side of this inequality, we have zk(T0, x) = wk(T0, x)− Zk(T0, x) for x ∈ Ω and, using
(3.8) and (3.14), we get that

zk(T0, x) = −h(T0, x)(σ̃k+1(x)− σ(x)), x ∈ Ω.

In the right hand-side of (3.45), since fk = (σk−σ)∂th and h is assumed to be bounded inH1(0, T ;L∞(Ω)),
we have ∫ T

0

∫
Ω
e2sϕ|fk|2 dxdt ≤M

∫
Ω
e2sϕ(T0)|σk − σ|2 dx.

Using (3.2), we get that

s

∫
Ω
e2sϕ(T0)|σ̃k+1 − σ|2 dx ≤M

∫
Ω
e2sϕ(T0)|σk − σ|2 dx.

Now, to estimate σk+1 = Πσmax(σ̃k+1), we notice that, since σ satisfies (1.3), we have

|σk+1 − σ| ≤ |σ̃k+1 − σ| in Ω. (3.46)

Thus, we get (3.16) and, applying iteratively this estimate, we obtain that∫
Ω
e2sϕ(T0)|σk+1 − σ|2 dx ≤

(
M

s

)
k+1

∫
Ω
e2sϕ(T0)|σ0 − σ|2 dx.

Thus, for s large enough we deduce the convergence of the algorithm.
This concludes the proof of Theorem 3.3.
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4 A simplified algorithm

In this section, we propose a simplified algorithm where we skip Step 2 in the Algorithm 1 and choose
Zk = 0 instead. By this way, Step 3 of the algorithm becomes
• Step 3 bis - We set

σ̃k+1(x) = σk(x)− ∆vk(T0, x)− vk(T0, x)q[vk, uk](T0, x)

h(T0, x)
. (4.1)

This new algorithm was motivated by numerical tests where we observed that the method described
by Algorithm 1 reconstructs sometimes the source whereas the minimization problem is not solved.

The following proposition states the convergence of the sequence (σk)k∈N defined by this simplified
algorithm as soon as the data are small enough. The proof of this result is far more basic than the
proof of the global convergence (Theorem 3.3) for the complete algorithm and essentially relies on
regularity results. An interesting fact is that the convergence is proved for the L∞-norm.

Proposition 4.1. We consider the sequence (σk)k∈N defined by Algorithm 1 where we have replaced
Step 3 by Step 3 bis. We assume that

• h belongs to H2(0, T ;L2(Ω)), satisfies (3.2) and h(0, ·) = 0 in Ω,

• u◦ ∈ H3(Ω), σ ∈ L∞(Ω) and g ∈ H1(0, T ;H3/2(∂Ω)) ∩H2(0, T ;H1/2(∂Ω)).

Then, there exists a constant ε > 0 depending on T , Ω, σmax and β such that, if

‖u◦‖H3(Ω) + ‖h‖H2(0,T ;L2(Ω)) + ‖g‖H1(0,T ;H3/2(∂Ω))∩H2(0,T ;H1/2(∂Ω)) ≤ ε, (4.2)

the sequence (σk)k∈N linearly converges to σ in L∞(Ω).

Proof. According to equation (3.5) satisfied by vk, σ̃k+1 defined by (4.1) satisfies

σ̃k+1(x) = σ(x) +
∂tvk(T0, x)

h(T0, x)

Thus, using (3.2), we have

‖σ̃k+1 − σ‖L∞(Ω) ≤
1

β
‖wk‖C0(0,T ;L∞(Ω)). (4.3)

According to Proposition 2.5, and since ‖σk‖L∞(Ω) ≤ σmax,∥∥uk∥∥C1(0,T ;H1(Ω))
+
∥∥uk∥∥H2(0,T ;L2(Ω))

+
∥∥uk∥∥H1(0,T ;H2(Ω))

≤M

and
‖u‖C1(0,T ;H1(Ω)) + ‖u‖H2(0,T ;L2(Ω)) + ‖u‖H1(0,T ;H2(Ω)) ≤M

where M has the following expression:

M = C (σmax + σpmax)
(
‖h‖H1(0,T ;L2(Ω)) + ‖h‖p

H1(0,T ;L2(Ω))

)
+ C

(
‖u◦‖H3(Ω) + ‖u◦‖pH3(Ω)

)
+ C

(
‖g‖H1(0,T ;H3/2(∂Ω))∩H2(0,T ;L2(∂Ω)) + ‖g‖p

H1(0,T ;H3/2(∂Ω))∩H2(0,T ;H1/2(∂Ω))

) (4.4)
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where the power p is a fixed positive integer.
Using these estimates and adapting the proof of Proposition 2.5 to the system (3.5) satisfied by vk,

we can prove in a similar way that

vk ∈ C1(0, T ;H1(Ω)) ∩H2(0, T ;L2(Ω)) ∩H1(0, T ;H2(Ω))

with the estimate

‖vk‖C1(0,T ;H1(Ω)) + ‖vk‖H2(0,T ;L2(Ω)) + ‖vk‖H1(0,T ;H2(Ω)) ≤M‖σk − σ‖L∞(Ω) (4.5)

where M is also of the form (4.4). If we compute the energy estimate for the system satisfied by ∂twk,
we get that wk belongs to C1(0, T ;L2(Ω)) with the estimate:

‖wk‖C1(0,T ;L2(Ω)) ≤ (M + ‖h‖H2(0,T ;L2(Ω)))‖σk − σ‖L∞(Ω).

Looking at (3.6) as an elliptic problem, we deduce that

‖wk‖C(0,T ;H2(Ω)) ≤ (M + ‖h‖H2(0,T ;L2(Ω)))‖σk − σ‖L∞(Ω).

We then use this estimate in (4.3) to bound the right hand side and get:

‖σ̃k+1 − σ‖L∞(Ω) ≤
1

β
(M + ‖h‖H2(0,T ;L2(Ω)))‖σk − σ‖L∞(Ω).

To conclude the proof, we use the same argument as in the proof of Theorem 3.3: since σk+1 =
Πσmax(σ̃k+1) satisfies (3.46), we have

‖σk+1 − σ‖L∞(Ω) ≤
1

β
(M + ‖h‖H2(0,T ;L2(Ω)))‖σk − σ‖L∞(Ω).

Thus, according to the expression of M given by (4.4), if u◦, h and g satisfy (4.2) for ε > 0 small
enough with respect to T , Ω, σmax and β, the sequence (σk)k∈N linearly converges to σ in L∞(Ω).

5 Numerical issues

5.1 Numerical methods

In this subsection, we present the discretization procedure and the numerical methods used in our
numerical simulations. To simplify the presentation, we explain the discretization scheme in the one-
dimensional case and assume that Ω = (0, L) for L > 0 and Γ = {x = L}.

Generation of the data

In this article, we work with synthetic data. To discretize the reaction-diffusion equation (1.1) for the
exact source σ, we use a finite differences scheme based on the three-point backward Euler scheme
and a linearization of the cubic term. We denote by Nx ∈ N the number of discretization points in
the interior of [0, L] and by Nt ∈ N the number of discretization points in the interior of [0, T ]. The
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space and time steps are denoted by ∆x =
L

Nx + 1
and ∆t =

T

Nt + 1
respectively and we define, for

0 ≤ j ≤ Nx + 1 and 0 ≤ n ≤ Nt + 1, unj a numerical approximation of the solution u(tn, xj) with
tn = n∆t and xj = j∆x. The approximated solution is computed in the following way:

Initialize: u0
j = u◦(xj), 0 ≤ j ≤ Nx + 1.

For 0 ≤ n ≤ Nt, knowing un, compute un+1 as the solution of the linear system: un+1
j − unj

∆t
−
un+1
j+1 − 2un+1

j + un+1
j−1

∆x2
+ (unj )3 + 3(unj )2(un+1

j − unj ) = σ(xj)h(tn, xj),

un+1
0 = g(tn+1, 0) and un+1

Nx+1 = g(tn+1, L), 1 ≤ j ≤ Nx,

(5.1)

where the time implicit cubic term (un+1
j )3 has been approximated by its first order Taylor expansion

(unj )3 + 3(unj )2(un+1
j − unj ). Then, we compute the counterpart of the continuous measurements r and

m given in (1.2) as follows:

mn =
unNx+1 − unNx

∆x
, 0 ≤ n ≤ Nt + 1 and rj = un0

j , 0 ≤ j ≤ Nx + 1,

with n0 is the integer part of Nt/2 + 1.
On the computed data, we may add a Gaussian noise:

mn ←−mn + α(max
n

mn)N (0, 1), 0 ≤ n ≤ Nt + 1,

rj ←−rj + α(max
j
rj)N (0, 1), 0 ≤ j ≤ Nx + 1,

(5.2)

where N (0, 1) satisfies a centered normal law with deviation 1 and α is the level of noise (i.e. α = 0.01
corresponds to a noise of 1%).

Discrete algorithm

We present in this subsection the discrete version of Algorithm 1.

Algorithm 2. Initialisation : Start with σ̄ = 0.
Iteration : Until the convergence criteria is reached, do
• Step 1 - Knowing σ̄ ∈ RNx , solve

ūn+1
j − ūnj

∆t
−
ūn+1
j+1 − 2ūn+1

j + ūn+1
j−1

∆x2
+ (ūnj )3 = σ̄jh(tn, xj),

ūn+1
0 = g(tn+1, 0) and ūn+1

Nx+1 = g(tn+1, L), 0 ≤ n ≤ Nt,

ū0
j = u◦(xj), 1 ≤ j ≤ Nx,

(5.3)

and set vj = rj − ūn0
j .

• Step 2 - Define for 1 ≤ n ≤ Nt,

µn =

(
m− ūNx+1 − ūNx

∆x

)n+1

−
(
m− ūNx+1 − ūNx

∆x

)n−1

2∆t
(5.4)
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and discretize the functional (3.11) as follows:

J0[µ](z) =
1

2
∆t∆x

Nt∑
n=1

Nx∑
j=1

e2sϕ(tn,xj)|(Pkz)nj |2 +
s

2
∆t

Nt∑
n=1

e2sϕ(tn,L)θ(tn)

∣∣∣∣−znNx

∆x
− µn

∣∣∣∣2 , (5.5)

where

(Pkz)
n
j =

zn+1
j − zn−1

j

2∆t
−
znj+1 − 2znj + znj−1

∆x2
+ 3(ūnj )2znj + 6

ūn+1
j − ūn−1

j

2∆t
ūnj TM (ynj )

+ 3
ūn+1
j − ūn−1

j

2∆t
TM (ynj )2 + 6ūnj z

n
j TM (ynj ) + 3znj TM (ynj )2,

(5.6)

with 
yn0
j = vj , 1 ≤ j ≤ Nx,

ynj = yn−1
j + ∆xznj , if n > n0,

ynj = yn+1
j −∆xznj , if n < n0.

Minimize J0[µ] by a Newton-Krylov method [18] using the gradient of J0[µ] and obtain the minimum
Z = (Znj )1≤j≤Nx,1≤n≤Nt .
• Step 3 - Update

σ̄j ←− σ̄j +
Zn0
j −

vj+1 − 2vj + vj−1

∆x2
+ vjq[vj , ū

n0
j ]

h(tn0 , xj)
, 1 ≤ j ≤ Nx. (5.7)

• Step 4 - At last, define
σ̄j ←− sign(σ̄j) min(σmax, |σ̄j |).

The iterative loop is stopped when two consecutive σ̄ are closer than a fixed relative tolerance ε or
when the maximal number of iterations is reached. In the absence of knowledge of the exact solution
σ, the quality of the converged solution is measured thanks to the following criteria

errr =
‖r − ūn0‖2
‖r‖2

and errm =

∥∥∥∥m− ūNx+1 − ūNx

∆x

∥∥∥∥
2

‖m‖2
, (5.8)

that should be of the order of the noise level on the observations. If the exact solution σ is known, we
can also compute the relative error

errσ =
‖σ − σ̄‖2
‖σ‖2

.

Remark 5.1. In order to avoid the inverse crime, we introduce a bias by taking different schemes
for the direct and the inverse problems. Hence, we solve (5.1) associated to σ thanks to a linearized
implicit scheme and we use an explicit scheme for the nonlinear term in equation (5.3) with σ̄ = σk.
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Numerical challenges

One of the main drawbacks of the method presented in Algorithm 1 is that we have to differentiate in
time the observation m in (5.4) and to take the Laplacian of the observation r in (5.7). Thus, even
a small perturbation (noise) on the observations may induce a large perturbation on its derivatives.
In order to partially remedy this problem in the presence of noise, we first regularize the data (m, r)
thanks to a 3-order low-pass Butterworth filter [5] associated to a cutoff frequency ω. We also replace
the classical finite difference formulae in (5.4) and (5.7) that generate instabilities by a Savitzki-Golay
formula [20] associated with a cubic polynomial and a window size of 5 points.

As already mentioned previously, a difficulty in our approach is the presence of the exponential
weights in the functional that leads to severe numerical difficulties when performing the minimization
for s large. In [2], this difficulty was solved by choosing a functional that only depended on the
conjugate variable esϕz and the corresponding conjugate operator. But this was possible because the
considered operator was linear. Here, we managed to deal with this difficulty by introducing the new
weight functions (2.4). In Figure 1, we plot esϕ in (0, T )× (0, L) for different s. Notice that even for s
large, the function does not vanish at the observation time T0 = 0.5 what allows a good reconstruction
of the source term in the whole domain Ω.

(a) s = 1 (b) s = 100

Figure 1: Carleman weight function esϕ defined in (2.4) for different values of s.

5.2 Numerical results

This subsection is devoted to the presentation of some numerical examples to illustrate the properties of
the reconstruction algorithm and its efficiency. All simulations are executed with Python. The source
codes are available on request. Table 1 gathers the numerical values used for all the following examples,
unless specified otherwise where appropriate. Moreover, we construct the function Φ introduced in
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(3.10) in the form:

Φ(X) =



1, if |X| ≤ 1,∫ |X|
1 exp

(
−1

(x−1)(2−x)

)
dx∫ 2

1 exp
(

−1
(x−1)(2−x)

)
dx

, if 1 < |X| < 2,

0, if |X| ≥ 2.

Figure 2 presents some examples of data generated by the direct problem. In all the figures presenting
the numerical results, the exact source that we want to recover is plotted by a red line, whereas the
numerical source recovered by the algorithm is represented by a dotted black line. The convergence
informations (number of iterations, running time, convergence errors) are reported in Table 2.

L T Nx Nt g u◦ σmax
1 1 25 50 0 0 2

α x0 s M ρ ε ω

0 −0.3 100 10 10−3 10−3 0.15

Table 1: Numerical values for the variables.

Example Number of iterations Running time in seconds errm errr errσ
Figure 3 (a) 4 1 0.2% 0.2% 0.03%
Figure 4 (a) 3 117 0.1% 0.2% 0.02%
Figure 3 (b) Nmax = 30 6 > 100% 50% > 100%
Figure 4 (b) 16 554 0.7% 0.1% 0.8%
Figure 6 (a) 3 87 1% 0.3% 2%
Figure 6 (b) 3 91 1% 0.3% 4%
Figure 6 (c) 3 97 3% 0.5% 9%
Figure 7 (b) 4 497 0.05% 0.1% 0.05%

Table 2: Convergence results of the test cases.

Simulations with the simplified algorithm

In Figure 3, we present the results obtained at each iteration of Algorithm 1 without the minimisation
step for the case of the reconstruction of the source σ(x) = sin(πx). One can observe that the
convergence depends on the choice for h. For this reason, this algorithm is not robust, even if it is
sometimes very rapid and efficient (see Table 2).

Simulations from data without noise

In Figure 4, we present the successive results obtained at each iteration of Algorithm 1 in the case of
the reconstruction of the source σ(x) = sin(πx) for two different choices of h. One can observe that
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(a) h(t) = t+ sin(πt) (b) u(t, ·) for different times

(c) m(t) the measurement of the flux at x = L (d) r(x) the measurement of u at t = T0

Figure 2: Examples of data used in the numerical examples for σ(x) = sin(πx) and α = 2%.

in both cases the convergence criteria (5.8) for ε is met in less than 20 iterations. In Figure 5, several
results of reconstruction of sources obtained using Algorithm 1 in the absence of noise are given.

Simulations with several levels of noise

Figure 6 shows the results for σ(x) = sin(πx) with different levels of noise in the measurements
(α = 1%, 2% and 5%). In Table 2, we report the corresponding errors on the reconstructed source. In
fact, we observe that a noise of level α in the measurements gives rise to an error of order 2α in the
recovered source.

Simulations in two dimensions

We also performed some reconstructions in two dimensions where Ω = (0, 1)2, x0 = (−0.3,−0.3) and
Γ =

(
{0}×[0, 1]

)
∪
(
[0, 1]×{0}

)
. By this way, assumption (2.5) is satisfied. Figure 7 presents the results

obtained for two different sources in the absence of additional noise. The gray scales are identical for
the exact and the recovered graphics. The final error (reported in Table 2) is less than 0.1% what
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(a) h(t) = t+ sin(πt)→ Convergence (b) h(t) = t+ sin(7πt)→ Divergence

Figure 3: Reconstruction of σ(x) = sin(πx) without minimisation. We considered two different choices
for h and represented the corresponding convergence/divergence history.

(a) h(t) = t+ sin(πt)→ Convergence (b) h(t) = t+ sin(7πt)→ Convergence

Figure 4: Reconstruction of σ(x) = sin(πx) with minimisation. Different choices for h and the corre-
sponding convergence history.

shows the effectiveness of the reconstruction obtained in a few minutes on a personal laptop.

Appendix

A Proof of the Carleman inequality given by Theorem 2.1

Proof. If we are in Case 1 with the first choice of weight (2.1), this result is proved in an identical
way as Lemma 1.2 in [12] which considers the case of intern measurements. Assume now that we are
in Case 2 where θ and ψ are given by (2.4).
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(a) σ(x) = −x (b) σ(x) = sin(2πx) (c) σ rectangular

Figure 5: Different examples of reconstruction for h(t) = t+ sin(πt).

(a) α = 1% (b) α = 2% (c) α = 5%

Figure 6: Reconstruction of the source σ(x) = sin(πx) for h(t) = t+ sin(πt) in presence of noise in the
data. The level of noise is denoted by α.

Let us give some properties on ϕ which will be useful in what follows:

ϕ(t, x) ≤ ϕ(T0, x), ∀ (t, x) ∈ (0, T )× Ω, ∇2ϕ = 2θId, (A.1)
|∇ϕ| ≤ Cθ, |∂tϕ| ≤ Cθ2, |∂t∇ϕ| ≤ Cθ2, |∂ttϕ| ≤ Cθ3. (A.2)

In the proof, we assume that z belongs to C2([0, T ] × Ω) and satisfies z = 0 on (0, T ) × ∂Ω. A
density argument allows to come back to the regularity hypotheses of the theorem.

For all s > 0, we set w = esϕz and we introduce the conjugate operator Q defined by

Qw = esϕ(∂t −∆)(e−sϕw). (A.3)

If we set f = ∂tz −∆z, we have
Qw = esϕf.

Some computations give

Qw = ∂tw + 2s∇ϕ · ∇w + s∆ϕw −∆w − (s2|∇ϕ|2 + s∂tϕ)w = Q+w +Q−w,
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(a) Exact sources.

(b) Sources recovered numerically.

(c) Exact sources.

(d) Sources recovered numerically.

Figure 7: Different examples of reconstruction in the 2d case.
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where the operators Q+ and Q− are defined by

Q+w = −∆w − (s2|∇ϕ|2 + s∂tϕ)w, (A.4)
Q−w = ∂tw + 2s∇ϕ · ∇w + s∆ϕw. (A.5)

In a classical way, we write that∫ T

0

∫
Ω
e2sϕ|f |2 dxdt =

∫ T

0

∫
Ω
|Q+w|2 dxdt+

∫ T

0

∫
Ω
|Q−w|2 dxdt+ 2

∫ T

0

∫
Ω
Q+wQ−w dxdt. (A.6)

The main part of the proof consists of bounding from below the terms in the right hand side by positive
and dominant terms and a negative observation term located in (0, T )× Γ. For the sake of clarity, we
divide the proof in several steps.

• Step 1 - Explicit calculation of the cross-term.

We set ∫ T

0

∫
Ω
Q+wQ−w dxdt =

∑
1≤i≤2, 1≤k≤3

Ii,k,

where Ii,k is the integral of the product of the ith-term in Q+w and the kth-term in Q−w.
Integrations by parts in time give easily

I11 =

∫ T

0

∫
Ω

(−∆w)∂tw dxdt =

∫ T

0

∫
Ω
∇w · ∇∂tw dxdt−

∫ T

0

∫
∂Ω
∇w · n ∂tw dγdt

=
1

2

[∫
Ω
|∇w|2 dx

]T
0

−
∫ T

0

∫
∂Ω
∇w · n ∂tw dγdt = 0

since w(0) = w(T ) = 0 in Ω and w = 0 on (0, T ) × ∂Ω. An integration by parts in time gives
for I21

I21 = −
∫ T

0

∫
Ω

(s2|∇ϕ|2 + s∂tϕ)w∂tw dxdt =
1

2

∫ T

0

∫
Ω
∂t(s

2|∇ϕ|2 + s∂tϕ)|w|2 dxdt.

We compute in the same way, by integrating by parts in space

I12 = −
∫ T

0

∫
Ω

∆w(2s∇ϕ · ∇w) dxdt

= 2s

∫ T

0

∫
Ω
∇w · ∇(∇ϕ · ∇w) dxdt− 2s

∫ T

0

∫
∂Ω
∇w · n(∇ϕ · ∇w) dγdt

= 2s

∫ T

0

∫
Ω

(∇2ϕ)∇w · ∇w dxdt+ 2s

∫ T

0

∫
Ω

(∇2w)∇w · ∇ϕdxdt− 2s

∫ T

0

∫
∂Ω
∇w · n(∇ϕ · ∇w) dγdt

= 2s

∫ T

0

∫
Ω

(∇2ϕ)∇w · ∇w dxdt− s
∫ T

0

∫
Ω
|∇w|2∆ϕdxdt+ s

∫ T

0

∫
∂Ω
|∇w|2∇ϕ · ndγdt

−2s

∫ T

0

∫
∂Ω
∇w · n(∇ϕ · ∇w) dγdt
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and

I22 = −
∫ T

0

∫
Ω

(s2|∇ϕ|2 + s∂tϕ)w(2s∇ϕ · ∇w) dxdt =

∫ T

0

∫
Ω
∇ ·
[
(s3|∇ϕ|2 + s2∂tϕ)∇ϕ

]
|w|2 dxdt.

Since ∆ϕ is independent of x, by integration by parts in space, we have

I13 = −
∫ T

0

∫
Ω

∆w(s∆ϕw) dxdt = s

∫ T

0

∫
Ω
|∇w|2∆ϕdxdt.

At last, we have

I23 = −
∫ T

0

∫
Ω

(s2|∇ϕ|2 + s∂tϕ)w(s∆ϕw) dxdt = −
∫ T

0

∫
Ω

(s3|∇ϕ|2 + s2∂tϕ)∆ϕ|w|2 dxdt.

Gathering all these computations and using the second property in (A.1), we get∫ T

0

∫
Ω
Q+wQ−w dxdt = 4s

∫ T

0

∫
Ω
θ|∇w|2 dxdt

+

∫ T

0

∫
Ω

(
1

2
∂t(s

2|∇ϕ|2 + s∂tϕ) +∇ ·
[
(s3|∇ϕ|2 + s2∂tϕ)∇ϕ

]
− (s3|∇ϕ|2 + s2∂tϕ)∆ϕ

)
|w|2 dxdt

+ s

∫ T

0

∫
∂Ω
|∇w|2∇ϕ · ndγdt− 2s

∫ T

0

∫
∂Ω
∇w · n(∇ϕ · ∇w) dγdt.

(A.7)

For the second term in the right hand side, we notice that the main part in s3 is given by

s3(∇ · (|∇ϕ|2∇ϕ)− |∇ϕ|2∆ϕ) = s3∇(|∇ϕ|2) · ∇ϕ = 8s3θ3|x− x0|2 ≥ Cs3θ3.

For the boundary terms in (A.7), we notice that, since z = 0 on (0, T ) × ∂Ω, ∇w = esϕ∇z. In
particular, ∇w · τ = 0 on (0, T )× ∂Ω. Thus, we get

s

∫ T

0

∫
∂Ω
|∇w|2∇ϕ · ndγdt− 2s

∫ T

0

∫
∂Ω
∇w · n(∇ϕ · ∇w) dγdt = −s

∫ T

0

∫
∂Ω
|∇w · n|2∇ϕ · ndγdt.

We divide this last integral as follows

−s
∫ T

0

∫
∂Ω
|∇w ·n|2∇ϕ·ndγdt = −s

∫ T

0

∫
Γ
|∇w ·n|2∇ϕ·ndγdt−s

∫ T

0

∫
∂Ω\Γ

|∇w ·n|2∇ϕ·ndγdt.

According to (2.5), the second integral is positive and the first integral corresponds to an obser-
vation integral.

Gathering these estimates, (A.7) becomes, for s large enough∫ T

0

∫
Ω
Q+wQ−w dxdt ≥ 4s

∫ T

0

∫
Ω
θ|∇w|2 dxdt+ Cs3

∫ T

0

∫
Ω
θ3|w|2 dxdt

−s
∫ T

0

∫
Γ
|∇w · n|2∇ϕ · ndγdt. (A.8)
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• Step 2 - Bounds on ∆w and ∂tw.

From the definition of Q− (A.5), we have

1

2

∫ T

0

∫
Ω

1

sθ
|∂tw|2 dxdt ≤

∫ T

0

∫
Ω

1

sθ
|Q−w|2 dxdt+

∫ T

0

∫
Ω

1

sθ
|2s∇ϕ · ∇w + s∆ϕw|2 dxdt

≤
∫ T

0

∫
Ω
|Q−w|2 dxdt+ C

(∫ T

0

∫
Ω
sθ|∇w|2 dxdt+

∫ T

0

∫
Ω
sθ|w|2 dxdt

)
.

In the same way,

1

2

∫ T

0

∫
Ω

1

sθ
|∆w|2 dxdt ≤

∫ T

0

∫
Ω

1

sθ
|Q+w|2 dxdt+

∫ T

0

∫
Ω

1

sθ
(s2|∇ϕ|2 + s∂tϕ)2|w|2 dxdt

≤
∫ T

0

∫
Ω
|Q+w|2 dxdt+ C

∫ T

0

∫
Ω
s3θ3|w|2 dxdt.

Thus, coming back to (A.6) and, gathering (A.8) and these last two estimates, we get, for s large
enough ∫ T

0

∫
Ω

(
1

sθ
|∂tw|2 +

1

sθ
|∆w|2 + sθ|∇w|2 + s3θ3|w|2

)
dxdt

≤ C
∫ T

0

∫
Ω
e2sϕ|f |2 dxdt+ Cs

∫ T

0

∫
Γ
|∇w · n|2∇ϕ · ndγdt.

(A.9)

• Step 3 - Back to the variable z.

Since z = e−sϕw and according to (A.2), we have, in Ω× (0, T )

|∂tz|2 ≤ Ce−2sϕ(|∂tw|2 + s2θ4|w|2), |∇z|2 ≤ Ce−2sϕ(|∇w|2 + s2θ2|w|2),

|∆z|2 ≤ Ce−2sϕ(|∆w|2 + s2θ2|∇w|2 + s4θ4|w|2).

Thus, (A.9) gives inequality (2.6) for s large enough.

B Proof of the regularity result given by Proposition 2.5

Proof. We split the proof in several steps.

• Step 1 - A lifting of the boundary condition of (1.1).

First, we will use a lifting for the boundary condition. Since g ∈ H1(0, T ;H3/2(∂Ω))∩H2(0, T ;H1/2(∂Ω)),
from trace theorem, we deduce that there exists a function ũ ∈ H1(0, T ;H2(Ω))∩H2(0, T ;H1(Ω))
such that ũ = g on (0, T )× ∂Ω and

‖ũ‖H1(0,T ;H2(Ω)) ≤ C‖g‖H1(0,T ;H3/2(∂Ω)), ‖ũ‖H2(0,T ;H1(Ω)) ≤ C‖g‖H2(0,T ;H1/2(∂Ω)). (B.1)
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The function u = u− ũ satisfies
∂tu−∆u+ u3 + 3ũu2 + 3ũ2u = F, in (0, T )× Ω,
u = 0, on (0, T )× ∂Ω,
u(0, ·) = u◦ − ũ(0, ·), in Ω,

(B.2)

with F defined by F = σh− ∂tũ+ ∆ũ− ũ3.

Multiplying the main equation of (B.2) by φ ∈ H1
0 (Ω) and integrating by parts, we obtain∫

Ω
∂tu(t, x)φ(x) dx+

∫
Ω
∇u(t, x) · ∇φ(x) dx+

∫
Ω
u3(t, x)φ(x) dx+ 3

∫
Ω
ũu2(t, x)φ(x) dx

+ 3

∫
Ω
ũ2u(t, x)φ(x) dx =

∫
Ω
F (t, x)φ(x) dx,

(B.3)

a.e. t ∈ (0, T ).

• Step 2 - Finite-dimensional approximated solutions.

At this step, we use the Faedo-Galerkin method and introduce a family of functions {φm}m≥1 in
H1

0 (Ω) which is an orthogonal basis in H1
0 (Ω) and an orthonormal basis in L2(Ω).

A positive integer m being fixed, we look for an approximated solution of (B.3) um : [0, T ] →
H1

0 (Ω) under the form

um(t) =
m∑
i=1

αim(t)φi, (B.4)

where the coefficients (αim)1≤i≤m being to be determined by the conditions:∫
Ω
∂tum(t, x)φi(x) dx+

∫
Ω
∇um(t, x) · ∇φi(x) dx+

∫
Ω
u3
m(t, x)φi(x) dx+ 3

∫
Ω
ũu2

m(t, x)φi(x) dx

+ 3

∫
Ω
ũ2um(t, x)φi(x) dx =

∫
Ω
F (t, x)φi(x) dx, ∀i = 1, . . . ,m

(B.5)

along with

αim(0) =

∫
Ω
u(0, x)φi(x) dx, ∀i = 1, . . . ,m. (B.6)

From Picard-Lindelöf theorem (see, for example [21]), the system (B.5)-(B.6) of nonlinear ordi-
nary differential equations, admits a unique local solution (αim)1≤i≤m in C1 defined on a maximal
interval (0, Tm).

• Step 3 - A priori estimates.

Multiplying the equation (B.5) by αim, summing over i and integrating on (0, t), we deduce that

‖um‖C0(0,t;L2(Ω)) + ‖um‖L2(0,t;H1(Ω)) + ‖um‖2L4((0,t)×Ω)

≤ C
(
‖F‖L2((0,T )×Ω) + ‖ũ‖2L4((0,T )×Ω) + ‖u(0, ·)‖L2(Ω)

)
.
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Thus, the coefficients (αim)1≤i≤m stay bounded in C0(0, Tm) and this ensures that they are
defined on the global interval (0, T ).

• Step 4 - Passage to the limit m→∞.

Now, we multiply the equation (B.5) by α′im, sum over i and integrate on (0, T ). We get that

‖um‖H1(0,T ;L2(Ω)) + ‖um‖L∞(0,T ;H1(Ω))

≤ C
(

1 + ‖ũ‖2L∞((0,T )×Ω)

)(
‖F‖L2((0,T )×Ω) + ‖ũ‖2L4((0,T )×Ω) + ‖u(0, ·)‖H1(Ω)

)
.

Thus we deduce that, up to a subsequence, (um)m weakly converges inH1(0, T ;L2(Ω))∩L∞(0, T ;H1
0 (Ω))

and strongly converges in L2((0, T )× Ω). This convergence properties allow to deduce that the
limit u satisfies the weak formulation (B.3) and the estimate

‖u‖H1(0,T ;L2(Ω)) + ‖u‖L∞(0,T ;H1(Ω)) + ‖u‖2L4((0,T )×Ω)

≤ C
(

1 + ‖ũ‖2L∞((0,T )×Ω)

)(
‖F‖L2((0,T )×Ω) + ‖ũ‖2L4((0,T )×Ω) + ‖u(0, ·)‖H1(Ω)

)
.

(B.7)

• Step 5 - Higher regularity.

Looking at (B.2) as an elliptic problem by putting ∂tu in the right hand side, the elliptic regularity
implies that u belongs to L2(0, T ;H2(Ω)) and

‖u‖L2(0,T ;H2(Ω)) ≤ C
(

1 + ‖ũ‖2L∞((0,T )×Ω)

)2 (
‖F‖L2((0,T )×Ω) + ‖ũ‖2L4((0,T )×Ω) + ‖u(0, ·)‖H1(Ω)

)
+ C

(
1 + ‖ũ‖2L∞((0,T )×Ω)

)3 (
‖F‖L2((0,T )×Ω) + ‖ũ‖2L4((0,T )×Ω) + ‖u(0, ·)‖H1(Ω)

)3
.

Moreover, since u belongs to H1(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω)), according to [9, Section 5.9,
Theorem 4], we deduce that u belongs to C0(0, T ;H1(Ω)).

• Step 6 - Return to the variable u.

Coming back to u = u+ ũ and using (B.1), we conclude that

u ∈ L2(0, T ;H2(Ω)) ∩ C0(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω))

with the following estimate

‖u‖L2(0,T ;H2(Ω)) + ‖u‖C0(0,T ;H1(Ω)) + ‖u‖H1(0,T ;L2(Ω)) ≤ C
(
‖σh‖L2(0,T ;L2(Ω)) + ‖σh‖p

L2(0,T ;L2(Ω))

+‖g‖H1(0,T ;H3/2(∂Ω)) + ‖g‖p
H1(0,T ;H3/2(∂Ω))

+ ‖u◦‖H1(Ω) + ‖u◦‖pH1(Ω)

)
,

(B.8)

where the power p is a positive integer that can change from line to line.
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• Step 7 - Improved regularity.

Next, let us consider w = ∂tu which is, according to (1.1) and (3.1), formally the solution of
∂tw −∆w + 3u2w = σ∂th, in (0, T )× Ω,
w = ∂tg, on (0, T )× ∂Ω,
w(0, ·) = ∆u◦ − (u◦)

3, in Ω.
(B.9)

We use the same lifting as in Step 1 and define the function w = w − ∂tũ, which satisfies
∂tw −∆w + 3u2w = G, in (0, T )× Ω,
w = 0, on (0, T )× ∂Ω,
w(0, ·) = w(0, ·)− ∂tũ(0, ·), in Ω,

(B.10)

with G defined by G = σ∂th− ∂ttũ+ ∆∂tũ− 3u2∂tũ. For this system, we have a unique solution

w ∈ C0(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω))

which satisfies

‖w‖C0(0,T ;L2(Ω)) + ‖w‖L2(0,T ;H1(Ω)) ≤ C
(
‖G‖L2((0,T )×Ω) + ‖w(0, ·)‖L2(Ω)

)
.

For the first term in the right hand side, we have

‖G‖L2((0,T )×Ω) ≤ ‖σh‖H1(0,T ;L2(Ω)) + ‖ũ‖H2(0,T ;L2(Ω))∩H1(0,T ;H2(Ω))

+ C
(
‖u‖2C0(0,T ;H1(Ω)) + ‖ũ‖H1(0,T ;L2(Ω))

)
.

Taking account (B.1) and (B.8), and going back to w = w + ∂tũ, we conclude that

u ∈ C1(0, T ;L2(Ω)) ∩H1(0, T ;H1(Ω)),

with the following estimate

‖u‖C1(0,T ;L2(Ω)) + ‖u‖H1(0,T ;H1(Ω)) ≤ C
(
‖σh‖H1(0,T ;L2(Ω)) + ‖σh‖p

H1(0,T ;L2(Ω))

+‖g‖H1(0,T ;H3/2(∂Ω))∩H2(0,T ;L2(∂Ω)) + ‖g‖p
H1(0,T ;H3/2(∂Ω))∩H2(0,T ;L2(∂Ω))

+ ‖u◦‖H2(Ω) + ‖u◦‖pH2(Ω)

)
.

Thus, if look at (1.1) as an elliptic problem, we get that u ∈ C0(0, T ;H2(Ω)) and we have the
estimate

‖u‖C0(0,T ;H2(Ω)) + ‖u‖C1(0,T ;L2(Ω)) + ‖u‖H1(0,T ;H1(Ω))

≤ C
(
‖σh‖H1(0,T ;L2(Ω)) + ‖σh‖p

H1(0,T ;L2(Ω))
+ ‖u◦‖H2(Ω) + ‖u◦‖pH2(Ω)

‖g‖H1(0,T ;H3/2(∂Ω))∩H2(0,T ;L2(∂Ω)) + ‖g‖p
H1(0,T ;H3/2(∂Ω))∩H2(0,T ;L2(∂Ω))

)
.

(B.11)

Let us note that, since u◦ ∈ H3(Ω), the initial condition

w(0, ·) = ∆u◦ − (u◦)
3 − ∂tũ(0, ·)
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belongs to H1(Ω). Then, if we multiply the equation (B.10) by ∂tw and integrate in (0, T )× Ω,
we obtain that ∂tw ∈ L2(0, T ;L2(Ω)) with

‖∂tw‖L2(0,T ;L2(Ω)) ≤ C
(
‖G‖L2((0,T )×Ω) + ‖w(0)‖H1(Ω)

)
.

Hence, if we look at (B.10) as an elliptic problem, we deduce that w belongs to L2(0, T ;H2(Ω))
with the following estimate

‖w‖L2(0,T ;H2(Ω)) ≤ C
(
‖G‖L2((0,T )×Ω) + ‖u‖2C0(0,T ;H2(Ω))‖w‖L2((0,T )×Ω) + ‖w(0)‖H1(Ω)

)
.

Besides, since w belongs to H1(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω)), we deduce that w belongs to
C0(0, T ;H1(Ω)).

Coming back to ∂tu = w+∂tũ, we finally deduce that u belongs toH1(0, T ;H2(Ω))∩C1(0, T ;H1(Ω))∩
H2(0, T ;L2(Ω)) along with the estimate (2.8).
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