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Abstract

In this paper, we focus on the problem of modeling the deformation of cerebral structures,
which are considered here to have a nonlinear viscoelastic behavior under external loads. In
this context, we propose a generalized model of nonlinear viscoelasticity and present the nu-
merical techniques used to solve it in three dimensions. Numerical results are then compared
with experimental data, to show that our model is able to reproduce a behavior described in
the literature and to retrieve significant biophysical coefficients. Finally, we perform numeri-
cal simulations on a complex brain domain, defined from imaging data and discretized using
triangulations specifically adapted to its geometric properties (curvature).

1 Introduction
Over the last decades, the study of the mechanical properties of human tissues has been an active
area of research, especially focusing on the functional behavior of the skin, the lungs or the heart.
However, the properties of biological soft tissues like the brain, the liver or the kidney have been
less investigated, maybe at the noticeable exception of ligaments and tendons, see Pena et al. [24],
Provenzano et al. [25] and Jamison et al. [9]. Here we are mainly interested in modeling the brain
structure and we have rapidly noticed that there is no unique commonly acknowledged model.
From our point of view, two communities have emerged from these investigations. On the one
hand, authors advocate the use of a linear elastic model, sufficiently easy to solve efficiently to
envisage or to comply with real-time simulations, Bucki et al. [2], Wittek et al. [28], Ueno et al.
[27]. On the other hand, nonlinear viscoelastic models are employed every time the requirement
of an accurate simulation of the realistic behavior is preeminent over the computational expense,
see Miller et al. [18, 19, 20], Wittek et al. [30], Darvish et Crandall [3] and the references therein.
Additional models have also been proposed for specific purposes (poroelasticity Miga et al. [17]
or plasticity) and nonetheless the limit between these types of models appears somehow artificial.
Hence, we refer the reader to the quite complete literature review given by Libertiaux [14] and
Hrapko et al. [8]. Our approach is clearly inscribed in the second category of nonlinear models.

Indeed, in our previous work [4], we developed a nonlinear viscoelastic model (in large strains)
obtained as the generalization of the model initially presented by Simo [26] and Lubliner [15] and
mathematically analyzed in Le Tallec et al. [13, 12]. The model relies on the theory of standard
materials which introduces internal state variables. We presented successively the discretization
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stages as well as the implementation of this model in three dimensions, with the aim of obtaining
the most accurate possible numerical results. The space discretization involves P0/P2 Lagrange
finite elements and the time discretization is based on an implicit Euler scheme. The linearized
version of the resulting system derives naturally from a Newton method and is solved using an
Augmented Lagrangian technique. To assess the numerical method, we evaluated the discrepancy
between a pseudo analytical solution and the solution computed on a simple domain.

In this article, we propose to use our model to simulate the deformations of brain structures.
In a clinical context, such deformations may occur consecutively to a change of position of the
patient or during a neurosurgical procedure. Health care expectations are related to the ability of
the model to predict the centimeter-scale motion or shift, Miga et al. [17], that occurs in surgery
and thus to participate actively to the treatment planning of surgical operations. In this context,
the use of a quasi-static model seems to be adequate. Dynamical brain models are generally used
for impact simulations, Brands et al. [1]. See Wittek, Joldes and Miller [29] [29, 11, 10] for efficient
numerical methods to solve dynamical models in real time.

This paper is divided in three parts. The first part presents the mechanical model and briefly
describes the discretization stage and the numerical resolution. In the second part, numerical results
are assessed through experimental results on swine brains in order to show that our model is able
to reproduce a complex behavior described in the literature and to retrieve relevant biophysical
constitutive law. In the last part, we explain how we build triangulations especially adapted to the
geometric shape complexity of the computational domains at hand, defined from discrete imaging
data. Finally, we provide a three-dimensional example of numerical simulation of the brain shift.

2 The mechanical model and its numerical approximation
At first, we present the viscoelastic model in large strains that we used in numerical simulations
and we explain how our version differs and generalizes the classical model of [13].

2.1 The generalized model
Let Ω be a connected and bounded open set of R3 corresponding to the reference configuration. We
suppose that the boundary Γ of Ω is Lipschitz-continuous. We assume also that the boundary can
be decomposed as Γ = Γ0 ∪ Γ1 with Γ0 ∩ Γ1 = ∅. The model problem we consider is the following:

Find the displacement vector u solving:
−div T = f, in Ω,

u = u0, on Γ0,

T · n = g, on Γ1.

Here, f (resp. g) represents the body (resp. surface) forces, expressed in the reference configuration.
The constitutive law is then given by the following relation, that relate the first Piola-Kirchhoff
stress tensor T to the gradient of deformation F = Id+∇u:

T =
dW

dF
− pF−t. (2.1)

In the viscoelastic model we consider here, the internal energy W of the system can be written as
follows:

W (C,G1, ..., Gm) = W0(C) +

m∑
i=1

Wi(C : Gi), m ∈ N∗, (2.2)
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where the Cauchy-Green tensor C is defined as:

C = F tF = Id+∇u+∇ut +∇u · ∇ut,

and where the tensors Gi, for i ∈ J1,mK, are a finite number of internal variables used to measure
the deformation of dashpots embedded in the material. The evolution of these internal variables is
described by the set of following equations: νiĠ

−1
i =

∂W

∂Gi
+ qiG

−1
i , in Ω,

Gi(0) = Id, in Ω,

∀i ∈ J1,mK, (2.3)

with νi, for i ∈ J1,mK, the viscosity coefficients. The pressures p and qi, for i ∈ J1,mK, occur-
ing in equations (2.1) and (2.3) are the Lagrange multipliers associated to the incompressibility
constraints:

det(F ) = det(Gi) = 1, ∀i ∈ J1,mK.

At this point, we observe that this model is slightly different from the model described in [13],
in the sense that it contains supplementary internal variables, hereby justifying its denomination
of generalized model. In other words, if the model of [13] is a nonlinear version of the Maxwell
model, by analogy our model can be seen as a nonlinear version of the multi-mode Maxwell model.
Its main strength relies on its versatility for handling complex behaviors (e.g. to account for
various dissipation time) that could not be captured with the classical models. This rather complex
formulation is indeed required by the application we have in mind, as will be emphasized in Section
3. If we are well aware that such model is also more greedy in terms of computational cost, we are
still willing to use it for solving our complex problem.

For the sake of clarity, we remind the main stages of the discretization of our model and the
resolution techniques that have been effectively implemented. We refer the reader to [4] for all the
details. Let us point out that the authors have implemented all data structures, finite elements
libraries and nonlinear system resolution techniques using C language (about 10, 000 lines). The
source code is available on demand to the corresponding author.

2.2 Space discretization
In view of its numerical resolution using the finite element method, a weak formulation of the model
problem shall be first written, which leads now to solve:

Find u− u0 ∈ V, p ∈ P, Gi ∈ H and qi ∈ Q, for ∀i ∈ J1,mK, such that:

∫
Ω

(
2F

∂W

∂C
(C,G1, · · · , Gm)− pF−t

)
: ∇v dx

=

∫
Ω

f · v dx+

∫
Γ1

g · v dγ, ∀v ∈ V,∫
Ω

p̂ (det(F )− 1) dx = 0, ∀p̂ ∈ P,∫
Ω

(
−∂Wi

∂y
(C : Gi)C + νiĠ

−1
i − qiG

−1
i

)
: H dx = 0, ∀H ∈ H,∫

Ω

q̂ (det(Gi)− 1) dx = 0, ∀i ∈ J1,mK, ∀q̂ ∈ Q.

(2.4)

The functional spaces V,P,H and Q are chosen accordingly, i.e. such that all integrals are well
defined, y = C : Gi denotes here the argument of the function Wi and : denotes the double con-
traction of tensors. Thus, the problem associates a nonlinear PDE endowed with incompressibility
conditions and m ODEs describing the time evolution of the internal variables.
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Hereafter, we consider a conforming triangulation Th of the computational domain Ω where h
represents the characteristic mesh size. The variational approximation of the initial problem (2.4)
is classically obtained by replacing the functional spaces V, P, H and Q by finite dimensional
subspaces Vh, Ph, Hh and Qh, respectively. We are well aware that the choice of these spaces is of
importance to ensure the stability of the resolution. An analysis stage must confirm the validity of
this choice, although it is out of the scope of this paper. Namely, we have retained the following
finite elements spaces:

Vh =
{
vh : Ω −→ R3, ∀K ∈ Th, vh|K ∈ P3

2, vh = 0 on Γ0

}
,

Ph = Qh =
{
ph : Ω −→ R, ∀K ∈ Th, ph|K ∈ P0

}
,

Hh =
{
Hh : Ω −→ U , ∀K ∈ Th, Hh|K ∈ P5

0

}
.

where U = {H ∈ (M3)sym,det(H) = 1}.

2.3 Time discretization
We focus now on the time discretization of the problem using an implicit Euler scheme, which
is unconditionally stable. This is an essential requisite for dealing with the various time scales
occurring in viscoelastic phenomena. Let ∆t be the time discretization step. The numerical scheme
we considered leads to solve the following sequence of problems:

For n ∈ N, find un+1
h − u0h ∈ Vh, pn+1

h ∈ Ph, Gn+1
ih ∈ Hh and qn+1

ih ∈ Qh, for i ∈ J1,mK,
solving: 

∫
Ω

(
2Fn+1

h

∂W

∂C
(Cn+1

h , Gn+1
1h , · · · , Gn+1

mh )− pn+1
h (Fn+1

h )−t
)

: ∇vh dx

=

∫
Ω

f · vh dx+

∫
Γ1

g · vh dγ, ∀vh ∈ Vh,∫
Ω

p̂h(det(Fn+1
h )− 1) dx = 0, ∀p̂h ∈ Ph,

νi
(Gn+1

ih )−1 − (Gn
ih)−1

∆t
− ∂Wi

∂y
(Cn+1

h : Gn+1
ih )Cn+1

h − qn+1
ih (Gn+1

ih )−1 = 0,

det(Gn+1
ih ) = 1, ∀i ∈ J1,mK, in each K ∈ Th,

endowed with the initial condition G0
ih = Id, for i ∈ J1,mK.

The numerical resolution of this tedious problem is carried out in two steps. At first, we solve
the evolution equations of the internal variables and express the latter in terms of the unknown
Cn+1

h . As the resulting problem depends only on Cn+1
h , it can then be solved as a classical nonlinear

elastic problem.

2.4 Calculation of the viscoelastic variables
At each time step, we can compute each one of the m viscoelastic variables Gn+1

ih , for i ∈ J1,mK,
independently, all contributing to the physical dissipation phenomenon. This can be achieved
solving the evolution equations in each element K in Th. To this end, we observe that the problem
can be rewritten, for each time step n ∈ N, as the following minimization problem:

Gn+1
ih = arg min

H∈U

(
Wi(C

n+1
h : H) +

νi
∆t

(Gn
ih)−1 : H

)
, ∀i ∈ J1,mK,

that can be computed, after some judicious transformations, using a classical Newton method.
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2.5 Resolution of the elastic problem
According to the relation Gn+1

ih = Gi(Cn+1
h ), for i ∈ J1,mK, we can replace the viscoelastic variables

in the original problem (2.4). Let (φj)j=1..N be a basis of Vh and (ψj)j=1..M be a basis of Ph,
respectively. If we consider the vector Un+1

h (resp. Pn+1
h ) of the components of un+1

h − u0h (resp.
pn+1
h ) in the basis (φj)j=1..N (resp. (ψj)j=1..M ), our finite element problem takes, at each time step
n, the form of an algebraic system of N +M nonlinear equations with N +M unknowns:

Find (Un+1
h , Pn+1

h ) ∈ RN × RM such that:

L(Un+1
h , Pn+1

h ) = 0, in RN × RM ,

with the notations, for all (U,P ) ∈ RN × RM :

Lj(U,P ) =

∫
Ω

2F
∂W

∂C
(C,G1(C), · · · ,Gm(C)) : ∇φj dx−

∫
Ω

pF−t : ∇φj dx

−
∫

Ω

f · φj dx−
∫

Γ1

g · φj dγ, ∀j ∈ J1, NK,

Lj+N (U,P ) =−
∫

Ω

ψj(det(F )− 1)dx, ∀j ∈ J1,MK.

This system can be very large but sparse. It can be linearized by a Newton algorithm. It is
well known that the Newton method is very sensitive to its initialization and may not converge in
some cases, i.e. if the initial data differs largely from the solution. To overcome this drawback,
the classical initialization strategy consists in using an incremental loading, Oden [23]. In this
technique, the load acting on the body is applied as small increments. The equilibrium position is
then computed at the end of each load increment using as initial guess the position obtained at the
previous increment. At each iteration of the Newton method, the linear system can be solved by
an augmented Lagrangian technique, Nocedal and Wright [22]. This iterative procedure consists in
replacing at each iteration step the initial linear system by a simplest system that can be solved
using a preconditioned conjugate gradient.

2.6 Validation
The aim of this section is to assess the numerical method by evaluating the discrepancy between
the approximate solution and a pseudo analytical solution computed in [4], in the case of the
compression of a cube fixed on one of its side (with slip conditions). Figures 1 illustrate the time
evolution of the pressure, the vertical constraint and one internal variable corresponding to the
numerical and the pseudo analytical solutions.

3 Efficiency of the generalized formulation
Our objective is here to justify the choice of our mechanical model and to show its versatility in
recovering the relevant biophysical parameters. To this end, we compare the numerical results with
three experimental tests on swine brain tissues, published in three papers : Miller [18], Libertiaux
[14] and Ning et al. [21]. In these tests, the geometry of the domain is non relevant as the biophysical
samples correspond to simple shapes with axisymmetric property.

Let us point out that we extend the energy functional introduced in (2.2) as follows:

W0(C) = C01(I1(C)− 3) + C02(I2(C)− 3),

Wi(y) = Ci1(y − 3) + Ci2(y − 3)2, ∀i ∈ J1, 2K
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Figure 1: Evolution of (a) the pressure, (b) the vertical stress and (c) the vertical component of
the second internal variable with respect to time during a compression test of 30%. Comparison
between the pseudo analytical solution (continuous line) and the numerical solution (crosses).

where the coefficients C are determined using a (least-square) curve fitting algorithm on experimen-
tal data. This rather complex constitutive law is needed to be able to reproduce the biophysical
experiments

The first experiment is directly inspired by the paper [18]. It corresponds to unconfined com-
pressive tests on cylindrical samples (see Figure 2) at different strain rates. Figure 3 shows the
comparison between the experimental and the numerical solutions. Table 1 reports the coefficients
used to carry out these tests. We observe that both curves are well in accordance with each other.
Notice that the stress-strain relation is nonlinear and depends on the strain rate. This is a clear
indication of the nonlinear viscoelastic character of the brain tissues.

m C01 C10 C11 C12 ν1 C21 C22 ν2

2 0 145 0 1300 35000 150 2000 200

Table 1: Mechanical properties used for the first test case.

The second experiment has been performed on cylindrical samples (height 10 mm and diameter
20 mm) and is reported in [14] . It consists in different tests in compression at different strain rates
and in relaxation. During the relaxation experiment, a compression stage at a rate of 0.1 s−1 is first
performed, until a force of 0.5 N is achieved, then the relaxation constraint is measured while the
compression is held. Figure 4 shows the comparison between the experimental and the numerical
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Figure 2: Configuration at rest (left). Deformed configuration with slip conditions (right).
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Figure 3: Relation between the Lagrange stress and the true strain for three compression rates: (a)
6.4 · 10−6 s−1, (b) 6.4 · 10−3 s−1, (c) 6.4 · 10−1 s−1. Comparison between the experimental solutions
reported by [18] (lines) and the numerical solutions (crosses).

solutions. Table 2 reports the coefficients used to carry out these tests. Here again, we observe that
both curves are well in accordance with each other.

The third experiment is proposed in [21]. Shear stress tests at a 50% strain level have been
carried out on a porcine brainstem sample (13.41 × 6.49 × 1.05mm) to characterize its properties
(see Figure 5). Table 3 reports the coefficients used for these tests. Figure 6 shows the comparison
between the experimental and the numerical solutions.

Once again, we observe that both curves are well in accordance with each other. These results
clearly prove that our generalized model represents quite satisfactorily the biomechanical behavior
of the brain structures under a compressive load, for the relaxation test and under a shear load. For
each experiment, we were able to find a suitable set of parameters to fit and validate the experimental
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m C01 C10 C11 C12 ν1 C21 C22 ν2

2 0 150 0 200 5000 450 400 1500

Table 2: Mechanical properties used for the second test case.
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Figure 4: (a) Relation between the true stress and the true strain for three compression velocities.
(b)(c) Evolution of the force with respect to time during the relaxation. Comparison between the
experimental solutions reported by [14] (lines) and the numerical solutions (crosses).

m C01 C10 C11 C12 ν1 C21 C22 ν2

2 0 6 30 0 100 200 0 1

Table 3: Mechanical properties used for the third test case.

data at best. We are well aware however that the experimental conditions, undoubtedly different
from one author to another, impact largely the biophysical parameters.

4 Brain shift simulation
In this section, we emphasize the need to develop an ad-hoc and accurate procedure to deal with
the discrete data supplied by imaging devices. Finally, we provide a 3D example related to the
analysis of the brain shift, namely the displacement/deformation of the cerebral structures under
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Figure 5: Configuration at rest (left). Deformed configuration (right).
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Figure 6: Evolution of the force with respect to time during the shear experiment. Comparison
between the experimental solution reported by [21] (continuous line) and the numerical solution
(dashed line).

external load.

4.1 Description of the geometric model
Imaging and sensing devices are routinely used in biomedical applications to supply large datasets
of voxels that define the contour of organs or biophysical domains. However, the latter need to be
converted into conforming triangulations prior to be used in finite element procedures for solving a
PDE problem like the one we are addressing here. This conversion stage is indeed important and
often underestimated, as it aims at creating a triangulation that represents an accurate piecewise
affine approximation of the geometry of the domain boundary with a minimal number of finite
elements in the domain. Obviously, the triangulation procedure depends on the nature of data
available, typically, a sequence of two-dimensional segmented images or a three-dimensional point
cloud. In [6], we explained how to generate a surface triangulation based on various types of
discrete data. Hence, we briefly review here the creation of a geometry dependent triangulation of
the computational domain.

Suppose a conforming simplicial surface triangulation Sh is available, that provides a discrete
representation of the domain geometry. At first, we analyze Sh in order to define a metric tensor
field M(x) at the mesh vertices of Sh that relates the local element size of any simplex K ∈ Sh
to the local main curvatures and directions of curvature of the underlying surface defined by Sh.
This tensor is an efficient means to control the shape, the size as well as the orientation of mesh
elements, Frey and George [7]. The next stage consists in generating a surface triangulation in which
all simplices have a unit size, i.e., an eccentricity ratio σ = h/ρ (where h is the length of the longest
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(a) (b)

(c) (d)

Figure 7: (a,b) Surface triangulation obtained from MRI slices. (c) Surface triangulation adapted
to the geometric properties. (d) Generation of a three-dimensional triangulation.

Figure 8: Computational mesh (left). Coronal cut through the computational mesh (right).

edge and ρ is the radius of the inscribed sphere) controlled by the tensor M(x). Figure 7 shows
the result of the surface retriangulation procedure on a biomedical model of a human head. The
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next stage consists in creating a computational mesh Th of the domain suitable for finite elements
calculations. To this end, we rely on an efficient Delaunay point insertion procedure described in
[7] that can be also used for adapting triangulations to any metric tensor given by an a posteriori
error estimate.

4.2 Brain shift computation
To conclude, we provide a typical three dimensional result obtained by our approach, in the simu-
lation of the numerical brain shift (the displacement/deformation of the cerebral structures under
external load). This phenomenon has been largely investigated to understand its intrinsic behavior.
For additional information, the reader is invited to consult the introduction part of several papers
dealing explicitly with this topic, Wittek et al. [30], Libertiaux [14]. Here, we focus on the predic-
tion of such displacements under gravity, assuming the patient is undergoing a change of position
between two imaging sequences. Actually, this study does not claim to be a realistic simulation of a
clinical situation. Indeed, we are obviously neglecting or at least under-evaluating the relevance of
boundary conditions, which are subjected to a high level of uncertainty. To our current knowledge,
there is no 3D experimental data available in the literature for brain shift validation on a complex
geometry. But let us mention that recently Ma et al. [16] developed an experimental technique to
evaluate the accuracy of a finite element computation for surgical simulation.

Figure 9: Deformation field of the brain under gravity at steady state equilibrium.

Here, the original data have been obtained using MR imaging devices. The bounding box of
the domain corresponds to 150× 150× 150 mm. The computational mesh (see Figure 8) contains
62, 123 vertices and 225, 009 tetrahedra. Actually, due to its intrinsic complexity, we have been
able to generate only a single mesh from this dataset. Indeed, the surface triangulation quickly
becomes self-intersecting when coarsening the initial triangulation and on the other hand, refining
the tetrahedral mesh leads to memory storage problem on our computer. Figure 9 shows the results
of the simulation for the values of the coefficients reported in Table 1 and corresponding to a gravity
load f = (0,−10, 10) N · m−3 as can be found when the patient undergoes a change of position
(here, from lying horizontally to a sitting position). The maximum displacement observed at steady
state is about 10 mm. The initial volume is 1.1706 ·103 cm3 and the final volume after deformation
is 1.1705 · 103 cm3.
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5 Conclusions and Perspectives
This analysis has shown the ability of our generalized model to deal with a complex problem.
However, it revealed the need to know biophysically meaningful coefficients, i.e. coming from
in vivo measurements, difficult to obtain in practice. To overcome this difficulty, we started to
investigate a related inverse problem, in view of retrieving the biophysical coefficients in a fully non
invasive manner [5]. This study has to be considered as a preliminary stage of a more complex study
of the behavior of brain structures. The objective was not to devise the relevance of a viscoelastic
model versus another type of model but to show our ability to perform numerical analysis and to
deal with complex geometries. For this study to be meaningful, we are expecting collaborations
with biomechanicians that could be interested by the type of results presented here.
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