FINITE FIELDS
PIERRE-LOIC MELIOT

AssTRACT. In this short note, we prove the fundamental theorem of the theory of finite fields: every
prime power ¢ = p™ gives rise to a unique finite field F,,, which can be obtained as a quotient of the
ring of polynomials F,,[ X].

Characteristic of a field. Recall that a field & is a commutative ring with 05 # 1;, and such that
every element x # Oy in k is invertible for the multiplication. Given a field &, there is a unique
morphism of rings

o7 —k
me=mely =1+ 1+ + 1.
m times
The definition of ¢ extends to negative integers by setting ¢(—m) = —@(m). The kernel of ¢ is

an ideal of Z, so it writes as ker ¢ = dZ with d non-negative integer. We can then distinguish two
cases:

e d =0, ¢ injective. We can then extend ¢ to the field of rational numbers Q:
ay _ ¢(a)

¢(b> —o(b)’
because if b # 0, then ¢(b) # 0y and is invertible in k. We then obtain a morphism of fields
¢ : Q — k, which is injective (remark: any morphism of rings ¢ : k1 — ko between fields
is injective, because the kernel is an ideal of k; and is not k; itself, as 1;, is sent by ¢ to
1k, # Ok,; we conclude that ker ¢ = {04, }, since the only ideals of a field & are {04} and k).

In this setting, one says that  is a field with characteristic 0, and & contains Q (called the
prime subfield of k).

e d > 0. We cannot have d = 1 since ¢(1) = 1 # 0. In fact, d is necessarily a prime number:
if d = dids, then ¢(dy)¢(d2) = O, so ¢(dy) = 0x or ¢(ds) = O, and by minimality of d,
d = dy or d = ds. So, ker ¢ = pZ for some prime number p, and we then say that k is a
field with characteristic p. The morphism ¢ descends to a morphism of fields

¢ L/pZ — k,
so k contains as a prime subfield the field Z/pZ, which we also denote F,, in the sequel.

If & is a field with finite cardinality, then obviously we cannot have an injective morphism from Z
(infinite) to k, so k has positive characteristic p € P. This implies the following:

Proposition 1. Every finite field k has for cardinality a power p"=' of a prime number p.

Proof. Given two fields k C K, the larger field K is a k-vector space for the scalar product

ExK—K
()\,.Q?)l—})\XK.%’.

If % is a finite field with characteristic p, then it is a Z/pZ-vector space with finite dimension n > 1,
whence the result. O
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Group of invertibles. Given a finite field k, we denote k* = &\ {04} the set of non-zero elements,
which by definition of a field is a group for the multiplication.

Proposition 2. If k is a finite field, its group of invertible elements k* is a cyclic group (isomorphic as a
group to ./ (q — 1)Z if ¢ = card k).

Proof- Consider a finite commutative group G, and denote e the least common multiple of all the
orders of the elements of G. We claim that G contains an element with order e. In order to prove
this, consider the prime numbers py, ..., p, that appear as factors of the orders of the elements
of G, and denote 71, ...,7; > 1 the maximal powers of these prime numbers as factors of orders
of elements. By considering adequate powers of elements of G, we therefore have for each i an
element g; € G with order equal to (p;)™, and on the other hand,

e=(p1)™(p2)"™ - (ps)™.

It now suffices to prove that if g and h have orders w(g) and w(h) which are coprime, then gh has
order w(g) w(h). By applying this result recursively to the g;’s, we shall then obtain an element
g = 192 - - g with order e. Obviously, given g and h with w(g) A w(h) = 1, we have

(gh)w(g)w(h) = (g*9))=) (hw(h))w(g) =eqeq = eq,

so w(gh) divides w(g) w(h). Conversely, note that

gw(h)w(gh) _ (gh)W(h)w(gh) B wlgh) — eceq = eq,

sow(h)w(gh) dividesw(g). Since w(g) and w(h) are coprime, w(gh) divides w(g), and by symmetry
it also divides w(h), so w(gh) divides w(g) w(h). We conclude that w(gh) = w(g) w(h).

Let us consider the group of invertibles G = k* of a finite field with cardinality ¢, and let us use
the existence of an element g with maximal order e with respect to the relation of divisibility. We
have for any element = € k \ {0} the identity 2° = 1. This is a polynomial equation in a field, so
its number of solutions is smaller than the degree e. Therefore, ¢ — 1 < e, and we have proved the
existence of an element g with multiplicative order at least equal to ¢ — 1. As ¢ — 1 = card k*, e
cannot be larger, so e = ¢ — 1 and ¢ is a cyclic generator of k*. O

This result can be used to prove the first part of the fundamental theorem on finite fields. In the
sequel, we call a polynomial P(X) with coefhicients in F, monic if its leading term X™ + - - - has
coefficient 1, and irreducible if it is not the product of two polynomials with degree larger than 1.

Theorem 3. Let q be a prime power p"=".

(1) If P(X) is a monic irreducible polynomial with degree n in F,[X], then the quotient ring
F,[X]/(P) is a finite field with cardinality ¢ = p".

(2) Conwversely, if k is a finite field with cardinality ¢ = p", then there exists a monic polynomial P
with degree n and irreducible in F,| X | and an isomorphism of fields k ~ F,[X]/(P).

Note that at this point, we do not know whether there exists for each n > 1 an irreducible poly-
nomial with degree n in F,[X]. This existence result will be shown later (Theorem 7).

Proof. The first part of the theorem is an immediate consequence of the existence of Bezout re-
lations. Consider a non-zero element [Q)] in the quotient ring F,[X]/(P), with P monic irre-
ducible polynomial of degree n. It is represented by a non-zero polynomial () with degree deg @) €
[0,n — 1]. Since P is irreducible, P and () are coprime and there exists a Bezout relation

UP+VQ=1.
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If we project this relation in F, [ X]/(P), we obtain [V][Q] = [1], so [Q] is invertible and the quotient
ring F,[X]/(P) is a field. Its number of elements is the number of polynomials over F,, with degree
smaller than n — 1, that is p".

Conversely, consider a finite field & with cardinality ¢ = p”, and an element o in k which is a
cyclic generator of k*. We have a morphism of rings

Y[ X] =k
P — P(ayp).

This morphism is surjective, because every non-zero element of k is a power of ay, hence attained
by 1; of course, 0y is also attained as 1)(0). The kernel of ¢ is an ideal of F,[X], hence of the form
(P) = P(X)F,[X]; we can assume without loss of generality that P is monic. The polynomial
P is necessarily irreducible, because if P = P Py, then Pi(ay) Py(c) = O, so Pi(ag) = 0 or
Py(ap) = 0k. The morphism v descends to an isomorphism of rings (and in fact of fields) between
F,[X]/(P) and k. O

Automorphisms. We now investigate the group of automorphisms Aut(k) of a finite field & with

characteristic p and cardinality ¢ = p".

Lemma 4. Consider the Frobenius morphism F : x — xP. It is an automorphism of the field k.

Proof. This map sends 0y, to O, 14 to 1, and it is obviously compatible with the multiplication. The
compatibility with the addition is a bit more surprising, and it is due to the positive characteristic.
Given z and y, we have

p—1
Flaty) =(@+y)l=a"+y"+ ) (i) abyr*.

k=1
However, all the non-trivial binomial coefficients above vanish in characteristic p:

(i) _plp— 1)1'2':FZ‘9]€— k+1)

contains p in the numerator, and no number larger than or equal to p in the denominator, so it is
divisible by p; hence, F(z + y) = F(z) + F(y). O

We have F°" = idy: for any = # 0, 277! = 1, so F°"(z) = x¢ = z, and this is also true if
2 = 0;. On the other hand, if m < n, then we do not have F°™ = id},, because this would amount
to a polynomial equation with degree p” and p™ solutions. So, we have a group of automorphisms

(F) = {idy, F, F°%, ... F°("b}

with n distinct maps, which is isomorphic to Z/nZ as a group (for the operation of composition
of automorphisms).

Proposition 5. The set above is the full group of antomorphisms of k: Aut(k) ~ Z/nZ, and it consists
of the powers of the Frobenius morphism.

Proof. We already have the inclusion (F) C Aut(k), so we have to prove that conversely, if G €
Aut(k), then it is equal to some power of the Frobenius morphism. Consider as in the proof of
Theorem 3 an element o which spans the cyclic group £*, and its minimal polynomial P (monic
polynomial which spans the ideal of polynomials of IF,,[ X'| which vanish on «g). We write P(X) =
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X"+ ¢ 1 X"+ -+ + ¢, with the ¢;’s in F,. Note that if z € k is a root of P, then the same
holds for F'(z), because:

Op = F(0) = F(P(z)) =Y Flepa®) =Y e (Flx))* = P(F(x)).
k=0 k=0
Indeed, if ¢ € F,, = Z/pZ, then F(c) = ¢® = ¢ by the Fermat theorem. It follows that a; = F(ay),
ay = F°%*(ap), etc., a,_1 = F°"Y(aq) are roots of P. All these roots are distinct, because
otherwise oy would have a multiplicative order smaller than ¢ — 1. Therefore, the factorisation
of P viewed as a polynomial in k[X] D F,[X] is:

n—1

P(X) = [T(X - Fi(ao)).

1=0

Consider now an automorphism G of k. Notice that it must be the identity on the prime subfield
[F,, because G(m - 1) = m - 1 for any m € N. As a consequence, if x is a root of P, then for the
same reasons as above, G(x) is again a root of P. In particular, there is an index i € [0,n — 1] such
that G(ag) = a; = (a)?". But then, for any power of o, we have

G((a0)™) = (G(a))™ = ()" ™ = F*((ap)™).

Since «y is a cyclic generator, G and F' correspond on k*; they also obviously correspond on 0.
Thus, G = F". O

An important argument used in the proof above is that if P € F,[X], then the Frobenius morphism
acts by permutation of the roots of P in k. Above, the action was cyclic; for a general polynomial
P (not necessarily irreducible over F)), the action can split in several orbits.

Classification of the subfields. Consider a finite field K with cardinality ¢ = p™=?; it contains the
prime subfield k = Z/pZ. We want to describe all the intermediary subfields L with k C L C K.
In the setting of finite fields, this is easy:

Proposition 6. If L is an intermediary subfield with cardinality p?, then d divides n. Conversely, for
any divisor d of n, there exists a unigue subjfield L of K, which can be obtained as the set of fixed points
of ol K — K.

Proof- It k C L C K, then card L is a power p? of p, and as K is a L-vector field, p” is a power of

. . . . d
p?, so d must divide n. Notice then that the relation 27" = x holds for any = € L, so we have the
inclusion

L C Fix(F°%).

Since we are looking at a set determined by a polynomial equation with degree d, the cardinality of
the right-hand side is at most p?, so by cardinality, L = Fix(#°?). This proves the uniqueness of a
subfield with cardinality p?, and it remains to prove that for every divisor d of n, the set Fix(F°?)
has exactly cardinality p? (this is the existence part of the proof). Equivalently, we need to show
that the polynomial X?" — X splits over K, with simple roots. However, we already know that
this is true for d = n, because the set of roots of this polynomial is K. It suffices then to see that if
d divides n, then X?* — X divides X?" — X in F,[X]:
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Note that the divisors of n correspond bijectively to the subgroups of the group of automor-
phisms Aut(K') ~ Z/nZ. Therefore, the previous proposition can be restated as a correspondence
between intermediary subfields # C L C K, and intermediary subgroups Z/nZ > Z/%Z O {1},
the correspondence being

L~ Fix(L) = {G € Aut(K)|G(l) = lforalll € L}.

In pompous terms, we have an anti-equivalence of categories; in the diagram below, the arrows
correspond to injective morphisms (of fields or of groups), and the correspondence reverses the
arrows. This is a particular case of the Galois correspondence between field extensions and groups
of automorphisms.

K =F,. Fix(K) = {idg}

™ T

L=Fu Fix(L) = (F°)

/

Fix(k) = (F) =Z/nZ

A\

k=T

The main identity. We are now ready to prove the remaining part of the fundamental theorem:

n>1

Theorem 7. For every prime power ¢ = p"=?, there exists a finite field with cardinality q, and it s

unique up to isomorphisms. We denote it F,,.

Lemma 8. Denote Irr(n, F,) the set of monic irreducible polynomials with degree n over F,. We have
the following factorisation in F,[X|:

x"-x=11 [I P&

d|n Pelrr(d,Fp)

Proof- Notice first that Q(X) = X?" — X does not have a multiple irreducible factor. Indeed, we
can compute the greatest common divisor of () and Q"

ged(Q, Q') = ged(XP" — X, —1) = 1.
Let P be an irreducible factor of ) in F,[X]. In the finite field kp = F,[X]/(P), we have the relation
[XP" — X] = 0, so, if @« = [X], then F°"(a) = a. The same relation holds for o?,a?,... o™
since the Frobenius morphism F' is a morphism of fields. Therefore, F°* = idy, holds over the
[F,-linear basis
{1,a,0%,...,0" 1}

of kp; therefore, F°" = idy,,. This implies that the dimension d = deg P of kp over F,, divides n (by
using the description of the group of automorphisms of a finite field). Conversely, if P € Irr(d, F,)

with d|n, then we have the relation 27" = z in kp, so in particular, [X?* — X] = [0]. In other
words, P(X) divides X " _X. A fortiori, it divides X?" — X, because we have seen that X X
divides X?" — X if d divides n. O

Proof of Theorem 7. Let I(d, p) be the cardinality of Irr(d, F,). The main identity implies that
Vn>1, p"=> dI(d,p)
d|n
by looking at the degrees. We can invert this relation by using the Mdbius function

(—1)" ifn = pips-- - p, has no square factor,
p(n) = ~
0 otherwise.
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Thus,
1 n
=S
(n,p) =~ ; nlg)p
In particular, by isolating the term d = n, we see that

1 A U R d A
I(n,p) > — > 0.
(n,p) > ~ ;p > -
d<n

So, for any p € P and any n > 1, there exists at least one irreducible polynomial over F, with
degree n, hence a finite field with cardinality p™.

It remains to prove the unicity up to isomorphisms. To this purpose, let us modify a bit the proof
of Theorem 3. We fix a finite field £ with cardinality p™ and an arbitrary polynomial P € Irr(n,F,),
and we are going to exhibit an isomorphism of fields & ~ F,[X]/(P). The polynomial X*" — X
splits over k, and it has simple roots (all the elements of k). Because of the main identity, the same
is true for P: there exists distinct elements a, . . . , a1 such that P(X) = []/-) (X — a;) in k[X].
Consider then the morphism of rings

O F[X] = k
R — R(Ofo).

It vanishes on the ideal spanned by P, hence it descends to a morphism of fields between F,,[X]/(P)
and k. This morphism is necessarily injective (morphism of fields), and it is also surjective by a
cardinality argument, so it is an isomorphism. O



