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1. LEVY’S CRITERION OF CONVERGENCE IN LAW

For every t € R, w € Q > €*X(“) is measurable and bounded in module by 1, whence integrable,
so ¢(t) = E[e™ ()] is well-defined. Then, for every , fixed in R,

lim eitX — eitoX
t—to

almost surely, and all these random variables have real and imaginary part uniformly bounded
by 1. By Lebesgue dominated convergence,

. o itX] _ mlaitoX] _
Jim 6(t) = lim E[e"X] = E[e¥] = 6(to).
so ¢ is continuous on R.

All the functions considered are measurable on R x [—¢, ] and uniformly bounded, and integrated
against a finite measure, namely, ;4 ® dt. So, one can use freely Fubini’s theorem to compute:

= [ a-ewna=[[ Lty i

_ /R (25 _ 25“;“””) j(dz) = 2¢ (/R (1 - Slrﬁ”) u(dm)> :

Set y = ex; for |y| > 2, one has indeed

siny _ | siny| <1 ; 1
y -2 T2 ET 2

sin(ex 1
Z/ (1 ( )> 1icz|>2 pu(dx) > */1|ax|zzu(dm)
R ET 2 Jr

> p({z | |ex| = 2}).

Therefore,

o | B8

Let n > 0. By continuity at 0 of ¢, [1 — ¢(t)| = |$(0) — ¢(t)| < % for ¢ small enough, say smaller

than some ¢ > 0. Then,
g
Ry )
5 €J_ .3 3

By Lebesgue dominated convergence,

N SR
lim —— = —,
n—oo & £
so for N big enough and all n > N,
Ie,n < 31& < n
€ 2¢e

By Question (2), this implies that for all n > N,
Lhn, ((—25_1,25_1)0) <n.

By decreasing the value of e, one can also assume that this is true for the n’s smaller than
N (there is only a finite number of measures to consider). Thus, for every i > 0, there is a
relatively compact set (bounded interval) in R with complementary of measure smaller than 7
for all measure in (uy)nen; i.€., there is tightness.

The sequence of measures (fin)nen is tight, hence relatively compact; let (fiy(n))nen be a conver-

gent subsequence, and g its limit. For every ¢, x — ¢!*® is a continuous bounded function,

u(ete) = / & pu(dr) = B iy (€47) = lim () = 6(1).
R n—oo n—oo
Hence, ¢ is indeed the characteristic function of a probability measure on R.
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(5) Again, 4 ® v is a finite measure on R X R, and the functions under consideration are bounded,
so one can use Fubini’s theorem.

/R —itr g (2) v(dz) / /R . ~ eV u(dy) v(dx)
= [ 0= vtaw)) utan)
/ 6oy — 1) p(dy).

(6) Let f be a bounded non-negative continuous function on R. One has

d ~ L (dy) di
[ropena=[[ soe

:/R2 fla+y)e™F p(dy) do
=V2me~ 1/ flz+y) u(dy) ve-1(dz)
=V2re L E[f(X + Y.-1)].

(7) For every interval (—n,n) around 0,

E(V. )Y 1
PlY.-1 € (—=n,m)] < —— = -0,
n? (en)?
so one has indeed Y.-1 —p 0. As a consequence, the pair (X,Y,-1) converge in probability to
(X,0), and also in law. Since convergence in law is compatible with composition by continuous

functions,

X+Y.0i =~ X+0=X.

(8) Suppose ¢,, known. Then, for every ¢ > 0 and every bounded continuous function f,

B +Yo) = <= [ f0 Dt it = —— [[ 0w (i) i

is also known, since it can be computed from f and ¢,. Taking the limit as € goes to infinity,
one gets back E[f(X)] by the previous Question, that is to say u(f). So, ¢, determines u(f) for
every f € €°(R), and therefore i by classical arguments of measure theory.

(9) We have seen that (p,)nen was tight under the hypotheses of Lévy’s criterion, and the limit of a
convergent subsequence (fiy(n))nen is by the previous Question the unique probability measure
p such that ¢(t) = u(e'*®). Therefore, p,, — pu.

(10) This is clear since (t,z) + €'’ is a continuous bounded function.

(11) The characteristic function of Y = By — 1 is

ity it B e —1\ _u
Ele"*] =e™* E[e""F] = [ 1+ : e k.

Therefore, since the Y}’s are independent,

s ki 7\/12271 -1 it
]E[eltXn] _ H <1+ € k ) e klogn

k=1

The Taylor expansion of each term Ty(¢) is

LY (N Y (R T Y (s
k \Vlogn 2logn (log n)3/2 k+/logn k2 logn

2 ¢2 3
- Lo
2klogn * <k2 logn * k(logn)3/2> ’




with a O that is uniform because it comes only from the Taylor expansion around 0 of the
exponential. So,

log E[e! X~ Zlo e +0 e + e
& &  2klogn k2 logn = k(logn)3/2

t* t? t3
N Z 2klogn logn (k4(log n)? T logn + k(logn)3/2>

t2 ¢2 ¢4 t3
= —— O = ——
7t <logn * (logn)? * (logn)l/Q) 2
it)?n]

+0(1)

. n . . _2 .
since Y., 7z and >__; 7r are convergent. So, E[e converges pointwise to e~z , and since

~ . 2
X, — X, is a deterministic O((logn)~1/2), the same is true for E[e*X]. As e~z is the charac-
teristic function of a standard Gaussian, the central limit theorem for X, is proven.

2. MOD-CONVERGENCE AND BERRY-ESSEEN ESTIMATES

(1) By hypothesis, for ¢ fixed,
i g () 2y (1
2 =0 () = ()
~#(o(5) (%)
—° VA TR

+2

—e <w(0)+0<\/lfn>) e T,

By Lévy criterion of convergence in law, X, — /\/'(0,1).

(2) Suppose g, — p. Since p is supposed absolutely continuous w.r.t. Lebesgue measure, each
interval I = (—oo, ) is a continuity set for u:

pI%) =p) asI°=1 5 p()=pd)+p({z}) =) since p({z}) = 0.
Therefore, by Portmanteau’s theorem, lim,, o0 tr,(—00, ) = p(—00, ), so F),, converges point-
wise to Fj,. By Dini’s theorem, since the cumulative functions are non-decreasing functions
bounded from above by 1 and from below by 0, this is in fact a uniform convergence, so

d(pins ) = S| Fi, (x) = Fiu()| = 0.

Conversely, suppose d(pn, ) — 0, and consider an open set U C R. It can be written as a
countable union of disjoint open intervals: U = | |, cy(ax, bx). Therefore,

U) = Zﬂ(ambk) = ZFu(bk) — F,(ak),
k=0

keN
using for the second equality the fact that p({ax}) =0 for all k. Fix ¢ > 0, and K such that

Z F,(bg) — Fu(ag) > p(U) —e.

By continuity of F},, one can then choose n > 0 such that
Z Fu(a +n) > p(U) — 2¢;
notice that |_|£(:0 lar +n,br) C U. Since F),, converges to F),, one has then

K K
lim inf p1, (U) > lim inf <Z n ([ar + n,bk))> = linrr_1>i£f (kZF (b)) — Fu, (arp + 77))
=0

n—00 n—00
k=0

> pu(U) — 2e.



It is true for every € > 0, so liminf,, o 1 (U) > u(U), and by Portmanteau’s theorem g, — .

The positivity of A7 is obvious since 1 > cosT'z. Notice then that the function x — % is

in Z!'(R) N Z?(R) (it is continuous and bounded by -4 at infinity). Therefore, it is the inverse
Fourier transform of its Fourier transform. So, it is equivalent to prove

Ar(t) =1p<r ( - g)

1 T |t| —itx

This integral is easily computed:
1 (T " . 1 [e—itz1T 1 0 ) 1 T '
—/ (1 - ||> e Tt = — {e , } +— tedt—— [ te"dt
2 J_p T 2 | iz | _p 27T J_gp 2rT Jo

_sinTe 1 (fret O e’
T o 2nT —ix | _, —iz |,

1 0 e—itm T e—itz
— dt — dt
* 2nT </_T iz /0 iz

1 ita 0 it T 1—cosTx
T T2 ([e t]*T_[e t]o): rTz?

We have then computed the Fourier transform of A, and in particular,

/ Ap(z)de = Ap(0) = 1.

Finally, set h > 0. The mass of (—h, h)° is smaller than

2 [ 1—cosT:cd < 2 [ 2 4
— ——dzx < — —dr = —.
T J, x? — T J, 2?2 7Th

and to prove that

If n=0then F =G, D=F — G =0, and so is its convolution by Ar:

Dr(@) = [ D =) Art)dy= [0dy=0 = =0,

Suppose n > 0 and fix z¢ such that D(zp) = n. Since F is increasing and G is Lipschitz with

n
constant m, for every |y| < gL,

D(@—y)=F(z—-y) -Gz -y)
ZF(’JTO)—G(%O)—W(%—ZJ—%O)Zn—mh+my=g+my.
Then,

nr > Dr(z) = /RD(x —y) Ar(y) dy

—n/ Ar(y) dy +/ (g + my) Ar(y) dy
(_hvh)c (_h/h)

Ar@dy+7 [ Ar(g)dy  since yAr(y) is odd
- (_h’ah)

v

Y
|
B
T
>
S

7 2
n 31
- = Ar(y) dy
2 2 J=n,nye
n 6m n 12m

The inequality is also trivially true when n = 0.



(5) Recall that the Fourier transform of a convolution is the product of Fourier transforms:

@0 = [ ([ate-niway) e ao
= [ (ata =) o) i e ay) = (0360

We use this result with a = D and b = Ar, after a Fourier inversion of D7 (we have the right to
do so, since a and b are both in .Z1(R) N Z2(R)):

1 — .

Dr(z) = & /R Dr(t)e ™ dt

1 [~ — :
—/D(t) Ar(t)e " dt
™ JR

% A (F(t) ~ @) Bty .

Notice then that a/(t) = —itd(t) by integration by parts:

al(t) = / a'(z) e dx = —it/ a(x) e dx = —ita(t).
R R

Therefore,

By - 6) ﬁ(t)—a(t) _ ou(®) 1t¢>c()’

Dr(z) = / An ( t¢c( )) ey,
/\A tqsc()‘
= 5/4 W‘ dt.

This is true for every x, so 7 has the same bound, and then

24 1 T t) — dal(t 24
77§277T+7m§*/ Pult) —0c@®)| ,p , 24m
'l T J_p t T

dt

\ /\

We calculate

G (£) = EleX0] = [/ VA0 = e ¢<¢§*>

o () o) ()

since one has uniform convergence v,, — 1 at speed 0(\/)\7,71) if the argument t/4/\, stays

bounded. The remainder is a 0(#); then we can expand i in Taylor series to get

ORI (1+ w/f%t +<\/tr)> |

Then,

(- 8) (e ot
_ (1_ A0 6) e
VA, 0




This function is bounded, so the integral G, (z) is indeed m-Lipschitz for a certain constant m.
Moreover, one has indeed G, (4+00) =1 and G, (—o0) = 0, so Berry’s lemma will apply.

(7) Berry’s lemma ensures that
M = sup |Fy, (z) — G ()|
Tz€R
1 KvVXn
</
T J-KVXx,
1 24m

t
< + [ ‘ 2v<>‘dt+
TV An </(—Km,wm\<—sm,sm> <—sm,sm>> VAn TKAn

where v(+) is a function going to zero at zero. Fix 6 > 0, and € such that |v(-)| is smaller than 0
on (—¢,¢). The integral on (—ev/A,,ev/A,) is then smaller that

0 / 2 0
e 2 dt < —.
™A Jr An

Fix then K such that 2;1—}? < #. The third summand in the upper bound is then also smaller than
8 and on the other hand, v(-) is bounded by some constant C'(K) on (—K, K). This leads to

Oua () = Galt) |, 24m
t KA

+2

oW
260 1 t2
Nn < + C(K)e = dt
VAn VA S KR KRN (—ev Rme )
20 C(K) 2
< + e 2 dt
V An URY An R\(—evAn,evVAn)

_ 2

< 20 +C’(K)e < 0
VA TEA, VA

Since this is true for every 0, the estimate o(1/v/A,) is shown.

for n big enough.

(8) The previous Question proves that up to a uniform o(1/v/Ay),

T (0)y o
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iW(0) =2
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() = T

FMn (Qf) = FN(U,l)('r) +

dy = FN(0,1)('73) +
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