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ABSTRACT. In this paper, using techniques developed in our earlier works on the theory of
mod-Gaussian convergence, we prove precise moderate and large deviation results for the
logarithm of the characteristic polynomial of a random unitary matrix. In the case where the
unitary matrix is chosen according to the Haar measure, the logarithms of the probabilities of
fluctuations of order A = O(N) of the logarithm of the characteristic polynomial have been
estimated by Hughes, Keating and O’Connell in [HKO01]. In this work we give an equivalent
of the probabilities themselves (without the logarithms), and we do so for the more general
case of a matrix from the circular β ensemble for any parameter β > 0. In comparison to
previous results from [FMN16; BHR19], we considerably extend the range of fluctuations for
which precise estimates can be written.
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1. CHARACTERISTIC POLYNOMIALS OF MATRICES OF THE CIRCULAR β ENSEMBLES

The goal of this article is to present precise estimates of moderate and large deviations
for the characteristic polynomials of random unitary matrices. In the first Subsection 1.1
of this section, we introduce the relevant models from random matrix theory and we recall
the known results regarding their fluctuations. In Subsection 1.2, we explain the connection
between the random matrix models of interest and the Riemann ζ-function. We then present
in Subsection 1.3 a general method in order to prove precise large deviation estimates for a
sequence of real random variables (XN)N∈N (by precise we mean asymptotic estimates of
the probabilities themselves, instead of their logarithms). We conclude our introduction in
Subsection 1.4 by stating our main results, and by giving an outline of the later sections of
the paper.

Notation. Throughout the paper, β and δ are positive real numbers, and N ≥ 1 is a positive
integer. It will be convenient to set

β′ =
β

2
; h = 2δ.

The open ball with center z and radius ε in the complex plane is denoted B(z,ε), and the ver-
tical strip of complex numbers z with a < Re(z) < b is denoted D(a,b). The whole complex
plane is denoted C, and the unit circle {z ∈ C | |z| = 1} is denoted T. Given two sequences
(aN)N∈N and (bN)N∈N of positive real numbers, we write aN ≪ bN if limN→∞

aN
bN

= 0
(in other words, aN = o(bN)), and aN ≲ bN if lim supN→∞

aN
bN

< +∞ (in other words,
aN = O(bN)). Several computations and the statements of our main theorems will involve
the following smooth functions on R+:

φ(s) =
1
s

(
1
2
− 1

s
+

1
es − 1

)
;

ϕβ(s) = φ(s)− β′2 φ(sβ′);

ηβ(s) =
sβ′ ϕβ(s)

(esβ′ − 1) ϕβ(0)
.

We have η2 = 0, and if β ̸= 2, then ηβ is positive, decreasing, integrable and with ηβ(0) = 1.

ηβ(x)

0 5 10

1

0

FIGURE 1. The function x 7→ ηβ(x) for a parameter β = 1.

1.1. The circular β and circular Jacobi (β, δ) ensembles. The circular β ensemble (in short,
CβE) of order N is the distribution on N-tuples (eiθ1 , . . . , eiθN) of points on the unit circle
T = R/2πZ with density

1
CN(β) ∏

1≤i<j≤N
|eiθi − eiθj |β dθ1 · · · dθN, (1)
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where the normalisation constant is

CN(β) = (2π)N Γ(β′N + 1)
Γ(β′ + 1)

;

see for instance [For10, Section 2.8]. When β = 2, the distribution above is the law of the
eigenvalues of a random unitary matrix chosen under the Haar (probability) measure on the
unitary group U(N). In the general case of a parameter β > 0, a unitary matrix model with
eigenvalue distribution provided by Equation (1) has been proposed by Killip and Nenciu,
see [KN04]. Note that for any parameter β > 0, the distribution of (eiθ1 , . . . , eiθN) is invariant
by multiplication by a phase vector (z, z, . . . , z) with z = eiθ ∈ T. Therefore, the distribution
of the characteristic polynomial

PN(z) = det(zIN − UN) =
N

∏
i=1

(z − eiθi)

with z ∈ T does not depend on z, and hence without loss of generality we can choose z = 1.
In this article, we shall be interested in the probabilities of

XN = log |PN(1)| = Re(log PN(1)) = Re

(
log

(
N

∏
i=1

1 − eiθi

))
being very large. If one sees the eigenvalues of a unitary random matrix as a system of
particles on the unit circle, then the random variable XN can be considered as the free energy
of the system. The invariance by rotation of the CβE implies that Eβ[XN] = 0 for any
N ≥ 1. On the other hand, the largest possible value is obtained when UN = −IN and
all the eigenvalues are equal to −1, in which case XN = N log 2. Our goal is to obtain the
precise asymptotics of Pβ[XN ≥ x] for any x ∈ [0, N log 2]. By precise we mean that we want
an asymptotic equivalent of these probabilies, and not of their logarithms.

To this purpose, it will be useful to generalise a bit the framework described above, and
to introduce the circular Jacobi ensembles with parameters (β > 0, δ ≥ 0). A positive
integer N being fixed, the circular Jacobi (β, δ) ensemble (in short, CJ(β, δ)E) of order N is
the distribution P(β,δ) on N-tuples (eiθ1 , . . . , eiθN) of points of the unit circle with density

1
CN(β, δ) ∏

1≤i<j≤N
|eiθi − eiθj |β

N

∏
i=1

|1 − eiθi |2δ dθ1 · · · dθN; (2)

see [FW00; BNR09] and [For10, Section 3.12]. The case δ = 0 corresponds to the CβE. On the
other hand, the case β = 2, δ > 0 corresponds to the so-called Hua–Pickrell measures, see
[Hua63; Pic87; Pic91; BO01; Ner02]. A model of random unitary matrices with eigenvalue
distribution as in Equation (2) is given in [BNR09]. In particular, given (eiθ1 , . . . , eiθN) ∼
P(β,δ), the theory of deformed Verblunsky coefficients allows one to rewrite the polynomial
PN(1) = ∏N

i=1(1 − eiθi) as a product ∏N−1
k=0 (1 − γk) of independent random variables, these

random variables γk following explicit distributions on the unit disc B(0,1) or on the unit
circle T. The aforementioned paper actually deals with the more general case where δ ∈
D(− 1

2 ,+∞) and the weight

N

∏
i=1

|1 − eiθi |2δ is replaced by
N

∏
i=1

(1 − e−iθi)δ(1 − eiθi)δ.

Here, we shall only consider the case where δ ∈ R+. The decomposition PN(1) = ∏N−1
k=0 (1−

γk) leads to an explicit formula for the Laplace transform of XN = Re(log PN(1)) under the



4 PIERRE-LOÏC MÉLIOT AND ASHKAN NIKEGHBALI

distribution P(β,δ). Hence,

E(β,δ)[e
zXN ] =

N−1

∏
k=0

Γ(β′k + 1 + δ)2 Γ(β′k + 1 + 2δ + z)
Γ(β′k + 1 + 2δ) Γ(β′k + 1 + δ + z

2)
2 , (3)

for any z such that 2δ + Re(z) > −1; see [BNR09, Proposition 4.2]. The asymptotic analysis
of this exact formula in various regimes for z and for δ will be the main technical challenge
of this article.

Consider for the moment the special case β = 2 of the CβE, that is to say the eigenvalue
distribution of a Haar distributed unitary matrix. The Heine identity allows one to rewrite
the bivariate Laplace transform of the complex random variable ZN = log PN(1) = XN +
iYN as a Toeplitz determinant of size N × N and associated to a Fisher–Hartwig symbol.
The asymptotics of these determinants allowed Hughes, Keating and O’Connell to prove
the central limit theorem

ZN√
log N

⇀law, N→+∞ NC = NR

(
0,

1
2

)
+ iNR

(
0,

1
2

)
; (4)

see [HKO01, Theorem 2.1]; this CLT also appears in [KS00, Section 2]. In particular, for x
fixed positive real number,

P2

[
XN ≥

√
log N x

]
=

1√
π

(∫ +∞

x
e−y2

dy
)
(1 + o(1)).

Notice that alternatively, one can prove the central limit theorem by computing the asymp-
totics of Formula (3) when N goes to infinity and z is fixed. In the setting where x = sN
with s ∈ (0, log 2), a large deviation principle follows also from the asymptotic analysis of
this exact formula:

log
(
P2[XN ≥ Nx]

)
= −N2 Λ∗(x) (1 + o(1)), (5)

where Λ∗(x) = sups∈R(xs − Λ(s)) is the Legendre–Fenchel convex dual of the function

Λ(s) =

{
1
2 (1 + s)2 log(1 + s)−

(
1 + s

2

)2 log
(
1 + s

2

)
− s2

4 log(2s) if s ≥ 0,
+∞ if s < 0;

see [HKO01, Theorem 3.3]. Between these two regimes, the logarithms of the probabilities
of moderate deviations involve a Gaussian exponent x2: if (xN)N∈N is a sequence of positive
real numbers such that

√
log N ≪ xN ≪ N, then

log
(
P2[XN ≥ xN]

)
= − (xN)

2

log
(

N
xN

) (1 + o(1)), (6)

see [HKO01, Theorem 3.5]. The results of the present article will improve on these earlier
results, by giving the asymptotics of P2[XN ≥ xN] on the ranges previously described, for
a general parameter β > 0. Partial results in this direction were obtained in [FMN16] and
[BHR19]; see Subsection 1.3.

1.2. Connection with the Riemann ζ-function. When β = 2, the random variables XN are
also meant to predict the behavior of the Riemann ζ-function on the critical line. Let us
survey briefly this connection which is one of the main interest of the circular ensembles
presented above. Denote P the set of prime numbers and ζ the Riemann zeta function,
which is defined on the domain {s ∈ C |Re(s) > 1} by the convergent series and convergent
infinite product:

ζ(s) =
∞

∑
n=1

1
ns = ∏

p∈P

1
1 − p−s ,
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and which is extended by analytic continuation to C \ {1}. An important part of proba-
bilistic number theory consists in understanding the statistical behavior of the values of
ζ(s) for s in a large domain of the complex plane, for instance a large vertical range Iσ,T =
{s = σ + it, t ∈ [T, 2T]}. Suppose in particular that σ is fixed and that t = UT is chosen
uniformly in [T, 2T]. Then, as t goes to infinity, the random variables (p−σ−iUT)p∈P be-
come asymptotically independent and uniformly distributed on the circles p−σ T. If σ > 1,
then this joint convergence in law and the absolute convergence of the series log(ζ(s)) =
∑p∈P − log(1− p−s) on the vertical line σ + iR imply the existence of a limiting distribution
for log(ζ(σ + iUT)): we have the weak convergence

log(ζ(σ + iUT)) ⇀law, T→+∞ µ(σ),

and the limiting distribution µ(σ) is the compactly supported distribution of the convergent
random series

∑
p∈P

− log(1 − p−σ Cp),

where (Cp)p∈P is a family of independent uniform variables on the circle T. By the Kol-
mogorov two series criterion, this random series is still almost surely convergent for σ > 1

2 ,
and Bohr, Jessen and Wintner extended the convergence result to this setting. For 1

2 < σ ≤ 1,
the limiting distribution µ(σ) of log(ζ(σ + iUT)) is now supported by the whole complex
plane; see [BJ30; BJ32; JW35; BJ48] for more details on the properties of µ(σ).

Suppose now that σ = 1
2 . Then, the random series ∑p∈P − log(1 − p−

1
2 Cp) does not

converge anymore, but there is still a limiting distribution for log(ζ(1
2 + iUT)), albeit with a

renormalisation of these random variables:
log(ζ(1

2 + iUT))√
log log T

⇀law, T→+∞ NC. (7)

This is the Selberg central limit theorem; see the papers of Selberg [Sel46; Sel92], and [Gho83;
BH95; RS15] for a detailed account. The obvious analogy between the convergences in law
(4) and (7) is a small part of a strong connection between:

• the asymptotic behavior of the characteristic polynomial of a Haar-distributed ran-
dom unitary matrix;

• the asymptotic behavior of the Riemann ζ-function on its critical line σ = 1
2 .

In particular, the pair correlations of the zeroes of the characteristic polynomial PN(z) (so,
the eigenvalues of UN), which are asymptotically given by the sine-kernel, have been con-
jectured by Montgomery [Mon73] to also be the asymptotic correlations of the zeroes of the
function ζ(1

2 + it) on a large range t ∈ [T, 2T]. This conjecture has been extended to the
higher correlation functions by Rudnick and Sarnak [RS96]. A striking connection between
the moments of the characteristic polynomial (the case β = 2, δ = 0 and z = 2k of For-
mula (3)) and the moments of ζ(1

2 + iUT) has also been conjectured by Keating and Snaith
in [KS00]: for any integer k ≥ 1,

lim
T→+∞

(
E[|ζ(1

2 + iUT)|2k]

(log T)k2

)
=

(
lim

N→+∞

(
E2[|PN(1)|2k]

Nk2

))
Θ(k),

where

Θ(k) = ∏
p∈P

(
∞

∑
n=0

(
Γ(n + k)
n! Γ(k)

)2

(1 − p−1)k2
p−n

)
.

We refer to [Con+05] for an extension of this conjecture to L-functions. Finally, during
the last decade, the extrema of the two random fields (log |PN(z)|)z∈T and (log |ζ(1

2 +
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it)|)t∈[T,2T] have been studied and compared, in the framework of log-correlated fields. Fy-
odorov, Hiary and Keating conjectured in [FHK12; FK14] the convergence in law

max
z∈T

(log |PN(z)|)−
(

log N − 3
4

log log N
)
⇀law, N→+∞ V

for some explicit random variable V. The tightness of the left-hand side has been established
in [CMN18], see also [ABB17]. Similarly, it has been conjectured that

max
t∈[T,2T]

(
log
∣∣∣∣ζ(1

2
+ it

)∣∣∣∣)−
(

log log T − 3
4

log log log T
)
⇀law, T→+∞ W

for some random variable W; partial results in this direction have been obtained in [Naj18;
Arg+19].

We believe that our results of precise large deviations can be extended to the following
arithmetic analogues of the random variables XN:

χN = Re

 ∑
p∈P
p≤N

− log(1 − p−
1
2 Cp)


with (Cp)p∈P as above. The variables χN are closely related to the Riemann ζ-function,
and for instance they have been used in [RS15] in order to give a relatively short proof of
the Selberg central limit theorem. We plan to prove in forthcoming works the analogue of
our precise large deviation results for XN for the truncated random ζ-functions χN, thereby
strengthening the connection between the asymptotics of the characteristic polynomial of
random unitary matrices, and the asymptotics of the Riemann ζ-function on the critical
line.

1.3. A general method in order to obtain precise large deviations. Our goal is to make
more precise the estimates (5) and (6), by computing the asymptotic behavior of the prob-
abilities of large and moderate deviations instead of their logarithms. These kinds of esti-
mates are called sharp or strong large deviations in the literature. A first step towards such es-
timates has been made in the papers [FMN16; BHR19] by using the theory of mod-Gaussian
convergent sequences. Given a sequence of real-valued random variables (XN)N∈N with
Laplace transforms well defined on a vertical strip D(a,b), we say that the sequence con-
verges in the mod-Gaussian sense with parameters (tN)N∈N and domain of convergence
D(a,b) if tN → +∞ and if, locally uniformly on this domain,

E[ezXN ] e−
tN z2

2 →N→∞ Ψ(z),

Ψ(z) being a holomorphic function with Ψ(0) = 1. The case where z = iξ is restricted to the
imaginary line appeared first in [JKN11], and the definition with a strip of convergence in
the complex plane allows one to obtain large or moderate deviation estimates; see [FMN16,
Definition 1.1.1]. The more general situation where the exponent z2

2 of the Gaussian distribu-
tion is replaced by the Lévy–Khintchine exponent η(z) of an infinitely divisible distribution
is detailed in [DKN15; FMN16; FMN19]. Now a fundamental example of mod-Gaussian
convergent sequences is provided by the real parts of the logarithms of the characteristic
polynomials of Haar distributed unitary random matrices. This case is quite easier than
the general case, because the Laplace transform from Equation (3) can then be rewritten in
terms of the Barnes G-function (cf. [Bar00] and [Vor87, Appendix]). We recall that this entire
function is given by the convergent infinite product

G(z + 1) = e
z(log(2π)−1)−z2(γ+1)

2

∞

∏
k=1

(
1 +

z
k

)k
e−z+ z2

2k ,
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and that it satisfies the functional equation G(z + 1) = Γ(z) G(z). The Stirling expansion of
the Barnes function is

G(1 + z) = exp
(

z2
(

1
2

log z − 3
4

)
+ z

log 2π

2
− 1

12
log z + ζ ′(−1) + O

(
1
|z|

))
; (8)

see for instance [Vor87, Equations (A.6) and (A.11)]. The functional equation of the Barnes
function yields, for any z with Re(z) > −1:

E2[ezXN ] =
G(1 + N) G(1 + N + z)

G(1 + N + z
2)

2 Ψ(z), with Ψ(z) =
G(1 + z

2)
2

G(1 + z)
.

By injecting the asymptotic estimate (8) in this formula, we obtain

E2[ezXN ] = e
log N

4 z2
Ψ(z)

(
1 + O

(
1 + |z|3

N

))
(9)

for any z fixed in D(−1,+∞). We therefore have a mod-Gaussian convergence with parame-

ters tN =
log N

2 and limiting residue Ψ(z). This property was first noticed in [KN12, Section
3]. In [BHR19, Theorems 4.15 and 5.1] the mod-Gaussian convergence of the logarithms of
the moduli of the characteristic polynomials has been generalised by Dal Borgo, Hovhan-
nisyan and Rouault to the case of a random matrix of a general CJ(β, δ)E. Thus, β and δ
being two fixed positive parameters, we have the mod-Gaussian convergence

E(β,δ)

[
ez(XN− 2δ

β log N)
]
= e

log N
2β z2

Ψ(β,δ)(z) (1 + o(1))

on the domain D(− 1
3 ,∞) and for some explicit functions Ψ(β,δ) which can be expressed in

terms of the Barnes and Gamma functions. Now, a general result of moderate or large de-
viations in the setting of mod-Gaussian convergent sequences is the following: if (XN)N∈N

is mod-Gaussian convergent on D(a,b) with parameters (tN)N∈N and limiting residue Ψ(z),

then, assuming a < 0 < b and (tN)
− 1

2 ≪ x < b, we have

P[XN ≥ x tN] =
e−

tN x2

2

x
√

2πtN
Ψ(x) (1 + o(1)); (10)

see [FMN16, Theorem 4.2.1]. As a consequence, looking at the log-characteristic polynomial
of a Haar distributed unitary matrix, we see that for any sequence (xN)N∈N with

√
log N ≪

xN ≲ log N,

P2[XN ≥ xN] =
e−

(xN )2

log N

2xN

√
log N

π
Ψ
(

2xN

log N

)
(1 + o(1)), (11)

see Theorem 7.5.1 in loc. cit. By setting xN =
√

log N
2 yN, we see that for

√
log N ≲ xN ≪

log N, the Gaussian estimate

P2[XN ≥ xN] = P

[
NR

(
0,

log N
2

)
≥ xN

]
(1 + o(1))

holds; whereas at the scale xN = O(log N), a multiplicative factor Ψ( 2xN
log N ) measures the

difference between the two probabilities. Similarly, for the matrices of the CJ(β, δ)E, the
mod-Gaussian convergence result of Dal Borgo–Hovhannisyan–Rouault leads to the fol-
lowing estimate of moderate deviations:

P(β,δ)

[
XN ≥ 2δ

β
log N + xN

]
=

e−
β (xN )2

2 log N

xN

√
log N
2πβ

Ψ(β,δ)

(
βxN

log N

)
(1 + o(1)) (12)

for any sequence (xN)N∈N with
√

log N ≪ xN ≲ log N; see [BHR19, Theorem 4.16].
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These sharp estimates of moderate deviations, which follow readily from Equation (10),
are still far from what we want to prove: indeed, we are interested in fluctuations of size xN
up to O(N), instead of O(log N). The solution to this problem relies on the two following
important observations (Lemmas 1 and 3).

Lemma 1 (Mod-Gaussian convergence and exponential tilting of measures). Suppose that
(XN)N∈N converges in the mod-Gaussian sense on a domain D(a,b), with parameters (tN)N∈N and
limiting function Ψ(z). Consider a real parameter h ∈ (a, b) such that Ψ(h) ̸= 0. We introduce the
new sequence of variables (XN,h)N∈N with distributions

PN,h[dx] =
ehx

E[ehXN ]
PN[dx],

PN being the law of XN. The sequence (XN,h − tNh)N∈N converges again in the mod-Gaussian
sense with parameters (tN)N∈N, domain of convergence D(a−h, b−h), and limiting function Ψ(z+h)

Ψ(h) .

Proof. This result originally appeared in [FMN16, Lemma 4.2.5], in the more general case of
mod-ϕ convergent sequences. Set ΨN(z) = E[ezXN ] exp(− tN z2

2 ). We have

E[ezXN,h ] =
E[e(z+h)XN ]

E[ehXN ]
= e

tN ((z+h)2−h2)
2

ΨN(z + h)
ΨN(h)

= ez(tNh) e
tN z2

2
ΨN(z + h)

ΨN(h)
.

The result follows by local uniform convergence of the residues ΨN towards Ψ, since Ψ(h) ̸=
0. □

Example 2. The case β = 2 and δ ≥ 0 (Hua–Pickrell measures) of Equation (12) follows im-
mediately from the mod-Gaussian convergence of (XN)N∈N under P2 (Equation (9)), and
from the lemma above. Indeed, the sequence (XN)N∈N under the Hua–Pickrell distribution
with parameter δ is obtained from the same sequence under the Haar measure by an expo-
nential change of measure of parameter h = 2δ. Consequently, if Ψ(z) = Ψ(2,0)(z) is the

residue previously computed in the Haar case, then Ψ(2,δ)(z) =
Ψ(z+2δ)

Ψ(2δ)
.

Let us note that if the tilting parameter h = hN goes to infinity in such a way that the
ratio ΨN(z + hN)/ΨN(hN) admits a non-trivial limit, then we still have a mod-Gaussian
convergence. This observation opens the way for an extension of the range of parameters
xN for which an estimate of large deviations such as (11) or (12) can be proved. If we also
allow the variance parameter tN to be modified when estimating the Laplace transform of
the tilted random variable XN,hN , then the range for the parameters xN can be even larger.
The final nail on the coffin of the restrictions for xN is the following second observation: in
order to get the sharp estimate (10), during the proof of [FMN16, Theorem 4.2.1], we only
used an upper bound on the Kolmogorov distance

dKol

XN,hN − E[XN,hN ]√
var(XN,hN)

, NR(0, 1)


stemming from the mod-Gaussian convergence of the tilted sequence (XN,hN)N∈N. How-
ever, such estimates hold even if strictly speaking we do not have mod-Gaussian convergence.

Lemma 3 (Berry–Esseen estimates from a zone of control). Let (XN)N∈N be a sequence of
random variables such that, for any ξ ∈ R, we have

E
[
eiξ(XN−E[XN ])

]
= e−

tN ξ2

2 exp(O(|ξ|3)),
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with an implied constant M for the O(·). Set VN = XN−E[XN ]√
var(XN)

. There exists C > 0 such that

dKol(VN,NR(0, 1)) = sup
s∈R

∣∣∣∣P[VN ≤ s]− 1√
2π

∫ s

−∞
e−

u2
2 du

∣∣∣∣ ≤ CM

(tN)
3
2

.

Proof. We are in the situation of [FMN19, Definition 5], with the following parameters:

α = 2, cα =
1
2

, v = w = 3, K1 = K2 = M, γ = 1, K =
1

4M
.

Indeed, if θN(ξ) = E[eiξ(XN−E[XN ])] e
tN ξ2

2 , then θN(ξ) = exp(uN(ξ)) with |uN(ξ)| ≤ M|ξ|3,
so |θN(ξ)− 1| ≤ |uN(ξ)| exp(|uN(ξ)|) ≤ M|ξ|3 exp(M|ξ|3) for any ξ ∈ R. The notion of
zone of control leads one to only use this estimate on the domain [−KtN, KtN] with K = 1

4M
(see Condition (Z2) in loc. cit.). Then, Equation (5) in loc. cit. ensures the claimed inequality
for some universal constant C (choosing appropriately the parameter λ in the aforemen-
tioned equation from [FMN19] gives C ≤ 14). □

Let us now describe a general scheme in order to prove sharp deviation estimates for a
sequence of real random variables (XN)N∈N. This scheme is inspired by classical arguments
used in the proofs of the Cramér theorem and of the Bahadur–Rao estimates of strong large
deviations for sums of i.i.d. random variables; see [DZ98, Theorems 2.2.3 and 3.7.4] and
[BR60; CS93]; and the aforementioned result from [FMN16] is a particular case of the general
scheme.

General Scheme. Consider a sequence of centered real random variables (XN)N∈N. The following
steps enable the calculation of an asymptotic equivalent of P[XN ≥ aN] for parameters 0 < aN <
MN = ∥XN∥∞.

Step 1. Given aN ∈ (0, MN), find (an asymptotic expansion of) the tilting parameter hN such that

E[ezXN,hN ] =
E[e(z+hN)XN ]

E[ehN XN ]
; E[XN,hN ] = aN.

Compute (an asymptotic expansion of) the variance vN = var(XN,hN).

Step 2. Use the lemma 3 of zone of control in order to compute an upper bound on

dKol

(
XN,hN − aN√

vN
, NR(0, 1)

)
≲ εN.

In particular, identify those parameters aN for which the distance goes to 0 (asymptotic nor-
mality after tilting), and those parameters for which it goes to 0 faster than 1

hN
√

vN
(strong

asymptotic normality after tilting).

Step 3. If we have strong asymptotic normality after tilting with εN ≪ 1
hN

√
vN

≪ 1, then we have
the asymptotic estimate:

P[XN ≥ aN] =
E[ehN(XN−aN)]

hN
√

2πvN
(1 + o(1)).

If we only have asymptotic normality after tilting with εN ≲ 1
hN

√
vN

≪ 1, then we have an
upper bound which is sharp up to a multiplicative constant:

P[XN ≥ aN] ≲
E[ehN(XN−aN)]

hN
√

2πvN
.
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This general scheme requires good estimates of the Laplace transform E[ezhN ] for complex
parameters z with real part Re(z) = hN, where hN is given by the first step. Notice also that
we need hN

√
vN → +∞ for the third step; usually, this will be the case when aN is large

enough, and the estimates for aN small are covered by the central limit theorem satisfied by
the sequence (XN)N∈N.

Proof of the validity of the scheme. Denote PN[dx] the distribution of XN, and PN,hN [dx] the
distribution of the tilted random variable XN,hN . The exponential change of measure with
parameter hN relates the two distributions by:

PN,hN [dx] =
ehN x

E[ehN XN ]
PN[dx].

Therefore,

E[ezXN,hN ] =
∫

R
ezx PN,hN [dx] =

1
E[ehN XN ]

∫
R

e(z+hN)XN PN[dx] =
E[e(z+hN)XN ]

E[ehN XN ]

assuming that the Laplace transforms are convergent. The parameters hN, aN and vN satisfy

aN = E[XN,hN ] =
d(E[ezXN,hN ])

dz

∣∣∣∣∣
z=0

=
E[XN ehN XN ]

E[ehN XN ]
=

d(log E[ezXN ])

dz

∣∣∣∣
z=hN

;

vN = var(XN,hN) =
d(aN)

dz

∣∣∣∣
z=hN

=
d2(log E[ezXN ])

dz2

∣∣∣∣
z=hN

.

Notice that, when h goes from 0 to +∞, the expectation E[XN,h] increases from 0 to MN =
∥XN∥∞. Therefore, there is a unique solution to the equation aN = E[XN,hN ] for 0 < aN <
MN, and the parameters make sense. Let us now prove the asymptotic estimates of the third
step, under the hypothesis of asymptotic normality after tilting (εN = o(1)). We set

dQN[x] = dPN,hN

[
x − aN√

vN

]
;

this is the distribution of the scaled random variable considered in the second step of the
general scheme. We denote:

GN(s) =
∫ s

−∞
dQN[x] ; G(s) =

1√
2π

∫ s

−∞
e−

x2
2 dx.

We have by hypothesis |GN(s)− G(s)| = O(εN) uniformly in s ∈ R. We now compute:

Pβ[XN ≥ aN] =
∫ ∞

aN

PN[dx] = E[ehN XN ]
∫ ∞

aN

e−hN x PN,hN [dx]

= E[ehN XN ] e−hN aN

∫ ∞

0
exp(−hN

√
vN y)QN[dy]

and the integral IN on the right-hand side is equal to∫ ∞

0
e−hN

√
vN y Q(β,δN)[dy] = hN

√
vN

∫ ∞

0
e−hN

√
vN y (GN(y)− GN(0)) dy

= hN
√

vN

∫ ∞

0
e−hN

√
vN y (G(y)− G(0)) dy + O

(
εNhN

√
vN

∫ ∞

0
e−hN

√
vN y dy

)
=

1√
2π

∫ ∞

0
e−hN

√
vN y− y2

2 dy + O(εN)

=
e
(hN )2vN

2
√

2π

∫ ∞

hN
√

vN

exp
(
−Y2

2

)
dY + O(εN) =

1
hN

√
2πvN

+ O
(

1
(hN

√
vN)3

)
+ O(εN).
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On the last line, we have used an integration by parts in order to get the classical estimate
of the tail of the Gaussian distribution: for M → +∞,∫ ∞

M
e−

Y2
2 dY =

e−
M2
2

M
−
∫ ∞

M

e−
Y2
2

Y2 dY ;
∫ ∞

M
e−

Y2
2 dY =

e−
M2
2

M

(
1 + O

(
1

M2

))
.

The result follows immediately in the two cases εN ≪ 1
hN

√
vN

and εN ≲ 1
hN

√
vN

. □

1.4. Main results and outline of the paper. Before stating the main results of this paper
(Theorems A and B), let us describe informally the application of the general scheme for
computing the probabilities of deviation of XN = log |PN(1)|, the real part of the logarithm
of the characteristic polynomial of a Haar-distributed unitary matrix UN with size N (β = 2).
In Section 2, we shall prove that the parameters hN, aN and vN of the general scheme of
approximation are related in this case by the following formulæ:

aN =
hN

2
log
(

N
2hN

)
+ N

((
1 +

hN

N

)
log
(

1 +
hN

N

)
−
(

1 +
hN

2N

)
log
(

1 +
hN

2N

))
+

1
12

(
1

N + hN
2

− 1
hN

− 1
N + hN

)
+ O

(
1

(hN)3

)
;

vN =
1
2

log
(

N
2hN

)
+

(
log
(

1 +
hN

N

)
− 1

2
log
(

1 +
hN

2N

))
+

1
12

(
1

(N + hN)2 − 1

2(N + hN
2 )2

+
1

(hN)2

)
+ O

(
1

(hN)4

)
.

Suppose in particular that log N ≪ aN ≪ N. This assumption will turn out to be equivalent
to 1 ≪ hN ≪ N, and we shall then be able to simplify the equations above:

aN = N θ

(
hN

2N

)
− 1

12hN
+ o
(

1
hN

)
;

vN =
1
2

θ′
(

hN

2N

)
+

1
12(hN)2 + o

(
1

(hN)2

)
;

hN = 2N θ−1
( aN

N

)
+

1
12aN

+ o
(

1
aN

)
where θ(x) = (1+ 2x) log(1+ 2x)− (1+ x) log(1+ x)− x log(4x) is a continuous bijection
from R+ to [0, log 2), and θ−1 is its functional inverse; see Figure 2.

θ(x)

0 5 10

log 2

0

FIGURE 2. The function x 7→ θ(x).
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In a neighborhood of 0, θ(x) is equivalent to x| log x|, θ−1(x) is equivalent to x
| log x| , and θ′(x)

is equivalent to | log x|. Therefore, the equations above imply that for log N ≪ aN ≪ N,

hN ≃N→+∞
2aN

log( N
aN
)

; vN ≃N→+∞
1
2

log
(

N
hN

)
≃N→+∞

1
2

log
(

N
aN

)
.

In Section 3, we shall prove the following upper bound on Kolmogorov distances:

dKol

(
XN,hN − aN√

vN
, NR(0, 1)

)
= O

 1

hN (log( N
hN

))
3
2


for any sequence (aN)N∈N such that log N ≲ aN. In particular, in the regime log N ≪ aN ≪
N, we have

hN → +∞ ; vN → +∞ ; εN =
1

hN (vN)
3
2
≪ 1

hN
√

vN
≪ 1,

so we have strong asymptotic normality of the tilted sequence (XN,hN)N∈N. The general
scheme ensures then that:

P2[XN ≥ aN] =
E[ehN(XN−aN)]

hN
√

2πvN
(1 + o(1)) =

E[ehN(XN−aN)]

2aN

√
1
π

log
(

N
aN

)
(1 + o(1)).

Then, it remains to analyse the Laplace transform E[ehN XN ], and to give an asymptotic
equivalent of it. This additional computation will lead to the following result: if log N ≪
aN ≪ N and ϑN = θ−1( aN

N ), then

P2[XN ≥ aN] ≃N→+∞ C2 (aN)
− 13

12

(
log
(

N
aN

)) 7
12

exp(− f (N, ϑN))

with C2 = 2−
11
12 π− 1

2 exp(ζ ′(−1)), and

f (N, ϑN) = (NϑN)
2 log

(
1 +

1
4ϑN(1 + ϑN)

)
+

N2

2
log
(

1 +
(ϑN)

2

1 + 2ϑN

)
.

Moreover, under the stronger hypothesis that log N ≪ aN ≲ N
1
3 , the term in the exponential

writes as

− f (N, ϑN) = −NaNϑN +
(NϑN)

2

2
+ o(1).

We shall also state results when
√

log N ≪ aN ≲ log N, and when aN is of order N. We
shall deal with the case of a general parameter β > 0. In this setting it will sometimes be
convenient to modify a tiny bit the function θ, and to set:

θN,β(x) = θ(x) +
β′ − 1
2β′N

(log 2 + log(1 + x)− log(1 + 2x)).

Note that θN,2 = θ for any N, and also that limN→∞ θN,β(x) = θ(x) uniformly on the real line
for any fixed parameter β > 0. For N large enough, the function θN,β is again a continuous

bijection, this time from R+ to [ β′−1
2β′N log 2, log 2); see Lemma 24.

We fix β > 0; in all the estimates of Theorems A and B below, the O(·)’s and o(·)’s involve
implied constants which are allowed to depend on the parameter β. In order to make this
clear, we add an index β to all such estimates, so for instance we shall denote Oβ(y) a
quantity whose module is smaller than Cβ|y| for some positive constant Cβ which can only
depend on β.
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Theorem A (Sharp moderate deviations of the characteristic polynomial of the CβE ensem-
ble). Let XN be the real part of the logarithm of the characteristic polynomial of a random matrix
from the CβE, and let (xN)N∈N be a sequence of positive numbers such that log N ≲ xN ≪ N.

(1) We have:

Pβ[XN ≥ xN] =
e−Λ∗

N,β(xN)

xN

√
1

2πβ
log
(

N
xN

)(
1 + Oβ

(
1

log( N
xN

)

))
,

where Λ∗
N,β(·) is the Legendre–Fenchel conjugate of ΛN,β(h) = log Eβ[ehXN ], which is a

convex function.

(2) Suppose that xN is of order log N. Then, the formula above rewrites as

Pβ[XN ≥ xN] =
e−

β (xN )2

2 log N

xN

√
log N
2πβ

Ψβ

(
βxN

log N

)(
1 + Oβ

(
log log N

log N

))
,

with a function Ψβ that can be expressed in terms of the function Ψ = Ψ2:

Ψβ(βt) = (Ψ(2t))β′ Γ(1 + 2β′t) Γ(1 + t)β′+1

Γ(1 + β′t)2 Γ(1 + 2t)
β′+1

2

exp

(
1 − β′2

12β′

∫ ∞

0

(1 − e−β′ts)2

s
ηβ(s) ds

)
.

(3) Suppose now that log N ≪ xN ≪ N, and set ϑN = (θN,β)
−1( xN

N ), which is asymptotically
equivalent to xN

N log( N
xN

)
. Then,

Pβ[XN ≥ xN] = Cβ (xN)
β′2−15β′+1

12β′
(

log
(

N
xN

))9β′−1−β′2
12β′

exp(− f (N, β, ϑN) + o(1)) ,

where Cβ is an explicit positive constant given by Equation (13), and

f (N, β, ϑN) = β′(NϑN)
2 log

(
1 +

1
4ϑN(1 + ϑN)

)
+

N2β′ − N(β′ − 1)
2

log
(

1 +
(ϑN)

2

1 + 2ϑN

)
.

(4) Suppose more precisely that log N ≪ xN ≲ N1/3, and set bN = NϑN = N (θN,β)
−1( xN

N ),
which is asymptotically equivalent to xN

log( N
xN

)
. Then,

Pβ[XN ≥ xN] = Cβ (xN)
β′2−15β′+1

12β′
(

log
(

N
xN

))9β′−1−β′2
12β′

exp
(

β′
(
−xNbN +

(bN)
2

2

)
+ o(1)

)
.

The explicit constant Cβ above is given by:

Cβ =
2

1
12β′ π

β′−3
4

β
exp

(
1 − β′2

12β′ (Aβ + log β′) + β′ζ ′(−1)
)

, (13)

with

Aβ =
∫ ∞

s=0
(1 − e−

s
2 )2 ηβ(s)

s
ds +

∫ ∞

t=1

∫ ∞

s=0

2e−
st
2 − e−st

t
η′

β(s) ds dt.

If β = 2 and log N ≪ xN ≪ N, we recover as a particular case of Theorem A the estimates
stated informally at the beginning of this paragraph. On the other hand, the asymptotics of
Pβ[XN ≥ xN] when xN ≲ log N appear in [BHR19, Theorem 4.16], and it is not very difficult
to transform the formula of loc. cit. in order to obtain our formula for Ψβ. When xN ≫ log N,
as far as we know, even in the simpler case β = 2, our estimates of Pβ[XN ≥ xN] are
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new. One of the main interest of these formulas is the appearance of the "non-standard"
exponents

β′2 − 15β′ + 1
12β′ and

9β′ − 1 − β′2

12β′ ;

here by non-standard we mean different from the usual exponents ±1 or ±1
2 that appear in

central limit theorems and in Bahadur–Rao type large deviation estimates. We believe that
similar exponents can appear in the more general setting of moderate or large deviations of
sequences of random variables that admit a mod-Gaussian renormalisation. In particular,
this should be the case for the arithmetic analogues χN of the random variables XN, which
are also mod-Gaussian convergent (see [KN12]).

Let us now consider the regime where xN is of order N. We denote

I(x) = − (1 − 4x2)

2
log(1 + 2x)− x2 log(4x) + (1 − x2) log(1 + x),

x being an arbitrary positive real number.

Theorem B (Sharp large deviations of the characteristic polynomial of the CβE ensemble).
Consider parameters α0 in the interval [α, log 2], where α is an arbitrary fixed postive constant.

(1) In the same setting as in Theorem A, we have

lim sup
N→∞

(
N Pβ[XN ≥ α0N]

(θ−1(α0))2 exp(Λ∗
N,β(α0N))

)
≤ Mα,β

for some finite constant Mα,β which only depends on the two quantities α and β.

(2) If α0 belongs to the interval [α, α′] with α′ small enough, then we also have

lim inf
N→∞

(
N Pβ[XN ≥ α0N] exp(Λ∗

N,β(α0N))
)
≥ mα,α′,β

with another finite constant mα,α′,β which depends only on α, α′ and β and which is strictly
positive.

(3) If β = 2, then

Λ∗
N,2(α0N) = N2 I(θ−1(α0)) +

log N
12

+ Oα(1).

Therefore the upper bound rewrites in this case as:

lim sup
N→∞

(
N

13
12 P2[XN ≥ α0N]

(θ−1(α0))2 exp
(

N2 I(θ−1(α0))
))

≤ Mα < +∞,

and we have a similar statement for the lower bound if α0 ∈ [α, α′].

(4) If β ̸= 2, then
Λ∗

N,β(α0N) = N2β′ I(θ−1(α0)) + Oα0,β(N).

Therefore the sequence of random variables (XN
N )N∈N satisfies under Pβ a principle of large

deviations with speed N2 and rate function β′ I ◦ θ−1 (see Figure 3).

Let us make a few comments. First, the second part of this strong principle of large devia-
tions only holds if α0 is very small: we are not able to prove that the sequence

N Pβ[XN ≥ α0N] exp(Λ∗
N,β(α0N))
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0 log 2
0

1
I ◦ θ−1(x)

FIGURE 3. The rate function I ◦ θ−1(x) of the large deviation principle satis-
fied by XN

N when β = 2.

does not go to 0 if α0 is very large (for instance, if α0 is close to log 2). Then in the last part of
the theorem we could give a more precise asymptotic expansion of the function Λ∗

N,β(α0N),
which would lead to a statement analoguous to the third item. This more precise expression
is a bit complicated, and this is why we choose to only state the non-sharp principle of large
deviations. This principle of large deviations can also be obtained by using the contraction
principle on the large deviation principle which holds for the empirical measures of circular
β ensembles; see [BNR09, Theorem 5.5]. Note however that the computation of the rate
function is much more difficult when using the contraction principle as one has to minimise
under constraints a functional of probability measures. Last when β = 2 the third item of
Theorem B is an improvement of the Hughes–Keating–O’Connell large deviation principle
(Equation (5)): we have an asymptotic expansion of the probability instead of its logarithm,
as well as an explicit formula for the rate function (if we consider θ−1 to be explicit).

Remark 4. For the sake of simplicity, we choose to state our results of strong moderate and
large deviations for the circular β ensembles. However, it will be clear from our arguments
that the same techniques can be used in order to obtain the strong moderate and large devi-
ations for the circular Jacobi (β, δ) ensembles, with any parameter δ > 0.

Outline of the paper. In Section 2 we give sharp estimates of the Laplace transforms of
the random variables XN. These estimates will enable us to control the mean aN,β and the
variance vN,β of these random variables after an exponential change of measure, with a
tilting parameter hN which we shall allow to be very large. An important argument which
will be used constantly is a comparison theorem (Theorem 7) which relates the formulæ for a
general parameter β to those for β = 2. This connection might be of independent interest. In
Section 3 we use the notion of zone of control developed in [FMN19] in order to compute the
speed of the convergence of the central limit theorem satisfied by the tilted variables XN,hN .
We then proceed in Section 4 to the proofs of our moderate and large deviation principles:
in addition to the previous arguments, we prove there some asymptotic expansions for
the Legendre–Fenchel convex duals of the log-Laplace transforms of our random variables.
This will enable us to make more explicit the asymptotic equivalents of the probabilities of
deviations.
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2. ESTIMATION OF THE MEAN AND OF THE VARIANCE

In this section we investigate the relations between the three following quantities:

• a sequence of positive parameters (hN)N∈N, which will be used in order to tilt the
random variables XN under Pβ:

Eβ[e
zXN,hN ] =

Eβ[e(z+hN)XN ]

Eβ[ehN XN ]
.

As already seen in the case β = 2 (Example 2), the tilted random variable XN,hN

under Pβ has the law of the variable XN under the distribution P(β,δN) with δN = hN
2

(circular Jacobi ensemble). Indeed,

Eβ[e
zXN,hN ] =

1
Eβ[ehN XN ]CN(β)

∫
TN ∏

1≤i<j≤N
|eiθi − eiθj |β e(z+hN)XN dθ1 · · · dθN

=
1

Eβ[ehN XN ]CN(β)

∫
TN ∏

1≤i<j≤N
|eiθi − eiθj |β

N

∏
i=1

|1 − eiθi |hN ezXN dθ1 · · · dθN

=
CN(β, δN)

Eβ[ehN XN ]CN(β)
E(β,δN)[e

zXN ],

and the multiplicative factor equals 1, as can be seen by setting z = 0.

• the sequence of parameters (aN,β)N∈N, which is related to (hN)N∈N by the equation

aN,β = Eβ[XN,hN ] = E(β,δN)[XN]. (14)

In order to keep track of the setting in which the calculations are made, we add an
index β; the notation aN without index will be used when β = 2.

• the corresponding sequence of variances (vN,β)N∈N, defined by

vN,β = varβ(XN,hN) = var(β,δN)(XN).

Again, we shall use the notation vN without index when considering the random
characteristic polynomials with β = 2.

Our objective is to understand the order of magnitude of these quantities in various regimes.
Let us remark that if ΛN,β(z) = log Eβ[ezXN ] is the log-Laplace transform of XN under Pβ,
then

log
(

Eβ[e
zXN,hN ]

)
= log

(
Eβ[e(z+hN)XN ]

Eβ[ehN XN ]

)
= ΛN,β(z + hN)− ΛN,β(hN),

so by taking the two first derivatives of this equation at z = 0, we obtain aN,β = Λ′
N,β(hN)

and vN,β = Λ′′
N,β(hN). Therefore, the question above is related to the estimation of the

log-Laplace transform and its derivatives, for values of the parameter hN in a large range.

In Subsection 2.1 we perform the analysis of the case β = 2; the estimation of aN and
vN then follows from the asymptotic expansion of the polygamma functions. In Subsection
2.2 we prove a Comparison Theorem 7 which allows one to transfer the results for Haar-
distributed random matrices to general circular β ensembles. In Subsection 2.3, we use the
estimates of the previous paragraphs in order to identify the different regimes of fluctua-
tions of the variables XN (Propositions 13 and 15).

2.1. Estimates for Haar-distributed unitary matrices. Until the end of this paragraph β =
2, and we therefore remove the index β from the quantities considered. Given a complex
number z, we denote εz =

z
N . We start with the following estimate which will also be useful

later in order to compute the Legendre–Fenchel transform of ΛN.
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Proposition 5 (Asymptotics of the log-Laplace transform, case β = 2). Suppose Re(z) > 0.
Then

ΛN(z) = log Ψ(z) +
z2 log N

4
− 3z2

8
+

N2

2
b(εz) + O

(
1
N

+
|z|2
N2

)
,

where

b(ε) = (1 + ε)2 log(1 + ε)− 2
(

1 +
ε

2

)2
log
(

1 +
ε

2

)
=

3ε2

4
+

ε3

4
+ O(ε4),

and Ψ(z) = G(1+ z
2 )

2

G(1+z) . Moreover,

log Ψ(z) = −z2 log(2z)
4

+
3z2

8
− 1

12
log
( z

4

)
+ ζ ′(−1) + O

(
1
|z|

)
.

Proof. We combine the exact formula

ΛN(z) = log

(
G(1 + N) G(1 + N + z) G(1 + z

2)
2

G(1 + N + z
2)

2 G(1 + z)

)

= log Ψ(z) + log
(

G(1 + N) G(1 + N + z)
G(1 + N + z

2)
2

)

with the Stirling-like estimate (8). □

We now examine the three first derivatives of ΛN; the two first derivatives will provide
asymptotic expansions of aN and vN, whereas the third derivative will be used in Section 3
in the computation of the speed of convergence of certain central limit theorems. We shall
use one of the reflection formula satisfied by the Barnes G-function:

d
dz

log G(1 + z) =
log(2π) + 1

2
+ z ψ0(z)− z,

with ψ0(z) = d
dz (log Γ(z)) (the digamma function); see [Vor87, Equation (A.13)]. More gen-

erally we set ψm(z) = dm+1

dzm+1 (log Γ(z)). The asymptotic expansions of the first polygamma
functions are:

ψ0(z) = log z − 1
2z

− 1
12z2 + O

(
1
|z|4

)
;

ψ1(z) =
1
z
+

1
2z2 +

1
6z3 + O

(
1
|z|5

)
;

ψ2(z) = − 1
z2 − 1

z3 − 1
2z4 + O

(
1
|z|6

)
.

Indeed, the classical Stirling asymptotic expansion of log(Γ(1+ z)) can be obtained by using
the Laplace method, therefore it can be differentiated term by term; see [Zor02, Chapter 19,
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Lemma 4 and Examples 7 and 13]. As a consequence, if Re(z) > 0, then:

Λ′
N(z) = (N + z)ψ0(N + z)−

(
N +

z
2

)
ψ0

(
N +

z
2

)
+

z
2

ψ0

( z
2

)
− z ψ0(z)

=
z
2

log
(

N
2z

)
+ N

(
(1 + εz) log(1 + εz)− (1 + ε z

2
) log(1 + ε z

2
)
)

+
1

12

(
1

N + z
2
− 1

z
− 1

N + z

)
+ O

(
1
|z|3

)
;

Λ′′
N(z) = ψ0(N + z)− 1

2
ψ0

(
N +

z
2

)
+

1
2

ψ0

( z
2

)
− ψ0(z)

+ (N + z)ψ1(N + z)− 1
2

(
N +

z
2

)
ψ1

(
N +

z
2

)
+

z
4

ψ1

( z
2

)
− z ψ1(z)

=
1
2

log
(

N
2z

)
+

(
log(1 + εz)−

1
2

log(1 + ε z
2
)

)
+

1
12

(
1

(N + z)2 − 1
2(N + z

2)
2 +

1
z2

)
+ O

(
1
|z|4

)
;

Λ′′′
N (z) = 2 ψ1(N + z)− 1

2
ψ1

(
N +

z
2

)
+

1
2

ψ1

( z
2

)
− 2 ψ1(z)

+ (N + z)ψ2(N + z)− 1
4

(
N +

z
2

)
ψ2

(
N +

z
2

)
+

z
8

ψ2

( z
2

)
− z ψ2(z)

= − N2

z(N + z)(2N + z)
+ O

(
1
|z|3

)
.

So by taking the two first identities with z = hN = 2δN we obtain:

Proposition 6 (Estimates of the mean and the variance, case β = 2). Under the Hua–Pickrell
measures P(2,δN), uniformly for δN > 0, we have:

E(2,δN)[XN] = δN log
(

N
4δN

)
+ N

((
1 + 2εδN

)
log
(
1 + 2εδN

)
−
(
1 + εδN

)
log
(
1 + εδN

))
+

1
12

(
1

N + δN
− 1

2δN
− 1

N + 2δN

)
+ O

(
1

(δN)3

)
; (15)

var(2,δN)(XN) =
1
2

log
(

N
4δN

)
+

(
log
(
1 + 2εδN

)
− 1

2
log
(
1 + εδN

))
+

1
12

(
1

(N + 2δN)2 − 1
2(N + δN)2 +

1
4(δN)2

)
+ O

(
1

(δN)4

)
. (16)

These asymptotic expansions of aN and vN will be used many times in the sequel. Note that
if hN satisfies 1 ≲ hN ≪ N, then the terms of the expansion (15) are ordered by decreasing
magnitude. In this setting the second line of Equation (15) is a O((hN)

−1), and the second
line of Equation (16) is a O((hN)

−2).

2.2. Comparison of unitary ensembles. Let us now consider the case of a general parame-
ter β > 0. In the following we denote

λN =
hN

β
=

δN

β′ .

It turns out that the mean aN,β and the variance vN,β admit nice expressions if we introduce
this new parameter λN. Let us remark that Proposition 6 expresses aN = aN,2 and vN =
vN,2 as functions of λN: it suffices to replace δN by λN in the formulæ of the proposition.
In the sequel, if β ̸= 2, each time we write aN or vN without the index β, we mean the
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aforementioned functions of the parameter λN, and we shall see that they are closely related
to the parameters aN,β and vN,β, which are also functions of λN.

The exact formula for the logarithm of the Laplace transform of XN under Pβ is

ΛN,β(z) = log
(

Eβ[ezXN ]
)
=

N−1

∑
k=0

(
ℓ(β′k + 1) + ℓ(β′k + 1 + z)− 2 ℓ

(
β′k + 1 +

z
2

))
,

where ℓ(z) = log Γ(z). By the Binet formula (see e.g. [Sas99]), for Re(z) > 0,

ℓ(z + 1) =
(

z +
1
2

)
log z − z +

1
2

log(2π) +
∫ ∞

0
e−sz φ(s) ds

with φ(s) = 1
s (

1
2 −

1
s +

1
es−1). Therefore ΛN,β(z) = m(z) + gN,β(z) + kN,β(z), with

m(z) = ℓ(1 + z)− 2ℓ
(

1 +
z
2

)
;

gN,β(z) =
∫ ∞

0

1 − e−sβ′(N−1)

1 − e−sβ′

(
1 − e−

sz
2

)2
e−sβ′ φ(s) ds;

kN,β(z) =
N−1

∑
k=1

(
κ(β′k) + κ(β′k + z)− 2 κ

(
β′k +

z
2

))
with κ(y) = (y + 1

2) log y on the last line. We set ϕβ(s) = φ(s)− β′2 φ(sβ′), gN(z) = gN,2(z)
and kN(z) = kN,2(z). Our main tool will be the following identity:

Theorem 7 (Comparison between Haar ensembles and circular β ensembles). For any β > 0,
we have:

ΛN,β(z) = β′ ΛN

(
z
β′

)
+

β′ − 1
2

(
2ℓ
(

N +
z

2β′

)
− ℓ(N)− ℓ

(
N +

z
β′

))
+ m(z)− β′ + 1

2
m
(

z
β′

)
+
∫ ∞

0

1 − e−sβ′(N−1)

1 − e−sβ′

(
1 − e−

sz
2

)2
e−sβ′ ϕβ(s) ds.

Proof. A straightforward calculation yields:

kN,β(z)− β′ kN

(
z
β′

)
=

β′ − 1
2

N−1

∑
k=1

log


(

k + z
2β′

)2

k(k + z
β′ )


=

β′ − 1
2

(
2ℓ
(

N +
z

2β′

)
− ℓ(N)− ℓ

(
N +

z
β′

)
+ m

(
z
β′

))
.

If we add m(z)− β′ m( z
β′ ) + gN,β(z)− β′ gN(

z
β′ ) to this identity, then we obtain the formula

of the proposition since a change of variables gives:

β′ gN

(
z
β′

)
= β′

∫ ∞

0

1 − e−s(N−1)

1 − e−s

(
1 − e

− sz
2β′
)2

e−s φ(s) ds

= (β′)2
∫ ∞

0

1 − e−tβ′(N−1)

1 − e−tβ′

(
1 − e−

tz
2

)2
e−tβ′ φ(tβ′) dt. □

In the comparison theorem above, all the terms depend smoothly on z, and the only
quantity that is somewhat difficult to analyse is the integral.
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Lemma 8. Suppose β ̸= 2. We set

GN,β(z) =
12β′

1 − β′2

∫ ∞

0

1 − e−sβ′(N−1)

1 − e−sβ′

(
1 − e−

sz
2

)2
e−sβ′ϕβ(s) ds.

Then

(GN,β)
′(hN) =

1
β′

(
1

2λN
+

1
2λN + N

− 1
λN + N

)
+ Oβ

(
1

(λN)2

)
;

(GN,β)
′′(hN) =

1
β′2

(
− 1

4(λN)2 − 1
(2λN + N)2 +

1
2(λN + N)2

)
+ Oβ

(
1

(λN)3

)
;

(GN,β)
′′′(hN + iξ) = Oβ

(
1

(λN)3

)
.

Proof. Note that φ(0) = 1
12 ; therefore ϕβ(0) =

1−β′2

12 and if ηβ(s) =
sβ′ ϕβ(s)

(esβ′−1) ϕβ(0)
, then ηβ(0) =

1.
We have

GN,β(z) =
∫ ∞

0
ηβ(s) (1 − e−sβ′(N−1))

(
1 − e−

sz
2

)2 ds
s

(GN,β)
′(z) =

∫ ∞

0
ηβ(s)

(
1 − e−sβ′(N−1)

) (
e−

sz
2 − e−sz

)
ds.

By the Laplace method (see e.g. [Zor02, Section 19.2, p. 619]), when λ is a positive real
parameter, ∫ ∞

0
ηβ(s) e−λs ds =

ηβ(0)
λ

+ O
(

1
λ2

)
;∫ ∞

0
s ηβ(s) e−λs ds =

ηβ(0)
λ2 + O

(
1

λ3

)
;∫ ∞

0
s2 ηβ(s) e−λs ds =

2ηβ(0)
λ3 + O

(
1

λ4

)
.

If we replace the remainders O(λ−k) by O((Re(λ))−k), then these estimates still hold for
λ complex number with a positive real part. As a consequence of the first formula above,
if we expand in the integral (GN,β)

′(z) the product (1 − e−sβ′(N−1))(e−
sz
2 − e−sz), then we

obtain for z = hN:

(GN,β)
′(hN) =

ηβ(0)
hN

+
ηβ(0)

β′(N − 1) + hN
−

ηβ(0)

β′(N − 1) + hN
2

+ Oβ

(
1

(hN)2

)
=

1
hN

+
1

β′N + hN
− 1

β′N + hN
2

+ Oβ

(
1

(hN)2

)
.

Similarly we have

(GN,β)
′′(z) =

∫ ∞

0
s ηβ(s)

(
1 − e−sβ′(N−1)

)(
e−sz − 1

2
e−

sz
2

)
ds;

(GN,β)
′′(hN) = − 1

(hN)2 − 1
(β′N + hN)2 +

1

2(β′N + hN
2 )2

+ Oβ

(
1

(hN)3

)
.
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Finally,

(GN,β)
′′′(z) =

∫ ∞

0
s2 ηβ(s)

(
1 − e−sβ′(N−1)

)(1
4

e−
sz
2 − e−sz

)
ds;

(GN,β)
′′′(hN + iξ) =

2
(hN + iξ)3 +

2
(hN + iξ + β′N)3 − 1

2( hN+iξ
2 + β′N)3

+ Oβ

(
1

(hN)4

)
= Oβ

(
1

(hN)3

)
.

Replacing hN by 2β′λN yields the results announced. □

We can now state the analogues of Propositions 5 and 6 for a general parameter β > 0.

Proposition 9 (Asymptotics of the log-Laplace transform, case β ̸= 2). Suppose Re(z) > 0.
Then,

ΛN,β(z) = log Ψβ(z) +
z2 log N

4β′ − 3z2

8β′ +
N2

2
β′ b(ε z

β′
) +

N
2
(β′ − 1) c(ε z

β′
) + Oβ

(
1
N

+
|z|2
N2

)
where

log Ψβ(z) = β′ log Ψ
(

z
β′

)
+ m(z)− β′ + 1

2
m
(

z
β′

)
+

1 − β′2

12β′

∫ ∞

0

(
1 − e−

sz
2

)2

s
ηβ(s) ds;

c(ε) = 2
(

1 +
ε

2

)
log
(

1 +
ε

2

)
− (1 + ε) log(1 + ε) = − ε2

4
+

ε3

8
+ O(ε4).

Moreover,

log Ψβ(z) = −
z2 log(2z

β′ )

4β′ +
3z2

8β′ +
((β′ − 1) log 2) z

2β′ +
2β′ − 3

12
log
(

z
4β′

)
+ β′ζ ′(−1)

+
β′ − 1

4
log(2π)− 1

2
log β′ +

1 − β′2

12β′

∫ ∞

0

(
1 − e−

sz
2

)2

s
ηβ(s) ds + Oβ

(
1
|z|

)
.

In this second formula, when z = hN is a large positive real number, the integral of the second line
is equal to log hN + Aβ + Oβ(

1
hN

) for some explicit constant Aβ.

Proof. By combining the first part of Proposition 5, the Comparison Theorem 7 and the Stir-
ling approximation of ℓ(z) for z large, we obtain:

ΛN,β(z) = right-hand side of the first formula −
∫ ∞

0
e−sβ′N

(
1 − e−

sz
2

)2

1 − e−sβ′
ϕβ(s) ds,

so it suffices to check that the integral is a Oβ(
|z|2
N2 ). However by the Taylor integral formula,∣∣∣∣∣1 − e−

sz
2

sz
2

∣∣∣∣∣ =
∣∣∣∣∫ 1

0
e−

usz
2 du

∣∣∣∣ ≤ 1,

so with the same notations as in proof of Lemma 8∣∣∣∣∣∣∣
∫ ∞

0
e−sβ′N

(
1 − e−

sz
2

)2

1 − e−sβ′
ϕβ(s) ds

∣∣∣∣∣∣∣ ≲ |z|2
∫ ∞

0
e−sβ′(N−1) s ηβ(s) ds = Oβ

(
|z|2
N2

)
.
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We now combine the second part of Proposition 5 and the Stirling approximation

m(z) = (z + 1) log 2 − 1
2

log(2πz) + O
(

1
|z|

)
in order to compute an approximation of log Ψβ(z); we obtain the second formula of the

proposition. Let us finally estimate the integral Fβ(z) =
∫ ∞

0 (1 − e−
sz
2 )2 ηβ(s)

s ds. We remark
that

F′
β(z) =

∫ ∞

0

(
e−

sz
2 − e−sz

)
ηβ(s) ds;

F′
β(z)−

1
z
=
∫ ∞

0

(
e−

sz
2 − e−sz

)
(ηβ(s)− ηβ(0)) ds

=
1
z

∫ ∞

0

(
2e−

sz
2 − e−sz

)
η′

β(s) ds = Oβ

(
1

(Re(z))2

)
.

Therefore, for z = hN large positive real number,

Fβ(hN) = log hN + Fβ(1) +
∫ hN

t=1

∫ ∞

s=0

2e−
st
2 − e−st

t
η′

β(s) ds dt

= log hN + Fβ(1) +
∫ ∞

t=1

∫ ∞

s=0

2e−
st
2 − e−st

t
η′

β(s) ds dt + Oβ

(
1

hN

)
.

This proves the last part of the proposition, with

Aβ =
∫ ∞

s=0
(1 − e−

s
2 )2 ηβ(s)

s
ds +

∫ ∞

t=1

∫ ∞

s=0

2e−
st
2 − e−st

t
η′

β(s) ds dt. □

Proposition 10 (Estimates of the mean and the variance, case β ̸= 2). Under the circular Jacobi
(β, δN) distributions, uniformly for δN > 0, we have:

E(β,δN)[XN] = aN,β = aN +
β′ − 1

2β′
(
log 2 + log(1 + ελN)− log(1 + 2ελN)

)
+

(1 − β′)(1 − 2β′)

12(β′)2

(
1

2λN
+

1
N + 2λN

− 1
N + λN

)
+ Oβ

(
1

(λN)2

)
and

var(β,δN)(XN) = vN,β =
1
β′ vN +

β′ − 1
2(β′)2

(
1

2N + 2λN
− 1

N + 2λN

)
+

(1 − β′)(1 − 2β′)

12(β′)3

(
1

2(N + λN)2 − 1
(N + 2λN)2 − 1

4(λN)2

)
+ Oβ

(
1

(λN)3

)
,

where λN = δN
β′ , and where aN and vN correspond to the case β = 2 with the same parameter λN

and are estimated by Equations (15) and (16) (with λN = δN in these equations).

Remark 11. We insist on the fact that the proposition above relates aN,β = Eβ[XN,βλN ] and
vN,β = varβ(XN,βλN) to aN = E2[XN,2λN ] and vN = var2(XN,2λN); the tilting parameter hN
is not the same for the circular β ensemble and for the Haar ensemble, but the scaled tilting
parameter λN is the same.
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Proof. Since aN,β = Λ′
N,β(hN) and vN,β = Λ′′

N,β(hN), the Comparison Theorem 7 yields the
exact formulæ

aN,β = aN + ψ0(hN)− ψ0

(
hN

2

)
+

β′ − 1
2hN

+
β′ + 1

2β′

(
ψ0

(
hN

2β′

)
− ψ0

(
hN

β′

))
+

β′ − 1
2β′

(
ψ0

(
N +

hN

2β′

)
− ψ0

(
N +

hN

β′

))
+

1 − β′2

12β′ (GN,β)
′(hN);

vN,β =
1
β′ vN + ψ1(hN)−

1
2

ψ1

(
hN

2

)
− β′ − 1

2(hN)2 +
β′ + 1
2β′2

(
1
2

ψ1

(
hN

2β′

)
− ψ1

(
hN

β′

))
+

β′ − 1
2β′2

(
1
2

ψ1

(
N +

hN

2β′

)
− ψ1

(
N +

hN

β′

))
+

1 − β′2

12β′ (GN,β)
′′(hN).

The result follows immediately by using Lemma 8, the asymptotic expansions of the poly-
gamma functions and the relation hN = 2β′λN. □

2.3. Balanced sequences of parameters and the regimes of fluctuations. In the previous
paragraphs, we have computed aN,β and vN,β in terms of the tilting parameter hN (or, of
the rescaled tilting parameter λN). Conversely, given a sequence of positive parameters
(aN,β)N∈N, we can recover the corresponding sequence (hN)N∈N if 0 < aN,β < N log 2 for
any N: indeed, the function hN 7→ Λ′

N,β(hN) = Eβ[XN,hN ] is an increasing bijection from
R+ to [0, N log 2), as

N log 2 = max{Re log det(IN − UN), UN ∈ U(N)}.

Let us now compare the growths of the two sequences (λN)N∈N and (aN,β)N∈N.

Lemma 12. Fix β > 0. We have the following equivalences:

(1) log N ≲ aN,β if and only if 1 ≲ λN.

(2) log N ≪ aN,β if and only if 1 ≪ λN.

(3) lim supN→∞
aN,β

N log 2 < 1 if and only if lim supN→∞
λN
N < +∞.

Proof. By Equation (15) and Proposition 10, we have

aN,β = aN + Oβ

(
1 +

1
λN

+ log
(

1 +
2λN

N

))
= N θ

(
λN

N

)
+ Oβ

(
1 +

1
λN

+ log
(

1 +
2λN

N

))
where θ(x) = (1+ 2x) log(1+ 2x)− (1+ x) log(1+ x)− x log(4x). Suppose that λN ∈ [c, C]
with c > 0. Then this interval being fixed, the Oβ(·) above is a Oβ,c,C(1) and on the other
hand we have the following asymptotic expansion of θ in a neighborhood of 0: θ(x) =
−x log x + O(x). Therefore aN,β = λN log N + Oβ,c,C(1), so:

(∀N, c ≤ λN ≤ C) ⇒
(

c ≤ lim inf
N→+∞

aN,β

log N

)
;

(∀N, c ≤ λN ≤ C) ⇒
(

lim sup
N→+∞

aN,β

log N
≤ C

)
.

Now as aN,β and λN are simultaneously increasing, we can remove the restriction λN ≤ C
in the first implication and the restriction c ≤ λN in the second implication. We therefore
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obtain (
c ≤ lim inf

N→∞
λN

)
⇒
(

c ≤ lim inf
N→∞

aN,β

log N

)
; (17)(

lim sup
N→∞

λN ≤ C
)
⇒
(

lim sup
N→∞

aN,β

log N
≤ C

)
. (18)

Equation (18) can be used to prove that the implication (17) is in fact an equivalence for
any c > 0. Indeed suppose that lim infN→∞

aN,β
log N ≥ c. Then for any ε > 0 we have at least

lim infN→∞ λN ≥ (1 − ε)c. Otherwise we could extract a subsequence (λNi)i∈N with λNi <
(1− ε)c for all indices i, and by Equation (18) applied to this subsequence, we would obtain
lim supi→∞

aNi ,β
log Ni

≤ (1 − ε)c. This would be a contradiction. Thus lim infN→∞ λN ≥ (1 − ε)c
for any ε > 0 and lim infN→∞ λN ≥ c.

The equivalence (
c ≤ lim inf

N→∞
λN

)
⇐⇒

(
c ≤ lim inf

N→∞

aN,β

log N

)
for any c > 0 implies immediately the two first items of the Proposition. For the third item,
let us suppose first that λN

N is bounded from above by a constant C. If λN ≤ C, then we
are in the same situation as above, and aN,β ≤ (C + oβ(1)) log N; a fortiori,

aN,β
N log 2 < 1 for N

large enough. On the other hand if C ≤ λN ≤ CN, then the Oβ(·) in the estimate of aN,β
written at the beginning of this proof is a Oβ,C(1), so:

aN,β

N
= θ

(
λN

N

)
+ Oβ,C

(
1
N

)
and lim supN→∞

aN,β
N ≤ θ(C) < θ(+∞) = log 2. This proves one implication and the con-

verse implication has an analogous proof. □

In the following we shall consider sequences (aN,β)N∈N such that

lim inf
N→+∞

λN > 0 ; lim
N→+∞

vN,β = +∞,

λN = hN
β being associated to aN,β by Equation (14). We call such sequences balanced and

being balanced will be a sufficient condition in order to obtain an asymptotic equivalent of
the probability Pβ[XN ≥ aN,β]. This corresponds to the regime of moderate deviations, which
is identified by the following:

Proposition 13 (Regime of moderate deviations). Given a sequence (aN,β)N∈N, the following
conditions are equivalent:

(1) The sequence (aN,β)N∈N is balanced.

(2) We have lim infN→∞ λN > 0 and limN→∞
λN
N = 0.

(3) We have lim infN→∞
aN,β

log N > 0 and limN→∞
aN,β

N = 0.

Proof. We deal with the case β = 2 (so, λN = δN); the general case follows by similar
arguments, thanks to the Comparison Theorem 7 and to Proposition 10. Notice first that if
lim infN→∞ λN > 0, then by Equation (16),

vN =
1
2

log
(

1 +
1

4 εN(1 + εN)

)
+ O(1),
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where εN = λN
N . Therefore, vN goes to +∞ if and only if εN goes to 0. This proves the

equivalence between the two first items.

Let us now prove the equivalence between the two last items. We already know that
lim infN→∞ λN > 0 if and only if lim infN→∞

aN
log N > 0 (this is the first item of the previ-

ous proposition). In this setting, we have shown above that

aN

N
= θ

(
λN

N

)
+ O

(
1
N

)
;

therefore, aN
N goes to 0 if and only if λN

N goes to 0. □

Proposition 14 (Variances in the regime of moderate deviations). Consider a balanced sequence
(aN,β)N∈N. We have:

β vN,β = log
(

N
λN

)
+ Oβ(1) = log

(
N

aN,β

)
+ Oβ

(
log log

(
N

aN,β

))
.

Proof. We first treat the case β = 2. Knowing that 1 ≲ λN ≪ N, our usual estimates (15) and
(16) yield:

aN

N
=

λN

N

(
log
(

N
λN

)
+ O(1)

)
;

2 vN = log
(

N
λN

)
+ O(1).

Taking the logarithm of the first equation shows that log( N
λN

) and log( N
aN
) are asymptotically

equivalent and we then have:

2 vN = log
(

N
λN

)
+ O(1) = log

(
N
aN

)
+ O

(
log log

(
N
aN

))
.

For β ̸= 2 we have by Proposition 10:

aN,β

N
=

aN + Oβ(1)
N

=
aN

N

(
1 + Oβ

(
1

aN

))
;

β vN,β = 2 vN + Oβ(1)

if (aN,β)N∈N is a balanced sequence. Therefore,

β vN,β = log
(

N
λN

)
+ Oβ(1) = log

(
N
aN

)
+ Oβ

(
log log

(
N
aN

))
= log

(
N

aN,β

)
+ Oβ

(
log log

(
N

aN,β

))
. □

If we do not have
aN,β

N → 0, then we fall in the regime of large deviations which is cov-
ered by Theorem B. Let us summarise the asymptotic estimates which will be useful in this
setting:

Proposition 15 (Regime of large deviations). The following assertions are equivalent:

lim inf
N→∞

(
aN,β

N

)
> 0 ⇐⇒ lim inf

N→∞

(
λN

N

)
> 0 ⇐⇒ lim sup

N→∞
vN,β < +∞.
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Then these quantities are related by the following formulas:
aN,β

N
= θ

(
λN

N

)
+ Oβ

(
1
N

)
;

vN,β =
1
β

log

(
1 +

1

4λN
N (1 + λN

N )

)
+ Oβ

(
1
N

)
.

Proof. The case β = 2 (β′ = 1) follows immediately from the estimates (15) and (16); in
both cases the two first terms of these asymptotic expansions become of the same order
of magnitude and their combination yield the formulæ above. For β ̸= 2 our results of
comparison (Theorem 7 and Proposition 10) give in the regime λN ≈ N:

aN,β = aN + Oβ(1);

vN,β =
1
β′ vN + Oβ

(
1
N

)
,

whence the result. □

3. CENTRAL LIMIT THEOREMS AND THEIR SPEED OF CONVERGENCE

In this section we give sufficient conditions in order to have a central limit theorem
XN − aN,β
√vN,β

⇀P(β,δN )

N→∞

N (0, 1),

and we compute an upper bound for the Kolmogorov distance between these two random
variables thanks to Lemma 3.

3.1. Control of the Fourier transforms. Suppose first that β = 2. By the Taylor integral
formula,

log E(2,δN)[e
iξXN ] = aN iξ − vN

2
ξ2 +

∫ 1

0

(1 − u)2

2
Λ′′′

N (hN + iuξ) (iξ)3 du.

Notice that for Re(z) > 0 the leading term of the asymptotic expansion of Λ′′′
N (z) provided

before Proposition 6 is smaller in module than 1
2|z| . Therefore in the Taylor integral formula

the integral can be controlled as follows:

I ≤
∫ 1

0

(1 − u)2

4|hN + iuξ| |ξ|
3 du + O

(∫ 1

0

(1 − u)2

2

∣∣∣∣ ξ

hN + iuξ

∣∣∣∣3 du

)

≤
∫ 1

0

1
4
√
(hN)2 + u2ξ2

|ξ|3 du + O

(∫ 1

0

|ξ|3

((hN)2 + u2ξ2)
3
2

du

)

≤ ξ2

4

∫ |ξ|
hN

0

1√
1 + v2

dv + O

(
ξ2

(hN)2

∫ |ξ|
hN

0

1

(1 + v2)
3
2

dv

)
.

Thus,

I ≤ ξ2

4

(
arcsinh

(
|ξ|
hN

)
+ O

(
|ξ|

(hN)2
√
(hN)2 + ξ2

))

≤ ξ2

4

(
log
(

1 +
|ξ|
δN

)
+ O

(
|ξ|

(δN)2
√
(δN)2 + ξ2

))
,

and we have proved:
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Proposition 16 (Control of the Fourier transform for Hua–Pickrell distributions). Consider
the random variable XN under a Hua–Pickrell distribution P(2,δN). Uniformly for δN > 0, we have

E(2,δN)

[
eiξ(XN−aN)

]
= exp

(
−vN ξ2

2
+ ξ2 O

(
log
(

1 +
|ξ|
δN

)))
,

and the O(·) in the equation above is actually smaller than

1
4

(
log
(

1 +
|ξ|
δN

)
+

C |ξ|
(δN)2

√
(δN)2 + ξ2

)
for some constant C > 0.

In order to obtain an analogue proposition with β ̸= 2, we use our Comparison Theorem
7. By taking the third derivatives of the terms of the identity of this theorem, and by using
the asymptotics of the polygamma functions, we obtain:

Λ′′′
N,β(z) =

1
(β′)2 Λ′′′

N

(
z
β′

)
+ Oβ

(
1
|z|2 +

1
(Re(z))3

)
.

The Taylor integral formula for ΛN,β(hN + iξ) gives then

log E(β,δN)[e
iξXN ] = aN,β iξ −

vN,β

2
ξ2 +

∫ 1

0

(1 − u)2

2
Λ′′′

N,β(hN + iuξ) (iξ)3 du,

with an integral which is controlled by:

I ≤ ξ2

4β′

(
log
(

1 +
|ξ|
δN

)
+ Cβ

(
1

δN
arctan

(
|ξ|
δN

)
+

|ξ|
(δN)3

))
for some constant Cβ > 0. So:

Proposition 17 (Control of the Fourier transform for circular Jacobi ensembles). Consider the
random variable XN chosen according to distribution of eigenvalues of the circular (β, δN) Jacobi
ensemble. Uniformly for δN > 0 we have:

E(β,δN)

[
eiξ(XN−aN,β)

]
= exp

−
vN,β ξ2

2
+ ξ2 Oβ

log
(

1 +
|ξ|
δN

)
+

arctan( |ξ|δN
)

δN
+

|ξ|
(δN)3

 .

3.2. Speed of convergence estimates. Suppose that δN is bounded from below by a con-
stant, say δN ≥ 1. Note then that in Propositions 16 and 17, the remainder is always a
Oβ(

|ξ|
δN
). Therefore Lemma 3 ensures that under the law P(β,δN),

dKol

(
XN − aN,β
√vN,β

, NR(0, 1)

)
= Oβ

(
1

δN (vN,β)
3
2

)
. (19)

Corollary 18 (Central limit theorem for large parameters δN). Fix β > 0 and consider a se-
quence of parameters (δN)N∈N such that 1 ≲ δN ≪ N

3
2 . Under the laws P(β,δN), the random

variables XN are asymptotically normal:

VN =
XN − E(β,δN)[XN]√

var(β,δN)(XN)
⇀N→∞ NR(0, 1).
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Proof. Suppose first that δN ≪ N. Then (aN,β)N∈N is a balanced sequence and both terms

of the product δN (vN,β)
3
2 go to infinity; therefore, the Kolmogorov distance trivially goes

to 0 in this situation. If δN is of order N but not larger, then we are in the regime of large
deviations described by Proposition 15, and vN,β stays bounded from below while δN still
goes to infinity: so, again, the Kolmogorov distance goes to 0. We can finally focus on
the case where δN ≫ N. If we rework the equation of Proposition 10, then we obtain
the following estimate of the variance, which is slightly more precise than the one from
Proposition 15:

vN,β =
1
β

log

(
1 +

1

4 λN
N (1 + λN

N )

)
+ Oβ

(
N

(δN)2

)
.

Taking the Taylor expansion of the logarithm yields

vN,β =
N2

4β(λN)2

(
1 + Oβ

(
1
N

+
N
δN

))
;

δN (vN,β)
3
2 = Mβ

N3

(λN)2

(
1 + Oβ

(
1
N

+
N
δN

))
for some positive constant Mβ. Thus as long as δN ≪ N

3
2 , the estimate of the Kolmogorov

distance ensures the asymptotic normality. □

Remark 19. If we take for instance δN = N
5
4 , then the Kolmogorov distance is a O(N− 1

2 ),
but this central limit theorem is a bit strange: the variance of the random variable of interest
XN under P(β,δN) is in this case also a O(N− 1

2 ), so it goes to zero. Thus we have very small
variables but which are still well-approximated by Gaussian distributions with adequate
variances. We shall see in Section 4 that the small variances prevent us to give exact asymp-
totics of the probabilities of large deviations in the regime aN = N; in this case we shall only
obtain upper bounds.

Remark 20. The Berry–Esseen estimate can be made a bit more explicit if 1 ≲ δN ≲ N. Indeed
if 1 ≲ δN ≪ N, then we are in the regime of moderate deviations and Proposition 14 shows
that β vN,β is equivalent to log( N

δN
). Therefore with VN as in Corollary 18 we have

dKol(VN,NR(0, 1)) = O

 1

δN (log( N
δN
))

3
2

 . (20)

This estimate also holds if δN is of order N: indeed if bN ≤ δN ≤ cN for some positive
constants b and c, then (log( N

δN
))

3
2 and vN,β are both bounded from below and from above

by positive constants, so again they are of the same order. So, Equation (20) holds as soon as
1
c ≤ δN ≤ cN for some constant c > 0, with an implied constant in the O(·) which depends
only on β and c.

4. PROOF OF THE SHARP MODERATE AND LARGE DEVIATION PRINCIPLES

This last section is devoted to the proofs of our main Theorems A and B. Until the end of
this section, β > 0 is a fixed parameter and (xN)N∈N = (aN,β)N∈N is a sequence of positive
numbers, which is supposed balanced in most of Subsection 4.1 (log N ≲ aN,β ≪ N), and
of order N in Subsection 4.2.
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4.1. Precise moderate deviations. Suppose that the sequence (aN,β)N∈N is balanced. Then
the parameter εN of the second step of the general scheme presented in Section 1.3 can be
taken equal to 1

hN (vN,β)
3
2

and by Proposition 14 vN,β goes to infinity, so

εN ≪ 1
hN

√vN,β
≪ 1.

So we have strong asymptotic normality after tilting. By following the arguments of the
validity of the general scheme, we get:

Pβ[XN ≥ aN,β] =
Eβ[e

hN XN−hN aN,β ]

hN
√

2πvN,β

(
1 + Oβ

(
1

vN,β

))

=
Eβ[e

hN XN−hN aN,β ]

aN,β

√√√√ 1
2πβ

log

(
N

aN,β

)1 + Oβ

 1
log( N

aN,β
)

 .

Above we go from the first line to the second line by using the following estimates

aN,β = aN + Oβ(1) = λN

(
log
(

N
λN

)
+ Oβ(1)

)
;

β vN,β = log
(

N
λN

)
+ Oβ(1).

Multiplying the first line by β
hN

= 1
λN

shows that

aN,β

hN
= vN,β + Oβ(1);

hN vN,β = aN,β + Oβ(hN) = aN,β

1 + Oβ

 1
log( N

aN,β
)

 ;

hN
√

vN,β = aN,β

√√√√ β

log( N
aN,β

)

1 + Oβ

 1
log( N

aN,β
)

 ,

whence the equation for Pβ[XN ≥ aN,β]. It remains to get rid of the tilting parameter hN

in the Laplace transform Eβ[e
hN XN−hN aN,β ]. Notice that the logarithm of this quantity is the

opposite of the Legendre–Fenchel conjugate (ΛN,β)
∗(aN,β), where

(ΛN,β)
∗(a) = sup

h∈R

(ah − ΛN,β(h)).

Indeed the parameter hN which maximises the function h 7→ aN,βh − ΛN,β(h) is the solution
of aN,β = Λ′

N,β(hN) = E(β,δN)[XN], so we recover Equation (14). So the previous estimate
rewrites as:

Pβ[XN ≥ aN,β] =
e−Λ∗

N,β(aN,β)

aN,β

√√√√ 1
2πβ

log

(
N

aN,β

)1 + Oβ

 1
log( N

aN,β
)

 . (21)

for any balanced sequence (aN,β)N∈N. This is the first item in Theorem A. In the sequel
of this subsection we distinguish between several subregimes in order to prove the other
items.
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Remark 21. Equation (21) also holds if
√

log N ≪ aN,β ≪ log N (in the regime of moderate
deviations, we have log N ≲ aN,β). Indeed if aN,β ≪ log N, then Lemma 12 shows that λN
goes to 0, and

aN = (N + 2λN)ψ0(N + 2λN)− (N + λN)ψ0(N + λN) + λN ψ0(λN)− 2λN ψ0(2λN)

= λN (log N + γ + 1) + O
(
(λN)

2 +
1
N

)
.

Combining this estimate and the relations between aN and aN,β, we see that 1√
log N

≪ λN ≪
1. Therefore, vN and vN,β are of order log N, and Proposition 17 leads to:

Eβ[e
iξ(XN−aN,β)] = exp

(
−

vN,β ξ2

2
+ Oβ

((
|ξ|
λN

)3
))

.

Lemma 3 yields

dKol

(
XN − aN,β
√vN,β

, NR(0, 1)

)
= O

(
1

(hN
√vN,β)3

)
,

and then we see that the proof of the general scheme of approximation works again, since
hN

√vN,β goes to infinity.

4.1.1. Small moderate deviations:
√

log N ≪ aN,β ≲ log N. Let us explain how to recover
Equations (11) and (12). We fix a constant C such that aN,β ≤ C log N; in the remainder of
this paragraph, our O(·)’s are allowed to depend on C and β. By the second item of Lemma
12 the sequence (λN)N∈N is then bounded from above. Let us then find an asymptotic
expansion of λN in terms of aN,β. We expect

λN =
aN,β

log N
(1 + ηN),

with ηN small and of order 1
log N . In the sequel we use freely the relation ψ0(1+ z) = ψ0(z)+

1
z and the fact that ψ0 is Lipschitz in any interval [1, M]. Notice first that

aN = (N + 2λN)ψ0(N + 2λN)− (N + λN)ψ0(N + λN) + λN ψ0(λN)− 2λN ψ0(2λN)

= λN (log N + 1 + ψ0(1 + λN)− 2 ψ0(1 + 2λN)) + O
(

1
N

)
.

Then using the computations from the proof of Proposition 10 we get:

aN,β = λN (log N + 1 + ψ0(1 + λN)− 2 ψ0(1 + 2λN))

+ ψ0(1 + 2β′λN)− ψ0(1 + β′λN) +
β′ + 1

2β′ (ψ0(1 + λN)− ψ0(1 + 2λN))

+
1 − β′2

12β′ (GN,β)
′(2β′λN) + O

(
1
N

)
.

If we replace on the last line (GN,β)
′(z) by its limit

Hβ(z) =
∫ ∞

0
ηβ(s) (e−

sz
2 − e−sz) ds,
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then our error is again a O( 1
N ), so this replacement is legit. We then replace λN by

aN,β
log N (1 +

ηN) in the formula above. We obtain:

−ηN =
1 + ψ0(1 + λN)− 2 ψ0(1 + 2λN)

log N
+

β′ + 1
2β′aN,β

(
ψ0

(
1 +

aN,β

log N

)
− ψ0

(
1 +

2aN,β

log N

))
+

1
aN,β

(
ψ0

(
1 +

2β′aN,β

log N

)
− ψ0

(
1 +

β′aN,β

log N

))
+

1 − β′2

12β′aN,β
Hβ

(
2β′aN,β

log N

)

+ O
(

1
N

+
ηN

log N

)
.

All the functions considered above are Lipschitz on their domain of analysis, so all the terms
of this estimate are of order 1

log N , and the remainder of the asymptotic expansion above is a

O( 1
(log N)2 ). This exact formula will not be important in the sequel, as we shall only use the

fact that ηN = O( 1
log N ) (with again a constant which depends on C and β). By Proposition

9,

ΛN,β(hN) = log Ψβ

(
2β′aN,β

log N
(1 + ηN)

)
+

β′(aN,β)
2

log N
(1 + 2ηN) + O

(
1

log N

)
and on the other hand

hNaN,β =
β′(aN,β)

2

log N
(2 + 2ηN),

so in this regime,

−Λ∗
N,β(aN,β) = ΛN,β(hN)− hNaN,β = log Ψβ

(
2β′aN,β

log N
(1 + ηN)

)
−

β′(aN,β)
2

log N
+O

(
1

log N

)
.

Finally it is clear from the definitions of Ψ and Ψβ that log Ψβ(·) is Lipschitz on the domain
that we consider, so we can remove the factor 1 + ηN from its argument. We have therefore
proved:

Proposition 22. In the regime
√

log N ≪ aN ≲ log N, with an implied constant which depends
on β and on the upper bound on the ratio aN

log N , we have:

e−Λ∗
N,β(aN,β) = e−

β′(aN,β)
2

log N Ψβ

(
2β′aN,β

log N

) (
1 + O

(
1

log N

))
.

This ends the proof of the second point of Theorem A and we can express Ψβ(
βaN,β
log N ) in terms

of Ψ(
2aN,β
log N ) by using the first part of Proposition 9.

4.1.2. True moderate deviations: log N ≪ aN,β ≪ N. We now focus on the second subregime
of moderate deviations, which is when aN,β is much larger than log N but much smaller than
N. We start by the following remark on the previous case: since for balanced sequences we
have

β vN,β ≃ log

(
N

aN,β

)
and hN ≃

β aN,β

log( N
aN,β

)
,

in the regime of small moderate deviations, the previous computations show that

ΛN,β(hN)− hNaN,β = log Ψβ(hN)−
vN,β (hN)

2

2
+ small remainder.



32 PIERRE-LOÏC MÉLIOT AND ASHKAN NIKEGHBALI

This leads one to try to compare in the general case −Λ∗
N,β(aN,β) and log Ψβ(hN)−

vN,β (hN)2

2 .

Lemma 23. Fix β > 0, and consider a balanced sequence (aN,β)N∈N. Recall that ελN = λN
N = hN

βN .
Then

− Λ∗
N,β(aN,β)− log Ψβ(hN) +

vN,β(hN)
2

2

=
(hN)

2

4β′ log
(

2hN

β′

)
− 3(hN)

2

8β′ − N2β′ − N(β′ − 1)
2

log

(
1 +

(ελN)
2

1 + 2ελN

)

− N(β′ − 1)

(
ελN log 2 +

(ελN)
2

2(1 + ελN)(1 + 2ελN)

)
+

3β′ − 1 − β′2

8β′ + rN,

where the remainder rN is a Oβ((ελN)
2 + 1

hN
).

Proof. By Propositions 9 and 10,

ΛN,β(hN) ≃ log Ψβ(hN) +
(hN)

2 log N
4β′ − 3(hN)

2

8β′ + N2β′
(
(1 + 2ελN)

2

2
ℓ2 − (1 + ελN)

2 ℓ1

)

+ N(β′ − 1)
(
(1 + ελN) ℓ1 −

(1 + 2ελN)

2
ℓ2

)
;

−hNaN,β ≃ − (hN)
2

2β′ log
(

Nβ′

2hN

)
+ N2β′

(
(2ελN + 2(ελN)

2) ℓ1 − (2ελN + 4(ελN)
2) ℓ2

)
+ N(β′ − 1) ελN (ℓ2 − ℓ1 − log 2) +

3β′ − 1 − β′2

12β′ ;

vN,β (hN)
2

2
≃ (hN)

2

4β′ log
(

Nβ′

2hN

)
+ N2β′

(
2(ελN)

2 ℓ2 − (ελN)
2ℓ1

)
+

3β′ − 1 − β′2

24β′

− N(β′ − 1)

(
(ελN)

2

2(1 + ελN)(1 + 2ελN)

)
,

where ℓ2 = log(1 + 2ελN), ℓ1 = log(1 + ελN), and the symbol ≃ means that the two terms
of the identity differ by a remainder rN. We conclude by taking the sum of these three
equations. □

If aN,β ≫ log N, then λN goes to infinity by Lemma 12 and we can use the second part
of Proposition 9 in order to replace in the formula above the quantity log Ψβ(hN) by an
asymptotic equivalent:

−Λ∗
N,β(aN,β) = −

vN,β (hN)
2

2
+

β′2 − 3β′ + 1
12β′ log hN − N2β′

2
log

(
1 +

(ελN)
2

1 + 2ελN

)

+
N(β′ − 1)

2

(
log

(
1 +

(ελN)
2

1 + 2ελN

)
−

(ελN)
2

(1 + ελN)(1 + 2ελN)

)

+ Bβ + Oβ

(
(ελN)

2 +
1

hN

)
, (22)

where Bβ is the constant equal to

Bβ =
1 − β′2

12β′ Aβ +
3β′ − 1 − β′2

8β′ +
3 − β′

12
log 2 − 3 + 2β′

12
log β′ +

β′ − 1
4

log π + β′ζ ′(−1).
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Next we have to replace each occurrence of hN by an adequate function of aN,β. We therefore
need to reverse the estimate of the mean from Proposition 10. This operation involves the
map θN,β introduced at the beginning of Subsection 1.4.

Lemma 24. If the parameter β > 0 is fixed, then for N large enough, θN,β is a continuous increasing

bijection between R+ and [ β′−1
2β′N log 2, log 2).

Proof. Let us prove that

θ′N,β(x) = log
(

1 +
1

4x(1 + x)

)
− β′ − 1

2β′N(1 + x)(1 + 2x)

is strictly postive for any x ∈ R+ if N is large enough; this will imply the result since the
limits of θN,β when x goes to 0 and +∞ are respectively β′−1

2β′N log 2 and log 2. For x smaller

than 1
2 , the logarithm is larger than log(4

3), to which is subtracted a quantity smaller than

| β′−1
2β′N |, so θ′N,β(x) stays positive if N is large enough. On the other hand by concavity of the

logarithm, for x larger than 1
2 , there is a positive constant c such that

log
(

1 +
1

4x(1 + x)

)
≥ c

4x(1 + x)
≥ c

2(1 + x)(1 + 2x)
,

which is again larger than | β′−1
2β′N(1+x)(1+2x) | for N large enough (depending on β, but not on

x). □

Denote (θN,β)
−1 the inverse function of θN,β. We have

θN,β(x) = x | log x|+ Oβ

(
1
N

+ x
)

,

so if 1
N ≪ x ≪ 1, then for the same reasons as for the map θ, we have the asymptotic

equivalent

(θN,β)
−1(x) =

x
| log x| (1 + o(1)).

Lemma 25. In the regime log N ≪ aN,β ≪ N, we have

λN = N (θN,β)
−1
(

aN,β

N

)
+ Oβ

(
1

aN,β

)
,

Proof. Our usual estimates of the mean aN,β (Proposition 10 and Equation (15)) can be rewrit-
ten as:

aN,β

N
= θN,β

(
λN

N

)
+ Oβ

(
1

NλN

)
.

Since
aN,β

N is much larger than | β′−1
2β′N log 2|, we can apply the inverse of θN,β to this identity.

We get

λN

N
= (θN,β)

−1
(

aN,β

N

)
+ Oβ

 |(θ−1
N,β)

′(
aN,β

N )|
NλN


= (θN,β)

−1
(

aN,β

N

)
+ Oβ

 1

|θ′N,β(
λN
N )| NλN

 .
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However, for x small we have (θN,β)
′(x) = | log x|+ O(1), so

λN = N (θN,β)
−1
(

aN,β

N

)
+ Oβ

(
1

λN log( N
λN

)

)
.

Finally, in the regime of moderate deviations, aN,β ≃ N θ(λN
N ) ≃ λN log( N

λN
), so the remain-

der is a Oβ(
1

aN,β
). □

We can make the previous estimate more precise and give the term of order 1
aN,β

in the
asymptotic expansion:

Proposition 26. In the regime log N ≪ aN,β ≪ N, we have

λN = N(θN,β)
−1
(

aN,β

N

)
+

3β′ − 1 − β′2

24β′2 aN,β
+ o

(
1

aN,β

)
.

Proof. A more precise version of the estimate of aN,β is:

θN,β

(
λN

N

)
=

aN,β

N
+

3β′ − 1 − β′2

24β′2NλN
+ O

(
1

N(λN)2 +
λN

N3

)
.

If we invert this relation we get:

λN

N
= (θN,β)

−1
(

aN,β

N

)
+

1

θ′N,β((θN,β)−1(
aN,β

N ))

(
3β′ − 1 − β′2

24β′2NλN
+ O

(
1

N(λN)2 +
λN

N3

))

+ O

(
|((θN,β)

−1)′′(
aN,β

N )|
(NλN)2

)
.

For x small, θ′′(x) = − 1
x + O(1), and the same estimate holds for θ′′N,β. Therefore

((θN,β)
−1)′′

(
aN,β

N

)
= −

θ′′N,β((θN,β)
−1(

aN,β
N ))

(θ′N,β((θN,β)−1(
aN,β

N )))3
= O

(
1

λN
N (log( N

λN
))3

)
.

Thus, the remainder on the second line of the estimate of λN
N is of order smaller than

1
N (λN log( N

λN
))3

≲
1

N (aN,β)3 .

The other remainder is of order smaller than

1
N(λN)2 log( N

λN
)
+

λN

N3 log( N
λN

)
≲

log( N
λN

)

N (aN,β)2 +
(λN

N )2

N aN,β
.

In the regime aN,β ≫ log N,
log( N

λN
)

(aN,β)2 ≤ log N
(aN,β)2 ≪ 1

aN,β
, so by gathering all the remainders we

obtain:

λN

N
= (θN,β)

−1
(

aN,β

N

)
+

1

θ′N,β((θN,β)−1(
aN,β

N ))

(
3β′ − 1 − β′2

24β′2NλN

)
+ o

(
1

N aN,β

)
.

Finally we can replace up to a multiplicative (1 + o(1))

1

θ′N,β((θN,β)−1(
aN,β

N ))
by

1
log( N

λN
)

,
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and then λN log( N
λN

) by its equivalent aN,β in order to obtain:

λN

N
= (θN,β)

−1
(

aN,β

N

)
+

3β′ − 1 − β′2

24β′2 N aN,β
+ o

(
1

N aN,β

)
.

Remultiplying by N yields the desired asymptotic expansion. □

We can now demonstrate the third part of Theorem A by replacing in Equation (22) all
the occurrences of hN by the asymptotic expansion computed above. In the sequel we write
ϑN = (θN,β)

−1(
aN,β

N ).

• − vN,β (hN)2

2 . Taking the square of the formula of the previous proposition we get:

(hN)
2 = 4(β′)2 (NϑN)

2 +
(3β′ − 1 − β′2) NϑN

3 aN,β
+ o
(

1
log N

)
.

On the other hand by using Proposition 10 and Equation (16) we get:

vN,β =
1

2β′
(
2 log(1 + 2ελN)− log(1 + ελN)− log(4ελN)

)
+

3β′ − 1 − β′2

48β′3(λN)2

+
β′ − 1
2β′2

(
1

2(N + λN)
− 1

N + 2λN

)
+ Oβ

(
1

N2 +
1

(λN)3

)
=

1
2β′ (2 log(1 + 2ϑN)− log(1 + ϑN)− log(4ϑN)) +

3β′ − 1 − β′2

48β′3(λN)2

+
β′ − 1
2β′2

(
1

2(N + λN)
− 1

N + 2λN

)
+ Oβ

(
1

N2 +
1

(λN)2 log N

)
.

When we multiply by − (hN)2

2 , we obtain:

−
vN,β (hN)

2

2
= −β′(NϑN)

2 log
(

1 +
1

4ϑN(1 + ϑN)

)
+

1 − 3β′ + β′2

8β′

+
N(β′ − 1)

2

(
(ελN)

2

(1 + ελN)(1 + 2ελN)

)
+ o(1).

• log hN. It is equal to log β + log aN,β − log log( N
aN,β

) + o(1).

• log(1 +
(ελN )2

1+2ελN
). We can replace it by log(1 + (ϑN)2

1+2ϑN
), because the difference is a

O( 1
N2 log N ).

So, −Λ∗
N,β(aN,β) is equal to

− β′(NϑN)
2 log

(
1 +

1
4ϑN(1 + ϑN)

)
+

β′2 − 3β′ + 1
12β′

(
log aN,β − log log

(
N

aN,β

))

− N2β′ − N(β′ − 1)
2

log
(

1 +
(ϑN)

2

1 + 2ϑN

)
+

1 − β′2

12β′ Aβ +
β′ − 1

4
log π +

1
12β′ log 2 +

1 − 6β′ − β′2

12β′ log β′ + β′ζ ′(−1) + o(1).
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Replacing e−Λ∗
N,β(aN,β) by this estimate in Equation (21), we obtain the third item of Theorem

A, with a constant Cβ equal to:

Cβ =
2

1
12β′ π

β′−3
4

β
exp

(
1 − β′2

12β′ (Aβ + log β′) + β′ζ ′(−1)
)

.

4.1.3. Not too large moderate deviations: log N ≪ aN,β ≲ N1/3. The probability computed in
the third item of Theorem A is a function of aN,β which is explicit but a bit complicated.
If aN,β is not too large, then we can simplify a lot this expression; this is the last part of
Theorem A. Thus let us suppose that log N ≪ aN,β ≲ N1/3. Then

log
(

1 +
1

4ϑN(1 + ϑN)

)
= log

(
1

4ϑN

)
+ O(ϑN);

−(NϑN)
2 log

(
1 +

1
4ϑN(1 + ϑN)

)
= (NϑN)

2 log(4ϑN) + O(N2(ϑN)
3),

and the remainder is a O(
(aN,β)

3

N(log N)3 ) = o(1). Let us now inject ϑN in the equation that defines

it. We use the fact that θN,β − θ is a uniform O( 1
N ):

ϑN log(4ϑN) = (1 + 2ϑN) log(1 + 2ϑN)− (1 + ϑN) log(1 + ϑN)−
aN,β

N
+ O

(
1
N

)
;

(NϑN)
2 log(4ϑN) = (NϑN)

2 − aN,β(NϑN) + O(N2(ϑN)
3 + N(ϑN)

2)

= (NϑN)
2 − aN,β(NϑN) + o(1).

On the other hand,

−N2β′ − N(β′ − 1)
2

log
(

1 +
(ϑN)

2

1 + 2ϑN

)
= −β′(NϑN)

2

2
+ O(N2(ϑN)

3 + N(ϑN)
2)

= −β′(NϑN)
2

2
+ o(1).

So the term in the exponential in the asymptotic expansion of Pβ[XN ≥ aN,β] reduces to

β′
(
(NϑN)

2

2
− aN,β(NϑN)

)
+ o(1).

This ends our study of the regime of moderate deviations.

4.2. Precise large deviations. In this last paragraph we suppose that aN,β = α0N for some
positive constant α0 > 0. If we go back to the tilting argument in the proof of validity of
the general scheme, we see that everything works the same until we need to discard the
remainder

Oβ(εN) = Oβ

(
1

hN (vN,β)
3
2

)
in the computation of the integral IN (the order of magnitude of εN is given by Equation
(19)). When aN,β = O(N), the variance is a O(1) and this remainder is not negligible any-
more, but we can still compute an upper and lower bound. In the sequel, we focus on the
upper bound; the proof of the lower bound relies on similar arguments and is sketched
at the end of Paragraph 4.2.1. The reason why we need α0 small in order to get a lower
bound is the following: unfortunately, our techniques are not sufficiently precise in order
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to always ensure that the remainder does not entirely compensate the main term in the es-
timation of IN (actually, the remainder does compensate the main term for α0 large, since
Pβ[XN ≥ α0N] = 0 when α0 > log 2).

Henceforth we start from the inequality

Pβ[XN ≥ α0N] ≤
exp(−Λ∗

N,β(α0N))√
2πvN,β hN

(
1 +

cβ

vN,β

)
,

where cβ is some positive constant implied in the Oβ(·) of the remainder in the estimate of
IN. Our goal is to obtain some explicit function F(α0, N) such that the ratio

Pβ[XN ≥ αN]

F(α0, N)

is bounded from above. In Paragraph 4.2.1 we compute in terms of α0 and N an estimate of
hN in the regime of large deviations, from which we derive an estimate of the variance vN,β.
We then estimate Λ∗

N,β(α0N) in Paragraph 4.2.2, which enables us to complete the proof of
Theorem B.

Remark 27. In the following we require α0 to be always larger than some fixed positive
quantity α, and all the implied constants in the O(·)’s depend implicity on this lower bound
α. Again, to make this clear, we indicate this by an index α. This hypothesis allows us for
instance to replace a Oβ(

1
α0N ) or Oβ(

1
hN

) by a Oα,β(
1
N ).

4.2.1. Tilting parameter and variance in the regime of large deviations. In the regime of large
deviations let us compute an asymptotic expansion of λN up to order O( 1

N ). We have

α0 = θ

(
λN

N

)
+

β′ − 1
2β′N

(
log 2 + log(1 + ελN)− log(1 + 2ελN)

)
+ Oα,β

(
1

N2

)
. (23)

Notice that in the framework of large deviations, we can work with the function θ instead
of its modification θN,β, because all the terms of the formulas which we shall manipulate
have a well-identified order of magnitude which is a power of N. This was not the case in
the framework of moderate deviations, and this is why until now we needed to work with
θN,β.

As α0 and λN
N are of order O(1), the function θ, its inverse θ−1 and their derivatives are

Lipschitz on their domain of interest, so we can recursively compute the terms of the asymp-
totic expansion of λN

N . The first order expansion is λN
N = θ−1(α0) +

L∗
1

N for some L∗
1 = O(1),

and by replacing λN
N by this formula in Equation (23), we obtain:

α0 = α0 +
θ′(L0) L∗

1
N

+
β′ − 1
2β′N

(log 2 + log(1 + L0)− log(1 + 2L0)) + Oα,β

(
1

N2

)
,

where L0 = θ−1(α0). Thus by identification

L∗
1 =

β′ − 1
2β′

log(1 + 2L0)− log(1 + L0)− log 2
2 log(1 + 2L0)− log(1 + L0)− log(4L0)

+ Oα,β

(
1
N

)
;

λN

N
= L0 +

β′ − 1
2β′N

log(1 + 2L0)− log(1 + L0)− log 2
2 log(1 + 2L0)− log(1 + L0)− log(4L0)

+ Oα,β

(
1

N2

)
.
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On the other hand, we have

vN,β =
1

2β′ log

(
1 +

1

4λN
N (1 + λN

N )

)
+ Oα,β

(
1
N

)
=

1
2β′ log

(
1 +

1
4L0(1 + L0)

)
+ Oα,β

(
1
N

)
.

As a consequence (
1 +

cβ

vN,β

)
= Oα,β((L0)

2);

1√
2πvN,β hN

(
1 +

cβ

vN,β

)
= Oα,β

(
(L0)

2

N

)
.

We have thus demonstrated the first part of Theorem B. The proof of the lower bound is
similar, working this time with a factor

1 −
cβ

vN,β
.

For α0 in an interval [α, α′] with α′ small enough, vN,β stays larger than 2cβ, so this factor is
greater than 1

2 . On the other hand, the ratio

hN
√vN,β

N
stays bounded from above and from below for aN

N = α0 ∈ [α, α′]; this ends this sketch of
proof of the second part of Theorem A.

4.2.2. Computation of the rate function. We now focus on the exponential term in our estimate
of the probability Pβ[XN ≥ α0N], and we suppose first that β = 2. In this case, we can
easily compute the term of order 1

N2 in the expansion of λN
N . Indeed by Proposition 10, for

α0 ∈ [α, log 2),

α0 = θ

(
λN

N

)
+

1
12N2

(
1

1 + λN
N

− 1

2λN
N

− 1

1 + 2λN
N

)
+ Oα

(
1

N3

)
,

so if we set λN
N = L0 +

L∗
2

N2 with L0 = θ−1(α0), then

α0 = α0 +
θ′(L0) L∗

2
N2 +

1
12N2

(
1

1 + L0
− 1

2L0
− 1

1 + 2L0

)
+ Oα

(
1

N3

)
,

which gives by identification:

L∗
2 =

1

12 log
(

1 + 1
4L0(1+L0)

) ( 1
1 + L0

− 1
2L0

− 1
1 + 2L0

)
+ Oα

(
1
N

)
.

Let us inject this formula in Λ∗
N(α0N). Note that when z = hN is of order N, the estimate

from Proposition 5 is not really precise because of the remainder O( |z|
2

N2 ). However, we can
use again Equation (8) and the exact formula for ΛN to obtain:

ΛN(hN) = −N2

2

(
(1 + 2ελN)

2 log(1 + 2ελN)− 2(1 + ελN)
2 log(1 + ελN)− 2(ελN)

2 log(4ελN)
)

− log N
12

+
log 2

12
+

1
12

log

(
1 + 2ελN + (ελN)

2

ελN(1 + 2ελN)

)
+ ζ ′(−1) + O

(
1
N

)
.
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Substracting aNhN = 2α0λN N yields:

−Λ∗
N(α0N) = −N2 I(L0)−

log N
12

+ Oα(1),

where

I(x) = −1
2

(
(1 − 4x2) log(1 + 2x)− 2(1 − x2) log(1 + x) + 2x2 log(4x)

)
.

Here we used the fact that α0 and L0 are bounded from below; this yields adequate upper
bounds on some functions and their derivatives in the formulæ above. Up to a modification
of the constant Mα, this implies the third part of Theorem B.

Finally let us estimate Λ∗
N,β(α0N) when β ̸= 2. In this case, since λN

N = L0 + O( 1
N ), it is

not very difficult to see that the asymptotic expansion of the Legendre–Fenchel transform
will involve terms of order N2 and terms of order N (and then terms of order O(log N)).
This exact asymptotic expansion is a bit complicated, so let us focus only on the leading
term of order N2; this will lead us to a simple (not sharp) large deviation principle. The
Comparison Theorem 7 yields:

ΛN,β(hN) = β′ ΛN(2λN) + O(N) +
1 − β′2

12β′

∫ ∞

0

(1 − e−sβ′λN)2

s
ηβ(s) ds,

and the end of Proposition 9 ensures that the integral is a O(log N). Therefore

−Λ∗
N,β(α0N) = ΛN,β(hN)− α0N hN

= −N2β′ I
(

λN

N

)
+ O(N) = −N2β′ I(L0) + O(N).

This ends the proof of Theorem B.
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