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Abstract. In this article, we provide an extension of the Chen–Stein inequality for Poisson approx-
imation in the total variation distance for sums of independent Bernoulli random variables in two
ways. We prove that:

• we can improve the rate of convergence (hence the quality of the approximation) by using
explicitly constructed signed or positive probability measures;

• we can extend the setting to possibly dependent random variables.

The framework which allows this is that of mod-Poisson convergence and more precisely those mod-
Poisson convergent sequences whose residue functions can be expressed as a specialization of the
generating series of elementary symmetric functions. This combinatorial reformulation allows us to
have a general and unified framework in which we can fit the classical setting of sums of independent
Bernoulli random variables as well as other examples coming e.g. from probabilistic number theory
and random permutations.
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1. Higher-order Chen–Stein inequalities

1.1. Poisson approximation and the Chen–Stein inequality. This article is concerned with the
problem of approximation of the distribution of positive integer-valued random variables Xn≥1

stemming from number theory or from combinatorics. The simplest case is when Xn =
∑n

i=1 Yi
1
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is a sum of independent Bernoulli random variables with pi = P[Yi = 1] = 1 − P[Yi = 0];
the parameters pi belong to [0, 1] and are arbitrary. Le Cam’s inequality [Cam60], which follows
immediately from the subadditivity of the total variation distance with respect to convolution of
measures, ensures that if λn =

∑n
i=1 pi and (σn)

2 =
∑n

i=1(pi)
2, then

dTV(µXn ,Poisson(λn)) =
1

2

∞∑
k=0

∣∣∣∣µXn(k)−
e−λn (λn)

k

k!

∣∣∣∣ ≤ (σn)
2

where µXn(k) = P[Xn = k]. A more precise inequality due to Chen ensures that one can divide
the right-hand side by λn while keeping the inequality (see [Che74; BE83; BHJ92; Ste94]):

dTV(µXn ,Po(λn)) ≤
1− e−λn

λn
(σn)

2 ≤ (σn)
2

λn
.

This follows from the adaptation of Stein’s method to the Poisson distribution Po(λ), which sat-
isfies the functional equation E[X f(X)] = λE[f(X + 1)]. In [KJ09, Theorem 4.2], a correction
term for the Poisson distribution Po(λn) has been computed, allowing to have an upper bound
of order (σn)3/(λn)3/2 for the total variation distance between µXn and the modified Poisson dis-
tribution. This correction procedure has been perfected in [Chh+20]: by using Fourier analysis
arguments instead of the Chen–Stein method, a signed measure ν(r)n = ν

(r)
n ({p1, . . . , pn}) has been

constructed for any r ≥ 1, with the property that if (σn)2 =
∑n

i=1(pi)
2 stays bounded, then

dTV

(
µXn , ν

(r)
n

)
= O

(
(λn)

− r+1
2

)
. (1)

However, the constant in the O(·) in the right-hand side of Equation (1) grows with r and with
(σn)

2, and by looking at the details of the proof of [Chh+20, Theorem 3.11], one can only give a
constant which grows like e(σn)2 , which might be much larger than (λn)

r+1
2 . The purpose of this

article is to give a better unconditional bound, which is also muchmore general, because it holds for
approximations of discrete distributions which are not convolutions of Bernoulli distributions. In
this setting, the set of probabilities {p1, . . . , pn} will be replaced by a square-summable sequence A
which encodes the properties of the random model.

1.2. Erdős–Kac central limit theorem and its Poisson refinement. Given an integer k ≥ 1, we
denote ω(k) its number of distinct prime divisors, with the multiplicities not taken into account;
for instance, ω(120) = ω(23 × 3× 5) = 3. The random variable ωn is then defined by

ωn = ω(U[[1,n]]), with U[[1,n]] uniformly distributed on [[1, n]] = {1, 2, 3, . . . , n}.

The asymptotics of the distribution of ωn is one of the first result from probabilistic number theory.
Indeed Erdős and Kac proved in [EK40] that the following convergence in law holds:

ωn − log log n√
log log n

⇀n→∞ N (0, 1).

The Gaussian approximation is far from being accurate and Rényi and Turán proved that the error
in Kolmogorov distance is of order O((log log n)− 1

2 ), see [RT58]. A better discrete approximation
is provided by the Poisson law with parameter log log n. Indeed, the Fourier transform of ωn can
be estimated by the Selberg–Delange method:

E[eiξωn ] = e(log logn+γ)(eiξ−1)

(
ψω(ξ) +O

(
1

log n

))
(MPω)

with γ = 0.577 . . . equal to the Euler–Mascheroni constant, and

ψω(ξ) =
∏
n∈N∗

(
1 +

eiξ − 1

n

)
e−

eiξ−1
n

∏
p∈P

(
1 +

eiξ − 1

p

)
e−

eiξ−1
p .
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We recognize the Fourier transform of the distribution Po(log log n + γ), multiplied by a residue
which converges uniformly towards a smooth function ψ(ξ) on the torus T = R/2πZ. This can
be used in order to prove that

dTV(ωn,Po(log log n+ γ)) = O((log log n)−1).

In [Chh+20, Theorem 4.9], some signed measures ν(r≥1)
n have been constructed with the property

that
dTV(ωn, ν

(r)
n ) (log log n)

r+1
2 →n→∞ Cr (2)

for some explicit constants Cr≥1; the case r = 1 corresponds to the Poisson distribution with
parameter log log n + γ. The speed of convergence in Equation (2) is a O((log log n)− 1

2 ), so the
estimate above is not as good as an unconditional upper bound, which we aim to obtain at the end
of this article.

1.3. Mod-Poisson approximation schemes. The two asymptotic estimates (1) and (2) are very
similar, but the first one regards the approximation in distribution of a sum of independent ran-
dom variables, whereas the later estimate is about ωn whose law does not admit such a represen-
tation. The connection between these two models comes from the asymptotics of their Fourier
transforms. Consider a sum Xn =

∑n
i=1 Yi of independent Bernoulli random variables, with each

Yi of parameter pi, and with a sequence of parameters ρ = (pi)i≥1 such that
∑∞

i=1 pi = +∞ and∑∞
i=1(pi)

2 < +∞. Since E[eiξYi ] = (1 + pi(e
iξ − 1)), we can write:

E[eiξXn ] = eλn(eiξ−1)

(
ψρ(ξ) +O

(∑
i>n

(pi)
2

))
(MPρ)

with λn =
∑n

i=1 pi, and

ψρ(ξ) =
∞∏
i=1

(
1 + pi(e

iξ − 1)
)
e−pi(e

iξ−1).

In Equations (MPω) and (MPρ), we have:
• a sequence of random variables (Xn)n∈N with values in N,
• and a sequence of parameters (λn)n∈N growing to infinity,

such that the ratio of Fourier transforms
E[eiξXn ]

E[eiξPo(λn)]
= E[eiξXn ] e−λn(eiξ−1) = ψn(ξ) (MP)

converges on the unit circle towards an analytic function ψ(ξ). Notice that the residue ψ(ξ) has the
same form for the two models: a convergent infinite product of terms (1 + p(eiξ − 1)) e−p(eiξ−1).
This is a general phenomenon for discrete random models stemming from number theory or com-
binatorics, and it will enable us to use a unified approach with the same techniques. A sequence
of integer-valued random variables (Xn)n∈N for which the ratios of Fourier transforms ψn defined
in Formula (MP) converge uniformly on the unit circle towards a continuous function ψ is called
mod-Poisson convergent with parameters (λn)n∈N. This notion has been introduced in [BKN09;
KN10] and studied thoroughly in [DKN15; FMN16; Chh+20]; in these later articles, the expo-
nent ϕ(ξ) = eiξ − 1 is sometimes replaced by the exponent of a general infinitely divisible distribu-
tion supported by the lattice Z (mod-ϕ convergence). Here, we shall focus on the mod-Poisson case
in order to prove precise estimates of the distribution of Xn when the residue defined by Formula
(MP) converges.

Definition 1 (Approximation scheme of order r). Let (Xn)n∈N be a sequence of random variables
with values in N, which converges mod-Poisson with parameters (λn)n∈N and limiting residue

ψ(ξ) = lim
n→∞

ψn(ξ) = lim
n→∞

E[eiξXn ] e−λn(eiξ−1).
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We assume that the residues ψn and ψ are given by the following convergent power series:

ψn(ξ) = 1 +
∞∑
s=1

bs,n (e
iξ − 1)s ; ψ(ξ) = 1 +

∞∑
s=1

bs (e
iξ − 1)s.

Then, the approximation scheme of order r of the law µn ofXn is the signed measure ν(r)n with Fourier
transform

ν̂(r)n (ξ) =
∞∑
k=0

ν̂(r)n (k) eikξ = eλn(eiξ−1)

(
1 +

r∑
s=1

bs,n (e
iξ − 1)s

)
.

The derived approximation scheme of order r ofXn is defined similarly, by truncation of the coefficients
of the limiting residue ψ(ξ):

ν̂(r)n,∗(ξ) = eλn(eiξ−1)

(
1 +

r∑
s=1

bs (e
iξ − 1)s

)
.

Notice that by definition, ν(0)n = ν
(0)
n,∗ is the Poisson law Po(λn). For r ≥ 1, an explicit formula

for ν(r)n is provided by [Chh+20, Lemma 3.8]:

ν(r)n (k) =
∑

0≤t≤s≤r

(−1)s−t

(
s

t

)
bs,n ν

(0)
n (k − t),

and similarly for the derived approximation scheme. This explicit formula implies that ν(r)n is a well
defined signed measure on N, and that

∑
k∈N ν

(r)
n (k) = 1. Our goal is then to control

dTV(µn, ν
(r)
n ) =

1

2

∞∑
k=0

∣∣P[Xn = k]− ν(r)n (k)
∣∣

and dTV(µn, ν
(r)
n,∗). Before going on, let us remark that up to a modification of the sequence (λn)n∈N,

we can assume b1,n = b1 = 0. Indeed, replacing λn by λn + b1,n removes the term b1,n from the
power series ψn(ξ) (this also modifies the other coefficients bs≥2,n).

Informally, our main results are the following:

(1) If (Xn)n∈N converges in the mod-Poisson sense and if

|bs,n| ≤
(
τn√
s

)s

for some constants τn > 0, then dTV(µn, ν
(r)
n ) ≤ C

(
D τn√
λn

)r+1

for some universal constants
C and D (see Theorem A for a more precise statement).

(2) In the particular case where Xn =
∑n

i=1 Yi is the sum of independent Bernoulli variables,
the condition above is satisfied with (τn)

2 proportional to (σn)
2 =

∑n
i=1(pi)

2. Therefore,
we get a higher-order Chen–Stein inequality (see Theorem B).

(3) If the mod-Poisson convergence admits a Bernoulli-like asymptotic residueψ (with the same
form as in Equations (MPω) and (MPρ)), and if the convergence ψn → ψ

• can be expanded to a complex disc containing the unit circle,
• is fast enough,

then we get an unconditional upper bound (see Theorem C)

dTV(µn, ν
(r)
n,∗) ≤

C(ψ)

(λn)
r+1
2

.
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1.4. Outline of the paper. The theory of mod-convergent sequences with respect to an arbitrary
reference infinitely divisible distribution ϕ has been developed in [DKN15; FMN16; FMN19;
BMN19; Chh+20]. In the specific case where the reference law is the Poisson distribution, the
residue of mod-Poisson convergence can be expressed as a specialisation of the generating series
of elementary symmetric functions. This combinatorial reformulation, which first appeared in
[Chh+20, Section 4.2], is one of the main argument which enables the extension of the higher
order Chen–Stein inequalities to random variables which are not sums of independent Bernoulli
variables. We detail this idea in Section 2, and we then state our main results and the relevant
hypotheses for the random models. In Section 3, we use Fourier inversion on the unit circle T in
order to estimate the total variation distance between a probability measure µ on N and its approx-
imation scheme ν(r) or order r ≥ 1. Classical arguments allow us to remove most terms of the
Fourier inversion formula, and what remains is a sum of integrals akin to the integral expressions
of Hermite polynomials. These Hermite-like functions are studied in Section 4, and the summa-
tion of all the estimates and the proof of the main results is performed in Section 5. Finally, in
Section 6, we revisit the proof of the Flajolet–Odlyzko transfer theorem (see [FO90]) which yields
the asymptotic of the coefficients of a power series with algebraic singularities. This enables us to
obtain an unconditional upper bound on the total variation distance between the law of

• the number Cn of cycles in a random permutation;
• or, the number Dn of irreducible divisors in a uniformly chosen random polynomial with
given degree and coefficients in a finite field

and its derived approximation scheme of order r ≥ 1. This discussion relies on complex analysis
arguments and integrals along Hankel contours, and a similar argument can be used for the number
ωn of prime factors of a random integer; see our Remark 19 at the very end of the paper.

2. Symmetric functions and adapted sequences of distributions

The objective of this section is to introduce all the relevant hypotheses for our main theorems,
as well as a list of examples which will satisfy these hypotheses. A large part of the discussion will
rely on the combinatorics of the algebra of symmetric functions Sym, for which we refer to [Mac95,
Chapter I] and [Mél17, Chapter 2]. Recall that a symmetric function is a formal linear combination
f =

∑
I=(i1,...,ir)

fI xI of monomials xI = xi1xi2 · · ·xir with:

• the indices I in
⊔∞

r=0(N∗)r;
• the variables x1, x2, . . . forming an infinite commutative sequence;
• the coefficients fI in some field, say R;
• deg f = sup{|I| with fI ̸= 0} < +∞;
• f invariant by any permutation of the variables: for any σ ∈ S(∞) =

⋃∞
n=1 S(n), fσ = f .

We shall use two important algebraic bases of Sym over R: the Newton power sums

pk≥1 =
∞∑
i=1

(xi)
k

and the elementary symmetric functions

ek≥1 =
∑

1≤i1<i2<···<ik

xi1xi2 · · ·xik .

Thus, Sym = R[p1, p2, . . .] = R[e1, e2, . . .]. The change of basis formula between power sums and
elementary symmetric functions is encoded by the two generating series P(z) =

∑∞
k=1

pk
k
zk and
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E(z) = 1 +
∑∞

k=1 ek z
k:

E(z) =
∞∏
i=1

(1 + xiz) = exp

(
∞∑
i=1

log(1 + xiz)

)
= exp

(
−

∞∑
k=1

∞∑
i=1

(−xiz)k

k

)
= exp(−P(−z)).

If A = {a1, a2, . . .} is a summable family and f is a symmetric function, we shall denote f(A)
the real number obtained by replacing the variables xi by the ai’s (setting xi = 0 if A is finite and
i > |A|). This always gives a convergent power series, because f is a polynomial in the power sums,
and

pk(A) =
∑
i≥1

(ai)
k is absolutely convergent for any k ≥ 1.

The map f ∈ Sym 7→ f(A) ∈ R is a morphism of real algebras; it is also called a specialisation of
the algebra of symmetric functions. More generally, we call specialisation of Sym any morphism
of algebras from Sym to R; such a morphism does not necessarily come from a summable family
A = {a1, a2, . . .}. Given the generating functions E(z) and P(z) of the elementary symmetric
functions and of the power sums and a specialisationA of Sym, we shall denoteE(A, z) andP(A, z)
the corresponding analytic functions of the variable z, assuming the convergence of these power
series.

2.1. Sums of independent Bernoulli variables. Let us consider as in the introduction a sumXn =∑n
i=1 Yi of independent Bernoulli variables, with Yi ∼ Be(pi). We are going to explain how to

compute the coefficients bs,n of the residue of deconvolution ψn(ξ) = E[eiξXn ] e−λn(eiξ−1), with
λn =

∑n
i=1 pi. To begin with, let us remark that the Fourier transform of Xn is a specialisation of

the generating series E(z) of the elementary symmetric functions. Indeed, it is obtained by taking
z = eiξ − 1 and the alphabet {p1, p2, . . . , pn}:

E[eiξXn ] =
n∏

i=1

E[eiξYi ] =
n∏

i=1

(1 + pi(e
iξ − 1)) = E({p1, . . . , pn}, eiξ − 1)

= exp
(
−P({p1, . . . , pn}, 1− eiξ)

)
= exp

(
∞∑
k=1

(−1)k−1 pk(p1, . . . , pn)

k
(eiξ − 1)k

)
.

Dividing by eλn(eiξ−1) amounts to remove the term of order k = 1 from the exponential, so

ψn(ξ) = exp

(
∞∑
k=2

(−1)k−1 pk(p1, . . . , pn)

k
(eiξ − 1)k

)
.

The coefficients bs,n are then obtained by expanding the exponential series. There are two ways to
perform this computation:

• specialisation with p1 = 0. Given a countable family of real numbers A = {a1, a2, . . .}
with

∑
i≥1(ai)

2 < +∞, we define a morphism of real algebras f ∈ Sym 7→ f(A′) ∈ R by
setting:

p1(A
′) = 0 ; pk≥2(A

′) = pk(A) =
∑
i≥1

(ai)
k.

Since (pk)k≥1 is an algebraic basis of Sym, the formulæ above entirely determine the spe-
cialisation A′ (A′ is also sometimes called a virtual alphabet). Now, with A = {p1, . . . , pn},
we have

ψn(ξ) = exp

(
∞∑
k=1

(−1)k−1 pk(A
′)

k
(eiξ − 1)k

)
= 1 +

∞∑
k=1

ek(A
′) (eiξ − 1)k = E(A′, eiξ − 1),

so bs,n = es({p1, . . . , pn}′) for any s ≥ 1.
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• inclusion-exclusion formula with the true elementary symmetric functions. Let us make
the previous argument a bit more explicit. If we expand the exponential generating series
exp(−P(−z)), we get:

ek =
∑

λ∈Y(k)

(−1)k−ℓ(λ)

zλ
pλ,

where the sum runs over the setY(k) of integer partitions λ = (λ1 ≥ λ2 ≥ · · · ≥ λℓ(λ) ≥ 1)

of size k =
∑ℓ(λ)

i=1 λi; pλ = pλ1 pλ2 · · · pℓ(λ) for any integer partition λ; and zλ is a combinato-
rial coefficient, such that k!

zλ
is the number of permutations with size k and with cycle-type

λ. A multiplicative expression of zλ in terms of the parts of the integer partition λ is pro-
vided by [Mac95, Chapter I, Equation (2.14)]. By specialisation of the formula above with
respect to the two formal alphabets A = {p1, . . . , pn} and A′, we get:

ek(A) =
∑

λ∈Y(k)

(−1)k−ℓ(λ)

zλ
pλ(p1, . . . , pn);

bk,n = ek(A
′) =

∑
λ∈Y(k)
λℓ(λ)≥2

(−1)k−ℓ(λ)

zλ
pλ(p1, . . . , pn).

In particular,

b1,n = 0 ; b2,n = −1

2
p2(p1, . . . , pn) ; b3,n =

1

3
p3(p1, . . . , pn)

b4,n =
(p2(p1, . . . , pn))

2

8
− p4(p1, . . . , pn)

4
.

The removal of the integer partitions with parts of size 1 which is performed when going
from ek(A) to ek(A

′) also results from an inclusion-exclusion; hence, it is easy to see from
the formulæ above that for any s ≥ 1,

bs,n =
s∑

t=0

(−1)t

t!
(e1(p1, . . . , pn))

t es−t(p1, . . . , pn) =
s∑

t=0

(−1)t

t!
(λn)

t es−t(p1, . . . , pn),

with by convention e0(p1, . . . , pn) = 1.

Remark 2. The expression of bs,n in terms of the elementary symmetric functions et(p1, . . . , pn)
can be used to prove that each coefficient bs,n is a polynomial of total degree s in the moments
Mk,n = E[(Xn)

k], withMk,n considered to be of degree k. Indeed,

E[(Xn)
k] =

k∑
l=1

l!

{
k

l

}
el(p1, . . . , pn),

where
{
k
l

}
is the Stirling number of the first kind, which counts set partitions of [[1, k]] in l parts.

The formula above can be inverted in order to express the elementary symmetric functions of the
probabilities pi in terms of the moments of Xn. Therefore, the coefficients bs,n with s ≤ r and the
approximation scheme of order r ≥ 1 of the law ofXn depends only on the r first moments ofXn,
and not on the individual probabilities pi. For instance,

b2,n =
1

2
(M2,n −M1,n − (M1,n)

2);

b3,n =
1

2
((M1,n)

2 −M2,n −M2,nM1,n) +
1

3
(M1,n + (M1,n)

3) +
1

6
M3,n.

This property is important for simulations, if one wants to approximate the law of Xn from a
dataset instead of the list of the probabilities pi. In a companion paper [MNV22], we investigate
the applications of the theory developed in the present article to credit risk models. We refer to
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[MNV22, Remark 4.3 and Appendix D] for the formula of change of basis between the coefficients
bs,n and the moments of Xn.

Before going on, let us analyse the radius of convergence of the generating series that we have
manipulated above.

Proposition 3. Let {p1, . . . , pn} be a set of probabilities in (0, 1), λn =
∑n

i=1 pi,Xn =
∑n

i=1 Be(pi),
and Ψn(w) = E[wXn ] e−λn(w−1). With our previous notations, ψn(ξ) = Ψn(e

iξ).

(1) If bs,n = es({p1, . . . , pn}′), then we have

Ψn(w) = E({p1, . . . , pn}′, w − 1) = 1 +
∞∑
s=1

bs,n (w − 1)s,

and the right-hand side converges on the whole complex plane; thus, Ψn is an entire function.

(2) More precisely, if (σn)2 =
∑n

i=1(pi)
2, then for any s ≥ 2,

|bs,n| ≤
(
e(σn)

2

s

)s
2

.

Proof. Since Ψn(w) =
∏n

i=1((1 + pi(w− 1)) e−pi(w−1)) is a product of entire functions, it is indeed
well defined and convergent on the whole complex plane, and its coefficients bs,n come from the
previous computations. Notice that we have in particular b1,n = e1({p1, . . . , pn}′) = 0. In order to
prove the upper bound on the coefficients bs≥2,n, we shall use the following elementary inequality:

∀z ∈ C, |(1 + z) e−z| ≤ e
|z|2
2 .

Indeed, if z = x+ iy, let us fix x ∈ R and study as a function of y
|(1 + z) e−z|2

e|z2|
= ((1 + x)2 + y2) e−2x−x2−y2 .

The derivative with respect to y of this function vanishes if and only if y = 0 or 1 = (1+x)2+y2. If
x ∈ (−2, 0), then the two maxima of the function are equal to 1, whereas if x ≤ −2 or x ≥ 0, then
the unique maximum is attained at y = 0 and is equal to (1+2x+x2) e−2x−x2 ≤ e2x+x2−2x−x2

= 1.

Now, by using the Cauchy formula with a circle of radius R =
√
s

σn
, we get:

|bs,n| =

∣∣∣∣∣ 1

2iπ

∮ n∏
i=1

(
(1 + piz) e

−piz
) dz

zs+1

∣∣∣∣∣ ≤ e
(σn)2R2

2

Rs
=

(
e(σn)

2

s

)s
2

.

This fast decay of the coefficients bs,n will turn out to be an essential tool in the proofs of our
estimates. □

2.2. Models with Bernoulli asymptotics. Consider more generally a countable family of real
numbers A = {a1, a2, . . .} with σ2 =

∑
i≥1(ai)

2 < +∞. Then, the result from Proposition 3
extends readily to

E(A′, w − 1) =
∏
i≥1

(1 + ai(w − 1)) e−ai(w−1) = 1 +
∞∑
s=2

es(A
′) (w − 1)s. (3)

Thus, the function E(A′, ·) is an entire function on C, and its coefficients es(A′) satisfy the inequal-
ity:

∀s ≥ 2, |es(A′)| ≤
(
eσ2

s

)s
2

.
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This can be seen by taking the limit of the corresponding result for the truncated finite alphabets
An = {a1, a2, . . . , an}.

Definition 4. Let (Xn)n∈N be a sequence of random variables with values inN. We say that the sequence
converges mod-Poisson with parameters (λn)n∈N andwithBernoulli asymptotics if there exists a square-
summable family A = {a1, a2, . . .} such that:

E[wXn ] e−λn(w−1) →n→∞ E(A′, w − 1),

where E(A′, ·) is the entire function defined by Equation (3), and where the convergence happens locally
uniformly on a disc of radius r > 1.

In [Chh+20, Section 4, Table 4.1], a list of examples of mod-Poisson models with Bernoulli
asymptotics is provided; the computations of the corresponding generating series rely on relatively
elementary combinatorial or algebraic arguments. The remainder of this Subsection is devoted
to recalling these important examples; the proofs of the corresponding mod-Poisson convergence
results will be revisited in Section 6 in order to get explicit estimates of the remainders.

2.2.1. Number of cycles of a randompermutation. Let (θk≥1)k≥1 be a sequence of positive parameters,
and let Θ be the specialisation of the algebra Sym defined by pk(Θ) = θk for any k ≥ 1. We also
introduce the homogeneous symmetric functions

hk =
∑

1≤i1≤i2≤···≤ik

xi1xi2 · · ·xik ;

they form another algebraic basis of Sym, and they differ from the elementary symmetric functions
by allowing equalities between the indices i1, . . . , ik. The generating series of the homogeneous
symmetric functions H(z) = 1 +

∑∞
k=1 hk z

k is related to the generating series P(z) by:

H(z) =
∞∏
i=1

1

1− xiz
= exp

(
−

∞∑
i=1

log(1− xiz)

)
= exp

(
∞∑
k=1

∞∑
i=1

(xiz)
k

k

)
= exp(P(z)).

By expanding the exponential, we get an expression of the symmetric function hk in terms of the
power sums, which is very similar towhatwe saw previouslywith elementary symmetric functions:

hk =
∑

λ∈Y(k)

1

zλ
pλ.

Let Pn,(θk≥1)k≥1
be the probability measure on the symmetric group S(n) which gives to a permu-

tation σ withm1(σ) cycles of length 1,m2(σ) cycles of length 2, etc. a probability proportional to∏
k≥1(θk)

mk(σ):

Pn,(θk)k≥1
[σ] =

1

Zn,(θk)k≥1

∏
k≥1

(θk)
mk(σ).

The normalisation constant is easy to compute. Indeed,

Zn,(θk)k≥1
=
∑

σ∈S(n)

(θk)
mk(σ) =

∑
λ∈Y(n)

n!

zλ
pλ(Θ) = n! hn(Θ).

These weighted measures Pn,(θk)k≥1
have been studied in [BU09; BU11; BUV11; EU12; NZ13], in

connection with models of spatial random permutations. If (θk)k≥1 is the constant sequence equal
to θ > 0, then we recover the Ewens measure with parameter θ, for which hn(Θ) =

∏n
i=1(1+

θ−1
i
).

Consider now the random variable

Cn =
(
number of disjoint cycles of σn ∼ Pn,(θk)k≥1

)
.
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Its generating series is:

E[wCn ] =
1

n! hn(Θ)

∑
σ∈S(n)

(∏
k≥1

(wθk)
mk(σ)

)
=

hn(wΘ)

hn(Θ)
, (genC)

where wΘ denotes the specialisation of Sym given by pk≥1(wΘ) = wθk.

Proposition 5. Suppose that the sequence of parameters (θk)k≥1 yields a specialisation Θ of Sym such
that

P(Θ, z) =
∞∑
k=1

θk
k
zk

has the following properties:

(1) The generating seriesP(Θ, z) is holomorphic on a domain

∆(m,M, ϕ) = {z ∈ C such that |z| < M, z ̸= m, | arg(z −m)| > ϕ}

with 0 < m < M , 0 < ϕ < π
2
.

ϕ

m

M

(2) Around z = m,P(Θ, z) has a logarithmic singularity, and

P(Θ, z) = θ log

(
1

1− z
m

)
+K +O(|z −m|)

with θ > 0.

We set

γθ =
∞∑
n=1

θ

n+ θ − 1
− θ log

(
1 +

1

n

)
;

notice that γ1 = γ is the Euler–Mascheroni constant. Then, the sequence of numbers of disjoint cycles
(Cn)n∈N converges mod-Poisson with parameters λn = θ log n + K + γθ and Bernoulli asymptotics.
The limiting alphabet Aθ is

Aθ =

{
1,

θ

θ + 1
,

θ

θ + 2
, . . .

}
Moreover, the convergence happens locally uniformly on C at speed O(n−1):

E[wCn ] e−(θ logn+K+γθ)(w−1) = E(A′
θ, w − 1) +O(n−1).
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Aproof of this result is given in [NZ13, Lemma 4.1]; we shall see in Section 6 that it is a particular
case of transfer results for generating series with algebraico-logarithmic singularities (see [FO90;
Hwa99] and the discussion of [Chh+20, Section 4.4]). Let us remark that the form asked for the
singularity of P(Θ, z) is inspired by the case of Ewens measures: indeed, we then have P(Θ, z) =
θ log

(
1

1−z

)
and K = 0.

2.2.2. Number of irreducible factors of a random polynomial. Let q = pe be a prime power, and fn be
a random polynomial chosen uniformly among the qn monic polynomials with degree n in Fq[X].
We denote

Dn = D(fn) =
(
number of distinct irreducible divisors of fn

)
,

the irreducible factors being counted without multiplicity. If Irr(Fq) denotes the set of all irre-
ducible monic polynomials in Fq[X], then we have the following identities of generating series:

∞∑
n=0

(qz)n E[wDn ] =
∑

P∈Fq [X]
P monic

wD(P ) zdegP =
∏

P∈Irr(Fq)

(1 + wzdegP + wz2 degP + · · · )

=
∏

P∈Irr(Fq)

(
1 + w

zdegP

1− zdegP

)
=

∏
P∈Irr(Fq)

1− (1− w)zdegP

1− zdegP

= exp

 ∑
P∈Irr(Fq)

log
(
1− (1− w)zdegP

)
− log

(
1− zdegP

)
= exp

(
∞∑

m=1

∞∑
k=1

Iq(m) zkm(1− (1− w)k)

k

)

= exp

 ∞∑
n=1

zn

n

∑
k|n

n

k
Iq

(n
k

)
(1− (1− w)k)


= exp

(
∞∑
n=1

zn

n
(Ĩq ∗ Jw)(n)

)
where Iq(n) = card{P ∈ Irr(Fq) | degP = n}, Ĩq(n) = n Iq(n), Jw(n) = 1 − (1 − w)n, and ∗
denotes the operation of convolution on arithmetic functions:

∀n ≥ 1, (f ∗ g)(n) =
∑
k|n

f(k) g
(n
k

)
.

The number of irreducible polynomials with a given degree is well known to be given by Gauss’
formula:

Ĩq(n) = (µ ∗ q•)(n),
where µ is the arithmetic Möbius inversion function. In particular, Iq(n) ≤ qn

n
. Then,

(Ĩq ∗ Jw)(n) = (µ ∗ q• ∗ (1− (1− w)•))(n).

In particular, if w = 1, then (Ĩq ∗J1)(n) = (µ ∗ 1 ∗ q•)(n) = (q•)(n) = qn, and exp
(∑∞

n=1
(qz)n

n

)
=

1
1−qz

=
∑∞

n=0(qz)
n. Therefore, if we define a specialisation of Sym by setting

pk(Bq,w) = (µ ∗ q• ∗ (1− (1− w)•))(k)

for any k ≥ 1, then we obtain an expression of the generating series E[wDn ] similar to the one of
the previous paragraph (Equation (genC)):

E[wDn ] =
hn(Bq,w)

hn(Bq,1)
. (genD)
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The analysis of the bivariate generating series leads to the following result of mod-Poisson conver-
gence (see [Chh+20, Example 4.5 and Theorem 4.6]), which is a function field analogue of the
Erdős–Kac asymptotics of the sequence (ωn)n∈N.

Proposition 6. We fix a prime power q = pe and we denote

Rq =
∞∑
k=2

µ(k)

k
log

(
1

1− q1−k

)
.

The sequence of numbers of distinct irreducible factors (Dn)n∈N converges mod-Poisson with parameters
λn = log n+Rq + γ and Bernoulli asymptotics. The limiting alphabet Aq is

Aq =

{
1,

1

2
,
1

3
, . . .

}
⊔
{

1

qdegP
, P ∈ Irr(Fq)

}
.

Moreover, the convergence happens locally uniformly on the disc with radius q at speed O(n−1):

E[wDn ] e−(logn+Rq+γ)(w−1) = E(A′
q, w − 1) +O(n−1).

2.2.3. Number of prime divisors of a random integer. The discussion of Subsection 1.2 can be put
in the framework of mod-Poisson convergent sequences with Bernoulli asymptotics. Indeed, the
complex version of Equation (MPω) is valid, so we get:

Proposition 7. The sequence of numbers of distinct prime divisors (ωn)n∈N converges mod-Poisson with
parameters λn = log log n+ γ and Bernoulli asymptotics. The limiting alphabet Aω is

Aω =

{
1,

1

2
,
1

3
, . . .

}
⊔
{
1

p
, p ∈ P

}
.

Moreover, the convergence happens locally uniformly on the complex plane at speed O((log n)−1):

E[wωn ] e−(log logn+γ)(w−1) = E(A′
ω, w − 1) +O((log n)−1).

This mod-Poisson convergence is a consequence of a Tauberian theorem which yields estimates of
the sum

∑n
k=1w

ω(k), by using properties of the L-series
∞∑
n=1

wω(n)

ns
=
∏
p∈P

(
1 +

w

ps
+

w

p2s
+ · · ·

)
=
∏
p∈P

(
1 +

w

ps − 1

)
;

see our Remark 19 at the end of the article.

2.3. Estimates of the total variation distance. We are now ready to state our main theorems.
The first result estimates the quality of the approximation scheme of order r of a integer-valued
random variable X whose deconvolution residue E[eiξX ] e−λ(eiξ−1) can be expanded on the torus
as a power series in z = eiξ − 1, with the coefficients of the series that satisfy the same kind of
inequality as in Proposition 3.

Theorem A. LetX be a integer-valued random variable such that

ψ(ξ) = E[eiξX ] e−λ(eiξ−1) = 1 +
∞∑
s=2

bs (e
iξ − 1)s ; |bs| ≤

(
τ√
s

)s

for some positive parameters λ and τ . We denote ν(r) the approximation scheme of order r ≥ 1 of the
distribution µ ofX :

ν̂(ξ) e−λ(eiξ−1) = 1 +
r∑

s=2

bs (e
iξ − 1)s.
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Then, there exists two universal constants C andD such that, if ε = Dτ√
λ
< 1, then

dTV(µ, ν
(r)) ≤ C εr+1.

IfD = 4, then one can take C ≤ 570.

Remark 8. The reason why we do not insist on the precise value of the constants C and D in
Theorem A is the following. During the proof of Theorem A (Sections 3 to 5), we shall add
numerous quantities which will depend on the index r of approximation, and we shall then use
upper bounds on these quantities which are independent from r ≥ 1. In almost every case, the
order of approximation r = 1 yields by far the worst estimates; and assuming that r is larger (for
instance, larger than 10) yields much better constants. So, one can state a version of Theorem A
with much smaller universal constants C and D if one replaces the hypothesis r ≥ 1 by r ≥ 10.
In the following, we tried to make the computation of the constants in the upper bounds easy to
track; thus, they are easily improved upon with additional assumptions on r (and possibly on τ
and λ).

An immediate consequence of Theorem A is the following higher-order Chen–Stein inequality,
which regards the approximation of the distribution of a sum of independent Bernoulli variables:

Theorem B. Let (pi)i≥1 be a sequence of probabilities in (0, 1), and Xn =
∑n

i=1 Be(pi) be the sum of
independent Bernoulli variables. If

λn =
n∑

i=1

pi ; (σn)
2 =

n∑
i=1

(pi)
2 ; λn > 16 e (σn)

2

and if ν(r)n is the approximation scheme of order r ≥ 1 of the distribution µn of Xn, then there exists a
universal constant C ≤ 570 such that

dTV(µn, ν
(r)
n ) ≤ C (ηn)

r+1, with ηn =
4
√
eσn√
λn

< 1.

Proof. This follows readily from Proposition 3, which yields the estimate |bs,n| ≤ ( τn√
s
)s with τn =√

eσn. □

Corollary 9. Let (pi)i≥1 be a non-increasing sequence of probabilities in (0, 1) such that
∑∞

i=1(pi)
2 =

σ2 < +∞. We denote µn the distribution of Xn =
∑n

i=1 Be(pi), λn =
∑n

i=1 pi, and ν
(r)
n,∗ the derived

approximation scheme of order r ≥ 1:

ν̂(r)n,∗(ξ) = eλn(eiξ−1)

(
1 +

r∑
s=2

bs (e
iξ − 1)s

)
, with bs = es({p1, p2, . . .}′).

If λn > 16 eσ2, then

dTV(µn, ν
(r)
n,∗) ≤ C (ηn)

r+1 + (r2 + (2λn + 1)r)

(
r∑

s=2

(2σ)s−2

)
rn

with ηn = 4
√
eσ√
λn

, and rn =
∑

i>n(pi)
2.

Example 10. Suppose that pi = 1
i
. Notice then thatXn has the distribution of the number of cycles

of a uniform random permutation in S(n). We have σ2 = π2

6
, log n + γ ≤ λn ≤ log n + γ + 1

2n
,

and rn =
∑

i>n
1
i2
≤ 1

n
. Therefore, setting h =

√
2
3
π and AΓ = {1, 1

2
, 1
3
, . . .}, we get that for r ≥ 1,
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the derived scheme of approximation ν(r)n,∗ defined by

ν̂(r)n,∗(ξ) = eλn(eiξ−1)

(
1 +

r∑
s=2

es(A
′
Γ) (e

iξ − 1)s

)
satisfies:

dTV(Xn, ν
(r)
n,∗) ≤ C

(
2
√
eh√

log n

)r+1

+ 1(r≥2)
hr−2

1− h−1

r2 + 2(log n+ 1)r

n

for any n such that log n > 8eπ2

3
. In particular, if r ≥ 1 is fixed, then the total variation distance is

a O((log n)−
r+1
2 ); this is compatible with the asymptotic estimate from [Chh+20, Theorem 4.3].

Lemma 11. Let µ and ν be two signed measures on N with Fourier transforms

µ̂(ξ) = eλ(e
iξ−1) ψ(ξ);

ν̂(ξ) = eλ(e
iξ−1) χ(ξ),

with λ > 0. The total variation distance between µ and ν is smaller than

∥ψ − χ∥∞
2

+
π

2
√
3
(∥ψ′ − χ′∥∞ + λ ∥ψ − χ∥∞),

where ∥f∥∞ = supξ∈R/2πZ |f(ξ)| for a continuous function on the circle.

Proof. The two sequences (µ(n))n∈N and (ν(n))n∈N are summable, and they yield two functions in
the Wiener algebra of absolutely convergent Fourier series:

µ̂(ξ) =
∑
n∈N

µ(n) einξ ; ν̂(ξ) =
∑
n∈N

ν(n) einξ.

By the Cauchy–Schwarz inequality,

2 dTV(µ, ν) =
∑
n∈N

|µ(n)− ν(n)|

≤ |µ(0)− ν(0)|+

√√√√ ∞∑
n=1

1

n2

√√√√ ∞∑
n=1

(n|µ(n)− ν(n)|)2

≤ ∥µ̂− ν̂∥L 1(T) +
π√
3
∥µ̂′ − ν̂ ′∥L 2(T)

≤ ∥ψ − χ∥∞ +
π√
3
(∥ψ′ − χ′∥∞ + λ ∥ψ − χ∥∞)

since ∥eλ(eiξ−1)∥∞ = 1. □

Proof of Corollary 9. If (σn)2 =
∑n

i=1(pi)
2, since σ2 > (σn)

2, we know from Theorem B that

dTV(µ, ν
(r)
n ) ≤ C (ηn)

r+1

with ηn = 4
√
eσ√
λn

. Therefore, we only have to add an estimate of dTV(ν
(r)
n , ν

(r)
n,∗). We set An =

{p1, p2, . . . , pn} and A = {p1, p2, . . .}. The two approximation schemes of order r (standard and
derived) have the same parameter λn, and their deconvolution residues are

ψn(ξ) = 1 +
r∑

s=2

bs,n (e
iξ − 1)s ; ψ(ξ) = 1 +

r∑
s=2

bs (e
iξ − 1)s
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with bs,n = es(A
′
n) and bs = es(A

′). If k ≥ 3, then for any i > n ≥ j, we have (pi)
2(pj)

k ≥
(pi)

k(pj)
2, so ∑

i>n≥j

(pi)
2(pj)

k ≥
∑
i>n≥j

(pi)
k(pj)

2;

∑
i>n, j≥1

(pi)
2(pj)

k ≥
∑

i>n, j≥1

(pi)
k(pj)

2;∑
i>n(pi)

2∑
j≥1(pj)

2
≥
∑

i>n(pi)
k∑

j≥1(pj)
k
.

As a consequence, for any integer partition λ = (λ1 ≥ λ2 ≥ · · · ≥ λℓ) with size s and whose parts
are all larger than 2, we have:

|pλ(A)− pλ(An)| ≤ pλ(A)
ℓ∑

a=1

(
pλa(A)− pλa(An)

pλa(A)

)
≤ ℓ

(
p2(A)− p2(An)

p2(A)

)
pλ(A)

≤ s

2

σ2 − (σn)
2

σ2
σs.

As
∑

λ∈Y(s)
1
zλ

= 1, we obtain from this:

|bs − bs,n| ≤
s

2
(σ2 − (σn)

2)σs−2;

∥ψ − ψn∥∞ ≤ 2(σ2 − (σn)
2)

(
r∑

s=2

s (2σ)s−2

)
;

∥ψ′ − ψ′
n∥∞ ≤ (σ2 − (σn)

2)

(
r∑

s=2

s2 (2σ)s−2

)
.

The inequality follows then immediately from Lemma 11, since π
2
√
3
≤ 0.9069 ≤ 1. □

Many ingredients in the proof of Theorems A and B rely on estimates of the Fourier transform
of X , and not on the fact that X is a sum of independent Bernoulli variables. As a consequence,
one can extend Theorem B to the case of mod-Poisson convergent sequences with Bernoulli asymp-
totics.

Theorem C. Let (Xn)n∈N be a sequence of integer-valued random variables and (µn)n∈N the corre-
sponding sequence of discrete distributions. We suppose that the sequence (Xn)n∈N convergesmod-Poisson
with parameters (λn)n∈N and Bernoulli asymptotics:

∀w ∈ D(0, ρ),
∣∣E[wXn ] e−λn(ew−1) − E(A′, w − 1)

∣∣ ≤ εn

for some square-summable family A, some ρ > 1 and some sequence (εn)n∈N going to zero. Then, with
the same universal constants C and D as in Theorem A, setting σ2 =

∑
a∈A a

2 and assuming that√
λn > D

√
eσ, we have

dTV(µn, ν
(r)
n,∗) ≤ C

(
D
√
eσ√
λn

)r+1

+ εn

(
ρ

ρ− 1
+ λn

)
.

In particular, if (λn)n∈N goes to infinity and if εn = O((λn)
− r+3

2 ), then dTV(µn, ν
(r)
n,∗) = O((λn)

− r+1
2 ).
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Proof. The proof of Theorem A will never use the fact that the distribution µ of X is positive;
therefore, we can use it with the distribution ν(∞)

n,∗ defined by the Fourier transform

ν̂(∞)
n,∗ (ξ) = eλn(eiξ−1)

(
1 +

∞∑
s=2

es(A
′)(eiξ − 1)s

)
.

Hence, dTV(ν̂
(∞)
n,∗ , ν̂

(r)
n,∗) ≤ C (ηn)

r+1 with ηn = D
√
eσ√
λn

, assuming that ηn < 1. We then add the
distance

dTV(µn, ν̂
(∞)
n,∗ ) ≤ ∥ψn − ψ∥∞ +

π

2
√
3
(∥ψ′

n − ψ′∥∞ + λn ∥ψn − ψ∥∞),

with ψn(ξ) = µ̂n(ξ) e
−λn(eiξ−1) and ψ(ξ) = E(A′, eiξ − 1). By assumption, ∥ψn − ψ∥∞ ≤ εn.

Moreover, we have ψn(ξ) = Ψn(e
iξ) and ψ(ξ) = Ψ(eiξ), with

Ψn(w) = E[wXn ] e−λn(ew−1) ; Ψ(w) = E(A′, w − 1).

Therefore, we can use the Cauchy integral formula in order to control the derivatives: for any
w = eiξ on the unit circle,

|ψ′
n(ξ)− ψ′(ξ)| = |Ψ′

n(w)−Ψ′(w)| ≤ 1

2π

∫
∂D(w,ρ−1)

∣∣∣∣Ψn(z)−Ψ(z)

(z − w)2

∣∣∣∣ dz ≤ εn
ρ− 1

.

We conclude as in the proof of Corollary 9 by replacing π
2
√
3
by the larger constant 1. □

Remark 12. Our main Theorems A, B and C compare the probability distribution µ of an integer-
valued random variable X with a signed distribution ν(r) on N. For instance, in the setting of
Theorem A and when r = 2, an explicit formula for ν(2) is:

ν(2)(k) = ν(0)(k)

(
1 + b2

(
1− 2k

λ
+
k(k − 1)

λ2

))
,

ν(0) being the Poisson distribution with parameter λ. In particular,
∑

k∈N ν
(2)(k) = 1, but ν(2)

can take negative values for k large enough if b2 < 0 (under the hypotheses of Theorems B and C,
b2 = −p2(A)

2
is indeed negative). This possibility is a general phenomenon for the approximating

distributions ν(r). Let Nr be the smallest integer such that∑
m |m≤Nr and ν(r)(m)>0

ν(r)(m)

︸ ︷︷ ︸
αr

> −
∑

m | ν(r)(m)<0

ν(r)(m)

︸ ︷︷ ︸
βr

;

this integer exists because
∑

m∈N ν
(r)(m) = 1 > 0. Then, one can define a positive probability

distribution µ(r) by setting

µ(r)(n) =


0 if n < Nr,

αr − βr if n = Nr,

max(0, ν(r)(n)) if n > Nr.

It is easy to see that dTV(µ, µ
(r)) ≤ dTV(µ, ν

(r)). Therefore, our results yield for any r ≥ 1 a
law of random variables µ(r) which is a suitable approximation of the law µ. Unfortunately, it
seems that there is no easy way to sample a random variable under the distribution µ(r). On the
contrary, for any bounded function f : N → C, it is easy to compute the approximation ν(r)(f) =∑

k∈N ν
(r)(k) f(k) of E[f(X)] by means of a sampling method. Indeed, set

g(k) = f(k) +
r∑

s=2

bs((∆+)
◦sf)(k),

where (∆+f)(k) = f(k + 1) − f(k) is the discrete difference operator. Then, ν(r)(f) = E[g(Y )],
where Y follows a Poisson distribution with parameter λ; see [Chh+20, Proposition 1.12].
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3. Fourier inversion and control of the terms with large parameters

Throughout this section, µ is a probability measure on N, and λ and τ are positive real numbers
such that λ > (4τ)2 and

µ̂(ξ) e−λ(eiξ−1) = 1 +
∞∑
s=2

bs (e
iξ − 1)s with |bs| ≤

(
τ√
s

)s

.

The approximating measure of order r for µ is the measure ν(r) with Fourier transform

ν̂(r)(ξ) = eλ(e
iξ−1)

(
1 +

r∑
s=2

bs (e
iξ − 1)

)
.

We can consider that ν(∞) = µ. In order to control dTV(µ, ν
(r)) for r ≥ 1, the basic strategy is

to use the Fourier inversion formula in order to compute dTV(ν
(s), ν(s+1)) for s ≥ r, and then to

sum these estimates. The fast decay inO(s− s
2 ) of the coefficients bs will exactly compensate the fast

growth in O(s s
2 ) of certain estimates. Our strategy is inspired by certain similar but less precise

arguments from [Hwa99], which were already reused in [Chh+20]. In particular, hereafter we
split a Fourier integral in two parts at |ξ| = λ−

1
6 , and a similar splitting at |ξ| = λ−

1
7 was used in

the aforementioned articles.

3.1. Removal of the large indices of approximation. To start with, let us notice that

ν̂(s+1)(ξ)− ν̂(s)(ξ) = bs+1 e
λ(eiξ−1) (eiξ − 1)s+1;

ν(s+1)(k)− ν(s)(k) = bs+1

s+1∑
l=0

(−1)s+1−l

(
s+ 1

l

)
ν(k − l),

where ν = ν(1) is the Poisson distribution with parameter λ. As a consequence, regardless of the
value of λ,∑

k∈N

|ν(s+1)(k)− ν(s)(k)| ≤ |bs+1|
s+1∑
l=0

(
s+ 1

l

)(∑
k∈N

ν(k − l)

)
= 2s+1 bs+1 ≤

(
4 τ 2

s+ 1

)s+1
2

.

Most of the work hereafter consists in proving a better upper bound when s + 1 is not too large,
say smaller than λ

4
. For the indices s such that s+1 ≥ max(λ

4
, r+1), we shall simply use the trivial

upper bound above. Let us remark that the function

x 7→
(
4 τ 2

x

)x
2

attains its maximum at x = 4e−1 τ 2. Since λ > 16 τ 2, max(λ
4
, r + 1) > 4 τ 2 > 4e−1 τ 2 and the

largest term of the series
∑

s+1≥max(λ
4
,r+1)(

4 τ2

s+1
)
s+1
2 is the first one, and it is smaller than (16 τ

2

λ
)
r+1
2 .

Moreover, the ratio between two consecutive terms of the series is:

( 4 τ
2

s+2
)
s+2
2

( 4 τ
2

s+1
)
s+1
2

=

√
4 τ 2

s+ 1

(
s+ 1

s+ 2

)s+2
2

≤

√
4 τ 2

e(s+ 1)
≤
√

16 τ 2

eλ
≤ e−

1
2 .

Therefore, ∑
s+1≥max(λ

4
,r+1)

(
4 τ 2

s+ 1

) s+1
2

≤ 1

1− e−
1
2

(
16 τ 2

λ

) r+1
2

;

∑
s+1≥max(λ

4
,r+1)

dTV(ν
(s), ν(s+1)) ≤ a0

(
16 τ 2

λ

) r+1
2

(U0)
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with

a0 =
1

2(1− e−
1
2 )

≤ 1.2708.

If r + 1 ≥ λ
4
, then we are done. In the sequel, we suppose that λ

4
> r + 1 ≥ 2, and we are going to

evaluate dTV(ν
(s), ν(s+1)) when r + 1 ≤ s + 1 < λ

4
. At the end, we shall add to these controls the

upper bound (U0) computed above.

3.2. Removal of the tails of the distributions. For s + 1 < λ
4
, we start by rewriting the local

difference between ν(s+1) and ν(s) as a Poisson–Charlier polynomial:

ν(s+1)(k)− ν(s)(k) = bs+1 ν(k)

min(s+1,k)∑
l=0

(−1)s+1−l

(
s+ 1

l

)
k!λ−l

(k − l)!

 .

We refer to [Chh+20, Remark 3.9] for a proof of this formula, and to [Sze39, Section 2.8.1] for
the general properties of the Poisson–Charlier orthogonal polynomials. Since

(
s+1
l

)
≤ (s+1)l

l!
,

|ν(s+1)(k)− ν(s)(k)| ≤ |bs+1|
(
1 +

s+ 1

λ

)k

ν(k) ≤ |bs+1|
(
5

4

)k

ν(k).

In order to estimate
∑

k∈N |ν(s+1)(k) − ν(s)(k)|, we first remove the integers k such that k is too
large. We set

β =
4

5

(
1− 1

16 e

)
≃ 0.78160 . . .

and α ≃ 1.73026 . . . such that α− α logα = β, and we remove the integers k larger than 5
4
αλ. We

have:∑
k> 5

4
αλ

|ν(s+1)(k)− ν(s)(k)| ≤ |bs+1|
∑

k> 5
4
αλ

(
5

4

)k

P[P(λ) = k] = |bs+1| e
λ
4

∑
k> 5

4
αλ

P
[
P
(
5

4
λ

)
= k

]
,

and the right-hand side is proportional to the tail of a Poisson distribution with parameter 5
4
λ, so

it can be estimated by using for instance the Chernov inequality:

P
[
P
(
5

4
λ

)
>

5

4
αλ

]
≤ inf

t≥0

(
e

5
4
λ(et−1−αt)

)
= e

5
4
(β−1)λ.

Thus, for s+ 1 < λ
4
,

1

2

∑
k> 5

4
αλ

|ν(s+1)(k)− ν(s)(k)| ≤ |bs+1|
2

e(
5
4
β−1)λ ≤ 1

2

(
τ 2

λ(s+ 1)

)s+1
2

λ
s+1
2 e(

5
4
β−1)λ.

Notice that 5
4
β − 1 = − 1

16 e
. The function λ 7→ λ

s+1
2 e−

λ
16 e attains its maximum at λ = 8 e(s + 1),

so
λ

s+1
2 e(

5
4
β−1)λ ≤ (8(s+ 1))

s+1
2 .

Therefore, we obtain the first upper bound:

1

2

∑
k> 5

4
αλ

|ν(s+1)(k)− ν(s)(k)| ≤ a1

(
8 τ 2

λ

)s+1
2

(U1)

with a1 = 1
2
. For future reference, 5

4
α = α′ ≃ 2.16282 . . .
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3.3. Removal of the tails of the Fourier integrals. Suppose now that k belongs to the interval
[0, α′λ]. By the Fourier inversion formula,

I
(s)
k = ν(s+1)(k)− ν(s)(k) = bs+1

∫
(−π,π)

(eiξ − 1)s+1 eλ(e
iξ−1)−ikξ dξ

2π
.

With k = λ + xλ
1
2 and |x| = O(λ

1
2 ), the idea is to approximate (eiξ − 1)s+1 by (iξ)s+1 and

λ(eiξ−1)− ikξ by−λξ2

2
− ix(λ

1
2 ξ), thereby obtaining an integral which can be computed explicitly

and which yields a term proportional to the Hermite polynomial Hs+1(x). Let us first split the
integral I(s)k in two parts I(s)k,1 and I

(s)
k,2, according to whether |ξ| is larger or smaller than λ− 1

3 . For
any ξ ∈ (−π, π),

Re(eiξ − 1) = cos ξ − 1 ≤ −2ξ2

π2
,

so the integral I(s)k,1 corresponding to the outside of the interval (−λ− 1
3 , λ−

1
3 ) is smaller than

|bs+1|
π

∫ ∞

λ− 1
3

e−
2λξ2

π2 ξs+1 dξ =
|bs+1|
2π

(
π2

2λ

)s
2
+1

Γ

(
s

2
+ 1,

2λ
1
3

π2

)
,

where Γ(s, x) =
∫∞
x
us−1 e−u du denotes the incomplete Γ function. Notice that for t > 0,

xt Γ(s, x) =

∫ ∞

x

xt us−1 e−u du ≤
∫ ∞

x

us+t−1 e−u du = Γ(s+ t, x) ≤ Γ(s+ t).

With λ > 4(s + 1) ≥ 8, there are less than α′λ + 1 ≤ (α′ + 1
8
)λ = α′′λ with α′′ ≃ 2.28782 . . .

integers k in the interval [0, α′λ], so we get:

1

2

∑
k≤α′λ

I
(s)
k,1 ≤

π3

16
α′′ |bs+1|

(
π2

2λ

)s+1
2

(
2λ

1
3

π2

)3
2

Γ

(
s

2
+ 1,

2λ
1
3

π2

)

≤ π3

16
α′′ |bs+1|

(
π2

2λ

)s+1
2

Γ

(
s+ 3

2
+ 1

)
≤ a2 (s+ 3)

3
2

(
π2τ 2

4eλ

)s+1
2

(U2)

with

a2 =
π

7
2

32
α′′ ≤ 3.9292.

We now focus on the part I(s)k,2 of the integral I
(s)
k corresponding to the interval (−λ− 1

3 , λ−
1
3 ). First,

let us notice that on this interval,

λ

∣∣∣∣eiξ − 1− iξ +
ξ2

2

∣∣∣∣ ≤ λ |ξ|3

6
;∣∣∣∣eλ(eiξ−1−iξ+ ξ2

2
) − 1

∣∣∣∣ ≤ e
1
6

6
λ |ξ|3
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by using the inequality |ez − 1| ≤ |z| e|z|. This leads to:

1

2

∑
k≤α′λ

∣∣∣∣∣∣I(s)k,2 − bs+1

∫ λ− 1
3

−λ− 1
3

(eiξ − 1)s+1 e−
λξ2

2
−ix(λ

1
2 ξ) dξ

2π

∣∣∣∣∣∣
≤ e

1
6

6
α′′ |bs+1|λ2

∫
R+

ξs+4 e−
λξ2

2
dξ

2π

≤ a3 (s+ 3)
3
2

(
τ 2

eλ

) s+1
2

(U3)

with

a3 =
e

1
6

12
√
π
α′′ ≤ 0.1271.

Thus, we have proved so far:

Proposition 13. Under the hypotheses stated at the beginning of this section, for any index s such that
2 ≤ s+ 1 < λ

4
, 1
2

∑
k∈N |ν(s+1)(k)− ν(s)(k)| is smaller than

A1 + A2 + A3 +
1

2
|bs+1|

∑
k≤α′λ

∣∣∣∣∣∣∣∣∣∣
∫ λ− 1

3

−λ− 1
3

(eiξ − 1)s+1 e−
λξ2

2
−ix(λ

1
2 ξ) dξ

2π︸ ︷︷ ︸
I
(s)
k,3

∣∣∣∣∣∣∣∣∣∣
where k = λ+ xλ

1
2 and A1, A2 and A3 are respectively bounded from above by (U1), (U2) and (U3).

Thus, in the inequality

dTV(µ, ν
(r)) ≤ 1

2

∑
s≥r

∑
k∈N

|ν(s+1)(k)− ν(s)(k)|,

we have removed from the right-hand side the terms
• with s+ 1 > λ

4
(upper bound (U0)),

• with k > α′λ (upper bound (U1)),

• and then with ξ > λ−
1
3 in the Fourier inversion formula for ν(s+1)(k) − ν(s)(k) (upper

bounds (U2) and (U3)).

The next Section 4 is devoted to the analysis of the remaining terms I(s)k,3; the summation of all the
estimates will then be performed in Section 5.

4. Estimates of partial Hermite functions

We keep the hypotheses stated at the very beginning of Section 3, and which are those of our
Theorem A. In order to control the integral I(s)k,3, we use the expansion in series

(eiξ − 1)s+1 =
∑

n1,...,ns+1≥1

(iξ)n1+···+ns+1

n1! · · ·ns+1!
.

For m ≥ s+ 1, set

Cm,s =
∑

n1,...,ns+1≥1
n1+···+ns+1=m

1

n1! · · ·ns+1!
,
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so that (eiξ−1)s+1 =
∑

m≥s+1Cm,s (iξ)
m. By comparisonwith the sumover integersn1, . . . , ns+1 ≥

0, we see that Cm,s ≤ (s+1)m

m!
. On the other hand,

I
(s)
k,3 =

∑
m≥s+1

Cm,s λ
−m+1

2 (−1)m
∫ λ

1
6

−λ
1
6

(iu)m e−
u2

2
+ixu du

2π
.

We would like to replace the integrals over (−λ 1
6 , λ

1
6 ) by integrals over R. Recall that for any

m ≥ 0, the Hermite polynomial Hm(x) is given by:

e−
x2

2 Hm(x) = (−1)m
∫
R
(iu)m e−

u2

2
+ixu du√

2π
;

see [Sze39, Chapter V]. The classical Cramér inequality states that |Hm(x)| ≤ e
x2

4

√
m! for any

x ∈ R and any integer m. In the sequel, we prove a similar inequality when the integral is taken
over an interval [M,+∞) instead of R.

4.1. Partial Hermite functions as integrals of Hermite polynomials. Fix M > 0, and set
fm(x) = (−1)m

∫∞
M
(iu)m e−

u2

2
+ixu du√

2π
. We have fm(x) = (−1)m ∂m

∂xmf0(x), and

f0 = F
(
SM(u) e−

u2

2

)
,

where SM is the Heaviside step function and (Ff)(x) = (2π)−1/2
∫
R e

ixu f(u) du is the Fourier
transform. The inverse Fourier transform is given by (F−1g)(u) = (2π)−1/2

∫
R e

−ixu g(x) dx. The
Fourier transform leaves the function

N(u) = e−
u2

2

invariant. Since F−1(f ∗ g) =
√
2π (F−1f) (F−1g), if SM(u) = (F−1KM)(u), then

f0 = F((F−1KM)(u) (F−1N)(u)) =
1√
2π

(KM ∗N).

However, the Fourier transform K0 of S0 is given by

K0(x) =
i√
2π x

+

√
π

2
δ0(x);

see for instance [Dav02, Chapter 9]. Then, KM(x) = eiMxK0(x) and we get:

f0(x) =
i

2π

(∫
R
eiMy− (x−y)2

2
dy

y

)
+

1

2
e−

x2

2 .

In this formula, the first term involves a principal value, and it can be replaced by:∫
R
eiMy− (x−y)2

2
dy

y
= 2e−

x2

2

∫ ∞

0

e−
y2

2
sinh((x+ iM)y)

y
dy

= 2e−
x2

2

∞∑
n=0

(x+ iM)2n+1

(2n+ 1)!

∫ ∞

0

e−
y2

2 y2n dy

=
√
2π(x+ iM) e−

x2

2

∞∑
n=0

1

(2n+ 1) (n!)

(
(x+ iM)2

2

)n

=
√
2π(x+ iM)

∫ 1

t=0

e−
x2

2 e
t2(x+iM)2

2 dt.

We have
x2

2
− t2(x+ iM)2

2
=

1

2

(√
1− t2 x− it2M√

1− t2

)2

+
t2M2

2(1− t2)
,
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and on the other hand, e−x2

2 Hm(x) = (−1)m ∂m

∂xm (e−
x2

2 ). So, for any m ≥ 0,

(−1)m
∂m

∂xm

(
e−

x2

2 e
t2(x+iM)2

2

)
= e−

x2

2 e
t2(x+iM)2

2 (1− t2)
m
2 Hm

(√
1− t2 x− it2M√

1− t2

)
and we get the semi-explicit formula:

fm(x) =
i(x+ iM)√

2π

∫ 1

t=0

e−
x2

2 e
t2(x+iM)2

2 (1− t2)
m
2 Hm

(√
1− t2 x− it2M√

1− t2

)
dt

− i√
2π

∫ 1

t=0

e−
x2

2 e
t2(x+iM)2

2 (1− t2)
m−1

2 Hm−1

(√
1− t2 x− it2M√

1− t2

)
dt+

1

2
e−

x2

2 Hm(x).

4.2. Control of the integrands. In the integral formula for fm(x), in order to remove the factor
1√
1−t2

which is divergent when t goes to 1, we shall use the following identity:

(1− t2)
m
2 Hm

(√
1− t2 x− it2M√

1− t2

)
=

⌊m
2
⌋∑

l=0

t2l
(
m

2l

)
(2l)!

2l l!
Hm−2l((1− t2)x− it2M).

This is a particular case of:

Lemma 14 (Multiplication theorem for Hermite polynomials). For anym ≥ 0,

Hm(ax) =

⌊m
2
⌋∑

l=0

am−2l (a2 − 1)l
(
m

2l

)
(2l)!

2l l!
Hm−2l(x).

Proof. The Hermite polynomials satisfy the recurrence equation

Hm+1(x) = xHm(x)−mHm−1(x);

see [Sze39, Equation (5.5.8)]. This implies the explicit expression:

Hm(x) =

⌊m
2
⌋∑

l=0

(−1)lm!

2l (m− 2l)! l!
xm−2l.

The inverse of this formula is:

xm =

⌊m
2
⌋∑

l=0

m!

2l (m− 2l)! l!
Hm−2l(x).

Therefore,

Hm(ax) =
∑
2j≤m

(−1)j m!

2j (m− 2j)! j!
am−2j xm−2j

=
∑

j,k | 2(j+k)≤m

(−1)j m!

2j+k (m− 2j − 2k)! j! k!
am−2j Hm−2j−2k(x)

=

⌊m
2
⌋∑

l=0

(
l∑

j=0

(
l

j

)
(−1)jam−2j

)
m!

2l (m− 2l)! l!
Hm−2l(x)

=

⌊m
2
⌋∑

l=0

am−2l (a2 − 1)l
m!

2l (m− 2l)! l!
Hm−2l(x),

which is the claimed formula up to a rewriting of the binomial coefficient. □
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The Hermite polynomial Hn(z) is given by the contour integral

Hn(z) =
n!

2iπ

∮
ezu−

u2

2
du

un+1
;

see [Sze39, Equation (5.5.12)]. As a consequence, for any z ∈ C, setting |z| =
√
n y, we get

|Hn(z)|
n!

≤ min
R>0

(
eR|z|+R2

2
−n logR

)
≤ e

n−n logn
2 exp

(
n

(
y

√
y2 + 4− y

4
− log

(√
y2 + 4− y

2

)))
.

The function

y 7→ y

√
y2 + 4− y

4
− log

(√
y2 + 4− y

2

)
is increasing from R+ to R+, and it behaves asymptotically as log y. Therefore, it is smaller than
y2

4
+ c for some constant c, which can for instance be taken equal to log 3

2
. By using the Stirling

estimates
√
2πn ≤ n!

en logn−n ≤ e
√
n, we thus get a complex version of the Cramér inequality for

Hermite functions:
∀n ≥ 1, ∀z ∈ C, |Hn(z)| ≤ e

|z|2
4 3

n
2

√
n! e

1
2 n

1
4 .

So, ∣∣∣∣e−x2

2 e
t2(x+iM)2

2 (1− t2)
m
2 Hm

(√
1− t2 x− it2M√

1− t2

)∣∣∣∣
≤ 3

m
2 e−

(1−t4)x2+t2(2−t2)M2

4
+ 1

2

⌊m
2
⌋∑

l=0

m!

l!
√
(m− 2l)!

(m− 2l)
1
4

(
t2

6

)l
 .

Whenm = 2n is even,
√
(m− 2l)! =

√
(2(n− l))! ≥ 2n−l (8π)

1
4

e
(n− l)! (m− 2l)−

1
4 , so the sum is

smaller than

Dm =
e

(8π)
1
4

m
1
2
m!(
m
2

)
!

(
2

3

)m
2

≤ 2m
m+1

2

(
4

3e

)m
2

.

When m = 2n+ 1 is odd,
√

(m− 2l)! =
√

(2(n− l) + 1)! ≥ 2n−l (8π)
1
4

e
(n− l)! (m− 2l)

1
4 , so the

sum is in this case smaller than

Dm =
e

(8π)
1
4

m!

(m−1
2

)!

(
2

3

)m−1
2

≤ 2m
m+1

2

(
4

3e

)m
2

.

Set Θ(x,M) =
√
x2 +M2

∫ 1

t=0
e−

(1−t4)x2+t2(2−t2)M2

4 dt, and gm(x) = 1
2
e−

x2

2 Hm(x)− fm(x). We are
interested in the case where M = λ

1
6 and |x| = O(λ

1
2 ). The previous calculations prove that for

m ≥ 2 andM ≥
√
2,

|gm(x)| ≤
5e

4
√
2π

(
4m

e

)m+1
2

Θ(x,M).

Since Hm(x) = (−1)mHm(−x), we have:

(−1)m
∫ M

−M

(iu)m e−
u2

2
+ixu du√

2π

= e−
x2

2 Hm(x)− (−1)m
∫ ∞

M

(iu)m e−
u2

2
+ixu du√

2π
− (−1)m

∫ −M

−∞
(iu)m e−

u2

2
+ixu du√

2π

= e−
x2

2 Hm(x)− fm(x)− (−1)mfm(−x) = gm(x) + (−1)m gm(−x).



24 PIERRE-LOÏC MÉLIOT, ASHKAN NIKEGHBALI, AND GABRIELE VISENTIN

Therefore, for s+ 1 < λ
4
,

I
(s)
k,3 ≤

5e

2π

( ∑
m≥s+1

Cm,s

(
4m

eλ

)m+1
2

)
Θ(x, λ

1
6 )

≤ 5e
1
2

√
2π3

λ−
1
2

( ∑
m≥s+1

(
4e(s+ 1)2

λm

)m
2

)
︸ ︷︷ ︸

Es

Θ(x, λ
1
6 ).

4.3. Control of the series. Let us explain how to control the series Es. If we consider(
4e(s+ 1)2

λm

)m
2

as a function of m > 0, then it is increasing until m = 4(s+1)2

λ
, and then decreasing. Since we

assume λ > 4(s+ 1), the first term of the series is therefore the largest one. We bound the (s+ 1)

first terms of the series by (4e(s+1)
λ

)
s+1
2 , and for m ≥ 2(s+ 1), we have:(

4e(s+ 1)2

λ(m+ 1)

)m+1
2

≤
√

4(s+ 1)2

λm

(
4e(s+ 1)2

λm

)m
2

≤
√

1

2

(
4e(s+ 1)2

λm

)m
2

.

Therefore,

Es ≤ (s+ 1)

(
4e(s+ 1)

λ

) s+1
2

+

(
∞∑
n=0

2−
n
2

)(
2e(s+ 1)

λ

)s+1

≤

(
1 +

e

8(1− 2−
1
2 )

)
(s+ 1)

(
4e(s+ 1)

λ

) s+1
2

.

We can summarise the estimates computed in this section:

Proposition 15. Under the hypotheses stated at the very beginning of Section 3, for any s such that
2 ≤ s+ 1 < λ

4
, if k = λ+ xλ

1
2 , then

1

2
|bs+1| I(s)k,3 ≤ a4 λ

− 1
2 (s+ 1)

(
4eτ 2

λ

)s+1
2

Θ(x, λ
1
6 ),

with Θ(x,M) =
√
x2 +M2

∫ 1

t=0
e−

(1−t4)x2+t2(2−t2)M2

4 dt, and

a4 =
5e

1
2

(2π)
3
2

(
1 +

e

8(1− 2−
1
2 )

)
≤ 1.1307.

5. Riemann summation of the estimates

We now gather all the estimates previously computed in order to prove Theorem A. Setting
ε = 4 τ√

λ
< 1, and we start by comparing εr+1 to the sums of the upper bounds (U1), (U2) and (U3)

over indices s such that r + 1 ≤ s+ 1 < λ
4
.

• The sum of the upper bounds (U1) is smaller than
1

4(1− 1√
2
)
εr+1 ≤ 0.8536 εr+1.
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• Set ε1 = πτ
2
√
eλ
. The sum of the upper bounds (U2) is smaller than

a2
∑
s≥r

(s+ 3)
3
2 (ε1)

s+1 ≤ a2
(r + 3)

1
2

r + 2

∑
s≥r

(s+ 3)(s+ 2) (ε1)
s+1

with ε1 ≤ π
8
√
e
. The series is equal to

(r + 3)(r + 2) (ε1)
r+1

(
1

1− ε1
+

2ε1
(r + 2)(1− ε1)2

+
2(ε1)

2

(r + 2)(r + 3)(1− ε1)3

)
≤ 1.6077 (r + 3)(r + 2) (ε1)

r+1.

Thus, the contribution of the upper bounds (U2) is smaller than

6.3167 (r + 3)
3
2 (ε1)

r+1 ≤ 6.3167 (r + 3)
3
2

(
π

8
√
e

)r+1

εr+1 ≤ 2.8669 εr+1.

• Similarly, with ε2 = τ√
eλ
< 1

4
√
e
, the sum of the upper bounds (U3) is smaller than

a3
(r + 3)

1
2

r + 2

∑
s≥r

(s+ 3)(s+ 2) (ε2)
s+1 ≤ 0.1685 (r + 3)

3
2 (ε2)

r+1 ≤ 0.031 εr+1.

Therefore, taking also into account (U0) and using Proposition 15, we see that for any r ≥ 1,

dTV(µ, ν
(r)) ≤ 5.0223 εr+1 + a4

(∑
s≥r

(s+ 1)

(
4eτ 2

λ

)s+1
2

)(∑
k≤α′λ

λ−
1
2 Θ(x, λ

1
6 )

)
.

The sum over indices s is easy to compare with εr+1: with ε3 = 2
√
eτ√
λ
<

√
e
2
, it is equal to

(r + 1)(ε3)
r+1

(
1

1− ε3
+

ε3
(r + 1)(1− ε3)2

)
≤ 25.898 εr+1.

So,

dTV(µ, ν
(r)) ≤ 5.0223 εr+1 + 29.2811 εr+1

(∑
k≤α′λ

λ−
1
2 Θ(x, λ

1
6 )

)
and in the remaining sum, we can assume λ ≥ 8, since otherwise the upper bound (U0) suffices.

In order to control a sum
∑

k≤α′λΘ(x,M), we split the integral
∫ 1

t=0
e−

(1−t4)x2+t2(2−t2)M2

4 dt ac-
cording to whether t2 is smaller or larger than 1

2
. If t2 < 1

2
, then

(1− t4)x2 + t2(2− t2)M2

4
≥ 3x2

16
+

3t2M2

8
,

whereas if t2 > 1
2
, then

(1− t4)x2 + t2(2− t2)M2

4
≥

3(1 + 1√
2
)(1− t)x2

8
+

3M2

16
.

Therefore,

Θ(x, λ
1
6 ) ≤ (|x|+ λ

1
6 )

(√
2π

3

1

λ
1
6

e−
3x2

16 +

(
1− 1√

2

)
e−

3λ
1
3

16
1− e−

3x2

16

3x2

16

)
.

We want to take the Riemann sum of the values λ− 1
2 Θ(x, λ

1
6 ) where x runs over the set of real

numbers {
k − λ

λ
1
2

, k ∈ [[0, ⌊α′λ⌋]]
}
.

Let us remove the two values where k = ⌊λ⌋ and k = ⌊λ⌋ + 1 ; they correspond to values of |x|
smaller than λ− 1

2 , and they yield a contribution smaller than 4.8086λ−
1
2 . The other values of x can
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be considered as middle points of intervals [a, b] with b − a = λ−
1
2 , these intervals being included

respectively in [−λ 1
2 − 1

2
λ−

1
2 , 0] and [0, (α′ − 1)λ

1
2 + 1

2
λ−

1
2 ]. For any twice-differentiable function

θ : R → R and any interval [a, b], recall that∣∣∣∣(∫ b

a

θ(x) dx

)
− (b− a) θ

(
a+ b

2

)∣∣∣∣ ≤ ∥θ′′∥∞(b− a)3

24
;

see for instance the estimates at the end of [Zor04, Section 6.3]. We shall use this upper bound
with the following functions θ on R+ :

θ upper bound on ∥θ′′∥∞
x e−

3x2

16 0.85

e−
3x2

16
3
8

1−e−
3x2

16
3x
16

0.54

1−e−
3x2

16

3x2

16

3
16

We obtain: ∑
k≤α′λ

k ̸=⌊λ⌋,⌊λ⌋+1

λ−
1
2 Θ(x, λ

1
6 ) ≤ I1 λ

− 1
6 + I2 + e−

3λ
1
3

6 I3 + I4 + 0.1421λ−
1
2 ,

with

I1 =

√
2π

3

∫
R
|x| e−

3x2

16 dx =
16

3

√
2π

3
≤ 7.7185;

I2 =

√
2π

3

∫
R
e−

3x2

16 dx =
4π

√
2

3
≤ 5.9239;

I3 =

(
1− 1√

2

)∫ (α′−1)λ
1
2+ 1

2
λ− 1

2

−λ
1
2− 1

2
λ− 1

2

1− e−
3x2

16

3|x|
16

dx ≤ 1.87

∫ (α′−1)λ
1
2+ 1

2
λ− 1

2

−λ
1
2− 1

2
λ− 1

2

1

1 + |x|
dx;

I4 =

(
1− 1√

2

)∫
R

1− e−
3x2

16

3x2

16

dx =
4
√
3π(2−

√
2)

3
≤ 2.3979.

The integral I3 yields logarithms which are compensated by the term e−
3λ1/3

16 , and it is then easy to
check that the worst case is when λ = 8; in this case,∑

k≤α′λ

λ−
1
2 Θ(x, λ

1
6 ) ≤ 19.2366.

Combining this estimate with the previous calculations, we finally obtain

dTV(µ, ν
(r)) ≤ 570 εr+1,

and this ends the proof of Theorem A.

6. Hankel contours and unconditional upper bounds

The purpose of this last section is how explain how to compute for the three examples from
Section 2.2 the upper bound εn involved in our main Theorem C. These computations rely on
standard arguments from complex analysis, but as far as we know the estimates that we obtain have
never been written with an explicit remainder εn.
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We consider a sequence (Xn)n∈N of integer-valued random variables, and a sequence (an)n∈N of
real numbers, such that the double generating series

F (z, w) =
∞∑
n=0

an z
n E[wXn ]

has the following properties:

(H1) One can find a domain ∆(m,M, ϕ) × D(0, ρ) with ρ > 1, such that F (z, w) extends to a
biholomorphic function on this domain.

(H2) There exist two constants θ > 0 and T > 0 and a holomorphic function L(w) on D(0, ρ)
such that

F (z, w) =

(
1

1− z
m

)θw

exp(L(w) +O(|z −m|))

on the domain ∆(m,M, ϕ)×D(0, ρ), with an implied constant T in the O(·).

The numbers of cycles (Cn)n∈N of random permutations chosen according to the probability mea-
sures Pn,(θk)k≥1

and the numbers of irreducible divisors (Dn)n∈N of random polynomials in Fq≥3[X]
satisfy the hypotheses (H1) and (H2) above. Indeed, with an = hn(Θ), ρ = 2 and L(w) = Kw,
under the assumptions of Proposition 5, we have for (Cn)n∈N

FC(z, w) =
∞∑
n=0

zn hn(wΘ) = exp(wP(Θ, z)) =

(
1

1− z
m

)θw

exp(Kw +O(2|z −m|)).

The terms θ,m,M ,K and the implied constant in the O(·) above are the same as in the statement
of Proposition 5 for the generating series P(Θ, z). For (Dn)n∈N and an = qn, we have

FD(z, w) = exp

(
∞∑
k=1

Iq(z
k) (1− (1− w)k)

k

)

with

Iq(y) =
∞∑
n=1

Iq(n) y
n =

∞∑
n=1

∑
d|n

µ(d) q
n
d
yn

n

=
∞∑
d=1

µ(d)

d
log

(
1

1− qyd

)
= log

(
1

1− qy

)
+Rq(y),

where Rq(y) =
∑∞

d=2
µ(d)
d

log
(

1
1−qyd

)
, which is convergent on the disk D(0, q−

1
2 ). Therefore,

FD(z, w) =

(
1

1− qz

)w

exp

(
Rq(z)w +

∞∑
k=2

Iq(z
k) (1− (1− w)k)

k

)
.

Let us remark right away that FD(z, 1) = 1
1−qz

, and therefore that
∑∞

k=2
Iq(zk)

k
= −Rq(z). As a

consequence, we can rewrite the double generating series as:

FD(z, w) =

(
1

1− qz

)w

exp

(
Rq(z) (w − 1) +

∞∑
k=2

Iq(z
k) (−1)k−1 (w − 1)k

k

)
.



28 PIERRE-LOÏC MÉLIOT, ASHKAN NIKEGHBALI, AND GABRIELE VISENTIN

Therefore, the hypotheses (H1) and (H2) hold with ρ = 5
4
, θ = 1, m = q−1,M = q−

3
4 ,

L(w) = Rq (w − 1) +
∞∑
k=2

Iq(q
−k) (−1)k−1 (w − 1)k

k
;

T =
9

4

q
3
2

(q
1
2 − 1)(q

3
4 − 1)

+
81

16

q3

(q
1
2 − 1)(q

3
2 − 1)(q

3
4 − 9

4
)
.

Indeed, for |z| < q−
3
4 ,

|Rq(z)−Rq(q
−1)| ≤

∞∑
d=2

1

d

∣∣∣∣log( 1

1− qzd

)
− log

(
1

1− q1−d

)∣∣∣∣
≤

∞∑
d=2

1

d(1− q1−
3d
4 )

|qzd − q1−d| ≤
∞∑
d=2

q

(1− q−
1
2 )
q−

3(d−1)
4 |z − q−1|

≤ q
3
2

(q
1
2 − 1)(q

3
4 − 1)

|z − q−1|,

and similarly,

|Iq(z
k)− Iq(q

−k)| ≤ k q3

(q
1
2 − 1)(q

3
2 − 1)

q−
3(k−1)

4 |z − q−1|

for k ≥ 2, so∣∣∣∣∣
∞∑
k=2

(Iq(z
k)− Iq(q

−k)) (1− w)k

k

∣∣∣∣∣ ≤ 9

4

q3

(q
1
2 − 1)(q

3
2 − 1)

(
∞∑
k=2

(
9

4
q−

3
4

)k−1
)
|z − q−1|

≤ 81

16

q3

(q
1
2 − 1)(q

3
2 − 1)(q

3
4 − 9

4
)
|z − q−1|

since |w−1| ≤ 1+ρ = 9
4
. The angle ϕ can here be chosen arbitrary small, since the only singularity

on D(0,M)×D(0, ρ) of the double generating series FD(z, w) is at z = m.
Following [FO90], under the assumptions (H1) and (H2), let us compute fn(w) = an E[wXn ]

by using the Cauchy integral formula with respect to the following Hankel contour:

ϕ

m

M

γ

The small circle is chosen of radius m
n
, and the path γ is split into the following parts:

• γ1 = {z ∈ C | |z| =M, | arg(z −m)| ≥ ϕ};
• γ2 = {z ∈ C | |z| ≤M, |z −m| ≥ m

n
, arg(z −m) = −ϕ};
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• γ3 = {z ∈ C | |z −m| = m
n
, | arg(z −m)| ≥ ϕ};

• γ4 = {z ∈ C | |z| ≤M, |z −m| ≥ m
n
, arg(z −m) = ϕ}.

We have

fn(w) e
−L(w) =

1

2iπ

∮
γ

F (z, w) e−L(w)

zn+1
dz

=
Γ(n+ θw)

Γ(θw)n!mn
+

1

2iπ

(∫
γ1

+ · · ·+
∫
γ4

)(
eO(|z−m|) − 1

(1− z
m
)θw zn+1

dz

)

since the n-th coefficient of (1− z
m
)−θw as a power series in z is Γ(n+θw)

Γ(θw)n!mn .

Lemma 16. Suppose n ≥ 2, and large enough so that

n2
(m
M

)n
≤

(
min

(
M

m
− 1,

1
M
m

+ 1

))θρ

e−Tm.

Then, under the hypotheses (H1) and (H2),∣∣∣∣fn(w) e−L(w) − Γ(n+ θw)

Γ(θw)n!mn

∣∣∣∣ ≤ Am−n nθx−2 eTM ,

with A = 1 + 16
e
+ Γ(2+θρ)

eπ(cosϕ)2+θρ and x = Re(w).

Proof. We split the remainder in four parts rn,1(w) + rn,2(w) + rn,3(w) + rn,4(w), according to the
partition γ = γ1 ⊔ γ2 ⊔ γ3 ⊔ γ4 of the Hankel contour. Suppose first x ≥ 0. Then, it is immediate
that

|rn,1(w)| ≤M−n

(
1

M
m

− 1

)θx

eT (m+M) ≤ m−n nθx−2 eTM

by assumption on n. We then can evaluate rn,2 and rn,4 as follows:

|rn,2(w)| ≤
T eT (M−m)

2π

∫ ∞

s=m
n

∣∣∣∣∣ 1

1− m+seiθ

m

∣∣∣∣∣
θx

|m+ seiϕ|−n−1 s ds

≤ T eT (M−m)

2πmn−1
nθx−2

∫ ∞

t=1

t1−θx

∣∣∣∣1 + t cosϕ

n

∣∣∣∣−n

dt

≤ Tm eT (M−m)

2π
m−n nθx−2

∫ ∞

t=1

t1−θx e−t cosϕ dt

≤ 1

2πe (cosϕ)2
m−n nθx−2 eTM .

Finally, we have | exp(O(|z −m|))− 1)| ≤ T exp
(
Tm
n

)
m
n
on γ3, so

|rn,3(w)| ≤ 8Tm exp

(
Tm

n

)
m−n nθx−2 ≤ 16

e
m−n nθx−2 eTM .
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Suppose now that x < 0. Then, we get similarly

|rn,1(w)| ≤M−n

(
1

M
m

+ 1

)θx

eT (m+M);

|rn,2(w)| ≤
Tm eT (M−m) Γ(2− θx)

2π (cosϕ)2−θx
m−n nθx−2;

|rn,3(w)| ≤ 8Tm exp

(
Tm

n

)
m−n nθx−2,

whence the result in both cases. □

Lemma 17. If n ≥ 2θρ+ 1 and w ∈ D(0, ρ), then∣∣∣∣Γ(n+ θw)

n!
− nθw−1

∣∣∣∣ ≤ B nθx−2

with B = 3
(
θρ+ 1

2

)2
e

3
2
(θρ+ 1

2
) and x = Re(w).

Proof. The easiest proof consists in using an explicit form of Stirling estimates, namely,

log Γ(z + 1) =

(
z +

1

2

)
log

(
z +

1

2

)
−
(
z +

1

2

)
+

1

2
log(2π) +

∞∑
k=1

∫ 1
2

0

log

(
1− t2

(z + k)2

)
dt.

This formula is valid for any complex number z such that Re(z) > 0. Therefore,

log Γ(n+ θw)− log(n!)− (θw − 1) log n

=

(
n+ θw − 1

2

)
log

(
1 +

θw − 1
2

n

)
−
(
n+

1

2

)
log

(
1 +

1

2n

)
− (θw − 1)

+
∞∑
k=1

∫ 1
2

0

log

(
1− t2

(n+ θw − 1 + k)2

)
− log

(
1− t2

(n+ k)2

)
dt.

By using the integral Taylor formula log(1 + z) − z = −z2
∫ 1

0
1−t

(1+tz)2
dt, one shows that the first

line is smaller than

(6 log 2− 2)
(θρ+ 1

2
)2

n
.

On the second line, the function log(1 + z) is Lipschitz with constant 4
3
for arguments with mod-

ulus smaller than 1
4
, so∣∣∣∣log(1− t2

(n+ θw − 1 + k)2

)
− log

(
1− t2

(n+ k)2

)∣∣∣∣ ≤ 4t2

3

∣∣∣∣ 1

(n+ θw − 1 + k)2
− 1

(n+ k)2

∣∣∣∣
≤ 8t2

θρ+ 1

(n+ k)3
≤ 4t2

(n+ k)2
,

and the series is smaller than 1
6

∑∞
k=1

1
(n+k)2

≤ 1
6n
. Putting everything together and simplifying a

bit the expression, we obtain:

| log Γ(n+ θw)− log(n!)− (θw − 1) log n| ≤ 3
(θρ+ 1

2
)2

n
.

The estimate follows readily by taking the exponential. □



MOD-POISSON APPROXIMATION SCHEMES AND HIGHER-ORDER CHEN–STEIN INEQUALITIES 31

Theorem 18. We place ourselves under the hypotheses (H1) and (H2), and we also assume that n is large
enough, so that the conditions of Lemmas 16 and 17 hold. Then, the rescaled moment generating series
E[wXn ] satisfies the following uniform estimate overD(0, ρ):

E[wXn ] e−θ(logn)(w−1)−(L(w)−L(1)) =

 Γ(θ)

Γ(θw)
+O

A′ +B
∣∣∣ Γ(θ)
Γ(θw)

∣∣∣
n

(1 +O

(
A′ +B

n

))−1

,

where

A′ =

(
1 +

16

e
+

Γ(2 + θρ)

eπ(cosϕ)2+θρ

)
Γ(θ) eTM ; B = 3

(
θρ+

1

2

)2

e
3
2
(θρ+ 1

2
),

and where the implied constants in the O(·)’s are both equal to 1.

Proof. This follows immediately from Lemmas 16 and 17 and from the formula E[wXn ] = fn(w)
an

=
fn(w)
fn(1)

. □

Let us explain how to use Theorem 18 in order to prove the assumption of Theorem C for a
sequence of random variables (Xn)n∈N. Since L is holomorphic on D(0, ρ) with ρ > 1, we have a
convergent power series

L(w)− L(1) = K(w − 1) +
∞∑
k=2

(−1)k−1 pk
k

(w − 1)k

for some coefficientsK and pk≥2. For the sequence (Cn)n∈N of numbers of cycles,K is given by the
assumption onP(Θ, z) and pk≥2 = 0; whereas for the sequence (Dn)n∈N of numbers of irreducible
divisors,K = Rq = Rq(q

−1) and pk = Iq(q
−k). Notice on the other hand that the infinite product

representation of the Γ function yields:

Γ(θ)

Γ(θw)
=

∞∏
n=1

(
1 +

θ

n+ θ − 1
(w − 1)

)(
1 +

1

n

)−θ(w−1)

= E(A′
θ, w − 1) eγθ(w−1) with

{
Aθ = { θ

θ+n−1
, n ≥ 1},

γθ =
∑∞

n=1
θ

n+θ−1
− θ log

(
1 + 1

n

)
.

Therefore, if the parameters pk≥2 can be written as a specialisation pk(B) with B square-summable
family, then Theorem 18 yields a mod-Poisson convergence result with Bernoulli asymptotics. The
parameters are

λn = θ log n+K + γθ,

the limiting alphabet is
A = Aθ ⊔B,

and the remainder εn is a O(n−1) with an explicit constant. In particular, εn ≪ (λn)
− r+3

2 for any
r ≥ 1, so dTV(µn, ν

(r)
n,∗) = O((λn)

− r+1
2 ) for any order of approximation r ≥ 1. Our discussion

yields a proof of Propositions 5 and 6, and it establishes the validity of our approach for these
models.

Remark 19. The analysis of the sequence (ωn)n≥1 of numbers of prime divisors follows the same
ideas as above, except that the double generating series F (z, w) needs to be replaced by the bivariate
L-series

F (s, w) =
∞∑
n=1

wω(n)

ns
=
∏
p∈P

(
1 +

w

ps − 1

)
.
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This series is convergent for any s = σ + iτ with σ > 1; in the sequel we set κ = 1 + 1
log x

. By the
Perron integral formula, if x is not an integer, then

A(x,w) =
∑
n≤x

wω(n) =
1

2iπ

∫ κ+i∞

κ−i∞
F (s, w)

xs

s
ds;

see [Ten95, Chapter II.2]. On the other-hand, if x = n is an integer, then A(n,w) = nE[wωn ]. The
Selberg–Delange method consists in:

• writing F (s, w) as a product G(s, w) (ζ(s))w, where w is arbitrary in D(0, ρ) with ρ > 1,
and G(s, w) is a biholomorphic function on the domain {s = σ + iτ |σ > 1

2
} ×D(0, ρ).

• estimating the integral A(x,w) by deforming the contour κ− i∞ → κ+ i∞ into a Hankel
contour as below:

σ

τ

1
8 1 κ

1

T

−T

−1

The form of this contour is related to the existence of a zero-free region for the Riemann ζ
function. It is the piecewise smooth path

γ = γ−4 ⊔ γ−3 ⊔ γ−2 ⊔ γ−1 ⊔ γ0 ⊔ γ+1 ⊔ γ+2 ⊔ γ+3 ⊔ γ+4
with the following parts:

– γ0 is the union of the circle with center 1 and radius 1
2 log x

, and of the two horizontal
lines 1

8
+ i0− → 1− 1

2 log x
+ i0− and 1− 1

2 log x
+ i0+ → 7

8
+ i0+.

– γ±1 is the vertical line which connects 7
8
+ i0± to 7

8
± i.

– γ±2 is the path 1− 1
8(1+log t)

± it for t ∈ [1, T ].

– γ±3 is the horizontal line which connects 1− 1
8(1+log T )

± iT to κ± iT .

– γ±4 is the vertical line which connects κ± iT to κ± i∞.
The parameter T is a large real number which can be chosen optimally according to the value of x.
One can show that if ρ = 5

4
and s is on the right of the contour γ, then:
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(Z1) for any non-trivial root z of the Riemann ζ (hence, in the critical strip 0 < Re(z) < 1),
1
z
+ 1

s−z
has positive real part.

(Z2) | log ζ(s)| ≤ log
(
1 + log+ |Im(s)|

)
+ C for some constant C.

(Z3) G(s, w) is uniformly bounded.

Following closely the argument from [Ten95, Chapter II.5], one can prove that

εn = sup
w∈D(0, 5

4
)

∣∣E[wωn ] e−(log logn+γ)(w−1) − E(A′
ω, w − 1)

∣∣ ≤ K

log n

for some explicit constant K. Note that all this computation of the remainder εn is unconditional
and does not require the Riemann hypothesis (the RH would only enable one to get a much better
constant K ). We plan to explain how to compute a good constant K in a forthcoming work,
by modifying a bit the Selberg–Delange method. The compensation argument which consists in
introducing G(s, w) = F (s, w) (ζ(s))−w and in using known estimates of the complex powers of
ζ in order to control

1

2iπ

∫
γ

G(s, w) (ζ(s))w
xs

s
ds

allows one to deal with general (bivariate) L-series F (s, w), but it leads to a loss of accuracy if
F (s, w) is explicitly known. Hence, in order to study the sequence (ωn)n∈N, one can work directly
with the seriesF (s, w) and a zero-free region of itsmeromorphic extension, and prove the analogues
of (Z1) and (Z2) directly for F (s, w). We shall show these computations from analytic number
theory in a separate work.
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