THE CUT-OFF PHENOMENON FOR BROWNIAN MOTIONS
ON COMPACT SYMMETRIC SPACES

PIERRE-LOIC MELIOT

ABsTRACT. In this paper, we prove the cut-off phenomenon in total variation distance for the Brownian
motions traced on the classical symmetric spaces of compact type, that is to say:

(1) the classical simple compact Lie groups: special orthogonal groups SO(n), special unitary groups
SU(n) and compact symplectic groups USp(n);

(2) the real, complex and quaternionic Grassmannian varieties (including the real spheres, and the
complex or quaternionic projective spaces when ¢ = 1): SO(p + ¢)/(SO(p) x SO(q)), SU(p +
7)/S(U(p) x U(q)) and USp(p + q)/(USp(p) x USp(q));

(3) the spaces of real, complex and quaternionic structures: SU(n)/SO(n), SO(2n)/U(n), SU(2n)/USp(n)

and USp(n)/U(n).

Denoting p¢ the law of the Brownian motion at time ¢, we give explicit lower bounds for drv (u¢, Haar)
if t < teut-off = alogn, and explicit upper bounds if ¢ > tcytoff. This provides in particular an answer to
some questions raised in recent papers by Chen and Saloff-Coste. Our proofs are inspired by those given
by Rosenthal and Porod for products of random rotations in SO(n), and by Diaconis and Shahshahani
for products of random transpositions in &y,
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1. INTRODUCTION

1.1. The cut-off phenomenon for random permutations. This paper is concerned with the ana-
logue for Brownian motions on compact Lie groups and symmetric spaces of the famous cut-off phenom-
enon observed in random shuffles of cards (¢f. [AD86, BD92]). Let us recall this result in the case of
“natural” shuffles of cards, also known as riffle shuffles. Consider a deck of n ordered cards 1,2,...,n,
originally in this order. At each time k > 1, one performs the following procedure:

(1) One cuts the deck in two parts of sizes m and n — m, the integer m being chosen randomly
according to a binomial law of parameter %:

1 (n
Plm=M]=— .
=211 = 5 (1)
So for instance, if n = 10 and the deck was initially 123456789X, then one obtains the two blocks

A = 123456 and B = 789X with probability 515 (%)) = 1% ~ 0.21.

(2) The first card of the new deck comes from A with probability (card A)/n, and from B with
probability (card B)/n. Then, if A" and B’ are the remaining blocks after removal of the first
card, the second card of the new deck will come from A’ with probability (card A’)/(n — 1), and
from B’ with probability (card B’)/(n — 1); and similarly for the other cards. So for instance, by
shuffling A = 123456 and B = 789X, one can obtain with probability 1/(160) ~ (0.0048 the deck
17283459X6.

Denote &,, the symmetric group of order n, and ¢*) the random permutation in &,, obtained after k
independent shuffles. One can guess that as k goes to infinity, the law P®*) of ¢(*) converges to the
uniform law U on &,,.

There is a natural distance on the set #(&,,) of probability measures on &,, that allows to measure
this convergence: the so-called total variation distance drv. Consider more generally a measurable space
X with o-field B(X). The total variation distance is the metric on the set of probability measures &2(X)
defined by

drv(n,v) = sup {|u(4) — v(A)], A€BX)} € 0,1].
The convergence in total variation distance is in general a stronger notion than the weak convergence of
probability measures. On the other hand, if i and v are absolutely continuous with respect to a third
measure dz on X, then their total variation distance can be written as a .Z'-norm:

1 du dv
drv(p,v) = §/X a2 T E(fﬂ)

It turns out that with respect to total variation distance, the convergence of random shuffles occurs
at a specific time kcusoff, that is to say that dTv(]P’(k),U) stays close to 1 for k < kcut-off, and that
dry (P*) U) is then extremely close to 0 for k > keyt-off. More precisely, in [BD92] (see also [CSSTOS,
Chapter 10]), it is shown that:

dx.

Theorem 1 (Bayer-Diaconis). Assume k = 2103? logn + 6. Then,

2—9 1 T $2
dry (PR, U)=1-2 (—) +0 (n_1/4) ,  with ¢(x) = —/ e 7 ds.
TV( ) ¢ 4\/3 ¢( ) \/ﬁ -
So for 0 negative, the total variation distance is extremely close to 1, whereas it is extremely close to 0
for 0 positive.

The cut-off phenomenon has been proved for other shuffling algorithms (e.g. random transpositions of
cards), and more generally for large classes of finite Markov chains, see for instance [DSC96, Dia96, SC97].
It has also been investigated by Chen and Saloff-Coste for Markov processes on continuous spaces, e.g.
spheres and Lie groups; see in particular [SC94, SC04, CSCO08] and the discussion of §1.4. However, in
this case, cut-offs are easier to prove for the .#?>1-norm of p;(x) — 1, where p;(x) is the density of the
process at time t and point = with respect to the equilibrium measure. The case of the .Z*-norm, which
is (up to a factor 2) the total variation distance, is somewhat different. In particular, a proof of the
cut-off phenomenon for the total variation distance between the Haar measure and the marginal law p,
of the Brownian motion on a classical compact Lie group was until now not known — see the remark
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just after [CSCO8, Theorem 1.2], and also [SC10, Conjecture 2]. The purpose of this paper is precisely
to give a proof of this .#!-cut-off for all classical compact Lie groups, and more generally for all classical
symmetric spaces of compact type. In the two next paragraphs, we describe the spaces in which we will
be interested (§1.2), and we precise what is meant by “Brownian motion” on a space of this type (cf.
§1.3). This will then enable us to explain the results of Chen and Saloff-Coste in §1.4, and finally to state
in §1.5 which improvements we were able to prove.

1.2. Classical compact Lie groups and symmetric spaces. To begin with, let us fix some notations
regarding the three classical families of simple compact Lie groups, and their quotients corresponding
to irreducible simply connected compact symmetric spaces. We use here most of the conventions of
[[el78, Hel84]. For every n > 1, we denote U(n) = U(n, C) the unitary group of order n; O(n) = O(n,R)
the orthogonal group of order n; and USp(n) = USp(n,H) the compact symplectic group of order n. They
are defined by the same equations:

vut=vtv=1, ; oo'=0'0=1, ; S8 =5*S=1I,

with complex, real or quaternionic coefficients, the conjugate of a quaternion w + ix + jy + kz being
w — iz — jy — kz. The orthogonal groups are not connected, so we shall rather work with the special
orthogonal groups

SO(n) =SO(n,R) = {0 € O(n,R) | detO =1}.
On the other hand, the unitary groups are not simple Lie groups (their center is one-dimensional), so it
is convenient to introduce the special unitary groups

SU(n) =SU(n,C) ={U € U(n,C) | detU =1}.
Then, for every n > 1, SU(n,C), SO(n,R) and USp(n, H) are connected simple compact real Lie groups,
of respective dimensions
_n(n—-1)
= 5 :
The special unitary groups and compact symplectic groups are simply connected; on the other hand, for
n > 3, the fundamental group of SO(n,R) is Z/2Z, and its universal cover is the spin group Spin(n).

dimg SU(n,C) =n* —1 ; dimgSO(n,R) dimg USp(n, H) = 2n? + n.

Many computations on these simple compact Lie groups can be performed by using their representation
theory, which is covered by the highest weight theorem; see §2.2. We shall recall all this briefly in Section
2, and give in each case the list of all irreducible representations, and the corresponding dimensions and
characters. It is well known that every simply connected compact simple Lie group is:

e cither one group in the infinite families SU(n), Spin(n), USp(n);

e or, an exceptional simple compact Lie group of type Eg, E7, Eg, Fyq or Ga.

We shall refer to the first case as the classical simple compact Lie groups, and as mentioned before, our
goal is to study Brownian motions on these groups.

We shall more generally be interested in compact symmetric spaces; see e.g [[1el78, Chapter 4]. These
spaces can be defined by a local condition on geodesics, and by Cartan-Ambrose-Hicks theorem, a sym-
metric space X is isomorphic as a Riemannian manifold to G/K, where G is the connected component
of the identity in the isometry group of X; K is the stabilizer of a point x € X and a compact subgroup
of G; and (G, K) is a symmetric pair, which means that K is included in the group of fixed points G?
of an involutive automorphism of G, and contains the connected component (G?)° of the identity in
this group. Moreover, X is compact if and only if G is compact. This result reduces the classification of
symmetric spaces to the classification of real Lie groups and their involutive automorphisms. So, consider
an irreducible simply connected symmetric space, of compact type. Two cases arise:

(1) The isometry group G = K x K is the product of a compact simple Lie group with itself, and K
is embedded into G via the diagonal map k +— (k, k). The symmetric space X is then the group
K itself, the quotient map from G to X ~ K being

G— K
g = (k1 ka) — kikyt.
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In particular, the isometries of K are the multiplication on the left and the right by elements of
K x K, and this action restricted to K C G is the action by conjugacy.

(2) The isometry group G is a compact simple Lie group, and K is a closed subgroup of it. In this
case, there exists in fact a non-compact simple Lie group L with maximal compact subgroup K,
such that G is a compact subgroup of the complexified Lie group L€, and maximal among those
containing K. The involutive automorphism 6 extends to L®, with K = G? = L? and the two
orthogonal symmetric Lie algebras (g, d.0) and ([, d.0) dual of each other.

The classification of irreducible simply connected compact symmetric spaces is therefore the following:
in addition to the compact simple Lie groups themselves, there are the seven infinite families

Gr(p+¢,9,R) =SO(p+ q)/(SO(p) x SO(q)) with p,q > 1 (real Grassmannians);
Gr(p+¢,9,C) =SU(p+ q)/S(U(p) x U(q)) with p,qg > 1 (complex Grassmannians);

Gr(p+ ¢,q,H) = USp(p + q)/(USp(p) x USp(q)) with p,q > 1 (quaternionic Grassmannians);
SU(n)/SO(n) with n > 2 (real structures on C");

USp(n)/U(n) with n > 1 (complex structures on H");

SO(2n)/U(n) with n > 2 (complex structures on R*");

SU(2n)/USp(n) with n > 2 (quaternionic structures on C*");

and quotients involving exceptional Lie groups, e.g. P?(Q) = F4/Spin(9); see [Hel78, Chapter 10]. For
the two last families, one sees U(n) as a subgroup of SO(2n) by replacing each complex number z + iy

by the 2 x 2 real matrix
AN
(= ). i

and one sees USp(n) as a subgroup of SU(2n) by replacing each quaternion number w + iz + jy + kz by

the 2 x 2 complex matrix
wHizx  y+iz)

<—y +iz w-— ix> ’ (1.2)
USp(n,H) is then the intersection of SU(2n,C) and of the complex symplectic group Sp(2n,C). We
shall refer to the seven aforementioned families as classical simple compact symmetric spaces (of type
non-group); again, we aim to study in detail the Brownian motions on these spaces.

1.3. Laplace-Beltrami operators and Brownian motions on symmetric spaces. We denote
dnk (k) or dk the Haar measure of a (simple) compact Lie group K, and dnx (x) or dx the Haar measure
of a compact symmetric space X = G/K, which is the image measure of dng by the projection map
m: G — G/K. We refer to [Hel84, Chapter 1] for precisions on the integration theory over (compact)
Lie groups and their homogeneous spaces. There are several complementary ways to define a Brownian
motion on a compact Lie group K or a on compact symmetric space G/K, see in particular [Lia04b].
Hence, one can view them:

(1) as Markov processes with infinitesimal generator the Laplace-Beltrami differential operator of the
underlying Riemannian manifold;

(2) as conjugacy-invariant continuous Lévy processes on K, or as projections of such a process on
G/K,;

(3) at least in the group case, as solutions of stochastic differential equations driven by standard
(multidimensional) Brownian motions on the Lie algebra.

The first and the third point of view will be specially useful for our computations. For the sake of
completeness, let us recall briefly each point of view — the reader already acquainted with these notions
can go directly to §1.4.

1.3.1. Choice of mormalization and Laplace-Beltrami operators. To begin with, let us precise the Rie-
mannian structures chosen in each case. In the case of a simple compact Lie group K, the opposite of
the Killing form B(X,Y) =tr(ad X o adY) is negative-definite and gives by transport on each tangent
space the unique bi- K-invariant Riemannian structure on K, up to a positive scalar. We choose this nor-
malization constant as follows. When K = SU(n) or SO(n) or USp(n), the Killing form on ¢ is a scalar
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multiple of the bilinear form X ® Y +— R(tr(XY)) — the real part is only needed for the quaternionic
case. Then, we shall always consider the following invariant scalar products on £:

(X|Y) = fﬂ—;‘ R(tr(XY)), (1.3)

with 8 = 1 for special orthogonal groups, 8 = 2 for special unitary groups and unitary groups, and g = 4
for compact symplectic groups (these are the conventions of e.g. [Lév11]). Similarly, on a simple compact
symmetric space X = G/K of type non-group, we take the previously chosen Ad(G)-invariant scalar
product (the one given by Equation (1.3)), and we restrict it to the orthogonal complement r of ¢ in g.
This ¢ can be identified with the tangent space of X = G/K at eK, and by transport one gets the unique
(up to a scalar) G-invariant Riemannian structure on X, called the Riemannian structure induced by the
Riemannian structure of G. From now on, each classical simple compact symmetric space X = G/K will
be endowed with this induced Riemannian structure.

Remark. This is not necessarily the “usual” normalization for these quotients: in particular, when G =
SO(n+1) and K = SO(n)xSO(1) = SO(n), the Riemannian structure defined by the previous conventions
on the n-dimensional sphere X = S™(R) differs from the restriction of the standard euclidian metric
of R**! by a factor v/n + 1. However this normalization does not change the nature of the cut-off
phenomenon that we are going to prove.

Remark. The bilinear form in (1.3) is only proportional to minus the Killing form, and not equal to it;
for instance, the Killing form of SO(n, R) is

(n—2)tr(XY) = —2n—1

(X1v),

and not — (X | Y'). This leads to a factor 2 between our mixing times and those of [SC94, SC04, CSCOS,
SC10]. However, the normalization of Formula (1.3) enables one to relate the Brownian motions on
the compact Lie groups to the “standard” Brownian motions on their Lie algebras, and to the classical
ensembles of random matrix theory (see the SDEs at the end of this paragraph).

The Laplace-Beltrami operator on a Riemannian manifold M is the differential operator of degree 2
defined by

Af(m)= " g9(VxVx,[(m) = Vv, x, f(m)),

1<i,j<d

where (X1, ..., Xg) is a basis of T,,,M, (g*);; is the inverse of the metric tensor (gi; = (Xi | X;)7 /)i
and VxY denotes the covariant derivative of a vector Y along a vector X and with respect to the Levi-
Civita connection. In the case of a compact Lie group K, this expression can be greatly simplified as
follows (see for instance [Lia04b, §2.3]). Fix once and for all an orthonormal basis (X7, Xs,..., X4) of £.
On another tangent space T K, one transports each X; by setting

Xi(k) = {deRi}(X;) € T K,

where R}, is the multiplication on the right by k. One thus obtains a vector field X! = % which is

left-invariant by construction and right-invariant because of the Ad(K)-invariance of the scalar product
on €. Then,

A=>" 57 (1.4)
=1

Definition 2. A (standard) Brownian motion on a compact Riemannian manifold M is a continuous
Feller process (my)icr, whose infinitesimal generator restricted to €*(M) is 3 A.

=

In the following, on a compact Lie group K or a compact symmetric space G/K, we shall also assume
that my = e or mp = eK almost surely. We shall then denote u; the marginal law of the process at
time ¢, and pf (k) = j:; (k) or pi¥(z) = j:; (x) the density of p; with respect to the Haar measure.
General results about hypoelliptic diffusions on manifolds ensure that these densities exist for ¢ > 0 and

are continuous in time and space; we shall later give explicit formulas for them (¢f. Section 2).
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1.3.2. Brownian motions as continuous Lévy processes. By using the geometry of the spaces considered
and the language of Lévy processes, one can give another equivalent definition of Brownian motions. The
right increments of a random process (g¢)ter, Wwith values in a (compact) Lie group G are the random
variables 5 = g7 1gy, so g = gs i for any times s < t. Then, a left Lévy process on G is a cadlag random
process such that:

tn—l

0 l1 :
Tay---5T¢.  are independent.

17

(1) For any times 0 = tg < t; < --- <'t,, the right increments r,f

0 lawv

(2) For any times s < t, the law of 7§ only depends on the difference ¢ — s: r{_, = r}.

Denote P, the operator on the space %(G) of continuous functions on G defined by (P f)(g) = E[f(99:)];
and u; the law of g; assuming that gy = eg almost surely. For h € G, we also denote by L;, the operator
on ¢(G) defined by Ly, f(g) = f(hg). If (g¢)ier, is a left Lévy process on G starting at go = e, then:

(1) The family of operators (P;);cr, is a Feller semigroup that is left G-invariant, meaning that
P,o Ly = Ly o P, for all h € G and for all time ¢. Conversely, any such Feller semigroup is the
group of transitions of a left Lévy process which is unique in law.

(2) The family of laws (1)ier, is a semigroup of probability measures for the convolution product
of measures
(nxv)(f) = . f(gh) du(g) dv(h).
Hence, ps * py = ps+¢ for any s and ¢. Moreover, this semigroup is continuous, i.e., the limit in
law lim;_,q ¢ exists and is the Dirac measure é.. Conversely, given such a semigroup of measures,
there is always a corresponding left Lévy process, and it is unique in law.

Thus, left Lévy processes are the same as left G-invariant Feller semigroups of operators, and they are
also the same as continuous semigroups of probability measures on GG. In particular, on a compact Lie
group, they are characterized by their infinitesimal generator

Lf(g) = tim Lf9) = 1(9)

t—00 t

defined on a suitable subspace of % (G). Hunt’s theorem (¢f. [Hun56]) then characterizes the possible in-
finitesimal generators of (left) Lévy processes on a Lie group; in particular, continuous left-Lévy processes
correspond to left-invariant differential operator of degree 2.

Assume then that (g¢)¢cr, is a continuous Lévy process on a simple compact Lie group G, starting
from e and with the additional property that (hg:h™')ier, and (g:)ier, have the same law in € (R, G)
for every h. These hypotheses imply that the infinitesimal generator L, which is a differential operator
of degree 2, is a scalar multiple of the Laplace-Beltrami operator A. Thus, on a simple compact Lie
group K, up to a linear change of time t — at, a conjugacy-invariant continuous left Lévy process is a
Brownian motion in the sense of Definition 2. Similarly, on a simple compact symmetric space G/K, up
to a linear change of time, the image (¢;/)icr, of a conjugacy-invariant continuous left Lévy process
on GG is a Brownian motion in the sense of Definition 2. This second definition of Brownian motions on
compact symmetric spaces has the following important consequence:

Lemma 3. Let py be the law of a Brownian motion on a compact Lie group K or on a compact symmetric
space G/K. The total variation distance drv(ut, Haar) is a non-increasing function of t.

Proof. First, let us treat the case of compact Lie groups. If f1, fo are in £ (K, dny), then their convo-
lution product fi * f2 is again in £ (K), with

I f1 = fall 21 (1) < il er ) | foll 20 (i) -
Now, since jts4¢ = fus* ¢, the densities of the Brownian motion also satisfy pX, = pX«p/<. Consequently,

2drv (psst, i) = 05t — Uiy = 0F = 1) % pf 21 ()

<lps = Ulzrao 19 L2 ) = llps” = Ul.21(6) = 2drv (s, )
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The proof is thus done in the group case. For a compact symmetric space X = G/K, denote p¥ the

density of the Brownian motion on G, and p;X the density of the Brownian motion on X. Since the
Brownian motion on X is the image of the Brownian motion on G by 7 : G — G/K, one has:

Ve = gk, pX(z) = / p% (gk) dk.
K

As a consequence,

P2 — Uz (x) = /G IpX i (9K) — 1| dg = /G ’/K(pfﬂ(gk) - 1)dk‘ dg

).

S/G . [pX (h~1gK) — 1)| [pf (h)| dhdg = [IpY — 1| 21(x) I1P§ | 21 () = P2 — 1]l.21(x0),
X

/Kxc(pg(h_lgk)1)pf(h)dkdh‘dg/G‘/G(pf(h_lgl()l)pf(h)dh dg

so dry (ts+t,nx ) < dpv (s, nx) also in the case of symmetric spaces. O

Remark. Later, this property will allow us to compute estimates of drv(ue,nx) only for ¢ around the
cut-off time. Indeed, if one has for instance an (exponentially small) estimate of 1 — dpy (i, ,nx) at time
to = (1 — €) teutoff, then the same estimate will also hold for 1 — dpv (pe, nx) with ¢ < ¢o.

Remark. Actually, the same result holds for the ZP-norm of p;(x) — 1, and in the broader setting of
Markov processes with a stationary measure; see e.g. [CSC08, Proposition 3.1]. Our proof is a little more
elementary.

1.3.3. Brownian motions as solutions of SDE. A third equivalent definition of Brownian motions on
compact Lie groups is by mean of stochastic differential equations. More precisely, given a Brownian
motion (k;)ier, traced on a compact Lie group K, there exists a (trajectorially unique) standard d-
dimensional Brownian motion (W;);er, on the Lie algebra £ that drives stochastic differential equations
for every test function f € €%(K) of (k¢)ier, (cf. [Lia04b]). So for instance, on a unitary group U(n,C),
the Brownian motion is the solution of the SDE

1
UOZIn y dUt:iUt'dHt—§Utdt,

where (H;)icr, is a Brownian hermitian matrix normalized so that at time ¢ = 1 the diagonal coefficients
are independent real gaussian variables of variance 1/n, and the upper-diagonal coefficients are indepen-
dent complex gaussian variables with real and imaginary parts independent and of variance 1/2n. In the
general case, let us introduce the Casimir operator

d

i=1

This tensor should be considered as an element of the universal enveloping algebra U (¢). Then, for every
representation 7 : K — GL(V'), the image of C by the infinitesimal representation dr : U(¢) — End(V)
commutes with dr(€). In particular, for an irreducible representation V', dn(C) is a scalar multiple sy idy
of idy. Assume that K is a classical simple Lie group. Then its “geometric” representation is irreducible,
SO Zle(Xi)Q = oy I, if one sees the X;’s as matrices in M(n,R) or M(n,C) or M(n,H). The stochastic
differential equation satisfied by a Brownian motion on K is then

ko=ex  :  dky =k -dB; + %k:tdt,

where B; = 2?21 W} X; is a standard Brownian motion on the Lie algebra €. The constant ap is given
in the classical cases by

n?—1 n—1 2n+1

) 7 OQso(n) = — n ;o Qsp(n) = — m

Asu(n) = — n

see [Lévll, Lemma 1.2]. These Casimir operators will play a prominent role in the computation of the
densities of these Brownian motions (cf. §2.2), and also at the end of this paper (§4.1), see Lemma 23.
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1.4. Chen-Saloff-Coste results on #?-cut-offs of Markov processes. Fix p € [1,00), and consider

a Markov process X = (2¢)ter, with values in a measurable space (X, B(X)), and admitting an invariant
probability n. One denotes ji; , the marginal law of x; assuming xy = x almost surely, and

1
d,utac P v
4 —
dy ( glea;g</‘ 1 n(dy)> ;

P(x) = {2 ifp=1,

with by convention

+oo ifp>1,
when (4 , is not absolutely continuous with respect to n. This is obviously a generalization of the total
variation distance to the stationary measure. In virtue of the remark stated just after Lemma 3, ¢ — d¥ (%)
is always non-increasing. A sequence of Markov processes (%("))HGN with values in measurable spaces
(X B(X™)),en is said to have a maz-ZLP-cut-off with cut-off times (or mizing times, or times to
equilibrium) (t™)), ey if

N0\ > (14e)t(m) n—00 \ t<(1—e)t(m) SR,

lim ( sup df(ae<">)> =0 lim ( inf df(ae<">)) = limsup dh(X™) = M >0

for every € € (0,1) — usually M will be equal to 2 or +00. A generalization of Theorem 1 ensures that

31

, Slogn
€ [1,400). We refer to [SC97] (in particular §2.4) for a detailed analysis of this notion in the case of

finite Markov chains, and for the connections with the notions of spectral gap or hypercontractivity, and

with the logarithmic Sobolev and the Nash inequalities.

these .ZP-cut-offs occur for instance in the case of riffle shuffles of cards, with (™) = for every

In [CSCO08, Theorems 3.3 and 4.2], Chen and Saloff-Coste shown that a general criterion due to
Peres ensures a .ZP>!-cut-off for a sequence of reversible Markov processes; but then one does not know
necessarily the value of the mixing time t(™. Call spectral gap A(X) of a Markov process X the largest
¢ > 0 such that for all f € £2(X,n) and all time ¢, [[(P; — ) f||lz2(x) < e ||| 22(x), where (P;)ier,
stands for the semigroup associated to the Markov process.

Theorem 4 (Chen-Saloff-Coste). Fizp € (1,00). One considers a family of Markov processes (X™)pen
with self-adjoint operators P, and spectral gaps A", and one assumes that lim;_, o df(f{(")) = 0 for every
n. For ey > 0 fized, set
t) = inf{t : d (™) < g0}
The family of Markov processes has a max-ZP-cut-off if and only if Peres’ criterion is satisfied:
lim A ™ = yoo.

n—oo

In this case, the sequence (t("))neN gives the values of the cut-off times. A lower bound on t(™ also
ensures the cut-off phenomenon; but then, the mixing time remains unknown. Nevertheless, an important
application of this general criterion is (see [CSC08, Theorem 1.2]):

Corollary 5 (Saloff-Coste). Consider the Brownian motions traced on the special orthogonal groups
SO(n,R), with the normalization of the metric detailed in the previous paragraph. They exhibit for every
p € (1,00) a cut-off with t") asymptotically between 2logn and 4logn — notice that t) depends a priori
on p.

Indeed, the spectral gap stays bounded and has a known non-negative limit (which we shall compute
later, see the table on page 23), whereas for any p € [1, +00), (™) was shown in [SC94, Theorem 1.2] and
[SC04, Theorems 1.1 and 1.2] to be a O(logn), and more precisely

e in the window [(2 — o(1)) logn, (4 + o(1)) log n] for simple compact Lie groups;
e in the window [(1 — o(1))logn, (2 + o(1))log n] for simple compact symmetric spaces.

The proofs of these estimates were relying on precise logarithmic Sobolev inequalities and arguments of
hypercontractivity for the simple compact Lie groups. The lower bound in the case of compact Lie groups
was also known based on simple arguments of representation theory (¢f. [SC94, §7]), that we shall use
and generalize at the end of this paper (see Section 4). In [SC10, Conjecture 2|, it is also conjectured
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that the correct value of the mixing time for p € [1, +00) is the lower bound of Corollary 5, that is to say
that for all simple compact Lie groups,

) ~ 2 logn.
The main result of our paper is a proof of this conjecture, for every classical simple compact Lie group or

classical simple compact symmetric space, and with a cut-off time equal to 2logn or to logn depending
on the type of the space considered.

1.5. Statement of the main results and discriminating events.

Theorem 6. Let p; be the marginal law of the Brownian motion traced on a classical simple compact
Lie group, or on classical simple compact symmetric space. There exists positive constants o, Yy, Ya, C,
C and an integer ng such that in each family, for all n > ny,

Ve € (0,1/4), drv(ue, Haar) > 1 — ift=a(l—e¢)logn; (1.6)

nve

Ve € (0,00), drv(us, Haar) < nae/d

ift=a(l+e¢) logn. (1.7)

The constants «, v, and v, are determined by the type of the space considered, and then one can make
the following choices for ng, ¢ and C':

| K or G/K |ﬂ|a|7b|’ya|n0|c|0|
SO(n, R) 1[2]2]2]10]36]6
SU(n, ) 5224|2810
USp(n, H) 2212353
Gr(n, ¢,R) T[1]1[1]10]32]2
Gr(n,q,C) sl1 (1122 32]2
Gr(n, q,H) 41111113 ]16]| 2
SO@n,R)/Un,C) |L|L1]2|1]10] 8] 2
SUm,C)/SOmR) 2122|2243
SU@2n,C)/USp(m,H) [2 |12 | 2| 2 |22] 8
USp(n,H)/Un,C) |4 |1|2]| 1|3 |17]| 2
drv (e, Haar)
1
1 |
|
|
|
0 t t
a logn

FIGURE 1. Aspect of the function ¢t — dpy(u:, Haar) for the Brownian motion on a
classical simple compact Lie group or on a classical simple compact symmetric space.

As the function ¢ — drv(ue, Haar) is non-increasing in ¢, the aspect of this function in the scale
t < logn is then always as on Figure 1. The constants ¢ and C' in Theorem 6 can be slightly improved
by raising the integer ng; and the restriction n > ng will only be used to ease certain computations and
to get reasonable constants ¢ and C'. On the other hand, notice that the constant « is equal to 2 for Lie
groups, and to 1 for symmetric spaces.

Remark. A proof of this result for compact symmetric spaces of rank 1 (the spheres and projective spaces)
is given in [SC94], where the case of tori is also studied (as far as we know these were the only known
cases of Theorem 6). As the case of tori is quite instructive, let us detail it a bit before giving the scheme
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of proof of Theorem 6 (again, see also [SC10]). The Fourier expansion of the heat kernel of the circle

T =R/27Z is
[

pt ZL' e 2t = e 2
(see the examples after Theorem 11), so on the n-dimensional torus T,

2 o0

pelan,.yz) = > e AW g 1), = Y (card{v € Z | o> = m}) e ™.
VEL™ m=1

For m fixed, the number of integer-valued n-dimensional vectors with euclidian norm equal to \/m can
clearly be bounded by 2™ times the number of ways of splitting m into n non- negative integers, that is to
say 2™ ("‘;’fl—l) ~ (2n)™. As a consequence, the m-th term of the series is of order — if t = (1 +e)logn,
and ||ps —1]|%. — 0 when t = (1+¢)logn and n goes to infinity, at speed roughly of order n==. We shall
explain later how to deduce from this the cut-off in Z? for any p € [1,400) (see the proof of Theorem
7), so basically this is the proof of the cut-off phenomenon for Brownian motions on tori. Theorem 6 says
that exactly the same happens for simple compact Lie groups; and the spirit of the proof is the same, but
the quantities card{v € Z" | ||v]|*> = m} get replaced by far more complex expressions, that are related
to Weyl’s formula for dimensions of irreducible representations of compact Lie groups.

A result similar to Theorem 6 has been proved by Rosenthal and Porod in [Ros94, Por96a, Por96b| for
random products of (real, or complex, or quaternionic) reflections. Our proofs are really inspired by their
proofs, though quite different in the details of the computations. For the upper bound (1.7), it has long
been known that if A(X,,) denotes the spectral gap of the heat semigroup associated to the infinitesimal
generator L = %A, then for n fixed, the total variation distance drv (i, nx, ) decreases exponentially
fast (see e.g. [Lia04al):

drv (pe,nx,) < C(Xp) e M,
Consider now the family of spaces (X, )nen, and assume that C(X,) = Cn®, and that A\(X,,) stays
almost constant to A — this last condition is ensured by the normalization (1.3). Then, one obtains for
t=(1+¢)2 logn the bound

C
drv (ue,nx,) <~

Thus in theory, the upper bound (1.7) follows from the calculations of the constants C(X,,) and A\(X,,)
in each classical family. It is very hard to find directly a constant C'(X,,) that works for every time ¢.
But on the other side, by using the representation theory of the classical simple compact Lie groups (cf.
Section 2), one can determine series of negative exponentials that dominates the total variation distance;
see Proposition 12. In these series, the “least negative” exponentials give the correct order of decay
A(Xy). It remains then to prove that the other terms can be uniformly bounded. This is tedious, but
doable, and these precise estimates are shown in Section 3: we shall adapt and improve the arguments
of [Ros94, Por96a, Por96b, CSSTOS].

A combination of the upper bound (1.7) (which improves by a factor 2 the previously known results)
and of the lower bound of Corollary 5 suffices to prove Theorem 6. Nonetheless, we give in Section 4 a
new proof of the lower bound (1.6), that do not require arguments of analysis on Riemannian manifolds
(log-Sobolev estimates, etc.), and that is more closely related to the proof of the upper bound. This new
proof relies on discriminating events, that have a probability close to 1 with respect to a marginal law
e With ¢ < teutoft, and close to 0 with respect to the Haar measure. For instance, in the case of riffle
shuffles, the sizes of the rising sequences of a permutation enable one to discriminate a random shuffle
of order k < kcut-off from a uniform permutation; see [BD92, §2]. In the case of a Brownian motion on a
classical compact Lie group, this is the trace of the matrices that allows to discriminate Haar distributed
elements and random Brownian elements before cut-off time. Indeed, consider for instance a random
unitary matrix U, of size n, taken under the Haar measure or under the marginal law u; of the Brownian
motion at a given time ¢. Then, tr U, is a complex valued random variable, and we shall see that

E [|tr U, — m|2] <1,
where m is the mean of tr U,; and this, for any n > 1 and any time ¢t > 0 if U,, ~ u;. However, m =0

under the Haar measure, whereas [m| > 1 for ¢ < tcutoff- S0, the trace of a Brownian unitary matrix
before cut-off time will never “look the same” as the trace of an Haar distributed unitary matrix.
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FIGURE 2. Aspect of the density of the trace tr U,, of a random unitary matrix, with
U, ~ Haar for the left peak, and U,, ~ p<¢ for the right peak (using Mathematica).

cut-off

Up to a minor modification, the same argument will work for special orthogonal groups and compact
special orthogonal groups — in this later case, the trace of a quaternionic matrix of size n is defined as
the trace of the corresponding complex matrix of size 2n, c¢f. the remark at the end of §1.2. Over the
classical simple compact symmetric spaces, the trace of matrices will be replaced by a zonal spherical
function “of minimal non-zero weight”; these minimal zonal spherical functions are also those that give
the order of decay of the series of negative exponentials that dominate dpvy (u:, Haar) after the cut-off
time. This argument for the lower bound was already known, and it has been used successfully in [SC94]
to prove the cut-off phenomenon over spheres, and the lower bound for compact Lie groups; we have
extended it to the case of general compact symmetric spaces.

An important consequence of Theorem 6 and of its proof is that one also has a max-#2P-cut-off for
every p € [1, 00|, and now with a known value of the mixing time.

Theorem 7. For every p € [1,+00], the family of Brownian motions (X,)nen traced on simple compact
Lie groups (K, )nen in one of the three classical families (respectively, on simple compact symmetric spaces
of type non-group (X, )nen in one of the seven classical families) has a maz-£P-cut-off. If p € [1,400),
it is with respect to the sequence t™ = 2logn (respectively, t(") = log n). If p = 4o0, it is with respect
to the sequence t") = 4logn (respectively, t(") = 2logn).

Proof. Since the Brownian motions considered are invariant by action of the isometry group, the max-
ZLP-cut-offs are equivalent to simple .ZP-cut-offs for Brownian motions started from a fixed point. Then,
the proof follows quite directly from Theorem 6 and from the previous works of Chen and Saloff-Coste.
Thus,

e Theorem 6 clearly treats the case p = 1.

e The upper bound of Theorem 6 will be shown by using Cauchy-Schwarz inequality and by esti-
mating the .#%2-norm of |p; — 1|. Thus, from the very proof of (1.7), we shall get the same upper
bounds for the .#?-mixing times, and since they correspond to the lower bounds proven in [SC04,
Theorem 1.1 and 1.2], the case p = 2 will also be treated. Actually, it will be easy to get back
these .#2-lower bounds (for Lie groups and for symmetric spaces) directly from Proposition 12,
by looking at the term of the series expansion of ||p;—1 ||22 that corresponds to the discriminating
weight in the sense of Lemma 13 and of Section 4.

e From [CSCO08, Theorem 5.3, we then get the two following facts: there is a ZP-cut-off for every
p € (1,+00] (because there is one for p = 2, and the heat kernels are obviously self-adjoint), and
the value of the mixing time in £ is twice the value of the mixing time in .#2. In particular,
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the case p = 400 is treated. Again, the computations of Section 3 allows one to recover this
case, since the dominating series that will appear there have expansions almost identical to the
expansions of |pi(e) — 1| = dg°.

e By Jensen’s inequality, the cut-off times are increasing in p (¢f. the comparison theorem of mixing
times [CSCO08, Proposition 5.1]), and they are here equal for p = 1 and p = 2, so they stay the
same in between, and the case p € (1,2) is also treated.

e Finally, the only difficult case is when p € (2,+00). By using the fact that the logarithmic
Sobolev constant is uniformly bounded from below for simple compact Lie groups and symmetric
spaces, it follows again from the case p = 2, see the arguments of [SC94, §5 and §6, in particular
the third statement in Theorem 6.1] and of [SC97, Theorem 2.4.10].

The last case p € (2,+00) is the only place in this paper where advanced arguments of analysis of heat
kernels on Riemannian manifolds are used and required. O

1.6. Organization of the paper. In Section 2, we recall the basics of representation theory and har-
monic analysis on compact symmetric spaces, with a particular emphasis on explicit formulas since we
will need them in each case. All of it is really classical and of course well-known by the experts, but it
is necessary in order to fix the notations related to the harmonic analysis of the classical compact Lie
groups and compact symmetric spaces. In Section 3, we use the explicit expansion of the densities to
establish precise upper bounds on ||p: — 1|| 22(x,n); by Cauchy-Schwarz we obtain similar upper bounds
on drv(pt,n). The main idea is to control the growth of the dimension of an irreducible spherical rep-
resentation involved in the expansion of p; when the corresponding highest weight grows in the lattice
of weights (§3.2). The crucial fact, which was apparently unknown, is that precisely at cut-off time, the
quantity

{(D)‘)2 e~ tenorBn(N) in the group case,

D> e~ teuton Bn(X) in the non-group case,

stays bounded for every n and every A; D* being the dimension of the irreducible or spherical irreducible
representation of label A, and —B,,(\) the associated eigenvalue of the Laplace-Beltrami operator. Com-
bining this argument with a simple analysis of the generating series

1
POREAE | Pt

A partition i>1

this is sufficient to get a correct upper bound after cut-off time.

Section 4 is then devoted to the (new) proof of the lower bounds. We use in each case a “minimal” zonal
spherical function (the trace of matrices in the case of groups; see §4.1), and we compute its expectation
and variance under Haar measure and Brownian measures (§4.2). A simple application of Bienaymé-
Chebyshev’s inequality will then show that the chosen zonal spherical function is indeed discriminating.
An algebraic difficulty occurs in the case of symmetric spaces G/K of type non-group, as one has to
compute the expansion in zonal functions of the square of the discriminating zonal function, and this
is far less obvious than in the case of irreducible characters. The problem is solved by writing the
discriminating zonal function in terms of the coefficients of the matrices in the isometry group G, and
by computing the joint moments of these coefficients under a Brownian measure. The combinations of
negative exponentials appearing in these formulas are then in correspondence with the expansions of the
squares of the discriminating zonal spherical functions.
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2. FOURIER EXPANSION OF THE DENSITIES

In this section, we explain how to compute the density pX (k) or pi¥(z) of the marginal law p; of
the Brownian motion traced on a classical compact symmetric space. This computation is done in an
abstract setting for instance in [Lia04a] or [Appl1], and we shall give at the end of this section its concrete
counterpart in each classical case, see Theorem 11. The main ingredients of the computation are:

(1) Peter-Weyl’s theorem and its refinement due to Cartan, that ensures that the matrix coeflicients
of the irreducible representations of K (respectively, of the irreducible spherical representations
of G) form an orthogonal basis of £2(K,n) (respectively, of Z?(G/K,n)); see §2.1.

(2) the classical highest weight theory, that describes the irreducible representations of a compact
simple Lie group and give formulas for their dimensions and characters; see §2.2.

On these subjects, we refer to the two books by Helgason [Hel78, Hel84], and also to [BD85, Var89, FHI1,
Far08, GWO09] for the representation theory of compact Lie groups. We shall only recall what is needed
in order to have a good understanding of the formulas of Theorem 11. We shall also fix all the notations
related to the harmonic analysis on (classical) compact symmetric spaces.

2.1. Peter-Weyl’s theorem and Cartan’s refinement. Let K be a compact (Lie) group, and K be
the set of isomorphism classes of irreducible complex linear representations of K. Each class A € K is
finite-dimensional, and we shall denote V* the corresponding complex vector space; p* : K — U(V?)
the representation morphism; D* = dimc V* the dimension of the representation; x*(-) = tr p*(-) the
character; and Y*(-) = x*(-)/D? the normalized character. An Hermitian scalar product on End(V?*) is
(M| N)gpaery = D> tr(MTN). For every class A and every function f € £%(K), we set

o) = /K F(R) 0 () dis

this is an element of End(V?). We refer to [BDS85, Far08] for a proof of the following results.

~

Theorem 8 (Peter-Weyl). The (non-commutative) Fourier transform F : f ~— Y7\ & f(A) realizes an
isometry and an isomorphism of (non-unital) algebras between £?*(K,n) and D.cr End(V?). So, if
f € L*(K), then

k) =3 D ur () = 3 Do ( / F(h1k) oA (h) dh) (2.1)
AeK K

ek
1910 = 35 [TV, = 30 2P (FO1FO) (22)
pYe AR

where f(X) = F=(N) =[5 F(k™) p*(k) dk.

Assume now that f is in .Z?(K,n)X, the subalgebra of conjugacy-invariant functions. The Fourier
expansion (2.1) and the Parseval identity (2.2) become then

)=’ RUIRKE) 5 Mf e = D A

\eK \eRK

and in particular, the irreducible characters x* form an orthonormal basis of #2(K)¥X. Cartan gave a
statement generalizing Theorem 2.1 for .#%(G/K,n), where X = G/K is a simply connected irreducible
compact symmetric space. Call spherical an irreducible representation (V*,p*) of G such that (V)X
the space of vectors invariant by p*(K), is non-zero. Then, it is in fact one-dimensional, so one can find
a vector e* of norm ||e*||? = 1, unique up to multiplication by z € T, such that (V)X = Ce*. Denote
then ¢*(G/K) the set of functions from G to C that can be written as

flg) = folg) = (v] p*(9)(eY)) withve V. (2.3)

Such a function is right- K-invariant, so it can be considered as a function from G/K to C.
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Theorem 9 (Cartan). Let GE be the set of spherical irreducible representations of G. The space
ZL*(G/K,n) is isometric to the orthogonal sum @, gzx €*(G/K). This decomposition corresponds to
the Fourier expansion

flgK)= > D tr( [ f(h~'gK)p*(h)dh (2.4)
AeGK </G )

for f € Z*(G/K).

In each space ¥*(G/K), the space of left K-invariant functions is one-dimensional, and it is generated
by the zonal spherical function ¢*(gK) = (e* ’ p*(g)(e*)) . These spherical functions form an orthogonal
basis of .#?(X)% when A runs over spherical representations. So, a K-invariant function writes as

flgK) = Y_ D¢ Mf7) o MgK),

AeGK

where 02 (f) = [/ f(2) (@) dw = (*| [ f(9K) p*(9)(e*) dg).

To conclude with, notice that the decomposition of Theorem 9 is the decomposition of £?(G/K,n)
in common eigenspaces of the elements of 2(G/K), the commutative algebra of G-invariant differential
operators on X. Thus, there are morphisms of algebras ¢* : 2(G/K) — C such that

L(fY) = MD) £
for every A € GX every L € 2(G/K) and every f» € €*(G/K).

2.2. Highest weight theorem and Weyl’s character formula. The theory of highest weights of
representations enables us to identify K or GK , and to compute the coefficients ¢*(A) associated to the
Laplace-Beltrami operator. If G is a connected compact Lie group, its maximal tori are all conjugated,
and every element of K is contained in a maximal torus 7. Denote W = Norm(T)/T the Weyl group
of G, and call weight of a representation V' of G an element of t*, or equivalently a group morphism
w:T — Tsuch that V¥ ={v eV |VteT, t-v=uw(t) v} #0. Every representation V of G is the
direct sum of its weight subspaces V¢, and this decomposition is always W-invariant. Besides, the set of
all weights of all representations of G is a lattice Z{) whose rank is also the dimension of 7. We take a
W-invariant scalar product on the real vector space RQ2 = ZS) ®z R, e.g., the dual of the scalar product
given by Equation (1.3), where R{2 is identified with t* by mean of w — d.w for w € ZQ. We also fix a
closed fundamental set C' for the action of the Weyl group on RS2. We call dominant a weight w that falls
in the Weyl chamber C'. A root of G is a non-zero weight of the adjoint representation. The set of roots
® is a root system, which means that certain combinatorial relations are satisfied between its elements.
There is a unique way to split ® in a set ¢ of positive roots and a set &_ = —P, such that

C={zecRQ|Vaecd,, (z|a)>0}.

Call simple a positive root « that cannot be written as the sum of two positive roots; and simple coroot
an element & = % with « simple root. Then, a distinguished basis of the lattice Z2 is given by the
fundamental weights wi,wa,...,w,, the dual basis of the basis of coroots. Hence, the sets of weights

and of dominant weights have the following equivalent descriptions:

ZQéZwi{xeRQ|Va€®, <<Z||Z; ez};
(z]| @)

e

ka
Dom(ZQ):@Nwi:{xeRQ | Va € @, aTa) GN}.
i=1

Suppose now that G is a semi-simple simply connected compact Lie group, and consider the partial
order induced by the convex set C' on Rf). Recall that the Weyl group W is a Coxeter group generated
by the symmetries along the simple roots a1, ae, ..., a,; so in particular, it admits a signature morphism
e: W — {£1}. Weyl’s theorem ensures that every irreducible representation V' of G has a unique highest
weight wq for this order, which is then of multiplicity one and determines the isomorphism class of V.
Moreover, the restriction to 7" of the irreducible character associated to a dominant weight A is given by

o Sew @) or 4 p)()
VO =T e

(2.5)
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where p is the half-sum of all positive roots, or equivalently the sum of the fundamental weights. This

formula degenerates into the dimension formula

[loco, A+rla)
Haeliur <p| O[>

These results make Equation (2.1) essentially explicit in the case of a conjugacy invariant function on a
semi-simple compact Lie group K; in particular, we shall see in a moment that the highest weights are
labelled by partitions or similar combinatorial objects in all the classical cases.

D) =dim V> =

(2.6)

The case of a compact symmetric space X = G/K of type non-group is a little more involved. Denote
6 an involutive automorphism of a semi-simple simply connected compact Lie group G, with K = G?.
Set P ={g € G|0(9) = g~'}; one has then the Cartan decomposition G = KP. In addition to the
previous assumptions, one assumes that the maximal torus 7' C G is chosen so that §(T) =T and PNT
is a maximal torus in P (one can always do so up to conjugation of the torus). Then, Cartan-Helgason
theorem ([Hel84, Theorem 4.1]) says that the spherical representations in GX are precisely the irreducible
representations in G that are trivial on K NT = T?. This subgroup T of T ~ T" is always the product of
a subtorus T*<" with an elementary abelian 2-group (Z/27); this will correspond to additional conditions
on the size and the parity of the parts of the partitions labeling the highest weights in GK (in comparison
to (A?), cf. §2.3. The corresponding zonal spherical functions ¢* do not have in general an expression as
simple as (2.5); see however [HS94, Part 1]. For most of our computations, this will not be a problem,
since we shall only use certain properties of the spherical functions — e.g., their orthogonality and the
formula for the dimension D* — and not their explicit form; see however §4.1.

The last ingredient in the computation of the densities is the value of the coefficient ¢*(A) such that

A(fY)
=)
for every function f* either in #*(K) = Vect({k — (p*(k))i;, 1 < i,j < D?}) in the group case,
or in ¥*(G/K) in the case of a symmetric space. In the group case, by comparing the definition of
the Casimir operator (1.5) with the definition of the Laplace-Beltrami operator (1.4), one sees that
2 (A) is also ky, the constant by which the Casimir operator C' acts via the infinitesimal representation

dp* : U(€) — End(V?) — cf. the remark at the end of §1.3. This constant is equal to
iy = — (A 2] V), (2.7)

see [Appll, Equation (3.4)] and the references therein, or [Lévll] and [Far08, Chapterl2| for a case-by-
case computation. These later explicit computations follow from the following expressions of the Casimir
operators (see [Lévll, Lemma 1.2]):

By — By \®?
o= 3 (25

1<i<j<n
1< 1 & By —E\®  [iEy; +iE; \ ©
Csuim) = — )1 ®iE; — — iF; ®@iEj; e — ="
e ngl o n2ijzz1l - ”+1<;<n< 2n > +< 2n

1 . . . :
Cusp(n) = o Z iE; @iEy; + jEi; @ jEi; + kEy; @ kEy;
i1

S (E Ej->®2+ <1Eij +1Eji>®2+ <jEij +jEji>®2 N (kEij +kEji)®2
1<igi<n Vian Van Van Vian

where E;; are the elementary matrices in M(n, k) with £ = R, C or H — beware that the tensor product
are over R, since we deal with real Lie algebras.

In the case of a compact symmetric space, the same Formula (2.7) gives the action of AG/K on
¢*(G/K). Indeed, remember that the Riemannian structures on G and G//K are chosen in such a way
that for any f € €°°(G) that is right K-invariant, AS/5(f)(gK) = A%(f)(g). Consider then a function
in ¢)(G/K), viewed as a function on G. In Definition (2.3), f appears clearly as a linear combination
of matrix coefficients of the spherical representation A, so the previous discussion holds.
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2.3. Densities of a Brownian motion with values in a compact symmetric space. Let us now
see how the previous results can be used to compute the density pX (k) or pX () of a Brownian motion
on a compact Lie group or symmetric space. These densities are in both cases K-invariant, so they can
be written as

pf(k) =Y ax(®)RMk) or pf(x)= ) ax(t)MN(x)
AeK AeGK
by using either Peter-Weyl’s theorem in the case of conjugacy-invariant functions on K, or Cartan’s

theorem in the case of left K-invariant functions on G/ K. We then apply % = % 1o to these formulas:
Apy* (k) KA A dp{* (t) dax(t)
— = —= ay(t k)= —"—<*= —— X" (k
5 ZQGA()X(> o AthU’
AR reR
and similarly in the case of a compact symmetric space. Thus, dad#t(t) = Bax(t) and ax(t) = ax(0) edt

for every class X\. The coefficient ay(0) is given in the group case by

ax(0) = (DV)? /K MK Bore () = (D)2 R (exc) = (D)2

and in the case of a compact symmetric space of type non-group by

ax(0) = D* < /G P (@)() be (dg>> — D) $(e) = D*.

Proposition 10. The density of the law p: of the Brownian motion traced on a classical simple compact
Lie group K is

Ha€<1>+ <P | a)

and the density of the Brownian motion traced on a classical simple compact symmetric space G/K is

Py () = Z e (20N (Hae(I>+ alulid a>> o (z).

= Maco, (2] )

pi (k)= e sy (
ek

Haco, A+ O‘>> )

Let us now apply this in each classical case. We refer to [BD85], [FH91, Chapter 24] and [Hel78,
Chapter 10] for most of the computations. Unfortunately, we have not found a reference which describes
explicitly the spherical representations; this explains the following long discussion. For convenience, we
shall assume:

e n > 2 when considering SU(n), SU(n)/SO(n), SU(2n)/USp(n) or SU(n)/S(U(n — q) x U(q));
e n > 3 when considering USp(n), USp(n)/U(n) or USp(n)/(USp(n — ¢) x USp(q));
e n > 10 when considering SO(n), SO(2n)/U(n) or SO(n)/(SO(n — q) x SO(q)).

For SU(2n)/USp(n) and SO(2n)/U(n), the restriction will hold on the “2n” parameter of the group of
isometries. These assumptions shall ensure that the root systems and the Schur functions of type B, C
and D are not degenerate, and later this will ease certain computations. For Grassmanian varieties, we
shall also suppose by symmetry that ¢ < |%].

2.3.1. Special unitary groups and their quotients. In SU(n,C), a maximal torus is

n
T = {diag(zl,ZQ, yZn) | Vi, z € Tand [z = 1} =T"/T,
i=1
and the Weyl group is the symmetric group &,,. The simple roots and the fundamental weights, viewed
as elements of t*, are a; = e* — e**! and

n—1

w; = (elJr...Jrei),1(ei+1+...+e")
n

n
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for i € [1,n — 1], where €’ is the coordinate form on t = iR" defined by e’(diag(ity, ita, . . .,it,)) = t;.
The dominant weights are then the

w
(M = X)@1 4+ An1@no1 = Ael + o e — [ Wn,

where A = (\y > Ay > -+ > \,_1) is any partition (non-increasing sequence of non-negative integers)
of length (n — 1); it is then convenient to set A, = 0. The half-sum of positive roots is given by
2p=2(w1+ 4+ w@n-1) = y_ 1, (n+1—2i)e’, and the scalar product on t* is % times the usual euclidian
scalar product (e’ | /) = d;;. So,

. . A+n7]
Ai — A —1 det(z;” »
D)= H - - +.J ; X’\(k):s,\(zl,...,zn) = (% - )lgz,]ﬁn’
1<i<j<n J = det(z;" " )1<i,j<n
where z1,..., 2, are the eigenvalues of k; thus, characters are given by Schur functions. The Casimir

coefficient is
n

_m:_ﬁﬁz)\u(n“—m)x
nim )

n2

where [A] = 37" | \; denotes the size of the partition.

Though we have chosen to examine only the Brownian motions on simple Lie groups, the same work
can be performed over the unitary groups U(n,C), which are reducible Lie groups. Irreducible repre-
sentations of U(n,C) are labelled by sequences A = (Ay > --- > \,) in Z", the action of the torus T™
on a corresponding highest weight vector being given by the morphism A(z1,...,2,) = zf‘l ooz, The
dimensions and characters are the same as before, and the Casimir coeflicient is % S A+ (n+1-2i) ;.

For the spaces of quaternionic structures SU(2n, C)/USp(n, H), the involutive automorphism defining
the symmetric pair is 0(g) = Jo, GJ5,., where Jp, is the skew symmetric matrix

0 1
-1 0
J2n =
0 1
-1 0
of size 2n. The subgroup T? is the set of matrices diag(z1, zfl, ooy Zny 2 L), with all the z;’s in T. The

dominant weights X trivial on T correspond then to partitions will all parts doubled:

Vi S [[1,71]], )\21',1 = )\2»L'.

In the spaces of real structures SU(n,C)/SO(n,R), 6(g) = g. The intersection of the torus with
SO(n,R) is isomorphic to (Z/27)"/(Z/2Z), and therefore, by Cartan-Helgason theorem, the spherical
representations correspond to partitions with even parts:

Vi e [1,n], A\ =0mod 2.

Finally, for the complex Grassmannian varieties SU(n, C)/S(U(n—¢,C) x U(g, C)), it is a little simpler
to work with U(n,C)/(U(n — ¢,C) x U(g,C)), which is the same space. An involutive automorphism
defining the symmetric pair is then 6(g) = K,, 4 g K, 4, where

Tq
Kn,q = In—2q
T

q

and T, is the (g x ¢)-anti-diagonal matrix with entries 1 on the anti-diagonal. The subgroup 7 is then
the set of diagonal matrices diag(z1,. .., 2q, Zg+1,- - -, Zn—q, Zqs - - - , 21) With the z;’s in T. The dominant
weights A trivial on T correspond then to partitions of length ¢, written as

A=A A 0,000, = Ag, .o —A1).
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2.3.2. Compact symplectic groups and their quotients. Considering USp(n,H) as a subgroup of SU(2n, C),
a maximal torus is

T= {diag(zl,zfl, e Zny 2 ) ‘ Vi, z; € 'IF} ,
and the Weyl group is the hyperoctahedral group 9, = (Z/2Z)1S,,. The simple roots, viewed as elements
of t*, are o; = e’ —e'*! for i € [1,n — 1] and v, = 2e™; and the fundamental weights are w; = el +- - -+’
for i € [1,n]. Here, e‘(diag(it1, —it1, ..., it,, —it,)) = t;. The dominant weights can therefore be written
as Adiel + -+ \,e”, where \ = (A1 > A2 > -+ > \,) is any partition of length n. This leads to

D — H )\i_)\j+j_i H )\i+)\j+2n+2—i—j_

bl

4 M2 —i—j
1<i<j<n 7 1<i<j<n + J
Aj+n—j+1 —(Aj+n—j+1)
A —1 _1y _ det(z;” —z )1<i,j<n
X (k) =sea(z1, 21 5oy Zny 2y ) = ] ——y ,
det(z; -z )1<i,j<n

+1 +1
1

where 277, ..., z-! are the eigenvalues of k viewed as a matrix in SU(2n,C). The Casimir coefficient is

—ha = e S N 4 (2042 - 20) A

In the spaces of complex structures USp(n, H)/U(n, C), 6(g) = g (inside SU(2n, C)). The subgroup 7%
is isomorphic to (Z/27)", so the spherical representations correspond here again to partitions with even
parts. On the other hand, for quaternionic Grassmannian varieties USp(n, H)/(USp(n—gq, H) x USp(q, H)),
a choice for the involutive automorphism is 6(g) = Loy ¢ g Lan,q, Where

T,

L2n,q = ’ ’
Ty

IQn—4q

T, appearing ¢ times (with all the computations made inside SU(2n,C)). Then, T? is the set of diag-
onal matrices diag(z1,2; ", 27", 21, . - .,zq,z;l,zgl,zq,@qﬂ,z;qarl, ooy Zny 2 ) with the 2;’s in T. The
dominant weights (1, ..., \,) trivial on T? write therefore as partitions of length ¢ with all parts doubled:

A= (AL AL A Ag 0, .., 0).

2.3.3. Special orthogonal groups and their quotients. Odd and even special orthogonal groups do not
have the same kind of root system, and on the other hand, SO(n,R) is not simply connected and has for
fundamental group Z/2Z for n > 3. So in theory, the arguments previously recalled apply only for the
universal cover Spin(n). Nonetheless, most of the results will stay true, and in particular the labeling of
the irreducible representations; see the end of [BD85, Chapter 5] for details on this question. In the odd
case, a maximal torus in SO(2n + 1, R) is
T = {diag(Rgl, ... Ry, 1) | Vi, Ry, = (S50 "5 ) € SO(2,R)},

and the Weyl group is again the hyperoctahedral group $,. The simple roots are a; = e* — e't! for
i € [1,n—1], and v, = €"; and the fundamental weights are w; = el + -+ + ¢’ for i € [1,n — 1], and
@, = 3(e* +---+e"). Here,

i 3 0 - 0 — n —
e (diag ((4, 0*) - (an 0"),0)) = ai

and it corresponds to the morphism diag(Ry,,...,Rg,,1) — e'%. The dominant weights are then the
Arel + -+ M, where A = (A > \g > .-+ > ),) is either a partition of length n, or an half-partition
of length n, where by half-partition we mean a non-increasing sequence of half-integers in N’ = N+ 1/2.

So, one obtains
D> — H )\i_)\j+j_i H )\i+)\j+27’b+1—i—j_
j—1 2n+1—1—j ’

1<i<j<n 1<i<j<n

Aj+n—j+1/2 —(A\j+n—j+1/2)
det(z;’ — W )1<ij<n

det(z?_j+1/2 _ Zi_(n_j+1/2))

XA(k) = sbA(zl,zl_l, ey 2, 2L 1) =

n )

1<i,j<n

+1 +1
1

where 2777, ..., 2, ", 1 are the eigenvalues of k. The Casimir coeflicient associated to the highest weight A

is —k)\ = Tlﬂ S AT+ (2n+ 11— 20)\,.
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In the even case, a maximal torus in SO(2n,R) is

T = {diag(Rel’ .. _’Ren) Vi, Réi — (cos@i 7sin6i) c SO(?,R)}

sinf; cos#@;

and the Weyl group is 9,7, the subgroup of $,, of index 2 consisting in signed permutations with an even
number of signs —1. The simple roots are a; = ¢! — e**! for i € [1,n — 1] and o, = e"~! + ¢€"; and the
fundamental weights are @; = e' +---+ ¢’ fori € [1,n — 2] and @wy—1,, = (e + -+ €' £ e"). The
dominant weights are then A\jel +---+ X\, 1”1 +e\,e", where ¢ is a sign and (A\; > --- > \,) is either
a partition or an half-partition of length n. So,

)

D/\: H /\if/\j+j*i/\i+>\j+2n7i7j

1<i<i<n j—1 2n—1i—j
A _ —1 1
X (k) = sda(z1,2] "5-evy2ny 2y )
Nj+n—j —(\j+n—j Nj+n—j —(\j+n—j
_ det(ziﬁn T - 2 (ot J))léi,jﬁn eret(zz‘ﬁn ! tz (o J))léi,jﬁn
det(z?fj +Zi_(n_J))1§i,j§n ,

and —ky = 5= > 1 A2 + (2n — 20)\;.

2n

For real Grassmannian varieties SO(n, R)/(SO(n—g, R)xSO(g, R)) and for spaces of complex structures
SO(2n,R)/U(n,C), one cannot directly apply the Cartan-Helgason theorem, since SO(n, R) is not simply
connected. A rigorous way to deal with this problem is to first look at quotients of the spin group
Spin(n). For instance, consider the Grassmannian variety of non-oriented vector spaces Gri(n, q,R) ~
Spin(n)/(Spin(n — q) x Spin(q)); Gr(n,¢,R) is a 2-fold covering of Gri(n,q,R). The defining map of
Grt (n, ¢, R) corresponds to the involution of SO(n,R) given by 6(g) = Ny, 4 g Ny g, where

T

Ny =
q T2

In—2q

with ¢ blocks Ty. Then 77 is (Z/27)7x (SO(2, R))L21=% 50 the dominant weights trivial on 7 write as A =
(M,--3Aq,0,...,0), with A; =0 mod 2 for all ¢ € [1,¢]. They are therefore given by an integer partition
of length ¢, with all parts even. Now, for the simply connected Grassmannian variety Gr(n, ¢, R), there are
twice as many spherical representations, as T is in this case isomorphic to ((Z/27)9/(Z/27)) x TL31=4,
instead of (Z/27)9 x TL31=4. Therefore, the condition of parity is now

Vi,j€[1l,q], A\ =\; mod 2.

Similar considerations show that for the spaces SO(2n,R)/U(n,C), the dominant weights A trivial on the
intersection T are given by

A= (Alv)\lv"W)\ﬂ’m)\m) or A:(AlaAlv"'aAvamv())

that is to say a partition with all non-zero parts that are doubled.

2.3.4. Summary. Let us summarize the previous results (this is redundant, but very useful in order to
follow all the computations of Section 3). We denote: 2),, the set of partitions of length n; 3, the set of
non-decreasing sequences of (possibly negative) integers; %@n the set of partitions and half-partitions of
length n; 29),, the set of partitions of length n with even parts; 29),, H 1 the set of partitions of length
n with odd parts; and 2)9),, the set of partitions of length n and with all non-zero parts doubled. It is
understood that if ¢ is too big, then \; = 0 for a partition or an half-partition A of prescribed length.
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Theorem 11. The density of the law u; of the Brownian motion traced on a classical simple compact
Lie group writes as:

Z e—ﬁ (-%Jrzj‘;f )\f+(n+1—2i))\i> H Ni—XNj+j—i

j*i S,\(k’);

AEYn—1 1<i<j<n

e~ T M2 [T Ai = Aj+Jg—i sa(k);

| — 1
AE3n 1<i<j<n J

Z o i Ty A (2nt2-20)); H A At H Mt A +2nt2-im sea(k);
11 G—i 11 n+2—-1—j 7
AED,, 1<i<j<n 1<i<j<n

__t n 2 —92\\s )\—)\+j—l )\'+)\‘+2n+1—i—j
Tnrs 2oie N H(2nt1-20)N; % J i j by (k):
> e 11 j—i 11 2n+1—i—j sba(k);

AELV 1<i<j<n 1<i<j<n

n . Ai—=Xi+j—1)N+ N +2n—i—7
Z e~ T Lity M H(En—20A; H ( J+j. Z)( +.] —|—'n F) (sdx (k) + sdex(k))
o (j —i)(2n —i—j)
AELY, 1<i<j<n

respectively for special unitary groups SU(n,C), unitary groups U(n,C), symplectic groups USp(n,H),
odd special orthogonal groups SO(2n + 1,R), and even special orthogonal groups SO(2n,R). In this last
case, eEA = (A1,..., An—1, —An), and it is agreed that sdy + sdcy stands for sdy if A, = 0.

We denote generically ¢x(x) a zonal spherical function associated to a spherical representation (the
function depends of course of the implicit type of the space considered). The density of the law p; of the
Brownian motion traced on a classical simple compact symmetric space writes then as follows:

Z e—QLn (-%Jrzj‘;f ,\§+(n+1—2i),\i> H i — A —|—.j —i

P oa(2);

A€2Y) -1 1<i<j<n

Z o (— ‘éf+2?z;2A?+(2n+1—2i)xi) H Ai — A +_j — i

— oa(2);
AEDY2n-1 1<i<j<2n J
Z e_% 3:1 A?+(n+1_2i)ki H )\l - )\] +] -1 Qﬁ)\(l'),
XD, 1<i<j<n J =t

Z o—1a Tiy ATH(2nt2-20)N H w H )\i+;‘j‘:22n+.2—'i—j oa(x);
j—i nremt—)

XE2), 1<i<j<n 1<i<j<n

Y e Simorestzn [ Ai = Aj+j—i 11 AitAj+2n+2-i—j bx (2);

A€V V24 1<i<j<n J=i 1<i<j<n n+2—i—j
Z o1 i A+ (2n—20)N; H N =X +i—) N+ X +2n—i—j) 4(2):
L4 (G—9)2n—1i-j) )
AEDYn 1<i<j<n

— = A2 (2n+1-2i)X; Ai—Aj+j—1 Ai+Aj+2n+1—i—j .
A4n+2 i=1 "'
2 11 j—i 11 m+1—i—j o (@);

A€29) L1291 1<i<j<n 1<i<j<n

Z o~ T AH(2n—20)N H (Ai = Ay +j: - z:)()\i + )fj +'2n —i—17) o2 ()
o (j —i)(2n —i—j)
€29 129 H1 1<i<j<n
for real structures SU(n, C)/SO(n,R), quaternionic structures SU(2n,C)/USp(n,H), complex Grassman-
nian varieties Gr(n,q,C), complex structures USp(n,H)/U(n,C), quaternionic Grassmannian varieties

Gr(n, q,H), complex structures SO(2n,R)/U(n,C), odd real Grassmannian varieties Gr(2n+1,¢,R) and
even real Grassmannian varieties Gr(2n, ¢, R).
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Remark. In the case of complex Grassmannian varieties, it is understood that A\,4+1-; = —\; as explained
before. We have not tried to reduce the expressions in the previous formulas, so some simplifications can
be made by replacing the indexing sets of type 22), or 92, by 9,. On the other hand, it should be
noticed that in each case, the “degree of freedom” in the choice of partitions labeling the irreducible or
spherical representations is exactly the rank of the Riemannian variety under consideration, that is to
say the maximal dimension of flat totally geodesic sub-manifolds.

Ezample (Brownian motions on spheres and projective spaces). Let us examine the case ¢ = 1 for
Grassmannian varieties: it corresponds to real spheres S*(R) = SO(n + 1,R)/SO(n,R), to complex
projective spaces P"(C) = SU(n + 1,C)/S(U(n,C) x U(1,C)) and to quaternionic projective spaces
P™(H) = USp(n + 1,H)/(USp(n, H) x USp(1, H)). In each case, spherical representations are labelled by
a single integer k € N. So, the densities are:

S™(R =\ kG-t (n— 24 k)]
Pl >(x)zze n Ty W@mnn . e(@); (2.8)
k=0
P (C = ke ((n— 14 k)2
k=0
n k(k+2n+1) ¢t 2 1(2n — 1 |
pr Ze sgmpe ot RI@n 14 RL o) o) 6 (). (2.10)

Cn+ 1) (2n— D! (k+ 1) k!

In particular, one recovers the well-known fact that, up to the aforementioned normalization factor (n+1),
the eigenvalues of the Laplacian on the n-sphere are the integers k(k + n — 1), each with multiplicity

(n—24k)!

DR (2k+n—1);

see e.g. [SC94, §3.3].

Ezample (Torus and Fourier analysis). Take the circle T = U(1,C) = S!(R). The Brownian motion on T

is the projection of the real Brownian motion of density pf(0) = 2;7# e=0%/2t by the map 6 — €. Thus,
T, 10 > R 2T o~ (er2mm? 2
p; (e') = 2m Z p (04 2mm) = - Z e 2% = tS(Gt)
m=—0oQ m=—0oQ
The series S(6, ) is smooth and 27-periodic, so it is equal to its Fourier series Y o ¢, (S(t)) €M, with
2
Z (9+2m7) —kio de i e___kly d i e_% .
2r 2w \/ 2m
m=—oo

Thus, the density of the Brownian motion on the circle with respect to the Haar measure 51_0 is

(o] 2 o0 2
_ k7t i _ k<t
g ez Ml =149 g e 2 coskd,
k=—0o0 k=1

Since s(k)(eie) = e this is indeed a specialization of the second formula of Theorem 11, for U(1,0).

Ezample (Brownian motion on the 3-dimensional sphere). Consider the Brownian motion on USp(1, H),
which is also SU(2, C) by one of the exceptional isomorphisms. The specialization of the first formula of
Theorem 11 for SU(2,C) gives

3

pSUe0) i o k<k+2>t 1) sin(k +1)0
k=0

sin 0

if e are the eigenvalues of g € SU(2,C). It agrees with the example of [Lia04a, §4], and also with
Formula (2.8) when n = 3, since the group of unit quaternions is topologically a 3-sphere.
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Remark. The previous examples show that the restrictions n > ny are not entirely necessary for the
formulas of Theorem 11 to hold. One should only beware that the root systems of type By, C1, D; and
D5 are somewhat degenerated, and that the dominant weights do not have the same indexing set as for
Bn>2 or C,>2 or D,,>3. For instance, for the special orthogonal group SO(3,R), the only positive root
is e!, and the only fundamental weight is also e'. Consequently, irreducible representations have highest
Welghts ke! with k € N; the dimension of the representation of label k is 2k + 1, and the corresponding

sm(kJrl) —i0

character is again —; - if e and e~ are the non-trivial eigenvalues of the considered rotation. So

SOB,R)( \ _ = LICESIT ok + sin(k + 1)0
by (9) kZ:O e (2k +1) T end

if g is a rotation of angle # around some axis.

3. UPPER BOUNDS AFTER THE CUT-OFF TIME

Let p be a probability measure on a compact Lie group K or compact symmetric space G/ K, that is
absolutely continuous with respect to the Haar measure 7, and with density p. Cauchy-Schwarz inequality

ensures that
2
saryen? = ([ 19e) = 11de) < [ o) 1P o= 9= 10,
b'e

The discussion of Section 2 allows now to relate the right-hand side of this inequality with the harmonic
analysis on X. Let us first treat the case of a compact Lie group K. If one assumes that p is invariant by
conjugacy, then Parseval’s identity (2.2) shows that the right-hand side is >, 7 | x*(p — 1)|2. However,
by orthogonality of characters, for any non-trivial irreducible representation of K — i.e., not equal to
1x : k€ K+ 1 — one has

A _ A _ A 1x —1 _
A0 = [P wdh = [P0 dk =

On the other hand, for any measure x on the group, x** (1) = [ x* (k) p(dk) = [, p(dk) = 1. Hence,
the inequality now takes the form

!
ddry(p,nr)? < Z X (o)
ek

where the / indicates that we remove the trivial representation from the summation. Similarly, on a com-
pact symmetric space G/K, supposing that p is K-invariant, Parseval’s identity reads ||p — 1||??2(G/K) =

Y NeGK D*|¢*(p — 1)|2. However, for any non-trivial representation ),

2= (| [ Aaedg)=o

Indeed, using only elementary properties of the Haar measure, one sees that 1 fG p(g)dg = 0,
because it is a projector and it has trace x*(1) = 0. So again, the previous inequahty can be snnphﬁed
and it becomes

ddry (s, meyK)? Z D |¢* (p)
AeGK
In the setting and with the notations of Proposition 10, a bound at time ¢ on 4 drv (¢, N )? (respectively,
on 4dyv(pe, MG /K )?) is then

/ /
Z e tA+20[A) (D*)? ;  respectively, Z e tA+20[N) pA
Y AeGE

Proposition 12. In every classical case, 4 drv (ug, Haar)? is bounded by Z/AeWn An(N) e tBe ) where

the indexing sets W,, and the constants B, ()\) are the same as in Theorem 11, and A,()\) = (D*)? for
compact Lie groups and D> for compact symmetric spaces.
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This section is now organized as follows. In §3.1, we compute the weights that minimize B,,()); they
will give the correct order of decay of the whole series after cut-off time. In §3.2, we then show case-by-case
that all the other terms of the series S, (t) of Proposition 12 can be controlled uniformly. Essentially, we
adapt the arguments of [Ros94, Por96a, Por96b]|, though we also introduce new computational tricks. As
explained in the introduction, the main reason why one has a good control over S,,(¢) after cut-off time is
that each term T, (\,t) = A, (\) e"tB»(N) of the series S, (t) stays bounded when t = teytof, for every n,
every class A and in every case. We have unfortunately not found a way to factorize all the computations
needed to prove this, so each case will have to be treated separately. However, the scheme of the proof
will always be the same, and the reader will find the main arguments in §3.2.1 (for symplectic groups
and their quotients), so he can safely skip §3.2.2-3.2.4 if he does not want to see the minor modifications
needed to treat the other cases.

3.1. Guessing the order of decay of the dominating series. Remember the restriction n > 2
(respectively, n > 3 and n > 10) when studying special unitary groups (resp., compact symplectic groups
and special orthogonal groups) and their quotients. We use the superscript x to denote a set of partitions
or half-partitions minus the trivial partition (0,0, ...,0). The lemma hereafter allows to guess the correct
order of decay of the series under study.

Lemma 13. Fach weight Anin indicated in the table hereafter corresponds to an irreducible representation
in the case of compact groups, and to a spherical irreducible representation in the case of symmetric
spaces of type non-group. The table also gives the corresponding values of A, and B,. In the group case,
By,(Amin) s minimal among {B,(X\), A € W)}.

K or G/K Amin By (Amin) An(Amin)
SO(2n + 1,R) (1,0,...,0), T (2n +1)2
SO(2n,R) (1,0,...,0), 2l 4n?
SU(n, C) (1,0,...,0)_1 1- % n?
USp(n, H) (1,0,...,0), 2t 4n?
Gr(2n +1,¢,R) (2,0,...,0), 2 2n2 + 3n

Gr(2n,q,R) (2,0,...,0), 2 2n? +n—1
Gr(n,q,C) (1,0,...,0)4 2 n?—1
Gr(n, ¢, H) (1,1,0,...,0)2 2 (n—1)(2n+1)
SO(2n,R)/U(n,C) | (1,1,0,...,0), 2n=1) n(2n —1)
SU(n,C)/SO(n,R) | (2,0,...,0),_; | 2e=bn+2) n(ntl)
SU(2n,C)/USp(n, H) | (1,1,0,...,0)9,; | Z=LEHD (2 — 1)
USp(n,H)/U(n, C) (2,0,...,0), ntl) n(2n +1)

Remark. For symmetric spaces of type non-group, one can also check the minimality of B, (Amin), except
for certain real Grassmannian varieties Gr(n, ¢, R). For instance, if ¢ = 1, then (1), labels the geometric
representation of SO(n,R) on C™, which has indeed an invariant vector by SO(n — 1,R) x SO(1,R); and
the corresponding value of B(}) is (n — 1)/n < 2. Fortunately, Amin, though not minimal, will still yield
in this case the correct order of decay of the series S(t).
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Remark. To each “minimal” weight Ay, corresponds a very natural representation. Namely, for a
special orthogonal group SO(n,R) (respectively, a compact symplectic group USp(n,H)), the mini-
mizer is the “geometric” representation over C" (respectively C?") corresponding to the embedding
SO(n,R) < SO(n,C) — GL(n,C) (respectively USp(n,H) — SU(2n,C) — GL(2n,C)). For a spe-
cial unitary group SU(n,C), one has again the geometric representation over C", and its compose with
the involution k + (k%)~! corresponds to the label (1,...,1),_1, which also minimizes B, ()\). The case
of spherical minimizers is more involved but still workable: we shall detail it in Section 4.

Proof. To avoid any ambiguity, we shall use indices to precise the length of a partition or half-partition.
Let us first find the minimizers of B, () in the group case:

e SU(n): one has to minimize

)\2 n—1 1 n—1
|| +Z)\2 n+1—2i))\i:g Z ()\—)\ <Z’"" )\—)\l+1)>:A+B
1=1

1<i<j<n
over P _;. In B, at least one term is non-zero, so
B> ( min z(n—z)) =n-1,
i€[1,n—1]
with equality if and only if A = (1,0,...,0)p,—1 or A = (1 ,...,1)n 1. In both cases, A is then
equal to 2—. However, an is also the minimum value of A over 9% _;. Indeed, there is at least

one index l € [1,n — 1] such that A\, > X\;11. Then all the (\; — \;)? Wlth 1<land j>1+1 give
a contribution at least equal to 1, and there are I(n — [) such contributions. Thus

— -1
A lln=1) 5" ’
n n
and one concludes that min B, () is obtained only for the two aforementioned partitions, and is

equal to %(Amin + Buin) =1 — n—12

e SO(2n): the quantity to minimize over $9)% is

n n—2
<Z A?) + <Z i(2n—1—14)(\ — )\i+1)> +n(n—1A\_1=A+B+C,
i=1 i=1
again with A, B and C non-negative in each case. Only A involves )\, so a minimizer satisfies
necessarily A, = 0 (partitions) or A, = 3 (half-partitions). In the case of partitions, a minimizer
of B+ C'is (1,0,...,0),, which gives the value min;cp ,—174(2n — 1 — i) = 2n — 2. The same
sequence minimizes A over ¥, so the minimal value of A + B + C over non-trivial partitions
is 2n — 1 and it is obtained only for (1,0,...,0),. On the other hand, over half-partitions, the
minimizer is (%, ceey 2) giving the value
n nin—1)  n(2n 1).

4 2 4
Since we assume 2n > 10 and therefore n > 5, this value is strictly bigger than 2n — 1, so the
only minimizer of B, (A) in 9% is (1,0,...,0),.

e SO(2n + 1): exactly the same reasoning gives the unique minimizer (1,0,...,0),, with corre-
sponding value 2n for A+ B+ C = (2n+ 1) B,(A).

e USp(n): here one has only to look at partitions, and the same reasoning as for SO(2n) and
SO(2n + 1) yields the unique minimizer (1,0,...,0),, corresponding to the value 2n + 1 for
2n By (A).

The spherical minimizers are obtained by the same techniques; however, some cases (with n or ¢ too
small) are exceptional, so we have only retained in the statement of our Lemma the “generic” minimizer.
The corresponding values of A, (\) and B, (\) are easy calculations. O

Suppose for a moment that the series S, (¢) of Proposition 12 has the same behavior as its “largest
term” A, (Amin) e tBn(Amin) - We shall show in a moment that this is indeed true just after cut-off time
(for n big enough). Then, S, (¢) is a O(-) of
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o n2e~* for classical simple compact Lie groups;

e n2e~ % for classical simple compact symmetric spaces of type non-group.

2e7t and a =1 in the case n?e~2*. Under the

Set then ¢, . = a (1 +¢) logn, with a = 2 in the case n
assumption Sy, (£) ~ Ay (Amin) et Bn(Amin) “one has S, (t,.c) = O(n™2). Thus, the previous computations

lead to the following guess: the mixing time is
e 2logn for classical simple compact Lie groups;

e logn for classical simple compact symmetric spaces of type non-group.

3.2. Growth of the dimensions versus decay of the Laplace-Beltrami eigenvalues. The estimate
Sp(tne) ~ Ap(Amin) € te BnN) = O(n=2%) might seem very optimistic; nonetheless, we are going to prove
that the sum of all the other terms A,, () e~tnc 52N in S, (¢) does not change too much this bound, and
that one still has at least S(tn) = O (n_g) . We actually believe that at least in the group case, the
exponent 2¢ is good, cf. the remark before §3.1 — the previous discussion shows that it is then optimal.

Suppose that one can bound A, (\) e~ BN by ¢(n)Al, where |)| is the size of the partition and
c(n) is some function of n that goes to 0 as n goes to infinity (say, Cn=%¢). We can then use:

Lemma 14. Assume z < % Then, the sum over all partitions ), M, which is convergent, is smaller
than 14 5x. Consequently,
Z zlA < 5z.

A€EDn
A£(0,...,0)

Proof. The power series P(z) = Y, 2l = T[22~ = 1+ 2 + 222 + 323 + 52* + -+ has radius of
convergence 1, and it is obviously convex on R, . Thus, it suffices to verify the bound at = 0 and 2 = 1

3
However,

1 1
PO)=1=1+(5x0) ; P(§)§3.463§1+(5x§). 0

With this in mind, the idea is then to control the growth of the coefficients A,,(\), starting from the trivial
partition (0,...,0). This is also what is done in [Por96a, Por96b], but the way we make our partitions
grow is different. The simplest cases to treat in this perspective are the compact symplectic groups and
their quotients.

3.2.1. Symplectic groups and their quotients. Set t, . = 2(1 4 €)logn; in particular, ¢, o = 2logn. We
fix a partition A € 9),,, and for k < A, we denote p;,, the quotient of the dimensions D?* associated to
the two rectangular partitions

(ky...,k)n and (k—1,...,k—1),. (3.1)
Using the formula given in §2.3 in the case of compact symplectic groups, one obtains:

2k+2n+2—-i—3j 2 2
n = — = I+ 0—F——F—< P R e———
Pk, H 2k +2n—i—j H +2k+2n—17]_eXp Z 2k+2n—1i—j

1<i<j<n 1<i<j<n 1<i<j<n

The double sum can be estimated by standard comparison techniques between sums and integrals.
Namely, since z,y — m is convex on {(x,y) |z > 0, y > 0, 2k + 2n > x + y}, one can
bound each term by

. —— S S
2k+2n—1i—3j [i—L,i+4]x[i—1.5+3] 2k+2n—x—y

oL
We use this bound for non-diagonal terms with indices 7 < j, and for diagonal terms with 7 = j, we use
the simpler bound

n—1

= 1 1 1
L = Hypn1 — Hy1 < — +log(k+n—1) —logk
;k+n—z‘ 2 Fru ktn—1 = Hy—1 < - 4 log(k +n — 1) —log
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where H,, denotes the n-th harmonic sum. So,

1
108 i, < Z 2k+2n71 <Hk+n 1= e 1+// 2k+2nfx—ydxdy

1<i<j<n
1
< E—l—log(k—i—n—l)—logk
+ (2k+2n—1)log(2k +2n — 1) + (2k — 1) log(2k — 1) —2(2k +n — 1) log(2k + n — 1).

On the other hand, the same transformation on partitions makes —t, o B, () evolve by —(2k + n) logn.
So, if n} ,, is the quotient of the quantities (D*)? e~ " Ba(N) with A as in Equation (3.1), then

2k 1
log g, < — +nlogn+E+log(k:+n—1)—1ogk
+ (2k+2n —1)log(2k +2n — 1) + (2k — 1) log(2k — 1) — 2(2k + n — 1) log(2k + n — 1).
Suppose k > 2. Then, one can fix n > 3 and study the previous expression as a function of k. Its
derivative is then always negative, so log i, < logns ,, which is also always negative. From this, one
deduces that .
DX e~ 5" Ba() < Nim

for any rectangular partition (A, ..., An)n; indeed, the left-hand side is the product of the contributions
Ne,n for k in [1,A,]. However, 7, is also smaller than 1: in this case, the dimension is given by the

exact formula
1 2n + 2
D(l,...,l)n _ C tn —
Abntt n+2\n+1)’

S0 M,n = Catp41 e logn which can be checked to be smaller than 1 for every n > 3. So in fact,

for any rectangular partition (A, ..., An)n.

The previous discussion hints at the more general result:

Proposition 15. In the case of compact symplectic groups, at cut-off time,

0 B3 < 14
=73

for any integer partition X of length n (not only the rectangular partitions).

DY e~

Alp1t+ k

A1

1 2 3 I ol+1 n

FIGURE 3. One makes the partitions grow layer by layer, starting from the bottom.



THE CUT-OFF PHENOMENON FOR BROWNIAN MOTIONS ON COMPACT SYMMETRIC SPACES 27

Proof. We fix | € [1,n — 1], and the idea is again to study the quotient pj; of the dimensions associated
to the two partitions

(k4 XNty b+ XNt M40 -5 )n and (B—=T14+XNgq, .o B =14+ XNg1, N1, An)ns (3.2)

where k is some integer smaller than A; — A\;;1 — in other words, the n — [ last parts of our partition
have already been constructed, and one adds k to the [ first parts, until £ = A\; — A\;11; see Figure 3.

The transformation on partitions described by Equation (3.2) makes the quantity —t,, o B, (\) change
by fw logn. We shall prove that this variation plus log py,; is almost always negative. For
convenience, we will treat separately the cases [ = 1 or 2 and the case [ > 3; hence, suppose first that
I € [3,n —1]. The quotients of Vandermonde determinants can be simplified as follows:

n

71—‘[ E+j—14XNp1— A E+Xpi+A+2n+1—35 H 2k +2 41+ 2n+2—i—j
Piet = ktj—l—14A1— Nkt gt N +2n+1—j—1 2%+ 2\ L2 —i—j

j=l+1 1<i<j<l
Notice that the second product py ; (2) in this formula is very similar to pg n; the main difference is that

indices 4, j are now smaller than [ (instead of n). Hence, by adapting the arguments, one obtains

2 1
log py1,(2) < Z m <Hyyn1—Hpinj—1+ //[l e m dx dy
2 2

1<i<j<l
< — +log(k" +n—1) —log(k' +n—1)+ (2K + 2n — 1) log(2k' + 2n — 1)
n—

+ (2K +2n — 20— 1)log(2k' +2n — 21 — 1) — 2(2K' +2n — 1 — 1) log(2k’ +2n — 1 — 1)
where k' stands for k + \j11. So, if (n1.;)? is the quotient of the quantities (D*)2 e~t»0 Bn(N) with X as in
Equation (3.2), then logny; < log 7k, + log py.1,(1), where log 7y ; is given by

12K +2n — 1)

G LS | -

2n ogn + k' 4+n—1
+ (2k" 4+ 2n — 1) log(2k" + 2n — 1) + (2" +2n — 21 — 1) log(2k' +2n — 21 — 1)
— 22K +2n —1—1)log(2k' +2n — 1 — 1),

and py; (1) is the first product in the expansion of py ;. Let us analyze these two quantities separately.

+log(k' +n —1) —log(k' +n —1)

o log7i;: here the technique is really the same as for logny ,. Namely, with n and [ fixed, log
appears as a decreasing function of x = &/, because its derivative with respect to x is

[ logn 1 1 1
— — _l’_ —
n (x+n—-0% z+n—-1 z4+n-1
+2(log(2z + 2n — 1) + log(2z + 2n — 21 — 1) — 2log(2z 4 2n — [ — 1)).

A upper bound on the first line is —(l_l)% < 0 (remember that n > 3 and therefore logn > 1),
and the second line is negative by concavity of the logarithm. From this, one deduces that
lognk,; < log 1,1, and we shall use this estimate in order to compensate the other part of log ny ;:

. (2 242n—1 1
log e, < — ( vt 2:; z )1Ogn+m‘f‘bg(v‘f‘n)_bg(v‘i‘n-f—l—l)
+(2v+2n+1)log2v+2n+1) + (2v+2n — 21+ 1) log(2v + 2n — 20 + 1)
—22v+2n—1+4+1)log(2v+2n—1+1)

where v stands for A\j41.
e log py 1 (1) in the product py (1), each term of index j writes as
(K +n)P = Oy +nt1=P (W +n)P= Qe tnt1—j)
W+ =12 =y +n+ 1=~ W+ =12 = et + 1 )2
k+j—-1 E'+2n+1—3
T k4+j-l-1kK'+2n+1—-j5—-1
with & = k + 2X\;4+1 = k + 2v; and multiplying all these bounds together, one gets
(k+n-—1) (k—1)! K" +2n-0! (K" +n-=10)
PLO) S T hrn—1—1) (W +n)! (& +2n—20)
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Again, this is decreasing in k, so

vt 141 (2u4n—1+1)
PR = 0 =D v+ n+ ) (2v+2n— 20+ 1)

Recall the classical Stirling estimates: for m > 1,
1 '=ml L 1 log v ! ith 0 < <
ogm!=m ogm+§ ogm —m + log 277—}—% —Tm, with 0<r, < 3603
It enables us to bound log py,; (1) by the sum of the following quantities:

* A=2u+2n—I1+1)log2v+2n—I+1)+ 2v+n—-I1+1)log2v+n—1+1)
—2v+n+1)log(2v+n+1) — (2v+2n — 21+ 1)log(2v + 2n — 20 + 1).

* B=1(log(2v+2n —1+41)+log(2v+n —1+1) —log(2v +n + 1) — log(2v + 2n — 21 + 1)),
which is non-positive by concavity of the logarithm.

* C'=nlogn —llogl — (n—1)log(n —1).

*x D = Z(logn — logl — log(n — 1)). This is non-positive unless n = [ + 1 — recall that we

assume for the moment ! € [3,n — 1]. In that case, it is smaller than ﬁ

_ 1 (1 1 _ 1 1 1 I 1
* E=13 ( I~ ol T %oF2a—l41 T Zodn—IF1  durnil 2U+2n—2l+1)'

_ 1 (2 1 1 1
* = 360 (l_3 + (n—=10)3 + (2v+n+1)3 + (2v+2n72l+1)3)'

The sum of the two last terms EF' = E + F happens to be negative. Indeed, E and F are
decreasing in v (we use the convexity of x — 1_12 to show that ‘fl—f < 0), so it suffices to check the
result when v = 0. Then, with [ fixed,

1 1 1 " 1 n 1 1 1
Il n—-10l 2n—1l+1 n—-Il+1 n+1 2n—-2[+1

PR S S — !
360 \13  (n—=03 (n+1)3 (2n—-20+1)3

is decreasing in n, hence smaller than its value when n = [+1. So, it suffices to look at EF(I+1,1),
which is now increasing in [, but still negative. Thus, in the following, we shall use the bound

1
l%%um§A+C+D§A+C+%72

Adding together the bounds previously demonstrated, we get

(20 +2 4 2n— 1) .
2n 2n—2 v4+n+1-1
+2u+2n+1)log2v+2n+1)— 2v+2n—1+1)log(2v +2n — 1+ 1)

+@2u+n—I1+1)log2v+n—-1+1)— (2v+n+1)log2v+n+1)
+ nlogn —llogl — (n —1)log(n —1).

log i, < — logn + +log(v+n)—log(v+n+1-1)

By concavity of x log x, the sum of the second and third rows is non-positive. What remains is decreasing
in [ and in v, and when [ = 3 and v = 0, we get

3 1 1 n n
2 = flog [ —3)log [ —— ) — 3log3
mz%”+2n2+n2+"%(n2)+m’ )%(nB) °8

which is maximal for n = 5, and still (barely) negative at this value. Thus, we have shown so far that
Nk < 1 for any k, any [ € [3,n — 1], and any partition A that we fill as in Figure 3.
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When [ =1 or [ = 2, the approximations on logn,; that we were using before are not good enough,
but we can treat these cases separately. When [ =1,

+k+n Hk—i—j—l-i—)\Q—)\ k+X+X+2n+1—-73

P Nt htn—1 kv 24N kit +2n—j
k+n sz—i—j—lkz—i—Qn—i—l—j k+2n—1
Tktn-141k+j-2 k+2n—j N k ’
k+2 —1 n—
N < Le—%ﬁbgn'
k
If kK = 1, which only happens once when one makes the partition grow, then the bound above is

I eIz logn < 2. On the other hand, if ¥ > 2, then the bound is decreasing in k and therefore
2n+43
smaller than (n + %) o~ 5" logn < 1. So, one also has 73,1 < 1 for any k but & = 1, where a correct

bound is 2. Similarly, when [ = 2,

)\3+k+n 2)\3+2k+2n711—[k+‘]*1+>\3 )\jk+)\3+)\j+2n+lfj

P2 Ntk tn-225+2k+2n -3 MR8 N N kb A r2n— 1
< k+n 2k+2n711—[k+j71k+2n+17] k+2n—-2k+2n—-12k+2n—-1
Tktn-22k+2n-3 fLlk+j-3k+2n—1- k k+1 2k+2n-3
k+2n—2k+2n—-1 2k—|—2n—1 _2n42k-2 0,
N2 < e " 8n,
: k k+1 2k+2n-—3

Again, the last bound is decreasing in k, smaller than 2 +
k = 2. Hence, g2 < 1 unless k = 1, where a correct bound i
once whence making the partition grow)

% < % when £ = 1 and smaller than 1 when
is % (and again this situation occurs at most

Conclusion: every quotient 7y satisfies 75, < 1, but the two exceptions: £k =1 and [ = 1 or 2. The

product of the bounds on these two exceptions is 2 x Z = %, so for every partition A, one has indeed

n Al—Ai41 0

_”“B()\)_H H Mot < — 3
=1 k=1

Remark. A small refinement of the previous proof shows that the worst case is in fact the partition
(2,1,0,...,0), — by that we mean that any other partition has quotients py; that are smaller. Its
dimension is provided by the exact formula

8n(n? —1)
3 )

so one can replace the bound 13—4 of Proposition 15 by %.

D =

The upper bound (1.7) is now an easy consequence of Lemma 14 and Proposition 15. For any partition
A, notice that

n n

1 . 1 1« A
Bn(\) > %;(%H—m)xi = %; i2n4+1—3) (M — A1) > Egz (N = Aig1) = -
From this, one deduces that in the case of compact symplectic groups,
320 36
S, (tn _ D/\ 2 \—tn,e Bn(\) 75\/\|logn 0ey b
(tne) = Y (DY)?e Ze Som S

xeDx /\62)*

if one assumes that n% < % (in order to apply Lemma 14). By Proposition 12, one concludes that

USp(n,H
dTVp( )(M2(1+s) log n> Haar) =3

Here one can remove the assumption n% < %: otherwise, the right-hand side is bigger than 1 and therefore

the inequality is trivially satisfied. This ends the proof of the upper bound in the case of compact
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symplectic groups. For their quotients, one can still use Proposition 15, as follows. For quaternionic
Grassmannians,

t tn,e 8 c 40 16
s, LTI D/\ - B, (\) <2 —£|A|logn < _ < =
()= 3 petsmo <l 3 o< M0 D

AEVV3, AEDL
assuming % < % This implies that
Gr(n,q,H 2
dTi/(n q )(M(1+s) log n» Haar) < .

Again, the assumption on n7 is superfluous, since otherwise the right-hand side is bigger than 1. Exactly
the same proof works for the spaces USp(n)/U(n), with the same bound (it may be improved by using
the fact that one looks only at even partitions).

3.2.2. 0dd special orthogonal groups and their quotients. Though the same reasoning holds in every case,
we unfortunately have to check case by case that everything works. For odd special orthogonal groups
SO(2n+1,R), set t,, c = 2(1+¢)log(2n+ 1), with in particular ¢, o = 2log(2n + 1). The main difference
between SO(2n + 1) and USp(n) is the appearance of half-partitions, which is solved by:

Lemma 16. For any integer partition A, denote X\ H % the half-partition A\ + %, Ao + %, ce An + %
ABL
DD/\Z e—t”T’U(Bn()\EE%)—Bn()\)) < en(logQ——log(2f+l)) < 2.

Proof. The quotient of dimensions is

ANi+ A +2n+1—-1—3 2n+1—1—7

1<i<j<n 1<i<j<n

and the difference t”é"’ (Bn(AH ) — Bn())) is equal to

log(2n +1) (ZA 2n+12i> S log(2n + 1) <% n2> _ nlog(2n+1)'

on+1 2 on+1 2 4

This yields the first part of the inequality, and the second part is an easy analysis of the variations of the
bound with respect to n. ]

Then, for any integer partition A, one can as before prove a uniform bound on D* e~ 108(2n+1) Bn(A),

the differences are tiny, e.g., in many formulas, 2n + 2 is replaced by 2n + 1, or % is replaced by 2n1+1.
We refer to Appendix 5.1 for these computations.

Proposition 17. In the case of odd special orthogonal groups, at cut-off time,
n(A) < E
— 10

. oy . . . 11
for any integer partition X of length n. For half-integer partitions, the bound is replaced by =

There is one last computation that needs to be done, namely, the special case A = (%, e %)n

(0,...,0), B4 — it corresponds to the spin representation of SO(2n + 1,R). The value of B, () is then
T and D = 2" Thus, in this special case,

(D)2 e~tne Ba) < gn log 4— s Zntl)  _enlos(@ntl) < 11 1
4 (2n+1)¢

for every n > 5. On the other hand,

Al
2n+1

>

z": (n+1)|)\| >

Z - z+1
121 2n+1

1 n
Z )\12 + ’i(27’L - ’L)()\Z - )‘i+1) >

B,(\) =
() 2n+1i:1

o]
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SO we can now write:

11 1 1 1
Spltne) < — ——— D)2 e tne B, () DAEEE 2 —tn,e Bp(AB3)
(78)_4(27’L+1)8+Z( )e +( )e
€Y
11 1 1 1
<2 DA 2 o~tnoBn(\) | (DABE)2 7tn,0Bn(/\EE|§)) —2elog(2n+1) B, (\)
=4 @2n+1)F +AZ( +( ) e ¢
)4
< 11 1 + Z (121 121) o—€lAllog(2n+1)
4 2n+1)¢ eos 100
< 11 1 . 121 1 < 33 < 144
~ 4 (2n+1)F 20 e 2n+ 1) — 2n+1)F — 2n+1)°
if one assumes (2n+1) < % Thus, by Proposition 12,
SO(2n+1,R) 6
drvy (M2(1+a) 10g(2n+1)aHaar) m
and again we can now remove the assumption m < % The same technique applies to odd real
Grassmannians, with
Sn (tn,&) — Z D)‘ _ TLE B, (A) < 11 Z __|)\‘10g(2n+1) < 55 § S 16 _
2 N (29) ) 1)+ 10 e 10(2n+1)2 (2n+1)2
and therefore )
Gr(2n+1,q,R
dTV( Tha )(M(1+s)log(2n+1)aHa’a’r) <

(2n+1)7

3.2.3. FEwven special orthogonal groups and their quotients. Though the computations have to be done once
again, we shall prove exactly the same bounds as before for even special orthogonal groups and even real
Grassmannians. Denote ¢, . = 2 (1 + €)log(2n). The possibility of a sign + for the last part A, of the
partitions leads to a coefficient 2 in the series S, (t), and on the other hand, the case of half-partitions is
reduced to the case of partitions by way of an analogue of Lemma 16. Indeed,

AEL
D™z eftn#o(Bn()\Eﬂé)an()\)) < enlog27w g
DX - )
for any n > 5 and any partition. Again, we put the proof of the following Proposition at the end of the
paper, in Appendix 5.2

IN

Proposition 18. In the case of even special orthogonal groups, at cut-off time,

tn, 48
D e 5" Ba(V) < (respectively, 1—5)

for any integer partition (resp. any half-partition) X of length n.
Besides, the same proof as in the case of odd special orthogonal groups shows that B, (\) > ‘—;l for

any partition. For the special half-partition A = (0,...,0),, B % that cannot be treated by combining
Lemmas 14 and 16, one has D* =2"~! and B,,(\) = Z, hence

(D)‘)Q o=t Ba(N) < e(n_1)10g4_n1032’(271) o en log(2n) < 1
(2n)°

for n > 5. We conclude that

1 1 M2 . —tn.e Bu(N) ABIN2 —tn . Bn(ABL)
§Sn(tn75)§ L +/\€zg;(D ) et + (DMP2)2 et 3

.y 16 2304\ \jiog(an) 2749 _ T2
e 525 = 45(2n)F ~ (2n°)

and therefore, by Proposition 12,

SO(2n,R 6
dTV(2 )(M2(1+a) log(2n)> Haar) <
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For even real Grassmannian varieties,

Sn (tn> = Y D
2 AE(29),U29),B1)* AEY

o= 5N log(2n) <

L W~

3

and again, the total variation distance is bounded by 2/(2n)%. So, the inequalities take the same form
for even and odd special orthogonal groups or real Grassmannians, and the proof of the upper bound in
this case is done. The same inequality holds also for the spaces of structures SO(2n)/U(n).

3.2.4. Special unitary groups and their quotients. Set t, . = 2(1 + ¢)logn. For special unitary groups,
Weyl’s dimension formula fortunately takes a much simpler form than before, but on the other hand, the
computations on B, (\) are this time a little more subtle. We shall still prove that almost every quotient
Nk of the quantities D e~tn.0 Bn(N) with A going from

N1 +E—=1, . N+ k=1L 41, s A—)n—1 o (N1 + koo A FE N1, A1) -t

is smaller than 1; but in practice, what will happen is that the negative exponentials may be much larger
than before, whereas the quotients of dimensions pj; will be much smaller. Consider for a start ny ,—1.
One has

n—1

k+n—1 k+n-—1
pk,niliil;[lk’—l—f—n—l’i k )
whereas B,,()\) is changed by ("71)(:71%71) So,
_nz—llogn logn 1 .
_k+n-1 _onedaon ., ne  n? =en? <21 itk=1,
Nkn—1 = T " < n2+42n-3
nle™ ar  O8n bl <1 if k> 2,

by using the decreasing behavior with respect to k. Notice that p; ,,—1 is indeed much smaller than before
(linear in n whereas before it grew exponentially in n), but B, (\) for k = 1 is almost constant instead of
linear in n.

In the general case,

N D YRy | L o k+i—1

o= Il s U

j=l41 i d = J

with the usual notation ¥’ = k+ \;11. On the other hand, the transformation on partitions makes B,, ()
change by

—Iln—=0n+2k" = 1) + 21510
n? ’

where |A|j41,, is the restricted size ) Aj. Notice now that

=41
—(n=DF +Nisin = Y A=A —k< Y —k=—(n—1Dk
j=I+1 j=l+1
So,

et < H k+7-1 e_l(nflx;;%fl) logn n e_t(nfizénﬂ) log n
T k —\!

which can as usual be estimated by Stirling (this is the same kind of computations as before). Hence,
with [ > 3, the last bound is always smaller than 1, and also if | = 2 unless n =4. If n =4 and [ = 2,
then
77k2§ (k+2)(k+3) ef%%logQS 23/2 lfk::lv
’ k(k+1) 1 if k> 2.

Finally, when [ = 1, one has exactly the same bound as for [ =n — 1, so 21 when k =1 and 1 for k = 2,
Multiplying together all the bounds (3/ 2% and twice 2%), we obtain:

Proposition 19. In the case of special unitary groups, at cut-off time,

D e~ a0 < g

for any integer partition A of length n — 1.



THE CUT-OFF PHENOMENON FOR BROWNIAN MOTIONS ON COMPACT SYMMETRIC SPACES 33

Another big difference with the previous cases is that one cannot use Lemma 14 anymore. Indeed,
for A = (k,...,k)n—1, Ba(X) = @ = %, so there is no hope to have an inequality of the type

B, ()\) > «|)| for any partition. That said, set §; = A\; — A\j+1; then,

Bn()\):% > (=N %i (n—1i)d; >

1<i<j<n

This leads us to study the series

(n—1) s, 1

n—1 i(n—1

_ L 0 __

Tn(x) = E x21,1 n %t = I I —
81y 120 i—1 l—a =

Clearly, each T,,(z) is convex on R, so if we can show for example that T, (%) stays smaller than
1+ % for every n, then we will also have the inequality T, (z) < 1 4+ Kz for every 0 < z < %. Set
Un(z) = log(T,(z)); one has

n—1
i(n—1) i(n—i) i 2
T) = —lo (1—zn) - n < r2 <
for0<z < é. It follows that T, (x) <1+ Kz with K < 169. Suppose n% < % Then,
g B N2 gmtoe Bah) < O 1\ (2 _ 1521 _ 400
wltne) = > (DY)?e™ <7 2 (= 1 ) 1) S e S e
AEDT AEDL
which leads to 10
SU(n,C
d ( )(M2(1+s) lognaHaar) < E
If 5 > 8, then this inequality is also trivially satisfied. Hence, the case of special unitary groups is

done. For the quotients SU(n)/SO(n), one obtains
s, tne < 3 T, 1 1) < 507 < 256
2 2 ne 2n® ne

SU(n,C)/SO(n,R
GSUmO/30MmB)

and therefore

H(14-¢€)logns Haar) < e
The proof is exactly the same for SU(2n)/USp(n) and gives the same inequality, however with (2n)2
instead of n3.

For the complex Grassmannian varieties, we have seen that it was easier to see them as quotients of
U(n) (instead of SU(n)), and this forces us to do some additional computations. Though the cut-off
phenomenon also holds in the case of U(n), the set of irreducible representations is then labelled by
sequences of possibly negative integers, which makes our scheme of growth of partitions a little bit more
cumbersome to apply. Fortunately, for Grassmannians, the spherical representations can be labelled by
true partitions, but then the dimensions are given by a different formula and we have to do once again
the estimates of quotients py; and 7,;. We refer to Appendix 5.3 for a proof of the following:

An()\) e~ logn By (\) < 1
for any partition. Then, one can compare directly By, () to |A[:

) p p . . p
A):EZA§+(n+1—2¢)Ai222’”‘#(&—%1 > i = i) = AL
=1 =1

i=1

We conclude that
tn,e
"\ 2

and this ends the proof of all the upper bounds of type (1.7).

o

_ ) 16 Gr(n,q,C 2
) < Z e—clAlogn < e < = : de/(nq )(M(1+s)lognaHaar) < -
AEV:
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4. LOWER BOUNDS BEFORE THE CUT-OFF TIME

The proofs of the lower bounds before cut-off time rely on the following simple ideas, which appeared
already in some cases for instance in [SC94, §7]. Denote A, the (spherical) irreducible representation
“of minimal eigenvalue” identified in Section 3.1. We then consider the random variable:

(4.1)

B XAmin(k;) in the case of groups,
) VD ain ¢*min(gK) in the case of symmetric spaces of type non-group.

In this equation, k or g K will be taken at random either under the Haar measure of the space, or under
a marginal law p; of the Brownian motion; we shall denote E,, and E; the corresponding expectations.
When  is real valued, we also denote Var,, and Var; the corresponding variances:

Var[()] = E[0%] — E[Q]* = E[(Q — E[Q])?] .

In the case of unitary groups and their quotients, €2 will be complex valued, and we shall use the notations
Vars, and Var for the expectation of the square of the module of Q — E[Q]:

Var[Q] = E[|Q?] - |E[Q)* = E[| - E[Q]]?].

The normalization of Equation (4.1) is actually chosen so that € is in any case of mean 0 and variance 1
under the Haar measure.

Remark. In fact, much more is known about the asymptotic distribution of these functions under Haar
measure, when n goes to infinity; see [DS94]. For instance, over the unitary groups, the moments of order
smaller than ng of x(1:09)(g) = tr g agree with those of a standard complex gaussian variable as soon as
n is bigger than ng. In particular, if g is distributed according to the Haar measure of U(n,C), then tr g
converges (without any normalization) towards a standard complex gaussian variable. One has similar
results for orthogonal and symplectic groups, this time with standard real gaussian variables. As far as
we know, the same problem with spherical functions on the classical symmetric spaces is still open, and
certain computations performed in this section are related to this question.

One will also prove that under a marginal law pu;, the variance of 2 stays small for every value of ¢,
whereas its mean before cut-off time is big (not at all near zero). Standard methods of moments allow
then to prove that the probability of a event

Eo ={k[[QK)[=a} or {gK||Q¢K)|>a}

is before cut-off time near 1 under u;, and near 0 under Haar measure (for an adequate choice of «). This
is sufficient to prove the lower bounds, see §4.2; in other words, €2 is a discriminating random variable
for the cut-off phenomenon.

The method presented above reduces the problem mainly to the expansion in irreducible characters
or in spherical zonal functions of Q2 or of |Q|?; ¢f. §4.1. In the case of compact groups, this amounts
simply to understand the tensor product of V*=in with itself, or with its conjugate when the character
Q is complex valued. However, for compact symmetric spaces of type non-group, this is far less obvious.
Notice that a zonal spherical function ¢* can be uniquely characterized by the following properties:

e it is a linear combination of matrix coefficients of the representation V>
D> p*
PMgK) =YY T pl(gK).
i=1 j=1
e it is in .Z?(G/K)X i.e., it is K-bi-invariant; and it is normalized so that ¢*(eK) = 1.

Consequently, if (VAnin)®2 — V" g ... V% @V @ ... & Ve with the V¥ spherical irreducible
representations and the V¢ non-spherical irreducible representations, then there exists an expansion

(¢A,nan)2 = O+ Cp 4 F oy B (4.2)

Nonetheless, it seems difficult to guess at the same time the values of the coefficients ¢, in this expansion.
The only “easy” computation is the coefficient of the constant function in (¢*)2, or more generally in a
product ¢* ¢P:
0 if¢f #¢,
67 = [ M@)o (@) do = |
X otherwise.

1
D>
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As far as we know, for a general zonal spherical function, there is a definitive solution to Equation (4.2)
only:

e in the case of symmetric spaces of rank 1, see [Gas70];

e for the spherical functions of low degree of the pairs (SU(n),SO(n)) and (SU(2n),USp(n)), be-
cause they are known to be Jack polynomials of parameter 2 or 1/2; see [Mac95, Chapter VII].

For our problem, one can fortunately give in every case a geometric description of the discriminating
spherical representation and of the corresponding spherical vector. This yields an expression of ¢*min (9K)
as a degree 2 polynomial of the matrix coefficients of g. Now it turns out that the joint moments of these
coefficients under s and po, = Haar can be calculated by mean of the stochastic differential equations
defining the G-valued Brownian motion; see Lemma 23, which we reproduce from [Lév1l, Proposition
1.4]. As (¢*in(gK))? or |¢p*min(gK)|? is also a polynomial in the coefficients g;;, one can therefore
compute its expectation under pq, and this actually gives back the coefficients in the expansion (4.2).
Thus, the algebraic difficulties raised in our proof of the lower bounds will be solved by arguments of
stochastic analysis.

4.1. Expansion of the square of the discriminating zonal spherical functions. The orthogonality
of characters or of zonal spherical functions ensures that for every non-trivial (spherical) irreducible
representation A,

Eoo[x"] = Eoo (k) X" (B)] = (M| X' o ey = 0

Ex[VD? ¢*| = VDY Ewc[9*(gK) 6 (gK)] = VD (6* | 6% ) 0.

L2G/K)

The function corresponding to the trivial representation, which is just the constant function equal to 1,
has of course mean 1 under the Haar measure, and also under ;. On the other hand, Theorem 11 allows
one to compute the mean of a non-trivial irreducible character of zonal spherical function under p;:

E:[x*] = /Kpf{(k) XM (k) dk = A (pf) = DY em2 B = {An()\) e*tBnm}%

E VDY | = VD ¥ (z) 9 (z) dx = VDX 7[@})(7’5) = {4.00 e*tBnW}%

X=G/K A

with the notations of Proposition 12, and where [x*](f) or [¢*](f) denotes the coefficient of x* or ¢* in
the expansion of f. So, with the help of the table of Lemma 13, we can compute readily E;[Q)] in each
case, and also E[€].

In order to estimate Var:[Q] and Vars[€2], we now need to find a representation-theoretic interpretation
of either Q2 when ( is real-valued, or of |[Q2|? when © is complex-valued. We begin with compact groups:

Lemma 20. Suppose G = SO(2n,R) or SO(2n+1,R) or USp(n, H). Then Q = x1:%0n js real-valued,
and

Q2 — (X(l,O ..... O)TL)Q — X(2,0 »»»»» O)'n, + X(lquov---vo)n + X(070 """ O)n_ (4.3)
On the other hand, when G = SU(n,C), Q is complez-valued, and

192 = B0 Onot g (Lo Dnt = 3 (2 Dnct 3 (00,001 (4.4)

Proof. In each case, Q(k) = trk, up to the map (1.2) in the symplectic case; this explains why Q is
real-valued in the orthogonal and symplectic case, and complex-valued in the unitary case. Then, the
simplest way to prove the identities (4.3) and (4.4) is by manipulating the Schur functions of type A,
B, C and D; indeed, these polynomials evaluated on the eigenvalues are known to be the irreducible
characters of the corresponding groups, see §2.3. We start with the special orthogonal groups. In type
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B, (z1 4+ 20+ 27" +---+ 271 +1)? is indeed equal to the sum of the three terms

$b2,0,..0)(Z, 27 1) = | D mzmtar ey |+ (Z zi + zﬁ) —n;
1<i<j<n i=1
sb1,1,0,..,0)(Z, 27 1) = | D zmizitazy by e e (Zzﬂrz ) n;
1<i<j<n

whereas in type Dy, (21 + -+ 2p + 27 4+ -+ + 27 1)? is equal to the sum of the three terms

sd2,0,..., 0)(Z,Z_1): Z ziZj + ziZ; +z zj—l—z ~1 ]_1 —-n-—1;
1<i<j<n

sdi 0,0 Z. 27 = Y. zmzitamz Tz s | 4
1<i<j<n

For compact symplectic groups, hence in type Cp, (21 + -+ + 2z, + zl_l + -4 2,71? is indeed equal to
the sum of the three terms

-1 —1 —1 .
5¢(2,0,..,00(Z, Z77) = E zizj + ziz; 1y z; zJ + 2z % —n;
1<i<j<n
—1 -1_-1 .
5¢(1,1,0,...,0)(Z, Z77) = g zizj + ziz; Jrz zj + 27z +n—1;
1<i<j<n

SC(O, )(Z zZ~ ) = 1,

and this is also (sc(1,0,...0)(Z, Z71))% = (x(10-9 (k))? = Q(k)?. Thus, Formula (4.3) is proved. In type
A,,_1, notice that for every character x*, x*(k) = x*(k~') = x*" (k), where A\* is the sequence obtained
from A by the simple transformation

M>2X> 2 )1 = (A2 A = A1 2> - 2 A — Ag)pt- (4.5)
Indeed, if 21, ..., z, are the eigenvalues of k, then
XME) = 800 dn_ ) (21 L) = S(AL,.., An,l,o)n(zfla Lzt = 5(0,~An1seei— A1) (Zns o v vy 21)
=S, A =An—1,..s, o)n(Zla .. -,Zn) =S, A =An_1,..0y ,\17,\2)%1(251, ceeyZp) = X/\*(k)

Here, one uses the relation z1z5---2, = 1 for every element of the torus of SU(n,C), which enables
one to transform a n-vector of possibly negative integers into a (n — 1)-vector of non-negative integers.
In particular, |Q(k)[? = |x(100n-1(k)]2 = (1001 (k) (L1 Dn=1 (k). Then, a simple calculation
with symmetric functions yields Formula (4.4):

X0 O () ) (he et () = (a1 ) (57 o427 )
= n—1+Zzizj_1+zi_1,zj +1
i<j
= 5(1,0,...,0—1), (Z) + S(o 0)n( ) =521, 10 1 (Z) + 50,00, 1(2)
_ X(2,1,...,1)n,1(k) + X 0)n— 1(/{3)

where Z = {z1,...,2,} is the alphabet of the eigenvalues of k. O
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4.1.1. Values of the zonal functions and abstract expansions of their squares. As explained in the intro-
duction of this part, the case of compact symmetric spaces of type non-group is much more involved. We
start by finding an expression of Q(¢gK) in terms of the matrix coefficients g;; of the matrix g.

Proposition 21. In terms of the matriz coefficients of g, $*in (gK) is given by:

G/K ¥ dmin prmin (gK) k
Gr(n,q,R) s0™(n,C) Sy 21 (9i)? + 5 i 1 (935)7 — 1 R
Gr(n,q,C) sl(n,C) 52y 1 9P+ 2 i D 1937 — 1 R
Gr(n, g, H) sp™(2n,C) b2 2 g+ o Y e loi = 1 R

SO(2n,R)/U(n,C) | A*(C*) | & 300 2271 92002 9(2i-1)(2j-1) — 9(20)(25—1)9(2i-1)(2))
SU(n,C)/SO(n,R) | S*(C") e > (9i)?
SU(2n,C)/USp(n, H) | A*(C*") | 5300, 2271 920 (2) 9(2i-1)(2j-1) — 9(20)(25—1)9(2i~1)(2)

USp(n, H)/U(n,C) | S*(C?") | 73y 2 (1(gi))? + ([(9i))? — ([(9:5))* — ([K](9:5))?

Bl al a| =

For real Grassmannians, so*(n,C) denotes the orthogonal complement of so(n,C) in sl(n,C); and for
quaternionic Grassmannians, sp(2n,C) denotes the orthogonal complement of sp(2n,C) in sl(2n, C).

Proof. Each space V*min described in the statement of our proposition is endowed with a natural action of
G = SO(n) or SU(n) or USp(n), namely, the action by conjugation in the case of Grassmannian varieties,
and the diagonal action on tensors in the case of spaces of structures. Then, to say that

(2,0,...,0)L%J 1,0,..,0,—1), 11,0,...,0)n
Ysomm) =so-(n,C) Vé(n-,C) " =sl(nC) Vtgsp(n,H)) =spt(2n,C)
(1,1,0,...,0)n _ 42/mm . (2,00 n—1 _ o2/mn . (1,1,0,..,0)2mn—1 __ 42 /2n '
VSO(Q"JR) =A ((C ) ’ VSU(n,(C) =S ((C ) ) VSU(Qn,(C) =A ((C ) ;

2,0,...,0) n
Viswini = S2(C)

is equivalent to the following statements: the trace of g € SO(n,R) acting on so*(n,C) is given by the
Schur function of type B or D and label (2,0,...,0) = ; the trace of g € U(n,C) acting on sl(n,C) is
given by the Schur function of type A and label (1,0,...,0,—1),; etc. Let us detail for instance this last
case. We have seen in the previous Lemma that

$(1,0,,0-1)n (Z) = (21 + -+ 20) (a7 + -+ 2, — L.

On the other hand, the module gl(n,C) on which SU(n,C) acts by conjugation is the tensor product of
modules (C™) ® (C™)*. It follows that the trace of the action by conjugation of g € SU(n, C) on gl(n,C)
is

1

X(g) = (trg) (tr(g™")") = (z1 + -+ za) (2 + -+ 277)

if z1,..., 2z, are the eigenvalues of g. Subtracting 1 amounts to look at the irreducible submodule sl(n, C)
inside gl(n, C). The other cases are entirely similar, and the corresponding values of the Schur functions
have all been computed in Lemma 20.

Once the discriminating representations have been given a geometric interpretation, it is easy to find
the corresponding K-invariant (spherical) vectors. We endow each space of matrices with the invariant
scalar product (M | N) = tr M N, and each space of tensors with the scalar product (1 ® 22 | y1 ® y2) =
(z1 ] y1) (z2] y2), where (v| w) is the usual Hermitian scalar product on C™ or C?". We also denote (e;);
the canonical basis of C* or C2". Then, the K-spherical vectors write as:
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G K hmin

S0(n) | SO(p) x SO(a) = (i)

SU(m) | SWUp) x Ule)) = (70

USp(n) | USp(p) x USp(q) T (7‘1012‘7 ol )
SO(2n) U(n) \/LQ_n S €2 ®egi_1 — e2i1 ® €
SU(n) SO(n) i

SU(2n) USp(n) \/%—n S e @egim1 — €21 @ €
USp(n) U(n) =Tl e

In each case, e*mi» belongs trivially to V*=i» and is of norm 1, so the only thing to check then is the
K-invariance. In the case of Grassmannian varieties, the matrix e*=i» commutes indeed with G(p) x G(q),
since it is also (p, ¢)-block-diagonal and with scalar multiples of the identity matrix in each diagonal block.
The notation USp(n, H) used in this paper was meant to avoid any confusion between Sp(2n,C) and its
compact form, the compact symplectic group. For U(n) inside SO(2n), we use the well-known fact that
inside SL(2n, C),

SO(2n,R) N Sp(2n,C) ~ U(n,C), (4.6)

the isomorphism being given by the map (1.1). This implies in particular that U(n) leaves invariant the
skew-symmetric tensor 2?21 €9; ® e2i_1 — €3;_1 ® eg; corresponding to the skew-symmetric form defining
Sp(2n,C). The intersection formula (4.6) also proves that U(n) leaves invariant the symmetric tensor
21221 e; ® e;, whence the value of the spherical vector for U(n) inside USp(n). Finally, for SO(n) inside
SU(n) and USp(n) inside SU(2n), we use again the defining symmetric bilinear form or skew-symmetric
bilinear form associated to the group K to construct a K-invariant vector.

The value of ¢*min is then given by the formula ¢*(g) = <eA | o (g)eA>, that is to say
1~ _~ _
tr(Mp,q g Mpgg') 5 tr(Mygg My, 9" 3 tr(Mp,q g Mp,q "

for real, complex and quaternionic Grassmannians;

n 2n
Z (gij)2 ) % Z @ij)Q
ij=1

4,J=1

S|

for SU(n)/SO(n) and USp(n)/U(n); and

1 n n
" Z Z 9(2i)(25)9(2i-1)(2j-1) — 9(2i)(2j—1)9(2i—1)(25)

i=1 j=1
for SO(2n)/U(n) and SU(2n)/USp(n). Here by § we mean the complex matrix of size 2n x 2n obtained
from a quaternionic matrix of size n x n by the map (1.2). In this last case, the computations can in fact
be done inside M(n, H): indeed,
(Gei-nei-1)° + @ei-ne))’ + Genei-1n)* + Geye))’
= 2(([(gi5))* + ([1(9:5))* — ([1(9:))* — ([K](9:))?)

whereas M* = (M )T and %trM = R(tr M). Thus, the formulas for the discriminating spherical functions
of the spaces of structures are entirely proved, and for Grassmannian varieties, it suffices to check that
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for any unitary quaternionic matrix N,

1 22 1 & n
R(tr MpgNMp o N*) = = Z Z |gij|2 +- Z Z |9ij|2 -1
Pi=a 9 71 jopt1
indeed the real and complex cases are specializations of this formula. This is easily done. (|
Lemma 22. There exists coefficients a,b,c, ... (different on each line, and depending on n and q) such

that the following expansions hold:

2
Gr(n, ¢, R) : (¢(2,0 ..... O)L%J) _ +aq§(2’0 ..... 0)2) —l—bqb(l’l’o""O)L%J

n24+n—2
+C¢(2,2,0,...,0)L%J +d¢(3’1’0""’0)L%J +e¢(4’0 ..... O)L%J;

1
n?—1
1

2 2 4
Gr(n, q, H) : (¢(1,1,0,...,0)n) =— + a¢(1 0see0)n—1 b¢(1 05ee0)n - c¢(2,2,0,...,0)n;
2n¢ —n-—1

4 a/(b(Q,l ..... 1)p—1 + b¢(4,2 ..... 2)n—1 + c¢(2,2,1,...,1,0)n,1;

Gr(n,q,C) : (qb(ll **** 1)"*1)2:

SO(2n)/U(n) : (¢(1,170,---70)n)2 — 22; + a¢(12,o,...,o)n + b¢(14,o,...,o)n 4 22000
n—mn

2 = + a¢(4721"'72)7’1r71;

SU(n)/SO(n) : ‘¢(2,0,...,0)n,1

2 1 (2,2,1,...,1,0)
— 3 +G/¢ 34y Lyeeeydy 2n—1;
2n? —n

2
) (2,0,..., o)n) _ (2,0,...,0) (2,2,0,...,0), (4,0,...,0)
USp(n)/U(n) : ((b =5 n+a¢ +b¢ +co .

In these formulas, it is understood that if the label X of the spherical function ¢* does not make sense for
a choice of n and q, then this term does not appear in the expansion.

SU(2n)/USp(n) : ~ [p110w-02s

Proof. Each time, one computes the expansion in irreducible representations of VAmin @ /A min in the case
of real-valued spherical functions, and of V*mi» @ VAmin in the case of complex-valued spherical functions,
where A — A* is the transformation of weights given by Equation (4.5). This expansion can be found
with Schur functions; let us detail for instance the case of complex Grassmannian varieties Gr(n, ¢, C).
With an alphabet of eigenvalues Z = {z1,...,2,} such that z125 -z, = 1, one has

8(0,..00,1(Z) =1

52,1, )01 (Z) = 5(1,0,....0-1),(Z) = Z 2i%; -1
ij=1
n
= = -1_-1 —1
8(4,2,..., 2)n71(Z) = 3(2,0,...,0,72%(2) = Z Z 2252y 7 — Z 2i7;
1<i<j<n 1<k<I<n ij=1

n
—-1_-1 —1
$(2,2,1,.,1,00n1(Z) = 5(1,1,0,...,0,-1,-1), () = ) Y omzm | = | D w

1<i<j<n 1<k<i<n i,7=1

8(3.1,...1,0)n_1(Z) = 82,0,...0-1,-1),(Z) = Z Z zizizg g | — Z Zizfl +1

1<i<j<n 1<k<I<n ij=1

8(3,3,2,..2)n_1(Z) = 8(1,1,0,....0,-2),(Z) = Z Z zizizg g | — Z ZiZ;1 + 1.

1<i<j<n 1<k<I<n i,j=1
Consequently,
(V@LDa-1)82 — (0sOn-t gy g 2L lnot @ (42Dt gy (22,1 1,0)n 1
@ VG322t g Bl 10)n
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because the same equality with Schur functions holds. The second line corresponds to non spherical
representations, so only the terms of the first line can contribute to (¢(*1+1n-1)2_ Entirely similar
calculations yield:

e Gr(n,q,R):
(V(2’0 ..... O)L%J)®2 _ p00) 15 g 1 (200) 15 g 1 (L10-20)
@ V220018 g B L00) 15 o (40,.0) g
e Gr(n,q, H):

(V(l,l,O,...,O)n)®2 — Y000 gy (11,0500 gy 7 (1LL1L0,00)n gy /(220,000

@ V(@211.0..0)n
Only the terms on the first line are spherical.

e SO(2n,R)/U(n,C):

(V(l,l,O,...,O)n) — Y000 gy (11,0500 gy 7 (1LL1L0,000)n gy /(220,000,000

again with non-spherical representations gathered on the second line.
e SU(n,C)/SO(n,R):
V(20 0nt g (220 Dnt = O Ont gy (42021 gy (kDo
and the last term is not a spherical representation.
e SU(2n,C)/USp(n, H):
V100201 g (L 10)2n—1 — 17(0vs0)an—t g (22,1 10)2n—1 gy /(21 D2n—1

and again the last term is not spherical.
e USp(n,H)/U(n,C):
(V(ZO vvvvv 0>n)®2 =V 00n g (@000 g (22,0000 gy (4.0, 00n
@ VE10:0)n gy 7(3.1,0,...0)n
The terms on the second line corresponds to non-spherical representations.

O

As mentioned before, the coefficient of the constant function in |¢*min|? is then always equal to

1
D> min *

For the spaces SU(n)/SO(n) and SU(2n)/USp(n), the remaining coefficient a can be found by evalu-
ating the spherical functions at eg. Thus,

2 n%+4+n—2

2
SU(n)/SO(n) : ‘ (20,001 | _ (1200201,
(n)/SO(n) ¢ T R ¢
2 1 mZ—n-—1
2 ; ‘ (1,1,0,0,0)2n 1 |~ _ (2.2,1,0.,1,0)2n 1
SU(2n)/USp(n) = |¢ e P

But in the other cases, the values of the spherical functions appearing in the right-hand side of the formulas
of Lemma 22 are unfortunately not known a priori, which makes finding the coefficients a, b, ¢, ... quite
difficult. However, since one only needs to compute E;[(¢*n)2], and since ¢*min is explicit in terms of
matrix coefficients, one can use the following Lemma (cf. [Lév1l, Proposition 1.4]).

Lemma 23. Let k > 1 be any integer, and (g¢)ier, be the Brownian motion on SO(n) or SU(n). The
joint moments of order k of the matriz coefficients of g; are given by

kog

Elgi’*) = exp | t =

(L)% +t > mi;(Co) (4.7)

1<i<j<k
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where ag is the coefficient introduced on page 7; Cy is the Casimir operator; and n; ; is the linear map
from M(n,k)®2 to M(n,k)®* defined on simple tensors X @ Y by

X®Y — (I,)%0 Yo X (1,0 Yoy @ (1,2 .

In the complex case, one has also:

El(9)® & @) = exp ¢ BN e S g 0 ).

1<i<j<k+l
with
Nij(XQY)=< —n;(X®Y") ific[l,k] andje[k+1,k+1];
m,j(Xt@)Yt) Zfl,]e[[k‘i’l,k‘i’l]]

Proof. In the complex case, recall the stochastic differential equation satisfied by ¢;, and therefore by g;:

(6%
2 G dt.

(8]
dgi = g1 dBy + =2 gy dt ; dgi = —gi dBy + 5

2
Ito’s formula yields then a stochastic differential equation for (g;)®* ® (gz)®":

(k+1) o -

1<i<j<k

d(g®* @ 7% = (9:)" @ (g0)®"

k k+1
+(90)®* ® (7)™ (Z(In)@l ®dBy @ (I,)** 1~ = Y~ (1) '@ dBl & (In)®’“+“> :
i=1 i=k+1

The quadratic variation of By is given by the Casimir operator: dB; ® dB; = Cy dt. Taking expectations
in the formula above leads now to a differential equation for E[(g;)®* ® (g;)®'], whose solution is the
exponential of matrices in the statement of this lemma. The real case is the specialization [ = 0 of the
previous discussion, though with a different Casimir operator. In the quaternionic case, one has to be
more careful. In particular, since the quaternionic conjugate of pq is ¢*p* instead of p*¢*, in the previous
argument the SDE for g; does not take the same form. A way to overcome this problem is to use the
doubling map (1.2). Thus, we write an equation for g; instead of g;:

~ ko
E[(gt)(@k]:exp tTg(Izn)®k+ﬁ Z 7:,;(Cyq) |

1<i<j<k

where the Casimir is now considered as an element of (End(C*"))®?. As we shall see later, joint moments
of the entries of ¢ and ¢g* are combinations of the joint moments of the entries of g, so the previous
formula will prove sufficient to solve our problem in the quaternionic case. O

It turns out that in each case important for our computations, the matrix 37, ; ;. 7:,;(Cg) can be
explicitly diagonalized, with a basis of eigenvectors that is quite tractable (to be honest, with the help
of a computer). In the following, we describe the eigenvalues and eigenvectors of these matrices, and
leave the reader check that they are indeed eigenvalues and eigenvectors: this is each time an immediate
computation with elementary matrices, though quite tedious if k = 4 or k+ [ = 4. For simplification, we
write efi1, i2,...,0,] =€;, Qe, @ Qe

4.1.2. Quotients of orthogonal groups. For special orthogonal groups, set %Mn,k = Zl<i<j<k 1i.5(Cso(n)),
to be considered as an element of End((R")®¥). If &k = 2, then the eigenvalues and eigenvectors of
Mn,Q = 21§'L<j§n(EU — Ej')®2 are:
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eigenvalue | multiplicity eigenvectors
n—1 1 Sor o eli, i)
! ne elirj] = eljil, i< j
-1 | e eli, j] +eljiil, i < j
eli,i]—eli+1,i+1], i<n-—1

This allows to compute exp(f@) exp(£ M, 2), which is the right-hand side of Formula (4.7) in the
case of SO(n,R) and for k¥ = 2. One obtains:

n

i) =2+ (1= 1) e ¢ Ellg)l= 3 (0-e)
Elgiig;;] = ! (e’t +e

n
=2 ) _ 1 —t —n=2y .
5 ) » Elgijgsl = 5 (e —e m ) ;

and all the other mixed moments vanish (e.g., E[g::igi;] or Elg;jgr]). Now, if k = 4, then the eigenvalues
and eigenvectors of M, 4 are:

eigenvalue multiplicity eigenvectors (not exhaustive, some repetitions)
2n — 2 3 Soroi o elk, k11, *
n 3n(n—1) Sohoelivg kK] —elj ik, k], i <j, *
n—2 3(n+2)(n—1) Sohoqeli g,k k] +elj ik, k], i <j, *

S eli ik k] —eli+1,i4+ 1,k k), i <n—1, %

6 R (n-2)(n=3) Soee, @) eli, g k17, i <j<k<l
9 3n(n+2)(7;—1)(n—3) DY(i, j, k1), D3(i,j, k1), DI(i,j, k1), i #£j#k#I
0 w S1(i,7,k,1), So(i,j, k1), i £j#k#I

Kl(ivjakvl)v K2(i7jakvl)7 Z#]#k#l

3(n—=1)(n—2)(n+1)(n+4) eli,j]®% +elj,k] %% +e[k,i]®? . .
—2 8 (7e[j{i]®zfej[k,j]®27e[i,k]®2) ) b 7é J 7é k, *

D?(i7j’k7l)7 Dg(i7]’k7l)7 Dg(i’j7k’l)’ i#j#k#l

_6 nr=D 1) (nt6) Spes, elisg k7, i<j<k<l

eli,iyi i)+ e[j. 4,4, 4] — Dhee, €lisi, 4,417, i < j

The star x means that the eigenvectors of a basis are listed up to action of G4; and the symbols Z; ce,
mean that we take the sum of all distinct permutations of the tensors. For the eigenvectors associated to
the value 2, denote Dy (1) = ((1,3,2,4), (1,2)), D4 2y = ((1,2,3,4),(1,3)) and Dy (3) = ((1,2,4,3),(1,4))
the three dihedral groups of order 4 (hence cardinality 8) that can be found inside &4. Each dihedral
group of order 4 has for presentation

Dy =(rs|rt=5=(rs)*> =1),

so the parity n(o) of the number of occurrences of s in a reduced writing of o € D4 is well-defined,
and provides a morphism 7 : D4,y — {1} for v = 1,2,3. Then, it can be checked that for every
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i#j#k#1and any v,
DI, j k1) = > nlo)elij k1)

0'694,(1,)

is in Va. The eigenvectors DY (i, 4, k,1), D$(i, j, k,1) and D§(i, 7, k,1) associated to the eigenvalue —2 are
defined exactly the same way, but with the morphism 0 : D4 (,) — {£1} associated to the parity of the
number of occurrences of r in a reduced decomposition of o € D4 (again it is well defined):

Di(i,j, k)= Y 0(o)eli,j k1"
96@4(1,)

For the eigenvectors associated to the value 0, S1(z, j, k, 1) is defined by

7€[i7kak7i] [kalalak] [jalalaj]ie[lajvjal] [alala ]+€[l,l,l,l]+€[j,k k]]+€[k] jvk]
and Sa(i, 4, k, 1) is obtained by replacing each term a @b®@b®a by a®b®a®b in the previous formula. On

the other hand, if R4 = {id, (1,2)(3,4), (1, 3)(2,4), (1,4)(2,3)} denotes the Klein group, then K (i, j, k,1)
and Ks(i, 7, k,1) are defined as

Ki(iyg, k)= > eli g k)7 — > eli,j,k, 1%

OER, 0'6(1,2,3)534
Koy k1) = > elii b, 17 — > eli i k,1)°.
OER, 0'6(1,3,2).@4

That said, the deduction of the mixed moments of order 4 of the coefficients of g goes as follows. One
notices that

n n !
(n+2)> e@ = | Y elk, k10 + elk, Lk, +elk, LLE] |+ < - > e[i,i,j,j]")
1=1

k,l=1 i<j oeSy

with the first sum in the eigenspace V5, _s and the second sum in the eigenspace V_g. On the other hand,
for any i # 7,

(n+4)(e;®4fe;®4): eli,i,4,1] + Z Z [i,2,k, k]7 Z Z [7,4,k, k] —6elj, 7,7, 4]

k#i,j 0€G, k#i,j 0€Sy
!/ !/
+ > ( iyiy 0]+ elk, b kK — Y [kk]) - <e[j,j,j,j] +elk, kR k] = > eld g, kk])
k#i,j c€S,y o€,
with the first line in V,,_» and the second in V_g. Since e®* = 1 D) ] iyl Zj (P 6;@4), one
concludes that
1 n
Pl ok, L1+ e[k, 1k, 1) + e[k, 1,1,k
€,L n(n+2)k§16[a aa]+e[aa a]+e[aa7 ]
1 !/ n
—_ ik, k) —ell 1k, K]
b D 2 O el kK] = elL L k)
c€B, k,l=1
n+1 !
b <e[i,i,i,i] +elk kK= Y e[i,i,k,k]")
(n+2)(n+4) et
1 /
- k ok kK LI — k,k,1,1]°
(n+2)(n+4) Z (e[ ) 3 ) ]+e[7 ) ] Z e[ ) Y ] ) )
(k<l)#i €,

each line being in a different eigenspace: Vo, —2, Vi,—2, V_g and V_g. The technique is now the following:
to compute E[gij, gij, 9ijs 9ija ), O1E counts the number of occurrences of e[j1, j2, j3, ja] in each term of the
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previous expansion. This leads to:

3 6= (D=1 s,

El(g:)"] = n(n + 2) + n(n +4) ¢ (n+2)(n+4) ’
Bl(g)!] =~ — e e

Jii) 1= 0 +2) " n(n+4) (n+2)(n+4) ’

2 21 _ 1 (n-2) _, (n+1) —2ntdy
E[(g:)°(9i5)°] = n(n+2) + e n S  mrdminS
E[(gi7)2(9u)?] = — 2 L

— e —————e ;
nn+2) n(n+4) (n+2)(n+4)
and one sees also that the other expectations E[g;;gikgigim] vanish (e.q., Elgi;gix(gi1)?] with i # j # k #

7). Similar manipulations yield the decomposition in eigenvectors of 6?2 ® 6;-@2:

n+1 - 1 n
mg;@[k,k,l,l] R CESICED)) > elk,l k1 + e[k, 1,1, k]

+ m > <zn:e[i,i,l,l] —e[k,k,l,l]—i—zn:e[l,l,j,j] —e[l,l,k,kz])

k#i,j \l=1 =1
——(H,Q — > Z (Z [i,i, 1,1] — e[k, ki, 1,1)) +Z<e[z,m,;]—e[z,z,kz,k]))
k#i,j 0€S4 \l=1 =1
+ L > Sk, g,0) + Si(iy1 g, k) + Sa(isk, 4, 1) + Sa(i, 1, 5 k)
T E—— 7 1 2 7
6(n—1)(n—2) (k<U)#i,j R Hhn g SRS 2By
7

1
+5- > eliyiig, il +elj, g k. k] + elk, ki i) — e[j, j,i,i] — e[k, k. 5. 5] — eli, i, k, k]

1 ! !
®4 ®4 ®4 ®X4 .. o
T z( bt S eliih ) Z( Y Ze[j,J,k,k]>

ki 0EB, k#j 0€G,
L o1, w4 : L a0 1 @4, @4 : -
~ % (61' +eft = > elii, g 4] EECEDICE Yot et =Y ek k1,07 ),
cEG, (k<) 0EG,
where the eigenspaces associated to each part are Vo, o, V,,_2, Vo, V_o and V_g. As a consequence,
+1 2(n+3) _ n—3 _wm-2, n—2 _
E[(g;; 2(4.)2] — n t, T =2 2t
() 093) 1 = =) Tarn ¢ T3 © T e
n*4+4n+6 ania,
— ¢ n
6(n+2)(n+4)
+1 2 n—3 2n—2 n—2
El(g::)2(g::)%] = n _ R L —2t
(9:) 9] = S =2 " nms ) T 3moD ¢ on
n*4+4n+6 ania,
— ¢ " n 4
6(n+2)(n+4)
+1 nZ—8 n—3 2n—2
El(gi)2(g:)?] = n -t _ —2n=2y
IO ey ey ey pns ey e g oo
1

—2t n _2ntdy

“wm® Tbmtrmrn”
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+1 2 n—3 2n—2
El(g:)%(g:1)%] = n _ [ LR T
(9:0) 93 ) = e ) " w3 Dm=9 "
1 ot n _2ntdy
% Tty
+1 2n+2) - —2n=2
Ef(g:,)? 21 _ n B t o
[(9i5)"(gr1)7] nin—1)(n+2) n(n—2)(n+4) et 3(n—1)(n—2) ¢
+;Q,ML
3(n+2)(n+4) ’
1 2 n—3 2n—2
Elas:a:ia:s 0] — — — -t _ -t
(9:19i3955 9] nm—Dn+2) nn+ad) e 6(n—1) e
Meiwt'
6(n+2)(n +4) ’
Elgiguginga] = — n 4 ot 1 om 222
9ikGilgjkgjt] = n(n—l)(n+2) n(n—2)(n+4) 3(n—1)(n—2)

—

e — — 2y
3(n+2)(n+4)

Finally, the elementary tensor e; ® e; ® e, ® ; with 7 # j # k # [ can be expanded as a combination of
eigenvectors in Vg, Vo, Vo, V_o and V_g. This expansion is related to a remarkable identity in the group
algebra CSy4, which can be considered as a relation of orthogonality of characters, but that only involves
one-dimensional representations. Denote

D= > nlo)o,

o€Dy (1)
and similarly for D7, Dy, DY, D§ and D§. We also introduce I =Y s 0, E=Y s, &(0)0, and
f-Ye - Yo o m-YaeoY s
oERY 0€(1,2,3) 84 oERY 0€(1,3,2) Ry

As explained before, all these sums correspond to eigenvectors in Vg, Vo, Vi, V_o and V_g. Then,

1
L.

, 1 1 1 1
1d[[174]]:ﬂIJr—(D]HLDQJng)nLE(K1+K2)+§(Df+D§+D§)+ﬂ

8

As a consequence, eli, j, k, 1] is equal to

1 1 1
B E(U)e[iajakal]a+g(DY(iajakvl)+Dg(iajak7l)+Dg(iajakal))+E(Kl(iajakvl)+K2(iajak7l))
AT
1 0/ - 9/, - 9/ . 1 .o .
+g(Dl(Zajvkal)+D2(Za.77kal)+D3(Zv.]akvl))+ﬂ 6[1,],]{3,1]
oeSy

with each term respectively in Vg, Va2, Vo, V_o and V_g. This leads to

Elgiigjjgrkgu] = 2—14 ey g et 4 ée_ =y ge_% + i o~ Mt
E[gijgjxgri191i] = 51 em Tl 4 ée*%t — ée*” + i -
Elgiig;jgrigi] = *21—4 o= Tt ée*%t + %e*” + i -
Elgi;95i9r191] = 2—14 et - %ef%t + %e*¥t — %e*” + i -

and we are done with the computations in the case of special orthogonal groups.
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Proposition 24. For the real Grassmannian varieties Gr(n,q,R) and the spaces SO(2n)/U(n), the
coefficients of Lemma 22 are:

2 2n? 1 1 (2,2,0,...,0) =
G Ry: —— % 2 _ 2,0,...,0) 2
e B T T <<n—1><n—2> pq(n—2>>¢

an’ 16 2

0 1 2 4,0,...,0) |
L b (20. yo>u+”_( + )mwu;
CEDICET s\ ey T )? ’
1 n—1 a0, 0., A(n® —1) 2,2,0,...,0)7,
S0(2n)/U(n) : 2n?2 —n + 3n # ) (Bn)(2n —1) ¢ .

Proof. One expands the square of the sum given by Proposition 21, and one gathers the joint moments
of the coefficients according to the possible identities between the indices. For real Grassmannians,

2
2,0,..., 0) n :
(¢( )1g) ) has for expansion:

p 4 D =) = (DS g )| 200
- (p%) Tl(gn)"] + (4 - p%) Tl(gng2)?] + (2 - ]Jﬁq) (4T{(g11912)2] + Tl(g12)"] + Tl(g12921)7)

+ <4n —16 + i—Z) T[(g11923)°] + <2n —12+ i—Z) (T1(912913)°] + T1(912923)°])

6n n
* (n2 o E) T[(gi2gss)?) — 2008 — 1.

where by T[(g11)*] we mean a linear combination of products (g;;)*, whose expectation is therefore
E[(g11)%]; by T[(g911922)?] we mean a linear combination of products (gi; g;;)*> whose expectation will be

2
E[(g11922)?], ete. Thus, the expectation of (¢(2’O""’O)L%J) is
an?

2 4o e +2—n2 L - 1 P
n?+n—2 (n—2)(n+4) 3 \(n=1)(n-2) pg(n—2)

N n2 ( 1 N 2 ) _2nia,
n et
3\(n+2)(n+4) pg(n+4)

and by identifying the Casimir coefficients of the spherical functions, one deduces from this the expansion
of the square of the discriminating zonal function in zonal functions.

For the spaces SO(2n)/U(n), one computes again the square of the homogeneous polynomial of degree

2 given by PI‘OpOSitiOD 21. ThIlS, #(ZZ]‘:l 92i,25 92i—1,25—1 — 92i,25—1 ggi_l,gj)Q equals

% (T[(g11922)%] + T[(912921)%] — 2 T[g11912922921])

n—1

+

(2T((912934)°] — 2 T[g13914925924])

n—1
+ — (2T[g12921934943] — 2 T'[g12923934941])

n —
+

1
(T'911922933944) + T'[912921934943) — 2 T'[g911922934943])

+ remainder,

with the same notations as before, and where the remainder is a combination of products of coefficients
whose expectation vanish under Brownian (and Haar) measures. More precisely, terms with a certain
symmetry cancel with one another when taking the expectation: for instance,

(gzi,zj 92i—1,25—1 — §2i,25—1 921'71,2]') X (92k,2l 92k—1,21—-1 — g2k,21—1 92k71,21) (4-8)

with 4 # j # k # lis equal to a + b — c — d , where a,b,c,d are products of type g;jgrigmngop, and
have therefore the same expectation. Consequently, every product of type (4.8) will not contribute to the



THE CUT-OFF PHENOMENON FOR BROWNIAN MOTIONS ON COMPACT SYMMETRIC SPACES 47

expectation of (¢(1,1,0,...,0) L31)2. The following sets of indices have the same property of “self-cancellation™
(iyiyi,5) 5 (4,4,5,1) 5 (4,4,4,4) 5 (4, 4,4,4) 5 (3,4, 5,k) 5 (4, K, 8,1) 5
(i7],i,k); (j7i7k,i); (i7],k7i); (j7i7i7k); (i7],k7l); (i7],k7l);

so it suffices to consider products with sets of indices (i,1,1,4), (i,4,4,7), (¢,7,4,¢) or (i,4,7,j) — these

are the four lines of the previous expansion. Using the formulas given before for the joint moments of
the entries (beware that one has to use them with the parameter 2n), we obtain:

1 n—1 2n—4 4(n2 - 1) 2n—1
E (1,1,0,...,0)\2 — -t _2n—lgy
(¢ == T ¢ BGn)2n—1) ¢
and it suffices then to identify the coefficients of the negative exponentials. O

4.1.3. Quotients of unitary groups. For special unitary groups, set #Mn,k,l = Zl§i<j§k+l 1,5 (Csun)),
to be considered as an element of End((C™)®**+!). If k = [ = 1, then

1

1 _ _ . _
Ellgii|’] = —F <1 - E) et s EllgylPl==00-e") ; Elgugyl ="

S|

since the eigenvalues and eigenvectors of My, 11 =1il, ®il, +n ZZ]':1 E;j ® E;j are:
eigenvalue | multiplicity eigenvectors
n? -1 1 iy eliyd]
-1 n?—1 eli,jl, 1<i#j<n
eli,i]—eli+1,i+1], i<n-—1

If £ =1 = 2, then the eigenvalues and eigenvectors of M,, 5 o are:

eigenvalue multiplicity eigenvectors (not exhaustive, some repetitions)
2n® — 2 2 ZZ:I Z?:l e[kalakvl]a ZZ:l Z?:l e[k’lalak]
n? —2 4(n+1)(n—1) Yopoqeli ki k) —eli+1,ki+1,k, i<n-—1
Yopoqelk i ki) —elki+ L ki+1], i<n-—1
Sy elisk ki) —eli+ 1k kyi+ 1], i<n—1
Sioyelk,iyi k]l —elk,i+ 1,0+ 1,k], i <n—1
n?(n+1)(n—3) (eli.g)—eld,i)®? —(els. Kl —e[k i)\ . 4
an =2 z <+(e[k,l]—e[l7k})®2—(e[l,i]—e[nl])m) ViFIF kAL
o (n+2)(n+1)(n—=1)(n—2) eli,7,i,7]+els, k.5, k]+elk,i,k,i] . .
2 2 (—e[j,i,j,i]—e[k,j,k,j]—e[i,k,i,k]) , 1<j <k
eli,j,j,i+eld,k.k,jl+elk,i,i,k] . .
(—e[j,i,i,j]—e[k,j,j,k]—e[i,k,k,i]) y 1<j<k
—on—2 | MDY e i) el g ) — (eli ]+ eld, )2, i <
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Again, we can use the previous table to decompose some elementary 4-tensors in eigenvectors of M,, 2 o;
we refer to Appendix 5.4. Thus,

D) 4(n—1) _ n(n —1) _2nt2
E[lgii!] = ey sresns LEREI
(lgii|"] n(n+1)+n(n+2)e (n+1)(n+2)e '
9 4 2 2n+42
Eflg; |4 = B . R
o1 = rs ~ e e
1 n—2 n 2nt2
Ef|gi;|2|gi:|2] = Il (N T
losllosl ] = S T a2 ¢  mrDme2) ©
1 2 1 2n+42
E 122 4 21 = — eit“l‘—eiTt;
[19:51°|gix|”] nn+1)  n(n+2) (n+1)(n+2)
1 2(n+1) _ n—3 _2n-2
Ellgii*|g;;1*] = IR TR o
lollossl™) = = m D) T a2 ¢ Tam=D ¢
n—2 _ n*4+n+2  _2nt2,
e e "5
on A4n+1)(n+2) ’
1 2 n—3 2n—2
B i‘2 ‘i2 _ o —t _t Y et
n—2 _ n24+n+2 _2n+2,
_ e e noy
2n A(n+1)(n +2) ,
1 n272n72 n—3 2n—2
E[|g: |29 |2 = e e T
[19i1”19jk]7] (n—1)(n+1) +n(n_2)(n+2)e 4(n—1)(n—2)e
Nl S =1
2n dn+1)(n+2) ’
1 2(n —1) _ n—3 _2n-2
Ef|g;:2(g:5|2] = _ e w !
[l9ij 119k 17] (n—1)(n+1) n(n_Q)(n+2)e 4(n—1)(n—2)e
1 ot n—1 _2nd2,
Tt TImiDmryS
1 2) 1 2n—2
E z__2 2] _ — e !
(1951”1 ga]”] (n—1)(n+1) (n—2)(n+2)e * 2(n—1)(n—2)e
1 _2n42,

T Dmt2) ¢

Proposition 25. For the symmetric spaces with isometry group SU(n) or SU(2n), the coefficients of
Lemma 22 are:

2n?
Gr(n,q,C): ! R P2 n—1 4 n 1 — 1 2211001,
T o p2—1 0 n?2—4 2 \(n—1)(n—-2) pg(n—2) 7

Y SR P
2 \(n+1)(n+2) pgn+2) '

2 n?+n—2
SU SO : (4,2,...,2)n—1.
()/$0() :  ——+ =2 ,
1 2n2—n-—1
SU(2n)/USp(n) : B T P22 L L0)an

Proof. For SU(n)/SO(n) and SU(2n)/USp(n), the only missing coefficient has already been computed.
For complex Grassmannians, (¢(>1~Dn-1)2 has exactly the same expansion as in the real case, but
with square modules. From the computation of the joint moments E[|g;;gx|?] performed previously, one
deduces that the expectation of the square of the discriminating zonal function is

2n?
1 e —8 . n? 1 1 _am—2,
n2—1+n274e +2 mn—=1)(n-2) pgn—2) ¢

L ! F— ) —EE
—_— e n
2 \(n+1)(n+2) pgn+2)
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whence the expansion in zonal spherical functions by identifying the coefficients. O

4.1.4. Quotients of symplectic groups. Finally, set L M, = > 1<icj<ktt Mij(Cusp(n)), which is considered
as an element of End((C2")®*%). Recall that the diagonalization of these matrices will yield the joint
moments of the entries of g, the matrix obtained from g by the map (1.2). Again, as a warm-up, let us
compute the joint moments of order 2. If k = 2, then

Ellgal) = -+ St EllgP) =~ (1-e) Vijelnl;
E[@a)?] =e " i E[@y)’]=0 Vije[l2n];
since the eigenvectors and eigenvalues of M,, o are:
eigenvalue multiplicity eigenvectors
2l 1 Sor o el2i —1,24) — e[2d,2i — 1]
% (mn—=1)2n+1) | (e[2i — 1,2i] —e[2i,2i — 1]) — (e[2i + 1,20 + 2] — e[2i + 2,2i + 1]), i <n—1
e[2i —1,2j — 1] —e[2j — 1,2i — 1], e[2i,25] — €[24,2i], 1<i<j<n
el2i —1,25] —e[25,2i — 1], 1 <i#j<n
—% n(2n + 1) erRe+teRep,1<k<I<2n

For k = 4, we refer to Appendix 5.5 for the expansion in eigenvectors of simple tensors. One obtains:

2n+4t

E[@ii)ﬂ =e
E[(9:)"] = E[(Gi: 955)%] = E[(gij 9ix)*] = 0;

~ ~ 1 n—1 _ 1 _n41 (2n—1)(2n—2) _2n41
E[(g2i-1,2i-1 §2i.2:)°] = t Tt o1y
(Goimr2i g2} = Ty Y o PR 32n+ 1)(2n +2)
n n—1 G_Mt+1 _2n4dy
2(n+1) 6 7
~ ~ 1 n—1 _ 1 _n41 (2n—1)(2n—2) _zn41
E[(G2i—1,2 G2i,2i-1)°] = b ot nt
(Goimre o)) = T Y o TR ® 32n+ 1)(2n +2)
n—1 _onga, 1 _2ngay

2D’ " TG ’
1 B 1 ot 1 1 efMt'
n(2n+1) n(n+1) 2n+1)(n+1) '

E[(g2i-1,2j-1 92i,2j)%] = E[(G2i-1,2j Goi,2j-1)°] =

and the other moments of type E[(g2i—1,402i )] vanish. On the other hand, assuming that {a, b} is not
a pair {2i — 1,2i} in [1,2n], one has also

1 2n+1 1 2n+2 1 2n+4
E[(Gyap)?]l = =€ " n T4+ Ze " n tax e = b
[(Gaa Gbb)7] 3 + 9 + 6 ;
1 2n+1 1 2n+2 1 2n+4
E[(Gap Gpa)?] = =€ 7 t——e"n 4 -e " n &
[(gab gba) ] 3 D) 6
and the other moments of type E[(gab gea)?] with {c,d} # {a,b} vanish.
The same expansions enable one to compute many moments of type E[|g:; gkz| ], namely, all those that
write as E[|g;; gir|?]. For instance, since |gii|* = (G2i—1,2i—1 G2i,2i — 92i—1,2i §2i.2i—1)7, its expectation is

a combination of those of (92171,2171 92i,2i)%5 (G2i-1,2i 921,2171) and goj—1,2i—1 92i—1,2i §2i,2; §2i,2i—1. Lhis
last expectation is

1 n—1 —t (277, - 1)(277, — 2) _2n4ly 1 _2n+d,

_— n —_ e n .

“om@n+ 1) e+ D) 6@n+HEn+2) ¢ 6
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Thus, with a few more computations, one gets

Eflgal] = —mo— 4 22 oy @n D2 2,
3 3 3 2n+1
Eflgi:|4] = B —t Tt
lo1'] = =y — 2 e ¢
2 (n—2) _ 2(2n —1) _2n+1
E[|g:: g::]%] = t_ 1y
loa gl = S Y e )¢ @na D@+ ° ’
) 2 2 2n+41
Elgs: gunl?] = B —t -t
[l9:5 gix|"] w2t D) DS TEnrDmaD ’
2n — 1 2 n—3 -2
Ellgii g551°] = - et
llgii 9531°] n(n—l)(2n+1)+n+1e +6(n—1)e
L2 2P ond3 ey
2n 3(n+1)(2n+1) ’
2 —1 2 n—3 2n—2
Ellgij 95:|°] = - s
(195 95il"] nn—D@2n+ 1) n(n+1)e +6(n*1)€
n—2 _, 2?2 —n+3 2041,
2, — e Ta b
m 3n+1)(2n+1) ’
2n — 1 n®> —3n+1 n-—3 202
Ef|gii g:x|?] = e e T !
(lgii gjx]”] nn-DEnt D)  aniDn-2° 6m-Dm-2)°
1 2n — 3 _2n41y
— et~ e Tt
2n 3n+1)(2n+1)
2n — 1 2n -3 n—3 22
Eflgs: gl?] = B -t _ T2 et
[|gjg]k| ] n(n_l)(2n+1) n(n+1)(n—2) € 6(71— 1)(71—2) e
1 o 2n —3 _2nt1,
tone 3(n+ )2n+1)° ’
om— 1 m—2 1 2n—2
Ef|gi; grl?] = _ [ R S T
ll9is gxal] nn—1)2n+1) n(n+1)(n—2) ¢ 3(n—1)(n—-2) ‘
4 _2n41y

n

EECER

Proposition 26. For the quaternionic Grassmannian varieties Gr(n, g, H) and the spaces USp(n)/U(n),
the coefficients of Lemma 22 are:

1 n? 1 1 4
G H . D S———— — — (1 701---70)71,
r(n, q,H) 2n27n—1+ 3 ((nl)(n2) pQ(”2))¢
n2
b T (200 n? < 4 L ! ) (220,00
(n—2)(n+1) 3 \(n+1)2n+1) pg(n+1) ’
USp(n)/U(n) : 1 4n—1)(n+1) ¢(2,2,0,...,0)n + n+l ¢(4,0 ..... )

2n2 +n 3n(2n + 1) 3n
Proof. The case of quaternionic Grassmannians is again done by using the expansion on page 40,
with square modules instead of squares. One obtains the following formula for the expectation of
(¢(1,1,0,...,0)n)2:
2
1 % -4 ¢ TL2 1 1 _2n—2,
+ et — — e
m2-—n—-1 (n—-2)(n+1) 3 \(n—=1)(n-2) pgn-—2)

TL2

+ ( 1 T > —E

il e~ t,

3 \(n+1)2n+1) pg(n+1)

hence the expansion in zonal functions by identification of the coefficients. Finally, for the structure

spaces USp(n)/U(n), (¢%9n)2 is equal to
1

o (T1(G11)"] + T1(911922)%] + T[(g12921)%]) +

n—1

(T[(913924)%) + T[(911933)°] + T[(G13951)%])
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plus some remainder whose expectation under Brownian measures will be zero. Hence,

E[(¢(2’O"“’O)"')2] _ 1 + 4(n —1)(n+1) e—%t + n+1 e—%tv
n(2n+1) 3n(2n+1) 3n
and % is the exponent corresponding to the spherical representation of label (2,2,0,...,0),, whereas
2”—7;"4 is the exponent corresponding to the spherical representation of label (4,0,...,0),. 0

4.2. Proof of the lower bound on the total variation distance. The proof of the lower bound is
now a simple application of Bienaymé-Chebyshev inequality. First, under the Haar measure, we have:

Proposition 27. If E, is the event {|Q| > a}, then the Haar measure of E, satisfies the inequality

1
nx (Ea) S ?

for every classical simple compact Lie group X = K and every classical simple compact symmetric space
X =G/K.

Proof. The previous computations ensure that Eoo[|Q2|?] = 1 in every case, so

Eo[|2] _ 1
nx[19] > a] = nx[|Q] > a*] < = 57— = —. =

Next, let us estimate E.[€2] and Var;[Q] for ¢t = a (1 — €)logn. The exact values are listed in the table
on the following page. We assume ¢ < i; indeed, Lemma 3 ensures that it is sufficient to control the
total variation distance around the mixing time. We shall use a lot the inequality of convexity

eyf

1
exp(z) <1+ x Vre (0,y).

Y

Lemma 28. Under the usual assumptions on n, for groups and spaces of structures (but not for Grass-
mannian varieties), Var[Q] is uniformly bounded for everyt = a (1 —¢€) logn with e € (0,1/4). Possible
upper bounds are listed below:

SU(n), SU(n)/SO(n), SU(2n)/USp(n): 1 ;
SO(2n)/U(n), USp(n), USp(n)/U(n):3 ;
SO(n) : 8.

Proof. We proceed case by case, and denote Ay(\, ) = e=* — e #*. Notice that Ay(\, ) < 0if A > p.
On the other hand, A;(\, ) is always smaller than 1 for A, > 0.

e SO(n):

Var[0)] At<0,nn1> +n(n;l) At<nn4’nn1) n (@1) At<1’nn1)

S1+n(n21)At<n4 nl) _ +”(”*1)67"T*1t (e%fl)

13 n—
<1+ 7nlogne771t

. 1.382 _
since 81987 < 1.382 when n > 10, and & L < 13 Then
n 1.382 6 J
—1 3(n—1)logn (n—3) logn 14
et <e” o = leT T

< (nl -1
13 (nlogn)

for n > 10, so Var;[Q] <147 =38.
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Var;[Q] = A, (0,
<14+ @2n+1)(n—1)A, (1,

5
<1+ inlogne_ 2n

since 1262 < 0.367 when n > 3, and ¢

for n >3, s0 Vary[Q] <142 =3.

2n+1
2n

2n+1 t

_2n+1y
e 2n

)+(2n+1)(n_1)At(1,%) +(2n+1)nAt(

K or G/K ]Et [Q] Vart [Q]
SO(n) ne 1+@e’%4t+ (@ — 1) et —nZe~ "t
SU(n) ne w7 1+ (n?—1)et—n2e” et
USp(n) 2ne= Tt 1+ @2n+1)(n—1)et+ (2n+1)ne "t —4n2e "5t
(n+2)(n—1) _ n? (n—1)(n+2) — n? (n n+2)(n—1) _2n=2
Gr(n, ¢, R) Vet (35 - 8) Gt e+ o (55 - ) et
n? (n—1 2(n+2)(n—1) —_2nt4 (n+2)(n—1) —
(B + HREED ) oo (2l o
Gr(n, q,C) n2 —1le? 1+ (% - 8) —Zi;i et + %2 (Z—S - p:(i;g)) e~ it
n2 (— - _ 2n+42 _
+7(n—+§+m)e nt—(n2—1)e 2t
_ n? n—1)(2n+1 — n? n 2n+1)(n—1 _2n—2
Gr(n, g, H) Cr+Dn—Det |1+ (5 —4) Gl et 4 o (2l — Coil ) -2
n? [ 4(n—1 2n+1)(n—1 _2n+1 _
+7(((n+1))+( pj]_(73~(‘rl) ))e n t_(2n+1)(n—1)e 2t
SO(2n)/U(n) n@n—1)e it |14 @ol@nol) oty | Aol (=2 o 1) e B
[n(ntl) —(n=Dnt2), (n+2)(n—1) _2n+2 n(ngl) —n=DEntd),
SU(n)/SO(n) Te " 1+fe n t - Te n
SU(2n)/USp(n) | v2n2 —ne” e E (2n2 —n—1)e "t —(2n2 —n)e” Eraa
USp(n)/U(n) A /n(Qn + 1) e~ nrtlt 1+ M e” znjlt + W}M e—%t _ n(Qn + 1) e~ 2nn4,r2t
e SU(n):
2 _ 1 2 _ 1
Vart[Q]:At(O,n 3 )—I—(nQ—l)At(l,n 5 ) <1
e USp(n):

2n+2 2n+1
on  2n

2"“) <1+2n2e ot (eﬁfl)
2n

0.367 _ 5
9367 = 1 Lhen,
3logn 3 4
<e TP o o=pT2< R (nlogn)™*
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e SO(2n)/U(n):

2n — 2 —1)(2n —1 2n—4 2n—2 4(n? -1 2n—1 2n—2
Vart[Q]:At(O, n )+(n )(2n )At( n—4 2n )+ (n )At( n=12n )
n

3 n n 3 n n

—-1)(2n -1 2n —4 2n—2 22 _anoo 2t
<1 DO D (2o 2 R) g B e ()
3 n n 3

20 n—
<1+ §n10g2n6—¥t

since 219620 < 0,922 when 2n > 10, and 5= < 3. Since
R S ln_l o IS < §(nloan)_1
2 — 4
for 2n > 10, one concludes that Var,[Q] <1+ % < 3.

e SU(n)/SO(n):
Var,[0] = At(o, 2(n — 1)(n+2)) L2 -1) A15(2(n+1) 2(n — 1)(n—|—2)) -1

n? 2 n_ n2

e SU(2n)/USp(n):

n n n

Var Q) :At(o,w o —1 (n—l)(2n+1)) .

5 )+(2n2—n—1)At( , >

e USp(n)/U(n):

2n + 2 4(n? -1 2n+1 2n+2 2n? +3n+1 2n+4 2n+2
Vart[Q]At<0, nn )+ (TLS )At< nn , nn )+ n Sn At( nn 7 nn )
2 2 .
S1+4(n 1)At<2n+1,2n+2>§1+4ie2n+2t (e%fl)
3 n n 3
2nt2,

<1+ gnlogne* n

logn
n

by using the same estimate on as in the case of USp(n). Since

_2n42 _3logn _s _
e Tn l<eTT2z =pT2< (nlogn)1

(SRR

for n > 3, one obtains Var[Q)] <1+ % < 3.

It is not possible to prove such uniform bounds for Grassmannians, because of the term e~* that appears
in the variance. We shall address this problem in Lemma 30. ]

Proposition 29. Denote Kx the bound computed in the previous Lemma for the variance of the dis-
criminating zonal function 0 associated to a space X. Then,

4(Kx +1)
d H >1— —
TV (,Utv aar) = (Et [Q])2
Proof. Assuming a smaller than m = E;[Q], if |Q —m| < a, then || > m — a. Consequently,
Var;[Q) K
w9 >m—a] >1-P]Q—m| > a 21—2“7‘;[] —1- =X
a a

Next, take a = 3. The combination of Lemma 27 and of the previous inequality yields

_KX+1_1_4(KX+1)

drv (pe, Haar) > pi(Eq) — nx (Eq) > 1 " R

Since m? behaves as n??, this essentially ends the proof of the lower bounds in the case of compact Lie
groups and compact spaces of structures. More precisely:

e SO(n): m? > n? so the constant ¢ in our main Theorem 6 is 4(8 + 1) = 36.

e SU(n): again, m? > n?¢, so the constant is 4(1 + 1) = 8.
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logn

USp(n): here, m? > 4n? > 2 n? for n > 3, so the constant is 5 4(3+1) = 5.

16
Rk
SO(2n)/U(n): m? > 22=1 (2n)?¢ > 2 (2n)? for 2n > 10, whence a constant 55 4(3+1) = 38 < 8.

2 _ 2(n—2)logn

U(n)/SO(n): m* > 2-e¢ n2 > % for n > 2, so a possible constant is 3 x 4(1 + 1) = 24.
U(2n)/USp(n): m? > 22=1 (2n)? > 2 (2n)%, and a possible constant is $4(1 4+ 1) = & < 22.
USp(n)/U(n): m? > 2n

n* for n > 3, whence a constant 1= 4(3 4+ 1) = 17. O

Unfortunately, for Grassmannian varieties, the variance of  at time ¢t = (1 — €)logn can only be
bounded by a constant times n®. However, since the mean of ) is also of order n¢, this will still ensure
that the discriminating zonal spherical function has not at all the same behavior under Haar measure

and under Brownian measures before cut-off time. The only downside is the loss of a factor n® in the
estimate of the total variation distance.

Lemma 30. Under the usual assumptions on n, for Grassmannian varieties,

Vart[Q]< 3 k=R,
n®  — |5 ifk=C orH,

for everyt = a (1 —¢) logn with € € (0,1/4).

Proof. The quantity i is bounded by
4 1 1
— < =< ,
n2 " pg  n-1

the extremal values corresponding to p = ¢ = 5 and to p = n — 1 or ¢ = n — 1. In particular, in the

expansions hereafter, all the coefficients that precede differences of exponentials A;(\, ) are positive.
Now, we proceed case by case:

e Gr(n,q,R):

Vart[Q]At(0,2)+(2p—7js)%At(L2) %(Z+; (n;(?(n;)l))&(m_gj)

+n_2 n—1+2(n+2)(n—1) A, 2n+4’2
6 \n+4 pg(n +4) n

2 o2n —2
§1+2nAt(1,2)+%At(n ,2).
n

For the difference A¢(1,2), one cannot obtain a better bound than e=* = n®~!. The second
difference A, (2"n_2 , 2) is bounded from above by

; 3 81
e 2t (e% — 1) < n=3 8logn <2n?
3n
by using similar arguments as in the proof of Lemma 28, and the inequality n > 10. So,

2
Var,[Q] <1+ 3 + 2n° < 3nc.

e Gr(n,q,C):
on2 21 1 21 2n — 2
Vart[Q]zAt(o,2)+(i—8)"2—4A(1 2)+”2 (”+ z ))At( ~ ,2)
2

pq n—2 pqg(n—2 n
+n2 n—1+ n?—1 2n 22
2 \n+2 pgn+2) = ’
2 2
<1+ 2nA(1, 2)+—At( n- ,2).

The second difference is controlled exactly as in the case of real Grassmannians, but under the
constraint n > 2:

At<2n2,2> <e 2 (e% - 1) < n3 3logn < 37172.
n




THE CUT-OFF PHENOMENON FOR BROWNIAN MOTIONS ON COMPACT SYMMETRIC SPACES 55

Hence, Var,[Q] < 1+ 3 + 2n° < 5nf.

e Gr(n,q, H):
B n? (2n+1 (2n+1)(n—1) 2n — 2
n* N\ (n-1)(@2n+1) n® (4n—1) (@2n+1)(n—-1) 2n+1
+ (51 S 200+ 3 (G + e ) & (B)
§1+2nAt(1,2)+2—§2At<2n2,2)§1+2n8+g§5n8. O

Now, Proposition 29 still holds, but with Kx varying with n and equal to 3n® or 5n° according to the
field k = R, C or H. Thus:

Proposition 31. For Grassmannian varieties Gr(n, ¢, k), if t = (1 — ) logn with € € (0,1/4), then

Ln® . 16 ifk=R
d H >1— th L = ’
v (4, Haar) > m2 we {24 ifk=C or H.

Finally, the deduction of the constants in Theorem 6 goes as follows:
e Gr(n,q,R): m > %, so the constant can be taken equal to 2 x 16 = 32.
e Gr(n,q,C): m > % n%* > 3n% 5o a possible constant is again 3 24 = 32.
e Gr(n,q,H): m > Q"Z*f”*l n2€ > %nQE for n > 3, whence a constant %24 = 16.

These computations end the proof of the cut-off phenomenon.

5. APPENDICES (TECHNICAL COMPUTATIONS)

5.1. Proof of the upper bound for odd special orthogonal groups. With the same scheme of
growth of partitions as for compact symplectic groups, one has the following bounds:

2n+1) o~ "anii) log(2n+1)

® 1)1, it is given by the exact formula (n 1

n > 5.

, which is indeed smaller than 1 for

® 1p>2.,: the comparison techniques between sums and integrals give

n(2k —1+n) 1
T ont1 2]{:_1+E+10g(k+n*2)710gk

+ (2k 4 2n — 2)log(2k + 2n — 2) + (2k — 2) log(2k — 2) — 2(2k +n — 2) log(2k + n — 2).

log(2n +1) +

log nin < —

This bound is decreasing in k, whence smaller than its value when k = 2, which is negative for
every value of n > 5.

® 7kic[3,n—1]" as before, py; splits into py; (1) and py i (2):

n

_H E+7—14+X 41— E+XNyi+A+2n—3j H 2k+2N 41+ 2n+1—i— 35
Pl = ktj—l— 1+ Mg — Nkt N1+ +2n—j—1 2%+ 21 +2n—1—i—j

j=l+1 1<i<j<

The bound on log 7 i, the sum of log py; (2) and of the variation of ft"T’OBn (N, is
12K —1+2n—1) 1 , ,
—  + log(k —2) — log(k —-1-1
2+ 1 Fan—i—1 sk n=2) = log(k' +n )
+ (2K + 2n — 2) log(2K" + 2n — 2) + (2k" + 2n — 21 — 2) log(2k' + 2n — 2] — 2)
—2(2k" 4+ 2n — 1 —2)log(2k’ +2n — 1 — 2)
I(2uv+2n+1-1) 1
< - log(2 1 E—
- 2n+1 og(2n + )+v+n—l
+ (20 4 2n) log(2v + 2n) + (2v + 2n — 21) log(2v + 2n — 21)
—2(2v+2n —1)log(2v + 2n — 1)

log 7k, < — log(2n + 1) +

+log(v+n—1)—loglv+n—1)
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with &' = &+ A\j;1 = k +v. On the other hand, in the product Pk, (1), €ach term of index j
writes as

(K'4+n—1/2)2—(\; +n+1/2—j)? - (K +n—1/2)2 = (N1 +n+1/2 —j)?
(K'4+n—-1/2-02-N+n+1/2—7)2 = (K +n—-1/2-101)2 = (N1 +n+1/2—j)?
k+7—1 kK" +2n—j
“k4j—1—-1k'+2n—j-0

so the quantity Pr,,(1) is bounded by
(k+n-—1) (k—1) K" +2n—-1-1)! (K"+n—-1-1)
k+1-D (k+n—-1-1)! (Kk"+n-1)! (K"+2n-20-1)!
n!(2v+2n— 0! (2v+n —1)!
“U(n—=0D'2v+n)! (20 +2n —2[)1
Again, Stirling approximation leads to
log pii,(1) < (2v +2n —1)log(2v +2n — 1) + (2v +n — 1) log(2v +n — 1) — (2v + n)log(2v + n)
1
2n — 2’

— (2v+2n —20)log(2v + 2n — 21) + nlogn — llogl — (n — 1) log(n — 1) +

and therefore
I2v+2n+1-1) 1
2n+1 v4+n—1
+ (2v+2n)log(2v 4+ 2n) + 2v+n — 1) log(2v + n —1)
— (2v+n)log(2v+n) — (2v+2n — 1) log(2v + 2n — 1)

logng,; < — log(2n + 1) + +log(v+n—1)—log(v+n—1)

1
1 —llogl—(n—1)1 —1
+nlogn ogl—(n—1)log(n —1)+ T
(2 1-1 1
< 7%10g(2n+1)+m+1og(n71)710g(n—1)
1
1 —llogl—(n—1)1 —1 .
+nlogn ogl— (n—1)log(n—1)+ 5 — 3

The last bound is decreasing in [, so it suffices to look at the case [ = 3; then the bound is
decreasing in n, so it suffices to check that the bound is negative when n = 5, which is just a
computation. We conclude that logni; < 0 for any k and any [ € [3,n — 1].

) -k —2 2k+2n—1
e 7,1 a bound on py 1 is HER 214;122—3’

SO

ktn—22k+2n—1 _sonc2igpongn) (n—1)(2n+1) o 2207 log(2n+1)

e
Tl =TT %k r2n—3 R
n—1 log(2n+1) 1 1og11
e it < —e 11 < 1.
~—2n—1 -2 -
® 7k,2: a bound on py o is K2Rt KE2ncd Zetdn_l A g
s < k+2n—4 k+2n—32k+2n—1 k+n_1e_4k2tl4ff6108(2n+1)S n 641057(124;11H)
’ k k+1 2k4+2n—5k+n—2 2n +1

The last bound is bigger than 1 only when n = 5 or 6. The maximal value is obtained for n = 5,
and is smaller than 1.09 < %. Moreover, if £ > 2, then one has a much better bound, that is
smaller than 1 even when n =5 or 6.

Putting all together, one sees that at most one quotient 7;; may be bigger than 1 (and actually only
when n =5 or 6). Thus, we have proved Proposition 17.

5.2. Proof of the upper bound for even special orthogonal groups. We analyze as before the
various quotients py; and 7, corresponding to the growth of partition described by Equation (3.2):

® 1), the general formula is

n—1 . .
2k+2n—20—-12k+2n—20 -2\ _2kin-2,
_ == og(2n)
Tl (H k+n—i—1 2k+tn—i—2 )e ’

i=1



THE CUT-OFF PHENOMENON FOR BROWNIAN MOTIONS ON COMPACT SYMMETRIC SPACES 57

2"71) e~ ™% when k = 1. This latter bound is always

which is decreasing in k£ and reduces to ( "
smaller than 1.

® 7kic[2,n—1]¢ the quotient of dimensions px i = pr1, (1) Pr,i,(2) i equal to

n

H k+j*1+>\l+1f)\j k+)\l+1+)\j+2n717]’ H 2k+2)\l+1+2n7i7j
E4+ji—1l—-1+N Ny =X kE+Npa+A+2n—1—35—1 2k +2 N1 +2n—2—1—3

j=1+1 1<i<j<I
The main difference with the previous computations is that py; (o) is a product over distinct
indices @ < j, so we will not have to worry about diagonal terms in the corresponding sum (see

the argument at the beginning of §3.2.1). Hence, with the same notations as before,

_ 12K —2+2n —1
log ikt < — ( 2+ n—1) log(2n) + (2" + 2n — 3) log (2K’ + 2n — 3)
n
+ (2K +2n — 21 — 3)log(2k' 4+ 2n — 21 — 3) — 2(2K' + 2n — 1 — 3) log(2k" + 2n — [ — 3)
1(2v 4 2n —

< - o D log(2n) + (2v +2n — 1) log(2v + 2n — 1)
+2v+2n—-20—1)log(2n —2l — 1) = 2(2v +2n — [ — 1) log(2v + 2n — [ — 1);
log pri, 1) < (2v+2n—1—1)log(2v+2n—1 - 1)+ (2v+n—1—1)log(2v+n—1—1)
—(2v+n—-1)log(2v+n—1)— (2v+2n— 2l — 1)log(2v + 2n — 21 — 1)
1
2n —2°
Adding together these bounds, using the concavity of xlogx and then the decreasing character
with respect to v gives

+nlogn —llogl — (n—1)log(n —1) +

I(2n—1 1
% log(2n) + nlogn —llogl — (n —1)log(n — 1) + P
which is decreasing in [ > 2. Then,

2n — 2 1
“ log(2n) + nlog(n) — 2log2 — (n — 2)log(n — 2) + 55

n—

is decreasing in n, and one can check that it is negative when n = 5. So, n;; < 1 for any k£ and
any [ € [2,n —1].

log nk.,1 = log Mk.,1 + 1og pr 1) < —

. k+2n—3 k+n—1
® 7g,1: one has p; < === pr——

kE+2n—-3k+n-—1 o= 2n+22nk73 log(2n)'
k k+n—2

Suppose k > 2; then the right-hand side is smaller than %nl "2—21, so g1 < 1. On the other
hand, for k£ = 1, which happens only once,

and therefore

N1 <

log(2n) log 10 4

mi<e 2 <e 10 Sg-

This proves Proposition 18.

5.3. Proof of the upper bound for complex Grassmannians. For a partition of size p = | ], one
has B,()\) = % + (n+1— 2:)\; and either

p

Ai+XAj+n+1—i— Ai—XN+j—1
A,(N) = A R

™ 1_[131_[1 ntl—i—yj 1<'1:['< J—i

[ SUI<SISP
if n =2p, or
2

1p+1 . .
Zﬁzﬁ)\i—i—)\j—i—n—l—l—z—j H Ai—=Aj+j—1

i=1 j=1 ntl—i—j 1<i<j<p J—t

when n = 2p+ 1. Let us give the details when n = 2p. Again, one looks at pp; = A, (X)/A, (1) and
Nkl = Pk, e logn(Ba(N)=Bn(1) with 1 and A equal to

(>\l+1+k71;---7)\l+1+k717>\l+17---7)\p)p and ()\lJrl+k,...,/\l+1+k,>\l+1,...,>\p)p.
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The quotient of dimensions is

2
B li[ 2K +n— )2k +n—7j—1) ﬁ (K =X +j— 1)K + X +n—3j)
Phi L@ DR A —-1) ) \ L TN W A A=) )
and a lower bound is then obtained by the usual replacement \;11 = A\; = 0 and then £ = 1:
n—20+1 (n+1)\ n—20+1 (n+1\° 2(n+1-0)
<= - . <z = - — = —"logn
Pkl = ntl <l> ) Nkl = nrl <l>e

The last quantity is decreasing in [, as the quotient of two consecutive terms of parameters n,l and n,l+1

is smaller than )
(M—l - e”’ng") <1

[+1
So,
n—1 n®—1
< 2 ,—2logn _ <
nk,z_—n+1(n+1)e =1

and A, (\) e~ 1987 Bn(N) is smaller than 1 for any partition (we leave to the reader the verification of the
other case n = 2p + 1, which is very similar).

5.4. Expansion of elementary 4-tensors for unitary groups. For the eigenvectors associated to the
value 2n — 2, we shall write

S(i, j. k1) = (eli, j] — el5, i) — (els, k] — e[k, 5)* + (e[k, 1] — e[l K])®* — (e[l, 4] — e[i, 1])®>.

The elementary tensor 6?4 is equal to
1 . 1 N (el — e[ L))+ (el i) —e Lk LK)
s N7 el Lk 1)+ el L K] + —ZZ (+<<£[;z’li]_e[;;zl’k]>+<efl;;”_e[z;;’m)
n(n—l—l)kl : n(n+2) i =1
ePt 4 Pt i, k] + e[k, i])®% — k0] +ell, k
e M el ey S ek el )

with the two first terms respectively in V5,2_5 and V,2_o, and the second line in V_5,_5. Similarly,
e Qe ®e; ®e;is equal to

1 n . o 1 n o
eli,l,i,l]—el5,1,5,0] e[i,l,i,l]—elk,l,k,l]
+ 7’L(7’L + 2) <Zl («l»e[l,j,l,j]e[l,i,hi])) + (n . 2)(n + 2) Z <§ (+€[l,j,l,j]e[l,k,l,k])>

n
§ eli,l,1 il +e[j,1,1,5] —2e[k,l,1,k]
+ell i il +ell,5,5,1]—2e[l,k,k,1]

=1

- 09(i i B D — S(i k. |
"I -Dm -2 Z_ 28, J, k1) = 8.k, 5,1)
(k<)

- eli,j,i,j]+elj, k,4,k]+elk,i,k,i]
T 5, Z (fe[j,i,j,i]fe[k,j,k,j]fe[i,k,z‘,k])

k#i,j
n — 2 Z ®4 4 e®4 (eli, k] + e[k,i])®2 + 26?4 + 6%4 — (elj, k] + e[k,j])®2
k#i k#j
1 4 .o .. 2
— Z (6;84 + 6? — (e[z,]] + 6[],2])® ) — m (kzd@ [k/’ l] + e[l k/’]) )
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with the parts of this expansion respectively in V5,2 _o, V,,2_9, Vop_o, V_o and V_o,_».

5.5. Expansion of elementary 4-tensors for compact symplectic groups. It is a little more tedious
than before to find a complete list of “simple” eigenvectors of M,, 4 (or at least a sufficient list to expand
simple tensors). The list of possible eigenvalues of My, 4 is {2n+ 1,7+ 1,n,3,1,0,—1,—3}, and on the
other hand, one can easily identify a basis of V5, 11: it consists in the three vectors

_ e[2i—1,24,2j—1,25]4€[24,2i—1,25,2j—1] \ .
V2n+1,1 = E : —e[24,2i—1,2j—1,25]—e[2i—1,2i,25,25—1] ) *
3,j=1
n

_ e[2i—1,25—-1,2i,2j]+€[24,25,2i—1,25—1] '\ .
V2n4+1,2 = Z (76[2i,2j71,2i71,2j]76[21'71,2]',21',2]'71])7
i,5=1
n
o e[2i—1,25—1,24,2i]+e[24,25,25—1,2i—1]
U2n+1,3 = Z (7e[2i,2j71,2j,2i—1]76[2i—1,2j,2j71,2i])‘
i,5=1

But then, it becomes really difficult to describe the other eigenspaces. However, one can still find the

eigenvector expansion of simple tensors such as e®4 6?2 ®2 or eli, j, k,1]; hence, in the following, we just

give these expansions (again it is easy to check that each part of an expansion is indeed an eigenvector).
The tensor eli,i,4,1] is an eigenvector in V_s, and on the other hand, e[2i — 1,2i — 1, 24, 2i] decomposes

n—2 Z Z ( e[2i—1,2j—1,2i,25]+e[24,25,2i—1,25—1] )"
4nn+1 —e[2i— 12]212] 1]—e[2¢,25—1,2i—1,2j]
GGS VE)
Z Z (e[2j 1,2k,25,2k—1]+€[25,2k—1,25—1,2k] )"
4nn+1 —e[2j— 12k 1,25,2k]—e[2j,2k,25—1,2k—1]
o€S j,k#i

n n—1 (26[21'71,2i71,21’,21’]+26[2i,2i,2i71,2i71]76[21'71,21',21'71,21'])
2n(n+ 1) —e[24,2i—1,2¢,2i—1]—e[24,2¢—1,24—1,24] —e[2:—1,24,24,2i— 1]

I 1 e[2i—1,25—1,2i,25]+e[2i,25—1,2i—1,25] \ 7
An+1) § : E : —e[2i—1,24,24,25—1]—e[24,25,2i—1,25—1]

2n—1 e[2i—1,25,25—1,2i]+€[2i,25—1,25,2i—1] \’
+ 2(2n + 1)(2n + 2) ;g (76[21'71,2]'71,2]',21']76[2i,2j,2j71,21'71])
JFT

1 Z Z e[2j—1,2k—1,24,2k]+e[2,2k,25—1,2k—1] \7
22n + 1)(2n + 2) —e[2j—1,2k,25,2k—1]—e[25,2k—1,2j—1,2K]
o€S j,k#i

)
(2n—1)(2n - 2) 2e[2i—1,2i—1,24,2i]+2€[24,2i,2i—1,2i— 1] —e[2i—1,2i,2i —1,2i]
6(2n+ 1)(2n + 2) —e[24,2i—1,2i,2i—1]—e[2i,2i—1,2i—1,2i] —e[2i—1,24,2i,2i—1]

-1
2(71 =y (e[2i — 1,2i — 1,2i,2i] — e[2i, 24,2 — 1,2i — 1))
n
1 2i—1,2§,2j—1,2i]+e€[2i,25,2j—1,2i—1] \°
ey o 2 (BT A B
oc€ES j#i
1 !
+3 e[2i —1,2i — 1,2i,2i]°
geES,

with the parts of this expansion respectively in Von41, Vi1, Vi, Vo, V-1, and V_3. In these expansions,
S = (Z/27Z)* denotes the group of permutations {id, (1,2), (3,4), (1,2)(3,4)}.
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The expansion in eigenvectors of e[2i, 2i,2j, 2j] is

L (2e(2i,2i,2,2j]+2¢[25,25,2i,2i] —e[24,25,2i,24] L/ e[2i,2i,25,2j] 1 ¢ e
6 (—e[2j,2i,2j,2i]—e[2i,2j,2j,2i]—e[2j,2i,2i,2j]) + 5 (—e[2j,2j,2i,2i]) + 6 Z e[2i, 24,25, 25]7

c€ES,

with each part respectively in Vp, V_1 and V_s; and similarly for the expansions of e[2i — 1,2i — 1, 27, 2j]
ore[2i—1,2i — 1,25 — 1,25 — 1]. Finally, we skip the expansion in eigenvectors of e[2i — 1,2i,25 — 1, 27],
since it is two pages long.
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