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Avant-propos

L’objectif de ce mémoire est de présenter les résultats de recherche que j’ai obtenus depuis
la thèse de doctorat que j’ai soutenue en 2010. J’ai donc dû trouver un moyen de résumer ces
résultats, et initialement cette tâche m’a parue assez difficile. En effet, j’ai travaillé sur des
sujets aussi variés que :

• les estimées de type Berry–Esseen pour des suites de variables aléatoires (théorie des
probabilités classique) ;

• les mouvements browniens sur des espaces symétriques (théorie des processus aléa-
toires, géométrie, un peu de théorie des représentations) ;

• les nombres de diviseurs premiers d’entiers aléatoires (théorie analytique des nom-
bres, théorie des probabilités) ;

• les spectres de graphes aléatoires géométriques tracés sur des groupes de Lie (théorie
des représentations des groupes de Lie, bases crystallines de Lusztig–Kashiwara).

Un point commun entre ces divers sujets est que j’aime regarder des objets mathématiques
aléatoires, et étudier leurs propriétés asymptotiques (la plupart du temps, lorsque la taille du
modèle tend vers l’infini). On pourrait faire l’erreur de penser que c’est le caractère aléa-
toire de ces modèles qui suscite mon intérêt. En fait, c’est tout l’inverse : je m’intéresse aux
structures mathématiques cachées derrière ces modèles aléatoires au comportement chaotique,
et je recherche la façon dont on peut utiliser ces structures algébriques ou analytiques pour
démontrer des résultats asymptotiques.

Ainsi, le fil rouge de mes travaux n’est pas l’aspect aléatoire, mais plutôt l’outil que j’utilise
presque toujours pour vaincre l’aléatoire : l’analyse harmonique, et les divers avatars de la
transformée de Fourier. Rappelons que si f appartient à l’espace L 1(R) des fonctions inté-
grables sur la droite réelle, sa transformée de Fourier est la fonction continue bornée

ξ 7→ f̂ (ξ) =
∫

R
f (x) eiξx dx.

Dans la suite, Cb(R) désigne l’espace des fonctions continues bornées sur R et à valeurs com-
plexes. Par densité ou par dualité, on peut étendre la transformée de Fourier à d’autres es-
paces fonctionnels, par exemple l’espace des fonctions de carré intégrale L 2(R), ou l’espace
des distributions tempérées S ′(R). Si f et f̂ sont toutes les deux intégrables, alors on peut
retrouver f à partir de f̂ , en utilisant la formule d’inversion de Fourier

f (x) =
1

2π

∫

R
f̂ (ξ) e−iξx dξ. (0.1)

D’autre part, la transformée de Fourier est une isométrie de L 2(R) (à un facteur 1
2π près) :

∀ f , g ∈ L 2(R), 〈 f | g〉 = 1
2π

〈
f̂
∣∣∣ ĝ
〉

. (0.2)
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Finalement, la transformée de Fourier de la convolution de deux fonctions est le produit de
leurs transformées de Fourier :

∀ f , g ∈ L 1(R), (̂ f ∗ g)(ξ) = f̂ (ξ) ĝ(ξ), (0.3)

avec ( f ∗ g)(x) =
∫

R
f (x − y) g(y) dy. Les trois formules (0.1) (formule d’inversion), (0.2) (for-

mule de Parseval) et (0.3) (formule de convolution) sont les propriétés générales que l’on attend
de toute extension ou analogue de la transformée de Fourier classique L 1(R) → Cb(R).
L’essentiel de mes travaux repose sur de telles généralisations de la transformée de Fourier,
avec L 1(R) remplacé par :

• l’espace M 1(R) des mesures de probabilité boréliennes sur R ;

• ou, l’algèbre de groupe CS(n) des fonctions sur le groupe symétrique de taille n ;

• ou, l’algèbre de convolution L 2(X) des fonctions de carré intégrable sur un espace
X = G/K, où G est un groupe de Lie compact.

B Fluctuations des variables aléatoires et convergence mod-φ. En théorie des probabilités
classique, l’espace L 1(R) est remplacé par l’espace des mesures de probabilité M 1(R), et on
peut définir la transformée de Fourier d’une mesure µ ∈M 1(R) en utilisant essentiellement
la même formule que précédemment :

µ̂(ξ) =
∫

R
eiξx µ(dx).

La formule de convolution est encore vérifiée, et il en va de même pour la formule de Parseval
dans le contexte suivant : si f est une fonction dans L 1(R) avec f̂ également dans L 1(R),
alors pour toute mesure de probabilité µ sur la droite réelle,

µ( f ) =
∫

R
f (x) µ(dx) =

1
2π

∫

R
f̂ (ξ) µ̂(−ξ) dξ.

D’autre part, la formule d’inversion de Fourier est différente selon que la distribution µ est
discrète supportée par un réseau, ou continue. Par exemple, si µ n’est pas supportée par un
réseau et si sa transformée de Fourier µ̂ est intégrable sur la droite réelle, alors µ est absolu-
ment continue par rapport à la mesure de Lebesgue, et sa densité est donnée par la formule
d’inversion (0.1). Nous renvoyons à [Fel71, Chapitre XV], [Mal95, Chapitre III] et [Str11, Sec-
tion 2.3] pour la théorie classique des transformées de Fourier de mesures de probabilité ;
un court exposé est également proposé dans [FMN17b, Section 2.2]. La formule d’inversion
de Fourier fournit un dictionnaire entre les propriétés d’une mesure de probabilité µ, et les
propriétés de sa transformée de Fourier µ̂. Par exemple, le comportement de µ̂ au voisinage
de 0 impose la taille de la queue de la distribution µ, via l’inégalité

µ(R \ [−2C, 2C]) ≤ C
∫ 1

C

− 1
C

(1− µ̂(ξ)) dξ.

Une autre raison pour laquelle les techniques d’analyse harmonique sont très utiles en
théorie des probabilités est que la transformée de Fourier échange la convergence en loi dans
M 1(R), et la convergence localement uniforme dans Cb(R). Étant donnée une suite (Vn)n∈N

de variables aléatoires à valeurs réelles, il existe souvent une renormalisation (Vn/sn)n∈N

de la suite telle que les transformées de Fourier E[eiξVn/sn ] admettent une limite F(ξ), et
donc telle que les lois µn des variables aléatoires renormalisées Vn/sn convergent au sens
faible vers la distribution µ dont la transformée de Fourier est µ̂ = F. Lorsqu’on remet à
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l’échelle les variables aléatoires Vn et lorsqu’on regarde Vn/sn, on obtient la bonne normalisa-
tion pour décrire l’aspect général des fluctuations de Vn, mais on perd également beaucoup
d’information concernant le comportement précis des variables Vn. Ce point n’avait pas été
mis en lumière jusqu’à récemment, lorsqu’une autre théorie de la renormalisation a été inventée
afin de compléter la convergence en loi Vn

sn
⇀ µ par d’autres résultats plus précis :

• des grandes déviations (comportement au bord de la distribution asymptotique des
fluctuations),

• des théorèmes locaux (comportement dans des régions infinitésimales),

• des estimées de vitesse de convergence,

etc. Cette théorie est celle de la convergence mod-φ, et la première définition de cette notion a
été donnée il y a presque dix ans dans un article de Jacod, Kowalski et Nikeghbali [JKN11]
(dans le cas spécifique de la convergence mod-gaussienne). Durant mon séjour post-doctoral
à Zürich, j’ai eu la chance de commencer à travailler sur cette théorie, et nous l’avons dévelop-
pée depuis avec Valentin Féray et Ashkan Nikeghbali [FMN16; FMN17a; FMN17b; FMN17c;
MN15], et plusieurs autres coauteurs [Chh+15; BMN17]. Nous avons ainsi établi de nom-
breux résultats théoriques reliés à la notion de suites mod-φ convergentes, et nous avons aussi
étudié de larges classes d’exemples, et montré que ces exemples rentraient dans ce cadre.

Les deux premiers chapitres de ce mémoire sont consacrés à une présentation de ces résul-
tats. Afin de donner un sommaire précis de ces deux chapitres, expliquons informellement
la notion de convergence mod-φ, en nous concentrant sur le cas gaussien. Supposons don-
née une suite (Vn)n∈N de variables aléatoires telle que Vn/sn ⇀ NR(0, 1), les sn étant des
paramètres de renormalisation tendant vers l’infini. En termes de transformées de Fourier, la
convergence en loi est équivalente à l’estimée asymptotique

E
[
eiξ Vn

sn

]
= e−

ξ2
2 (1 + o(1)). (0.4)

Une idée assez naturelle est que si l’on connaît plus de choses sur les transformées de Fourier,
alors on obtiendra des résultats asymptotiques plus précis que la convergence en loi. Avec la
renormalisation Vn/sn, le o(1) dans le terme de droite de l’équation (0.4) est en fait une fonc-
tion f (ξ, n) telle que limn→∞ f (ξ, n) = 0 pour tout ξ. En prenant ces limites, on perd la dépen-
dance en ξ et toutes les informations pertinentes en dehors du fait que la suite (Vn/sn)n∈N

est asymptotiquement normale. Une façon de surmonter ce problème consiste à chercher une
autre renormalisation Vn/rn telle que, si

√
tn = sn

rn
, alors

E
[
eiξ Vn

rn

]
= E

[
ei
√

tnξ Vn
sn

]

= e−
tn ξ2

2
(
1 + f (

√
tnξ, n)

)
avec lim

n→∞

(
1 + f (

√
tnξ, n)

)
= θ(ξ)

pour une certaine fonction non triviale θ(ξ). Ainsi, au lieu de dire que Vn/sn converge vers
une distribution gaussienne, on dira que Vn/rn ressemble à une grande variable gaussienne
de variance tn, plus un résidu encodé asymptotiquement par θ(ξ). Notons que la bonne
renormalisation Xn = Vn

rn
n’est pas toujours facile à trouver, et qu’on ne peut pas établir

son existence simplement en prenant un terme additionnel dans le développement de Taylor
des transformées de Fourier de ces variables. Le résidu θ(ξ) contient en fait des informa-
tions spécifiques au modèle qui produit les variables aléatoires Vn, et la théorie de la conver-
gence mod-φ nous a permis d’extraire ces informations et de démontrer de nouvelles estimées
asymptotiques des probabilités pour la suite (Vn)n∈N.
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Dans le chapitre 1, nous présentons les conséquences théoriques de la notion de conver-
gence mod-φ, qui est la généralisation de la définition informelle précédente avec une loi
infiniment divisible arbitraire au lieu de la distribution gaussienne standard. Si l’on est ca-
pable de démontrer la convergence mod-φ d’une suite, alors on obtient d’un seul coup de
nombreux résultats asymptotiques :

• un théorème central limite avec une zone de convergence étendue (Théorème 1.21) ;

• des résultats de grandes déviations (Théorèmes 1.12 and 1.13) ;

• des estimées de Berry–Esseen pour la vitesse de convergence (Théorèmes 1.14 et 1.28
dans le cas continu, et Théorème 1.36 dans le cas discret) ;

• et un théorème limite local valable pour une grande plage d’échelles infinitésimales
(Théorème 1.49).

Ces divers résultats reposent sur des hypothèses légèrement différentes. Pour les deux
premiers (théorème central limite étendu et principes de grandes déviations), on demandera
des estimées de la transformée de Laplace complexe au lieu de la transformée de Fourier.
Alors, dans le cas particulier où (Xn)n∈N est une suite de variables aléatoires telle que

E[ezXn ] = etn
z2
2 ψ(z) (1 + o(1))

avec tn → +∞ (ce qui sera la définition d’une suite convergente au sens mod-Gaussien avec
paramètres tn et limite ψ, voir Définition 1.1), on obtient les résultats suivants :

• Si Yn = Xn√
tn

, alors pour toute suite déterministe xn = o(
√

tn),

P[Yn ≥ xn] =



∫ ∞

xn

e−
x2
2√

2π
dx


 (1 + o(1)),

donc la zone de normalité de (Yn)n∈N est de taille o(
√

tn).

• Au bord de cette zone, l’estimée gaussienne est corrigée par le résidu ψ, et si x > 0,
alors

P[Yn ≥ x
√

tn] =
e−

tn x2
2√

2πtn x
ψ(x) (1 + o(1)).

Les deux autres types de résultats asymptotiques nécessitent seulement une estimée des
transformées de Fourier, mais sur une zone assez large si l’on veut des résultats optimaux.
Dans le cas particulier où (Xn)n∈N est une suite de variables aléatoires telle que

E[eiξXn ] etn
ξ2
2 = θn(ξ) = θ(ξ) (1 + o(1))

avec tn → +∞, si l’on a par exemple une borne supérieure

|θn(ξ)− 1| ≤ K1|ξ|3 exp(K2|ξ|3)
sur une zone ξ ∈ [−K(tn)γ, K(tn)γ] avec γ ∈ [0, 1], alors la distance de Kolmogorov en-
tre Yn = Xn/

√
tn et la distribution gaussienne standard est un O((tn)

1
2+γ). Par ailleurs,

sous les mêmes hypothèses, l’approximation normale de Yn est valable sur des parties Jordan
mesurables Bn de mesure de Lebesgue L(Bn)� (tn)−

1
2−γ.

Dans le chapitre 2, nous expliquons quelles structures mènent à la convergence mod-φ. Si
les transformées de Fourier ou de Laplace des variables aléatoires Vn étudiées sont explicites,
alors on a seulement besoin des techniques usuelles d’analyse (Section 2.1). Néanmoins, cette
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classe inclut des exemples nouveaux et non triviaux : nombre de zéros d’une série entière
aléatoire, nombre de cycles d’une permutation aléatoire choisie suivant une mesure de prob-
abilité donnant un poids différent à chaque taille de cycle, nombre de facteurs irréductibles
d’un polynôme aléatoire sur un corps fini, nombre de facteurs premiers (distincts ou comptés
avec multiplicité) d’un entier aléatoire, etc. Dans chacun de ces cas, la convergence mod-φ
est établie en étudiant l’asymptotique de la formule explicite pour la transformée de Fourier,
celle-ci pouvant être donnée par une intégrale de Cauchy ou de Dirichlet dans le plan com-
plexe.

Dans le cas de variables mod-Poisson, la théorie de la convergence mod-φ permet la con-
struction de schémas d’approximation des variables discrètes étudiées par des mesures si-
gnées, ces approximations étant bien plus précises que la simple approximation poissonienne.
De plus, le formalisme des fonctions symétriques et de leurs spécialisations permet d’encoder
ces approximations de façon très concise. Par exemple, supposons que l’on souhaite approx-
imer la loi du nombre aléatoire ωn de diviseurs premiers distincts d’un entier aléatoire dans
[[1, n]]. Alors, pour construire une mesure signée νn dont la distance en variation totale à la loi
de ωn est un O((log log n)−b) pour un entier b ≥ 1, il suffit de manipuler l’alphabet infini

{
1,

1
2

,
1
3

,
1
4

, . . . ,
1
n

, . . .
}

n≥1
t
{

1
2

,
1
3

,
1
5

,
1
7

, . . . ,
1
p

, . . .
}

p∈P

et la spécialisation correspondante de certaines fonctions symétriques de degré plus petit que
2b. Une méthode similaire d’approximation est proposée pour de nombreuses autres suites
aléatoires discrètes de nature combinatoire ou arithmétique.

À l’opposée de ces structures très rigides et algébriques, la convergence mod-gaussienne
ne nécessite pas un calcul explicite des transformées de Fourier. Ainsi, nous donnons dans
le second chapitre un critère général sur les cumulants d’une suite de variables aléatoires qui
garantit la convergence mod-gaussienne, et qui à son tour est impliqué par certaines struc-
tures de dépendance : les graphes de dépendance creux (Théorème 2.19) et les graphes de
dépendance pondérés (Théorème 2.35). Ces résultats permettent de montrer que de nom-
breux modèles de graphes aléatoires, partitions aléatoires, permutations aléatoires, configu-
rations aléatoires de spins, etc. produisent des variables aléatoires (les observables du mod-
èle) qui sont convergentes mod-gaussiennes. Par exemple, étant donné un graphe aléa-
toire G(n, γ) sur n sommets associé à un graphon γ (classe d’équivalence dans l’espace des
fonctions mesurables symétriques [0, 1]2 → [0, 1], modulo les Lebesgue-isomorphismes de
[0, 1]), pour tout motif F (graphe fini fixé), lorsque n tend vers l’infini, le nombre de motifs
hom(F, G(n, γ)) est convergent au sens mod-gaussien après une renormalisation appropriée,
comme conséquence de la méthode des cumulants et des graphes de dépendance. De même,
si l’on considère la magnétisation Mn = ∑x∈Λn σ(x) d’une boîte Λn ⊂ Zd dans le modèle
d’Ising à très haute température T � Tcritique et sans champ extérieur, et si la taille de cette
boîte tend vers l’infini, alors une renormalisation appropriée de Mn converge au sens mod-
gaussien, comme conséquence de la théorie des graphes de dépendance pondérés.

Le critère sur les cumulants mentionné précédemment est une borne supérieure impli-
quant trois paramètres A, Dn, Nn :

∀r ≥ 1, ∀n ∈N,
∣∣∣r! [zr](log E[ezSn ])

∣∣∣ = |κ(r)(Sn)| ≤ rr−2 (2Dn)
r−1 Nn Ar. (0.5)



xii

Si cette borne supérieure est satisfaite, si Dn � Nn et si les trois premiers cumulants de Sn
vérifient certaines hypothèses asymptotiques, alors la suite renormalisée

Xn =
Sn −E[Sn]

(Nn (Dn)2)1/3

est convergente au sens mod-gaussien. D’autre part, si Sn est une somme de Nn variables
bornées par A et admettant un graphe de dépendance ou un graphe de dépendance pondéré
de degré maximal plus petit que Dn, alors les cumulants de Sn satisfont l’inégalité (0.5). Ce
résultat est à rapprocher de certains résultats d’analyticité en physique mathématique, car
il donne des informations sur le rayon de convergence des séries génératrices des variables
aléatoires Sn. En plus de la convergence mod-gaussienne, il implique des inégalités de con-
centration semblables à l’inégalité classique de Hoeffding, mais valables dans un contexte
nettement plus général (Proposition 2.33). On retrouve ainsi des inégalités qui jusque-là ne
pouvaient être obtenues qu’à l’aide de techniques de martingales, et qui sont fondamentales
pour l’étude des motifs dans des modèles de graphes aléatoires ou de permutations aléa-
toires. La théorie des graphes de dépendance (pondérés) offre une nouvelle approche pour
l’étude des fluctuations de sommes de variables aléatoires, et on conjecture qu’elle nous per-
mettra de comprendre précisément le comportement des chaos arithmétiques et des fonction-
nelles de systèmes dynamiques ergodiques mélangeants.

Au terme des deux premiers chapitres, il aura été montré que la théorie de la convergence
mod-φ permet une étude unifiée des diverses échelles de fluctuations d’une suite de variables
aléatoires. Dans le cas spécifique mod-gaussien, cette approche unifiée est complétée par des
résultats d’universalité. Par exemple, pour une classe très générale de modèles de graphes
aléatoires (les modèles de graphons), toute observable de tout modèle est génériquement
mod-gaussienne, avec des paramètres de convergence mod-gaussienne qui dépendent con-
tinuement des paramètres du modèle. Un phénomène semblable a lieu pour des modèles de
permutations aléatoires et des modèles de partitions aléatoires. Nous proposons dans la sec-
tion 2.3 une notion d’espace de modules mod-gaussien qui formalise cette universalité, et qui au-
torise une étude géométrique des modèles. En particulier, les points singuliers de ces espaces
de modules sont des modèles aléatoires avec des symétries additionnelles, et ces symétries se
traduisent parfois par une modification des paramètres de convergence mod-gaussienne, et
par la modification correspondante des échelles de fluctuations. À notre connaissance, cette
approche géométrique de la classification des modèles aléatoires est inédite. Dans ce cadre,
nous devrions pouvoir étudier les modèles singuliers en construisant de nouvelles structures
de dépendance, qui seraient des dégénérations de la structure générique de graphe de dépen-
dance :

• graphes de dépendance pondérés ;

• graphes de dépendance lacunaires où seulement certains arbres couvrants sont pris
en compte dans les bornes sur les cumulants ;

• surfaces de dépendance qui miment les expansions topologiques des moments de
certains modèles, mais les adaptent à l’étude des cumulants.

B Probabilités sur des groupes de Lie et sur des espaces symétriques compacts. Notre
troisième chapitre est consacré à l’étude d’un autre type d’objets aléatoires, et à l’utilisation
d’un autre avatar de la transformée de Fourier, à savoir, la transformée de Fourier non com-
mutative d’un groupe compact ou d’un quotient de groupes compacts. Fixons un groupe
compact G, et notons dg sa mesure de Haar, qui est l’unique mesure de probabilité sur G
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qui est invariante à gauche et à droite. Pour définir la transformée de Fourier d’une fonction
f ∈ L 1(G, dg), on doit remplacer la fonction

ρξ : x 7→ eixξ

par une représentation unitaire de G sur un espace vectoriel complexe de dimension finie :

ρλ : G → U(Vλ)

g 7→ ρλ(g).

Ainsi, la transformée de Fourier non commutative f̂ est une fonction sur l’ensemble Ĝ des
représentations unitaires irréductibles λ = (Vλ, ρλ), avec f̂ (λ) ∈ EndC(Vλ) donné par la
formule

f̂ (λ) =
∫

G
f (g) ρλ(g) dg.

Notons qu’on manipule uniquement des représentations de dimension finie, grâce à la com-
pacité de G. Si f ∈ L 2(G, dg), alors on obtient des analogues parfaits des trois formules
(0.1), (0.2) et (0.3). En particulier, la transformée de Fourier est une isométrie entre L 2(G) et
la somme hilbertienne L 2(Ĝ) =

⊕
λ∈Ĝ End(Vλ). Ces propriétés peuvent être utilisées pour

étudier une mesure de probabilité µ sur G dont la densité par rapport à la mesure de Haar est
de carré intégrable. Considérons par exemple une suite de mesures de probabilités (µn)n∈N

qui converge vers la mesure de Haar η = dg lorsque n tend vers l’infini. Dans le monde de
Fourier non commutatif, ceci se traduit par :

∀λ ∈ Ĝ, µ̂n(λ)→n→∞ η̂(λ) =

{
0 si Vλ 6= C,
1 si Vλ = C,

où C désigne la représentation triviale de dimension 1 de G. En particulier, la théorie des
représentations du groupe G fournit une méthode très générale pour étudier des marches
aléatoires sur des groupes compacts et leur convergence vers la loi uniforme. Cette idée
est apparue pour la première fois dans des travaux de Poincaré au début du vingtième siè-
cle, et elle est devenue assez populaire après plusieurs articles célèbres de Diaconis sur la
combinatoire de l’opération de brassage de cartes ; voir [DS81; AD86; BD92; Dia96], et égale-
ment [CST08, Section 10.7]. Dans [Mél14b], nous avons résolu une conjecture de Saloff-Coste
[Sal10] concernant la convergence vers la loi stationnaire des mouvements browniens sur des
groupes de Lie compacts tels que SU(n) ou SO(n). Ainsi, nous avons démontré que cette
convergence avait lieu dans une courte fenêtre autour d’un temps de coupure

tcoupure ∝ log n,

où n est le rang du groupe (dimension d’un tore maximal). En particulier, plus la dimension
du groupe de Lie est grande, et plus la transition de phase vers la stationnarité est étroite
(par rapport au temps de coupure). Ces résultats sont présentés dans le chapitre 3 (Théorème
3.23), après un bref survol de la théorie des représentations des groupes de Lie compacts (Sec-
tion 3.1). Ils sont également vrais sur des espaces symétriques compacts, qui sont des général-
isations des groupes de Lie compacts, et qui en sont des quotients. La famille des espaces
symétriques contient les sphères, les espaces projectifs, les variétés grassmanniennes, etc., et
le survol proposé dans la section 3.1 traite également de l’analyse harmonique de ces espaces.

Détaillons un peu plus les idées de la preuve du phénomène de coupure pour les mouve-
ments browniens. Étant donné un espace symétrique X, la transformée de Fourier non com-
mutative fournit une décomposition explicite de la densité de la loi du mouvement brownien
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au temps t par rapport à la mesure de Haar :

dµt(x)
dν

= ∑
λ

mλ e−aλt fλ(x),

où les fonctions fλ sont orthornormales dans L 2(X), et où la somme porte sur un ensemble
de représentations irréductibles

• de X si X est un groupe de Lie compact,

• de Isom(X) si X est un espace symétrique de type non-groupe.

Cette décomposition permet d’estimer les normes L p de |dµt/dν − 1|, en utilisant en par-
ticulier l’orthonormalité des fonctions fλ pour le cas p = 2. On en déduit que dµt/dν est
uniformément proche de 1 pour les normes L p dès que les quantités mλ e−aλt deviennent pe-
tites ; et ceci se produit à peu près au même moment tcoupure pour toutes les représentations
irréductibles λ impliquées dans la décomposition de la densité. Ces arguments donnent une
borne supérieure pour le temps de coupure, et ils sont très robustes, car ils peuvent être util-
isés pour n’importe quel processus aléatoire sur un espace possédant un groupe de symétrie
compact. Pour la borne inférieure, il faut montrer à l’inverse que pour tout temps t < tcoupure,
la loi µt charge des événements dont la mesure de Haar est presque nulle. L’idée est alors de
trouver des fonctions discriminantes dont les distributions sont très différentes sous µt et sous
ν ; et les fonctions fλ sont des candidates naturelles. Le calcul de l’espérance et de la variance
de ces fonctions sous une mesure brownienne µt est rendu possible par des arguments de cal-
cul stochastique, en utilisant l’équation différentielle stochastique qui définit un mouvement
brownien ou plus généralement un processus de Lévy sur un groupe de Lie.

La théorie des représentations d’un groupe G permet d’étudier des objets plus complexes
que des points aléatoires pris dans un G-espace homogène. L’idée générale est la suivante : si
un objet aléatoire tracé sur un G-espace homogène peut être encodé au moins partiellement
dans une représentation du groupe G, et si ce groupe G appartient à une famille classique
(groupes symétriques, groupes unitaires, etc.), alors les propriétés asymptotiques de cet objet
aléatoire (loi des grands nombres et fluctuations lorsque la taille de l’objet tend vers l’infini)
peuvent être reliées à la théorie asymptotique des représentations de cette famille de groupes :

• soit lorsque la taille du groupe tend vers l’infini,

• ou, lorsque la dimension de la représentation tend vers l’infini.

Un exemple classique de cette approche est la résolution du problème d’Ulam des plus lon-
gues sous-suites croissantes d’une permutation aléatoire, qui repose sur l’étude asymptotique
des mesures de Plancherel des groupes symétriques (mesures spectrales des représentations
régulières). Des généralisations de cet exemple formaient le contenu de ma thèse, voir les
articles [Mél10; Mél11; Mél12; FM12; Mél14a] et la monographie [Mél17]. Plus récemment,
j’ai commencé à étudier des graphes aléatoires géométriques tracés sur des espaces symétriques
compacts [Mél18]. Ces graphes sont construits de la façon suivante : on prend N points
aléatoires indépendents et uniformes dans un espace symétrique X, et on connecte toutes
les paires de points {x, y} qui sont suffisamment proches. Plus précisément, on relie x à
y si et seulement si d(x, y) ≤ L, avec un niveau L qui peut dépendre de N. Lorsque N
tend vers l’infini, l’analyse harmonique des espaces symétriques permet de décrire le spectre
asymptotique de la matrice d’adjacence de tels graphes aléatoires. Les deux dernières sections
3.3 et 3.4 de ce mémoire présentent les résultats obtenus jusqu’ici dans cette direction.

Si L > 0 est fixé et si N tend vers l’infini (régime gaussien des graphes géométriques),
le comportement asymptotique du spectre de la matrice d’adjacence d’un graphe aléatoire



Avant-propos. xv

géométrique est relié aux valeurs propres d’un opérateur intégral de classe Hilbert–Schmidt
sur l’espace métrique compact mesuré X sous-jacent au graphe. Lorsque X est un groupe de
Lie compact, une sphère ou un espace projectif (Théorèmes 3.28 et 3.35), ces valeurs pro-
pres peuvent être calculées explicitement. Ainsi, on montre que si AΓ(N,L) est la matrice
d’adjacence, alors les valeurs propres de AΓ(N,L)/N convergent presque sûrement vers des
quantités déterministes indexées par les représentations irréductibles du groupe ou par les
représentations sphériques du groupe d’isométries de la sphère ou de l’espace projectif. Les
formules donnant ces quantités limites mettent en jeu des fonctions de Bessel dans le cas des
groupes, et des polynômes orthogonaux de Laguerre ou Jacobi dans le cas des sphères et des
espaces projectifs. La preuve de ces formules asymptotiques repose :

• sur un résultat général dû à Kolchinskii et Giné, qui assure que certaines grandes
matrices aléatoires symétriques ont leurs spectres proches de celui d’un opérateur
intégral de classe Hilbert–Schmidt, cet argument pouvant être appliqué aux matrices
d’adjacence des graphes aléatoires géométriques.

• pour les espaces de type groupe, sur la formule d’intégration de Weyl, qui permet de
calculer les valeurs propres des opérateurs limites des matrices d’adjacence.

• pour les espaces de type non-groupe et de rang 1, sur des formules explicites pour
les fonctions zonales sphériques, qui mettent en jeu des polygônes orthogonaux du
paramètre zonal.

Le cas le plus intéressant est celui où N tend vers l’infini et L = LN tend vers 0 de telle
sorte qu’un sommet du graphe aléatoire géométrique sur X avec N points et niveau LN a un
nombre de voisins en O(1) (régime poissonien des graphes géométriques). Lorsque X = G
est un groupe de Lie compact, nous avons une conjecture et de nombreux résultats partiels
sur la distribution spectrale asymptotique de la matrice d’adjacence (voir en particulier le
Théorème 3.38 et la Conjecture 3.41). Plus précisément, notons

νN =
1
N ∑

e valeur propre de AΓ(N,L)

δe

la mesure spectrale aléatoire de la matrice d’adjacence, et µN = E[νN], l’espérance étant prise
dans l’espace vectoriel des mesures signées et donnant une mesure de probabilité détermin-
iste pour tout N. En utilisant des arguments géométriques et la convergence locale au sens
Benjamini–Schramm des graphes géométriques aléatoires poissoniens, on peut montrer qu’il
existe une mesure limite µ∞ telle que µN ⇀N→∞ µ∞. Nous avons démontré ceci en établis-
sant un résultat général reliant la convergence au sens Lipschitz des espaces métriques pro-
pres pointés aléatoirement à la convergence Benjamini–Schramm des graphes géométriques
dessinés sur ces espaces. Malheureusement, notre preuve de la convergence des espérances
de mesures spectrales ne donne aucune information sur la limite µ∞ (support, atomes, régu-
larité, etc.). Néanmoins, nous conjecturons les deux propriétés suivantes :

• Les mesures spectrales µN des matrices d’adjacence AΓ(N,L) devraient converger en
probabilité vers µ∞ (sans prendre l’espérance).

• Les moments de µ∞ devraient admettre un développement combinatoire dont les
termes correspondent à certains graphes finis (circuits et circuits réduits).

Chacun des termes de ces développements combinatoires est donné par une intégrale de
fonctions de Bessel sur un produit de chambres de Weyl, avec une mesure d’intégration qui
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est une fonction polynomiale par morceaux et dont les domaines de polynomialité sont poly-
hédraux. Ces mesures d’intégration sont issues de la théorie asymptotique des représen-
tations de G, et leur forme conjecturelle provient de la théorie des bases cristallines et des
polytopes en cordes. Cette branche récente de la théorie des représentations des groupes
et algèbres de Lie permet d’indexer de façon cohérente des bases de vecteurs de poids des
représentations irréductibles d’un groupe de Lie G, et de calculer les coefficients de structure
(coefficients de Littlewood–Richardson et leurs généralisations) de l’algèbre des représenta-
tions du groupe. Plus précisément, on peut voir la théorie des cristaux comme une amélioration
importante de la formule des caractères de Weyl

chλ =
∑σ∈W ε(σ) eσ(λ+ρ)

∑σ∈W ε(σ) eσ(ρ)
= ∑

ω

Kλ
ω eω, (0.6)

λ étant un poids dominant du réseau des poids d’un groupe de Lie G simple, simplement con-
nexe et compact, et la somme du terme de droite de l’équation (0.6) portant sur tout le réseau
des poids, avec des coefficients de Kostka Kλ

ω entiers positifs. Cette formule permet de cal-
culer la dimension d’un espace de poids Vλ(ω), mais elle ne dit pas comment le groupe G et
son algèbre de Lie g agissent précisément sur les vecteurs de poids d’un tel espace. Ceci rend
difficile le calcul de quantités plus complexes que les multiplicités des poids, par exemple les
coefficients de Littlewood–Richardson. Le cristal C(λ) associé à la représentation irréductible
de plus haut poids λ est un objet combinatoire qui encode cette action par un graphe pondéré,
et qui par ailleurs a des interprétations géométriques qui rendent possibles son calcul et sa
manipulation. Ainsi, Littelmann a montré que les éléments du cristal C(λ) pouvaient être
représentés par des chemins dans le réseau des poids, le produit tensoriel s’apparentant alors
à la concaténation des chemins, et les poids correspondant aux points terminaux des chemins.
Une autre interprétation géométrique a été proposée par Berenstein et Zelevinsky : les élé-
ments du cristal peuvent être vus comme les points entiers d’un certain polytope (le polytope
en cordes P(λ)), les poids étant alors obtenus à partir de ces points entiers grâce à une appli-
cation affine (projection du polytope sur un espace vectoriel de dimension égale au rang du
groupe). Ces descriptions permettent une compréhension beaucoup plus fine des représen-
tations du groupe G, qui est requise pour l’étude des graphes géométriques poissoniens. En
particulier, comme la mesure spectrale des multiplicités des poids peut être décrite comme
la projection affine de la mesure uniforme sur les points entiers d’un certain polytope, ceci
induit des résultats de polynomialité locale pour ces multiplicités, au moins dans le cadre
asymptotique où les plus hauts poids des représentations irréductibles tendent vers l’infini.

À l’aide de cette théorie, j’ai réduit le problème de l’asymptotique du régime poissonien
des graphes géométriques à une autre conjecture purement algébrique (Conjecture 3.50) qui
concerne certaines fonctionnelles des représentations irréductibles de G, et le lien entre ces
fonctionnelles et les polytopes contenant les bases cristallines des représentations. Notons
que pour les six premiers moments de la mesure limite µ∞, les conjectures précédemment
évoquées sont des théorèmes démontrés. La résolution complète de la conjecture permettra
de déterminer les propriétés caractéristiques de la mesure limite µ∞. Au moment d’écrire
ce mémoire, un premier preprint [Mél18] contenant tous les résultats sus-mentionnés et la
présentation du problème ouvert sur les cristaux est presque achevé. Bien que je n’ai pas
encore de publication sur ce sujet, j’ai décidé d’y consacrer une large part de ce mémoire. En
effet, j’ai beaucoup travaillé sur ces graphes aléatoires durant les trois dernières années, et
j’ai donné de nombreux exposés sur les résultats partiels que j’ai obtenus. Il sera clair à la
lecture des sections 3.3-3.4 que nous sommes proches d’avoir une bonne compréhension de
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ces objets aléatoires, de nouveau grâce aux outils d’analyse harmonique (non commutative);
et je considère que ce thème est une direction très prometteuse pour mes futurs travaux.
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Foreword

The purpose of this memoir is to present the research results that I have obtained since my
Ph.D. thesis in 2010. I therefore tried to find a way to summarise these results, and this task
seemed quite difficult in the beginning. Indeed, I worked on subjects as different as:

• estimates of Berry–Esseen type for sequences of random variables (classical probabil-
ity theory);

• Brownian motions on symmetric spaces (theory of random processes, geometry, a bit
of representation theory);

• numbers of prime divisors in random integers (analytic number theory, probability
theory);

• spectra of random geometric graphs drawn on Lie groups (representation theory of
Lie groups, Lusztig–Kashiwara crystal bases).

A common trend in these various topics is that I like to look at random mathematical objects,
and to study their asymptotic properties (most of the time, when the size of the model grows to
infinity). One might therefore be mistaken and think that my interest lies in the randomness
of these models. In fact, it is the exact opposite: I am interested in the mathematical structures
behind these random models whose behavior is chaotic, and I look for a way to use these
algebraic or analytic structures in order to obtain some asymptotic results.

Thus, the common thread of my works is not the random aspect, but rather the tool that
I almost always use in order to vanquish this randomness, namely, harmonic analysis and the
many forms of the Fourier transform. Recall that if f belongs to the space L 1(R) of integrable
functions on the real line, then its Fourier transform is the bounded continuous function

ξ 7→ f̂ (ξ) =
∫

R
f (x) eiξx dx.

In the sequel, we denote Cb(R) the space of continuous bounded functions on R with com-
plex values. By density or duality, one can extend the Fourier transform to other functional
spaces, for instance the space of square-integrable functions L 2(R), or the space of tempered
distributions S ′(R). If f and f̂ are both integrable, then one can recover f from f̂ by means
of the Fourier inversion formula

f (x) =
1

2π

∫

R
f̂ (ξ) e−iξx dξ. (0.1)

On the other hand, the Fourier transform is up to a factor 1
2π an isometry of L 2(R):

∀ f , g ∈ L 2(R), 〈 f | g〉 = 1
2π

〈
f̂
∣∣∣ ĝ
〉

. (0.2)
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Finally, the Fourier transform of the convolution of two functions is the product of their
Fourier transforms:

∀ f , g ∈ L 1(R), (̂ f ∗ g)(ξ) = f̂ (ξ) ĝ(ξ), (0.3)
where ( f ∗ g)(x) =

∫
R

f (x − y) g(y) dy. The three formulas (0.1) (inversion formula), (0.2)
(Parseval’s formula) and (0.3) (convolution formula) are the generic properties that are expected
for any extension or analogue of the classical Fourier transform L 1(R) → Cb(R). Most of
my works rely on such generalisations of the Fourier transform, with L 1(R) replaced by:

• the space M 1(R) of Borel probability measures on R;

• or, the group algebra CS(n) of functions on the symmetric group of size n;

• or, the convolution algebra L 2(X) of square-integrable functions on a space X =
G/K, where G is a compact Lie group.

B Fluctuations of random variables and mod-φ convergence. In classical probability the-
ory, the space L 1(R) is replaced by the space of probability measures M 1(R), and one can
define the Fourier transform of µ ∈M 1(R) by using essentially the same formula as before:

µ̂(ξ) =
∫

R
eiξx µ(dx).

The convolution formula holds true, and the Parseval formula as well in the following setting:
if f is a function in L 1(R) with f̂ also in L 1(R), then for any probability measure µ on the
real line,

µ( f ) =
∫

R
f (x) µ(dx) =

1
2π

∫

R
f̂ (ξ) µ̂(−ξ) dξ.

On the other hand, the Fourier inversion formula depends whether the distribution µ is lat-
tice or non-lattice distributed. For instance, if µ is non-lattice distributed and with Fourier
transform µ̂ integrable on the real line, then µ is absolutely continuous with respect to the
Lebesgue measure, and its density is given by the inversion formula (0.1). We refer to [Fel71,
Chapter XV], [Mal95, Chapter III] and [Str11, Section 2.3] for the classical theory of Fourier
transforms of probability measures; a short survey is also proposed in [FMN17b, Section 2.2].
The Fourier inversion formula yields a dictionary between the properties of a probability
measure µ, and the properties of its Fourier transform µ̂. For example, the behavior of µ̂
around 0 dictates the size of the tail of the distribution µ, via the inequality

µ(R \ [−2C, 2C]) ≤ C
∫ 1

C

− 1
C

(1− µ̂(ξ)) dξ.

Another reason why techniques from harmonic analysis are very useful in probability the-
ory is that the Fourier transform interchanges the convergence in law in M 1(R) and the
local uniform convergence in Cb(R). Given a sequence (Vn)n∈N of real-valued random vari-
ables, there exists often a renormalisation (Vn/sn)n∈N of the sequence such that the Fourier
transforms E[eiξVn/sn ] admit a limit F(ξ), and therefore such that the laws µn of the rescaled
random variables Vn/sn converge weakly to the distribution µ whose Fourier transform is
µ̂ = F. When rescaling the random variables Vn and looking at Vn/sn, one gets the right
normalisation in order to describe the general aspect of the fluctuations of Vn, but as a result
one also loses a lot of information about the precise behavior of the variables Vn. This point
had not been shed light upon until recently, when another renormalisation theory was invented
in order to complete the convergence in law Vn

sn
⇀ µ by other more precise results:
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• large deviations (behavior at the edge of the asymptotic distribution of the fluctua-
tions),

• local limit theorems (behavior in infinitesimal regions),

• speed of convergence estimates,

etc. This theory is the one of mod-φ convergence, and the first definition of this notion was given
almost ten years ago in a paper by Jacod, Kowalski and Nikeghbali [JKN11] (in the specific
case of mod-Gaussian convergence). During my postdoctoral stay in Zürich, I had the chance
to start working on this theory, and we have developed it since then with Valentin Féray and
Ashkan Nikeghbali [FMN16; FMN17a; FMN17b; FMN17c; MN15], and with several other
coauthors [Chh+15; BMN17]. Thus, we established numerous theoretical results related to
the notion of mod-φ convergent sequences, and we also studied large classes of examples
and showed that they fitted to this framework.

The two first chapters of this memoir are devoted to a presentation of these results. In
order to give a precise outline of these two chapters, let us explain informally the notion of
mod-φ convergence, by focusing on the Gaussian case. Suppose given a sequence (Vn)n∈N

of random variables such that Vn/sn ⇀ NR(0, 1), where the sn’s are some renormalisation
parameters growing to infinity. In terms of Fourier transforms, the convergence in law is
equivalent to the asymptotic estimate

E
[
eiξ Vn

sn

]
= e−

ξ2
2 (1 + o(1)). (0.4)

A quite natural idea is that, if one knows more about the Fourier transforms, then one will
get more precise asymptotic results than the convergence in law. With the renormalisation
Vn/sn, the o(1) in the right-hand side of Equation (0.4) is actually a function f (ξ, n) such that
limn→∞ f (ξ, n) = 0 for any ξ. By taking these limits, one loses the dependence in ξ and all
the relevant information beyond the fact that (Vn/sn)n∈N is asymptotically normal. A way
to overcome this problem consists in looking for another renormalisation Vn/rn such that, if√

tn = sn
rn

, then

E
[
eiξ Vn

rn

]
= E

[
ei
√

tnξ Vn
sn

]

= e−
tn ξ2

2
(
1 + f (

√
tnξ, n)

)
with lim

n→∞

(
1 + f (

√
tnξ, n)

)
= θ(ξ)

for some non-trivial function θ(ξ). Hence, instead of saying that Vn/sn converges to a Gauss-
ian distribution, one says that Vn/rn looks like a large Gaussian variable with variance tn,
plus a residue encoded asymptotically by θ(ξ). Note that the right renormalisation Xn = Vn

rn
is not always easy to find, and that one cannot establish its existence just by taking an addi-
tional term in the Taylor expansion of the Fourier transforms of these random variables. The
residue θ(ξ) actually contains specific information about the model producing the random
variables Vn, and the theory of mod-φ convergence allowed us to extract this information and
to prove some new asymptotic estimates of probabilities for the sequence (Vn)n∈N.

In Chapter 1, we present the theoretical consequences of the notion of mod-φ convergence,
which is the generalisation of the previous informal definition with an arbitrary infinitely
divisible law instead of the standard Gaussian distribution. If one is able to prove the mod-φ
convergence of a sequence, then one gets at once many asymptotic results:

• a central limit theorem with a extended zone of convergence (Theorem 1.21);

• large deviation results (Theorems 1.12 and 1.13);
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• Berry–Esseen estimates of the speed of convergence (Theorems 1.14 and 1.28 in the
continuous case, and Theorem 1.36 in the discrete case);

• and a local limit theorem for a large range of infinitesimal scales (Theorem 1.49).

These distinct kinds of results rely on slightly different hypotheses. For the two first kinds
(extended central limit theorem and large deviation principles), we shall ask for estimates of
the complex Laplace transform instead of the Fourier transform. Then, in the particular case
where (Xn)n∈N is a sequence of random variables such that

E[ezXn ] = etn
z2
2 ψ(z) (1 + o(1))

with tn → +∞ (this will be the definition of a convergent sequence in the mod-Gaussian
sense with parameters tn and limit ψ, see Definition 1.1), we obtain the following results:

• If Yn = Xn√
tn

, then for any deterministic sequence xn = o(
√

tn),

P[Yn ≥ xn] =



∫ +∞

xn

e−
x2
2√

2π
dx


 (1 + o(1)),

so the normality zone of (Yn)n∈N has size o(
√

tn).

• At the edge of this zone, the Gaussian estimate is corrected by the residue ψ, and if
x > 0, then

P[Yn ≥ x
√

tn] =
e−

tn x2
2√

2πtn x
ψ(x) (1 + o(1)).

The two other kinds of asymptotic results only need an estimate of the Fourier transforms,
but on a sufficiently large zone if one wants optimal results. In the particular case where
(Xn)n∈N is a sequence of random variables such that

E[eiξXn ] etn
ξ2
2 = θn(ξ) = θ(ξ) (1 + o(1))

with tn → +∞, if one has for instance an upper bound

|θn(ξ)− 1| ≤ K1|ξ|3 exp(K2|ξ|3)
on a zone ξ ∈ [−K(tn)γ, K(tn)γ] with γ ∈ [0, 1], then the Kolmogorov distance between
Yn = Xn/

√
tn and the standard Gaussian distribution is a O((tn)

1
2+γ). Besides, with the same

hypotheses, the normal approximation of Yn is valid for Jordan-measurable subsets Bn with
Lebesgue measure L(Bn)� (tn)−

1
2−γ.

In Chapter 2, we explain which structures lead to mod-φ convergence. If the Fourier or
Laplace transforms of the random variables Vn under study are explicit, then only standard
techniques of analysis are required. However, this class includes many examples that are
new and non trivial: number of zeroes of a random power series, number of cycles of a
random permutation chosen according to a probability measure that gives a distinct weight
to each size of cycle, number of irreducible factors of a random polynomial over a finite field,
number of prime factors (distinct or counted with multiplicity) of a random integer, etc. In
each of these cases, the mod-φ convergence is proved by means of an asymptotic study of
the explicit formula for the Fourier transform, which can be given by a Cauchy or Dirichlet
integral in the complex plane.

In the case of mod-Poisson variables, the theory of mod-φ convergence enables the con-
struction of approximation schemes of the discrete variables under study by signed measures,
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these approximations being much more precise than the simple Poissonian approximation.
Moreover, the formalism of symmetric functions and of their specialisations allows one to
encode these approximations in a very concise way. For instance, suppose that one wants to
approximate the distribution of the random number ωn of distinct prime divisors of a ran-
dom integer in [[1, n]]. Then, in order to construct a signed measure νn whose total variation
distance to the law of ωn is a O((log log n)−b) for some integer b ≥ 1, one only needs to deal
with the infinite alphabet

{
1,

1
2

,
1
3

,
1
4

, . . . ,
1
n

, . . .
}

n≥1
t
{

1
2

,
1
3

,
1
5

,
1
7

, . . . ,
1
p

, . . .
}

p∈P

and with the corresponding specialisation of certain symmetric functions of degree smaller
than 2b. A similar method of approximation is proposed for many other random discrete
sequences of combinatorial or arithmetic nature.

In contrast to these structures which are very rigid and algebraic, the mod-Gaussian con-
vergence does not require an explicit calculation of the Fourier transforms. Thus, we give in
the second chapter a general criterion on the cumulants of a sequence of random variables that
ensures the mod-Gaussian convergence, and in turn is implied by certain dependency struc-
tures: sparse dependency graphs (Theorem 2.19) and weighted dependency graphs (Theorem
2.35). These results allow one to show that many models of random graphs, random parti-
tions, random permutations, random spin configurations, etc. yield random variables (the
observables of the model) that are mod-Gaussian convergent. For example, given a random
graph G(n, γ) on n vertices that is associated to a graphon γ (equivalence class in the space
of measurable symmetric functions [0, 1]2 → [0, 1] modulo the Lebesgue-isomorphisms of
[0, 1]), for every motive F (fixed finite graph), when n goes to infinity, the number of motives
hom(F, G(n, γ)) is mod-Gaussian convergent after an adequate renormalisation, as a conse-
quence of the method of cumulants and of dependency graphs. Similarly, if one considers
the magnetisation Mn = ∑x∈Λn σ(x) of a box Λn ⊂ Zd in the Ising model with very high
temperature T � Tcritical and without external field, and if the size of this box goes to infinity,
then an appropriate renormalisation of Mn is mod-Gaussian convergent, as a consequence of
the theory of weighted dependency graphs.

The criterion on cumulants previously mentioned is an upper bound involving three pa-
rameters Dn, Nn, A:

∀r ≥ 1, ∀n ∈N,
∣∣∣r! [zr](log E[ezSn ])

∣∣∣ = |κ(r)(Sn)| ≤ rr−2 (2Dn)
r−1 Nn Ar. (0.5)

If this upper bound holds, if Dn � Nn and if the three first cumulants of Sn verify certain
asymptotic hypotheses, then the renormalised sequence

Xn =
Sn −E[Sn]

(Nn (Dn)2)1/3

is mod-Gaussian convergent. On the other hand, if Sn is a sum of Nn variables bounded by A
and endowed with a dependency graph or a weighted dependency graph with maximal de-
gree smaller than Dn, then the cumulants of Sn satisfy the inequality (0.5). This result should
be compared with certain analyticity results in mathematical physics, as it gives information
on the radius of convergence of the generating series of the random variables Sn. In addition
to the mod-Gaussian convergence, it implies concentration inequalities similar to the classi-
cal Hoeffding inequality, but that hold in a much more general setting (Proposition 2.33). We
thus recover inequalities which until now could only be obtained by means of martingale
techniques, and which are fundamental for the study of the motives in models of random



xxiv

graphs or random permutations. The theory of (weighted) dependency graphs yields a new
approach for studying the fluctuations of sums of random variables, and we conjecture that it
will enable us to understand precisely the behavior of arithmetic chaoses and of functionals
of mixing ergodic dynamical systems.

At the end of the two first chapters, it will have been proved that the theory of mod-φ
convergence enables a unified study of the various scales of fluctuations of a sequence of
random variables. In the specific mod-Gaussian case, this unified approach is completed by
universality results. For instance, for a very general class of models of random graphs (the
graphon models), any observable of any model is generically mod-Gaussian, with the pa-
rameters of mod-Gaussian convergence that depend continuously on the parameters of the
model. A similar phenomenon occurs for some models of random permutations and some
models of random partitions. We propose in Section 2.3 a notion of mod-Gaussian moduli space
which formalises this universality, and which enables a geometric study of the models. In
particular, the singular points of these moduli spaces are random models with additional
symmetries, and these symmetries translate sometimes into a modification of the parameters
of mod-Gaussian convergence, and into the corresponding modification of the scales of fluc-
tuations. To the best of our knowledge, this geometric approach of the classification of the
random models is unprecedented. In this framework, we should be able to study the singu-
lar models by constructing new dependency structures, which would be degenerations of the
generic graph dependency structure:

• weighted dependency graphs;

• lacunary dependency graphs where only certain spanning trees appear in the upper
bounds on cumulants;

• dependency surfaces which mimic the topological expansions of moments of certain
models, but which adapt them to the study of cumulants.

B Probability theory on compact Lie groups and symmetric spaces. Our third chapter
is devoted to the study of another kind of random objects, and to the use of another avatar
of the Fourier transform, namely, the non-commutative Fourier transform of a compact group
or a quotient of compact groups. Fix a compact group G, and denote dg its Haar measure,
which is the unique probability measure on G which is left- and right-invariant. To define the
Fourier transform of a function f ∈ L 1(G, dg), one needs to replace the function

ρξ : x 7→ eixξ

by a unitary representation of G on a finite-dimensional complex vector space:

ρλ : G → U(Vλ)

g 7→ ρλ(g).

Thus, the non-commutative Fourier transform f̂ is defined as a function on the set Ĝ of irre-
ducible unitary representations λ = (Vλ, ρλ), with f̂ (λ) ∈ EndC(Vλ) given by the formula

f̂ (λ) =
∫

G
f (g) ρλ(g) dg.

Notice that one deals only with finite-dimensional representations, thanks to the compactness
of G. If f ∈ L 2(G, dg), then one obtains exact analogues of the three formulas (0.1), (0.2) and
(0.3). In particular, the Fourier transform is an isometry between L 2(G) and the Hilbert sum
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L 2(Ĝ) =
⊕

λ∈Ĝ End(Vλ). These properties can be used in order to study a probability mea-
sure µ on G whose density with respect to the Haar measure is square-integrable. Consider
for instance a sequence of probability measures (µn)n∈N that converges towards the Haar
measure η = dg as n goes to infinity. In the non-commutative Fourier world, this translates
to:

∀λ ∈ Ĝ, µ̂n(λ)→n→∞ η̂(λ) =

{
0 if Vλ 6= C,
1 if Vλ = C,

where C denotes the trivial one-dimensional representation of G. In particular, the represen-
tation theory of the group G yields a very general method in order to study random walks on
compact groups and their convergence to the uniform measure. This idea appeared for the
first time in the works of Poincaré at the beginning of the twentieth century [Poi12], and it
became quite popular after several celebrated papers by Diaconis on the combinatorics of the
operation of shuffling of cards; see [DS81; AD86; BD92; Dia96], and also [CST08, Section 10.7].
In [Mél14b], we solved a conjecture due to Saloff-Coste [Sal10] regarding the convergence to
stationarity of the Brownian motions on compact Lie groups such as SU(n) or SO(n). Thus,
we proved that this convergence happens in a short window of time around a cut-off time

tcut-off ∝ log n,

where n is the rank of the group (dimension of a maximal torus). In particular, the larger the
dimension of the Lie group is, and the narrower the phase transition to stationarity gets (in
comparison to the cut-off time). These results are presented in Chapter 3 (Theorem 3.23), after
a short survey of the representation theory of compact Lie groups (Section 3.1). They also
hold true over compact symmetric spaces, which are generalisations of compact Lie groups,
and which are quotients thereof. The class of symmetric spaces includes the spheres, the
projective spaces, the Grassmannian manifolds, etc., and the survey of Section 3.1 also deals
with the harmonic analysis of these spaces.

Let us detail a bit more the ideas of the proof of the cut-off phenomenon for the Brownian
motions. Given a symmetric space X, the non-commutative Fourier transform yields an ex-
plicit expansion of the density of the law of the Brownian motion at time t with respect to the
Haar measure:

dµt(x)
dν

= ∑
λ

mλ e−aλt fλ(x),

where the functions fλ are orthonormal in L 2(X), and where the sum runs over a set of
irreducible representations

• of X if X is a compact Lie group,

• of Isom(X) if X is a symmetric space of type non-group.

This expansion allows one to estimate the L p norms of |dµt/dν− 1|, by using in particular
the orthonormality of the functions fλ for the case p = 2. From this, one deduces that dµt/dν
is uniformly close to 1 for the L p norms as soon as the quantities mλ e−aλt get small; and
this occurs about the same time tcut-off for all the irreducible representations λ involved in the
expansion of the density. These arguments provide us with an upper bound on the cut-off
time, and they are very robust, as they can be used for any random process endowed with a
compact group of symmetry. For the lower bound, one needs to show conversely that for any
time t < tcut-off, the law µt charges events whose Haar measure is almost zero. The idea is then
to find discriminating functions whose distributions are very different under µt and under ν;
and the functions fλ are natural candidates for this. The computation of the expectation and
of the variance of these functions under a Brownian motion µt is enabled by arguments of
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stochastic calculus, and by using the stochastic differential equation that defines a Brownian
motion or more generally a Lévy process on a Lie group.

The representation theory of a group G allows one to study objects that are more complex
than random points taken in a homogeneous G-space. The general idea is the following: if
a random object traced on an homogeneous G-space can be encoded at least partially in a
representation of the group G, and if this group G belongs to a classical family (symmetric
groups, unitary groups, etc.), then the asymptotic properties of this random object (law of
large numbers and fluctuations as the size of the object goes to infinity) can be related to the
asymptotic representation theory of this family of groups:

• either, when the size of the group goes to infinity,

• or, when the dimension of the representation goes to infinity.

A classical instance of this approach is the solution of Ulam’s problem of the longest in-
creasing subsequences of a random permutation, which relies on the asymptotic study of
the Plancherel measures of the symmetric groups (spectral measures of the regular represen-
tations). Some generalisations of this example were the content of my Ph.D. thesis, see the
papers [Mél10; Mél11; Mél12; FM12; Mél14a] and the monograph [Mél17]. More recently, I
started to study random geometric graphs drawn on compact symmetric spaces [Mél18]. These
graphs are constructed as follows: one takes N independent points uniformly at random in a
symmetric space X, and one connects all the pairs of points {x, y} that are sufficiently close.
More precisely, one connects x to y if and only if d(x, y) ≤ L, with a level L that might depend
on N. When N grows to infinity, the harmonic analysis of the symmetric spaces allows one to
describe the asymptotic spectrum of the adjacency matrix of such random geometric graphs.
The two last Sections 3.3 and 3.4 of this memoir present the results obtained so far in this
direction.

If L > 0 is fixed and if N goes to infinity (Gaussian regime of the geometric graphs), the
asymptotic behavior of the spectrum of the adjacency matrix of a random geometric graph is
connected to the eigenvalues of an integral operator of Hilbert–Schmidt class on the compact
measured metric space X underlying the graph. When X is a compact Lie group, a sphere
or a projective space (Theorems 3.28 and 3.35), these eigenvalues can be computed explicitly.
Thus, one shows that if AΓ(N,L) is the adjacency matrix, then the eigenvalues of AΓ(N,L)/N
converge almost surely to deterministic quantities which are labeled by the irreducible rep-
resentations of the group, or by the spherical representations of the isometry group of the
sphere or of the projective space. The formulas that give these limiting quantities involve
Bessel functions in the case of groups, and Laguerre or Jacobi orthogonal polynomials in the
case of spheres and projective spaces. The proof of these asymptotic formulas relies:

• on a general result due to Koltchinskii and Giné, which ensures that certain large
symmetric random matrices have their spectra close to the one of an integral operator
of Hilbert–Schmidt class, this argument being valid for the adjacency matrices of the
random geometric graphs.

• for the spaces with type group, on Weyl’s integration formula, which allows one to
compute the eigenvalues of the limiting operators of the adjacency matrices.

• for the spaces with non-group type and rank 1, on explicit formulas for the zonal
spherical functions, which involve some orthogonal polynomials of the zonal pa-
rameter.
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The most interesting case is the one where N goes to infinity and L = LN goes to 0 in
such a way that a vertex of the random geometric graph on G with N points and level LN
has a O(1) number of neighbors (Poissonian regime of the geometric graphs). When X = G
is a compact Lie group, we have a conjecture and many partial results on the asymptotic
spectral distribution of the adjacency matrix (see in particular Theorem 3.38 and Conjecture
3.41). More precisely, denote

νN =
1
N ∑

e eigenvalue of AΓ(N,L)

δe

the random spectral measure of the adjacency matrix, and µN = E[νN], the expectation being
taken in the vector space of signed measures and yielding a deterministic probability measure
for each N. By using geometric arguments and the local Benjamini–Schramm convergence of
a Poissonian random geometric graph, one can show that there exists a limiting measure µ∞
such that µN ⇀N→∞ µ∞. We proved this by establishing a general result which connects the
Lipschitz convergence of random pointed proper metric spaces to the Benjamini–Schramm
convergence of the geometric graphs drawn on these spaces. Unfortunately, our proof of the
convergence of the expected spectral measures does not give any information on the limit µ∞
(support, atoms, regularity, etc.). However, we conjecture the two following properties:

• The spectral measures νN of the adjacency matrices AΓ(N,L) should converge in prob-
ability towards µ∞ (without taking the expectation).

• The moments of µ∞ should admit a combinatorial expansion whose terms corre-
spond to certain finite graphs (circuits and reduced circuits).

Each of the terms of these combinatorial expansions is given by an integral of Bessel func-
tions on a product of Weyl chambers, with an integration measure that is polynomial by
parts, with domains of polynomiality that are polyhedral. These integration measures stem
from the asymptotic representation theory of G, and their conjectured form comes from the
theory of crystal bases and string polytopes. This recent branch of representation theory of
Lie groups and algebras allows one to label in a coherent way some bases of weight vectors
of the irreducible representations of a Lie group G, and to compute the structure coefficients
(Littlewood–Richardson coefficients and their generalisations) of the algebra of representa-
tions of the group. More precisely, one can consider crystal theory as an important ameliora-
tion of Weyl’s character formula

chλ =
∑σ∈W ε(σ) eσ(λ+ρ)

∑σ∈W ε(σ) eσ(ρ)
= ∑

ω

Kλ
ω eω, (0.6)

λ being a dominant weight of the weight lattice of a simple simply connected compact Lie
group, and the sum in the right-hand side of Equation (0.6) running over the whole weight lat-
tice, with the Kostka coefficients Kλ

ω that are non-negative integers. This formula enables the
computation of the dimension of a weight space Vλ(ω), but it does not tell us precisely how
the the group G and its Lie algebra g act on the weight vectors of such a space. This makes
it difficult to compute quantities that are more complex than the multiplicities of weights,
for instance the Littlewood–Richardson coefficients. The crystal C(λ) associated to the irre-
ducible representation with highest weight λ is a combinatorial object which encodes this
action by a weighted graph, and which besides admits geometric interpretations which en-
able its computation and manipulation. Thus, Littelmann showed that the elements of the
crystal C(λ) can be represented by paths in the weight lattice, the tensor product being then
related to the concatenation of paths, and the weights corresponding to the endpoints of the
paths. Another geometric interpretation was proposed by Berenstein and Zelevinsky: the
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elements of the crystal can be seen as integer points in a certain polytope (the string poly-
tope P(λ)), the weights being then obtained from these integer points thanks to an affine
map (projection of the polytope on a vector space with dimension equal to the rank of the
group). These descriptions enable a much finer understanding of the representations of the
group G, which is required for the study of Poissonian geometric graphs. In particular, since
the spectral measure of the weight multiplicities can be described as the affine projection of
the uniform measure on the integer poins of some polytope, this leads to local polynomiality
results for these multiplicities, at least in the asymptotic setting where the highest weights of
the irreducible representations go to infinity.

Thanks to this theory, I was able to reduce the problem of the asymptotics of the Poisso-
nian behavior of geometric graphs to another entirely algebraic conjecture (Conjecture 3.50),
which regards certain functionals of the irreducible representations of G, and the connection
between these functionals and the polytopes that contain the crystal bases of the representa-
tions. Note that for the six first moments of the limiting measure µ∞, the conjectures previ-
oulsy evoked are proven theorems. The complete resolution of the conjecture will allow us to
determine the characteristic properties of the limiting measure µ∞. At the time of writing this
memoir, a first preprint [Mél18] including all the aforementioned results and a presentation
of the open problem on crystals is almost finished. Although I do not have yet a publication
on this subject, I decided to devote to it a large part of my memoir. Indeed, I have worked
a lot on these random graphs during the three last years, and I gave numerous talks on the
partial results that I have already obtained. It will be clear from the reading of Sections 3.3-3.4
that we are very close to have a good understanding of these random objects, thanks again
to tools from (non-commutative) harmonic analysis; and I consider this topic to be a very
promising direction for my future works.
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Chapter 1

Mod-φ convergence and its probabilistic
consequences

Let (Xn)n∈N be a sequence of random variables with values in R. When looking at a
mathematical system that produces these random variables, probabilists often try to find the
asymptotic distribution of Xn, possibly after an appropriate renormalisation. The oldest result
in this direction is probably De Moivre’s law [Moi56]: if Xn is the total number of heads
obtained after n tosses of an equilibrated coin, and if n is large, then

Gn =
2√
n

(
Xn −

n
2

)

is distributed almost like a standard Gaussian random variable G:

∀x ∈ R, lim
n→∞

P[Gn ≤ x] = lim
n→∞



b n

2+
√

nxc
∑
k=0

1
2n

(
n
k

)
 =

1√
2π

∫ x

−∞
e−

s2
2 ds,

see Figure 1.1.

Xn
30 40 50 60 70

Figure 1.1. De Moivre’s law with n = 100 and N = 1000 tries: the asymptotic
distribution of tails and heads in tosses of coins is the Gaussian law.

The notion that captures this asymptotic behavior is the convergence in law or in distri-
bution of random variables. Thus, (Xn)n∈N is said to converge towards a probability mea-
sure µ on the real line if and only if, for any continuous bounded function f : R → R,
limn→∞ E[ f (Xn)] =

∫
R

f (x) µ(dx). For instance, the central limit theorem (see [Lya00; Lya01;
Lin22; Lév25], and [Fis11] for a historical account), which generalises De Moivre’s law, states
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that if (An)n∈N is a sequence of independent and identically distributed random variables
with finite mean E[A1] = m and finite variance var(A1) = σ2, then

Xn =
1

σ
√

n
(A1 + A2 + · · ·+ An − nm)

converges in law towards the standard Gaussian distribution NR(0, 1).

In this setting, one of the most important result is Lévy’s continuity theorem: a sequence
of random variables (Xn)n∈N converges in law towards a probability measure µ if and only
if, for any ξ ∈ R,

lim
n→∞

E
[
eiξXn

]
= µ̂(ξ) =

∫

R
eixξ µ(dx).

Thus, the laws µn of the variables Xn converge towards the law µ if and only if the Fourier
transforms µ̂n converge pointwise to the Fourier transform µ̂. It is then natural to expect that,
if one has a good estimate on the difference between µ̂n and µ̂, then one will get precisions
on the central limit theorem: large deviation results, bounds on the Kolmogorov distance,
etc. It turns out that one should not look at the difference µ̂n(ξ) − µ̂(ξ), but rather at the ra-
tio µ̂n(ξ)/µ̂(ξ). This is only possible if µ̂(ξ) does not vanish, and therefore we shall restrict
ourselves to the case where the limiting law is infinitely divisible, this being a sufficient con-
dition for the non-vanishing of the Fourier transform. This leads us to the notion of mod-φ
convergence, which was invented by Delbaen, Kowalski, Jacod and Nikeghbali; see [JKN11]
for the Gaussian case, and [DKN15] for the general case of an infinitely divisible reference
law. We also refer to [BKN09; KN10; KN12], which are previous works on the notion of mod-
φ convergence. The first section of this chapter will recall the definitions introduced in these
articles and in [FMN16].

1.1 Infinitely divisible laws and second-order central limit
theorems

In the sequel, φ is a fixed infinitely divisible probability measure on R. This means that for any
n ∈ N∗, one can find a probability measure φn such that φ = (φn)∗n, where π1 ∗ π2 denotes
the convolution of two probability measures:

for any Borel subset A, (π1 ∗ π2)(A) =
∫

R2
1(x+y∈A) π1(dx)π2(dy).

The classification of infinitely divisible probability measures on R, or even Rd is well known
since the works of Lévy and Khintchine, see for instance [Sat99, Chapters 1 and 2]. Thus, for
any infinitely divisible law φ on R, there exists a unique triplet (a, σ2, π) with a ∈ R, σ2 ∈ R+

and π positive Borel measure on R \ {0} such that
∫

R
min(1, x2)π(dx) < +∞, and

φ̂(ξ) =
∫

R
eixξ φ(dx) = exp

(
iaξ − σ2ξ2

2
+
∫

R
(eixξ − 1− 1|x|<1 ixξ)π(dx)

)
.

A proof of this Lévy–Khintchine formula is given in [Sat99, Theorem 8.1]. Important exam-
ples of infinitely divisible distributions are:

• the Gaussian law NR(a, σ2) with density 1√
2πσ2 e−

(x−a)2

2σ2 dx, and with Fourier trans-
form

φ̂(ξ) = eiaξ− σ2ξ2
2

(a ∈ R, σ2 ∈ R+, π = 0);
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• the Poisson law P(λ) with λ > 0, supported on N and given by

∀k ∈N, P[X = k] = e−λ λk

k!
; φ̂(ξ) = eλ(eiξ−1);

(a = 0, σ2 = 0, π = λ δ1);

• the standard Cauchy law C, with density 1
π(1+x2)

dx and with Fourier transform

φ̂(ξ) = e−|ξ|

(a = 0, σ2 = 0, π = 1
πx2 dx).

NR(0, 1)
C

P(1)

Figure 1.2. The standard Gaussian, Cauchy and Poisson laws.

Note that several of these laws have convergent Laplace transforms E[ezX] =
∫

R
ezx µ(dx) on

a disk around 0 in the complex plane, and even on the whole complex plane C (Gaussian and
Poisson laws). In the following we shall sometimes work with the Laplace transform, and
sometimes with the Fourier transform, which is the restriction of the Laplace transform to the
imaginary line iR.

BMod-φ convergent sequences. We now give the main definition of this chapter, which
is the correct way to go beyond convergence in law. Let (Xn)n∈N be a sequence of real-valued
random variables, and D be a connected subset of C that contains 0. We also fix an infinitely
divisible law φ, and we suppose that

∫
R

ezx φ(dx) is well defined for z ∈ D; we denote

η(z) = az +
σ2z2

2
+
∫

R
(ezx − 1− 1|x|<1zx)π(dx)

the Lévy–Khintchine exponent of φ. Note that if D = iR, then the Lévy exponent η is always
well defined on D.

Definition 1.1 (Mod-φ convergence, [DKN15; FMN16]). We say that (Xn)n∈N converges in
the mod-φ sense on the domain D with parameters tn → +∞ and limit ψ if, locally uniformly on D,

lim
n→∞

E[ezXn ] e−tnη(z) = lim
n→∞

ψn(z) = ψ(z),

ψ being a continuous function on D such that ψ(0) = 1.

If D = iR, we shall simply speak of mod-φ convergence, without specifying the domain. In
this case, it is convenient to set θn(ξ) = ψn(iξ) and θ(ξ) = ψ(iξ), and the mod-φ convergence
on iR amounts to the local uniform convergence θn → θ on R. The case D = iR is the original
definition of mod-φ convergence, but later we shall need to look at more general domains of
convergence, in particular bands (c, d) + iR; see Section 1.2.
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Remark 1.2. Intuitively, a sequence of random variables (Xn)n∈N converges in the mod-
φ sense if Xn is equal to a large infinitely divisible distribution of exponent tnη, plus some
small residue which is encoded asymptotically by the limit ψ. We shall see in a moment
that in many situations, this implies that a certain renormalisation Yn of Xn converges in law
towards the infinitely divisible distribution of exponent η (Proposition 1.9). Therefore, mod-φ
convergence can be seen as a refinement of the notion of convergence in law, and as a second-
order central limit theorem. Then, one of the main objective is to obtain precise informations
from the residue ψ and from the convergence ψn → ψ.

Remark 1.3. We restrict ourselves to reference laws φ that are infinitely divisible, but in
practice this is not really a restriction. Indeed, many interesting sequences of random vari-
ables (Xn)n∈N inherit the scaling properties of the system that produces them, and in the limit
n→ ∞ these scaling properties usually lead to infinite divisibility.

Remark 1.4. In the following, when φ = NR(0, 1), we shall simply speak of mod-Gaussian
convergence; and when φ = P(1), we shall speak of mod-Poisson convergence.

Example 1.5 (Sums of i.i.d. random variables). Let (An)n∈N be a sequence of independent
and identically distributed random variables with values in R. We suppose that E[A1] = 0
and E[|A1|3] < ∞. We set E[(A1)

2] = σ2, E[(A1)
3] = L and we define (Xn)n∈N by:

Xn =
1

n1/3

n

∑
i=1

Ai.

Then, a Taylor expansion of the Fourier transform of A1 shows that (Xn)n∈N converges in the
mod-Gaussian sense (on D = iR) with parameters tn = n1/3σ2 and limit exp( L

6 (iξ)
3):

lim
n→∞

E[eiξXn ] e
n1/3σ2ξ2

2 = exp
(

L (iξ)3

6

)
locally uniformly on R.

As is well known, in this setting, Yn = 1
σn1/6 Xn converges in law towards a standard Gaussian

NR(0, 1). This result is generalised by Proposition 1.9. On the other hand, the sequence
(Yn)n∈N also satisfies:

• Cramér’s large deviation principle [Cra38],

• Gnedenko’s local limit theorem [Gne48],

• Berry–Esseen estimates on dKol(Yn,NR(0, 1)) [Ber41; Ess45],

and various other precisions of the central limit theorem. The purpose of the theory of mod-φ
convergence is to extend these results to much more general sequences of random variables,
stemming for instance from combinatorics, graph theory, analytic number theory, or asymp-
totic representation theory.

Example 1.6 (Numbers of prime divisors). If k ≥ 1 is an integer, let ω(k) denote the num-
ber of distinct prime divisors of k; for instance, ω(12) = 2 since 12 = 22 · 3. We consider
the random variable ωn that is the value of the arithmetic function ω on a random integer
k ∈ [[1, n]], k being chosen according to the uniform probability on this integer interval. The
Selberg–Delange method yields the following asymptotics for the Laplace transform of ωn:

E[ezωn ] =
1
n

n

∑
k=1

ezω(k) = e(log log n)(ez−1) 1
Γ(ez)

(
∏
p∈P

(
1 +

ez − 1
p

)
e−

ez−1
p

)
(1 + o(1))
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see [Del71] and [Ten95, Section II.6, Theorem 1]. So, (ωn)n∈N converges in the mod-Poisson
sense on the whole complex plane D = C, with parameters tn = log log n and limit ψ(z) =

1
Γ(ez) ∏p∈P(1 +

ez−1
p ) e−

ez−1
p .

Since a large Poisson random variable P(λ) can be approximated by a Gaussian random
variable NR(λ, λ), there is also mod-Gaussian convergence for an adequate renormalisation
of ωn, namely,

ω̃n =
ωn − log log n
(log log n)1/3 .

Thus,

E
[
ezω̃n

]
= e

(log log n)1/3 z2
2 ψ̃(z) (1 + o(1))

with ψ̃(z) = exp( z3

6 ). Hence, one has mod-Gaussian convergence of (ω̃n)n∈N, on D = C

and with parameters tn = (log log n)1/3. This result allows one to go beyond the celebrated
Erdös–Kac central limit theorem [EK40], which states that

ωn − log log n√
log log n

⇀ NR(0, 1).

Example 1.7 (Winding numbers). Let (Zt)t∈R+ be a standard complex Brownian motion,
starting from Z0 = 1. Almost surely, this planar Brownian motion never touches 0, so one
has a well-defined polar decomposition Zt = Rt eiϕt , with t 7→ Rt and t 7→ ϕt (random)
continuous functions, and ϕ0 = 0; see Figure 1.3.
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Indeed,

E[eixjt ]

= exp
✓
�|x| log 8t

2

◆ p
p e�

1
4t

 
•

Â
k=0

1
k!

✓
1
8t

◆2k
 

1

G(k + |x|+1
2 )

+
1

8t G(k + |x|+3
2 )

!!
,

and the limit of the power series as t goes to infinity is its constant term 1
G( |x|+1

2 )
.

Here, |q(x) � 1| is of order O(|x|) around 0, since the first derivative of G is not zero
at 1

2 . Therefore, if the mod-convergence can be given a zone of control, then the index
of this control will be v = 1, which forces for Berry-Esseen estimates g = 0 since
g  min

⇣
v�1

a , 1
w�a

⌘
. Conversely, for any x, notice that the function x 7! 1

G(x+ 1
2 )

has

derivative bounded on R+ by

� G0(1
2)

⇣
G(1

2)
⌘2 = 1.11� <

2p
p

,

and therefore that

|qt(x) � 1|  2 e�
1
4t

•

Â
k=0

1
k!

✓
1
8t

◆2k ✓
1 +

1
8t

◆ |x|
2

= e(
1
8t)

2� 1
4t

✓
1 +

1
8t

◆
|x|  |x|

for t large enough. So, in particular, one has mod-Cauchy convergence with index of
control (1, 1), zone of control [�D, D] as large as wanted, and constants K1 = 1 and
K2 = 0. It follows then from Theorem 11 that if C follows a standard Cauchy law, then

dKol

✓
2jt

log 8t
, C
◆
 4

log 8t

for t large enough. As far as we know, this estimate is new.

jt

jt

t

FIGURE 3. Planar Brownian motion and its winding number, which is
asymptotically mod-Cauchy.

Figure 1.3. Winding number of the planar Brownian motion.

In [Spi58], Spitzer computed the Fourier transform of the winding number ϕt:

E[eiξϕt ] =

√
π

8t
e−

1
4t

(
I |ξ|−1

2

(
1
4t

)
+ I |ξ|+1

2

(
1
4t

))
,

where

Iν(z) =
∞

∑
k=0

1
k! Γ(ν + k + 1)

( z
2

)ν+2k
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is the modified Bessel function of the first kind. An asymptotic study of this formula shows
that (ϕt)t∈R+ converges in the mod-Cauchy sense on D = iR, with parameters log 8t

2 and limit

θ(ξ) =

√
π

Γ
(
|ξ|+1

2

) ;

see [DKN15, Theorem 10].

Example 1.8 (Characteristic polynomials of random matrices). Let Mn be a random matrix
of the unitary group U(n), chosen according to the Haar measure. We set

Xn = Re(log det(In −Mn)) =
n

∑
i=1

Re(log(1− eiθi))

where (eiθ1 , eiθ2 , . . . , eiθn) are the eigenvalues of Mn. Here, the complex logarithm is chosen so
that Xn = X(Mn) defines a continuous function on an open dense subset of U(n). There is an
exact formula for the Laplace transform of Xn:

E[ezXn ] =
∞

∏
j=1

Γ(j) Γ(j + z)
(
Γ
(

j + z
2

))2

if Re(z) > −1. This is an application of Selberg’s integral formula, see [Sel44], and [KS00b;
KS00a; KN12] for the asymptotics of this formula. From this exact formula, one can deduce
the mod-Gaussian convergence of (Xn)n∈N on D = {z ∈ C |Re(z) > −1}, with parameters
tn =

log n
2 and limit

ψ(z) =
(
G
(
1 + z

2

))2

G(1 + z)
.

Here, G(z) is Barnes’ G-function, which is the unique entire solution of the functional equa-
tion G(z + 1) = Γ(z) G(z), with G(1) = 1. This result can be extended to logarithms of
characteristic polynomials of other classical compact Lie groups such as USp(n) or SO(2n);
see [KN12, §4.2 and §4.3].

The previous examples already show the large scope of the theory of mod-φ convergence.
Starting from Definition 1.1, there are two possible directions:

(1) From the mod-φ convergence of a sequence (Xn)n∈N, one can try to deduce the
asymptotics of the distribution of Xn, either "in the bulk" (central limit theorem, local
limit theorem, speed of convergence) of the distribution, or "at the edge" (normality
zones, large deviations).

(2) One can also try to establish the mod-φ convergence of sequences of random vari-
ables stemming from a probabilistic model: random graphs, random matrices, arith-
metic functions of random integers, random permutations, etc.

In this first chapter, we shall concentrate on general probabilistic results of the first kind. The
second chapter will be devoted to general methods that allow to prove the mod-φ conver-
gence of a sequence of random variables: analysis of singularities of generating functions, or
the method of moments and cumulants.

B Central limit theorems. To end this section, let us state a general central limit theorem
that follows from mod-φ convergence. In the sequel we shall need to manipulate stable laws,
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which are the infinitely divisible laws of exponent

η(iξ) = ηc,α,β(iξ) = −|cξ|α (1− iβ h(α, ξ) sgn(ξ))

with c ∈ R∗+ (the scale parameter), α ∈ (0, 2] (the stability parameter), β ∈ [−1, 1] (the skewness
parameter), and

h(α, ξ) =

{
tan

(
πα
2

)
if α 6= 1,

− 2
π log |ξ| if α = 1.

The stable laws φc,α,β are involved in a generalised central limit theorem for sums of i.i.d. vari-
ables without second moment [GK54]. We recover the Gaussian law for α = 2, β = 0; and the
Cauchy law for α = 1, β = 0. We refer to [Sat99, Chapter 3] for a detailed study of the stable
laws, which have the following scaling property:

t ηc,α,β

(
iξ

t1/α

)
=

{
ηc,α,β(iξ) if α 6= 1,

ηc,α,β(iξ)−
(

2cβ
π log t

)
iξ if α = 1.

This implies the following proposition (see [FMN17b, Proposition 3]):

Proposition 1.9 (Central limit theorem). Let (Xn)n∈N be a sequence of real random variables.

(1) Suppose that (Xn)n∈N converges in the mod-φ sense on D = iR, with parameters tn → +∞
and with φ = φc,α,β that is a stable law. Set

Yn =

{ Xn
(tn)1/α if α 6= 1,
Xn
tn
− 2cβ

π log tn if α = 1.

The sequence of random variables (Yn)n∈N converges in law towards φc,α,β.

(2) Suppose that (Xn)n∈N converges in the mod-φ sense on D = iR, with parameters tn → +∞
and with φ that admits a moment of order 3. Then,

X̃n =
Xn − tn η′(0)

(tn)1/3

converges in the mod-Gaussian sense on iR, with parameters t̃n = (tn)1/3 η′′(0) and limit
θ(ξ) = exp( η′′′(0) (iξ)3

6 ).

Remark 1.10. An infinitely divisible law φ admits a moment of order 3 if and only if its
Lévy measure π satisfies

∫
|x|≥1 |x|3 π(dx) < +∞ (see [Sat99, Corollary 25.8]). On the other

hand, the Lévy exponent η might only be defined on iR in the second item of Proposition 1.9;
in this case, by η′(0) we mean −i η′imag(0), where ηimag is the real function ξ 7→ η(iξ); and
similarly for the higher derivatives.

The proof of Proposition 1.9 is immediate by a Taylor expansion of the adequate Fourier
transforms. By combining the first and the second item, one sees that in most cases, the mod-φ
convergence of a sequence of random variables (Xn)n∈N can be considered as an improved or
"second-order" central limit theorem for an adequate renormalisation (Yn)n∈N of the original
sequence. The goal of the next sections is to explain precisely what is gained by means of the
mod-φ convergence.
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1.2 Normality zones and precise large deviations
Since stable laws have integrable Fourier transforms, they also have continuous densities

and Proposition 1.9 amounts to the pointwise convergence of the cumulative distribution
functions. Thus, if (Xn)n∈N converges in the mod-φ sense with parameters (tn)n∈N, and if
φ = φc,α,β, then for any x ∈ R,

lim
n→∞

P[Yn ≤ x] =
∫ x

−∞
mc,α,β(s) ds, (1.1)

where mc,α,β(s) is the density of φc,α,β, e.g. 1√
2π

e−
s2
2 in the Gaussian case. In this setting, a

first application of the mod-φ convergence consists in allowing x = xn to vary with n, and in
computing the asymptotics of probabilities in this setting. More precisely, we shall compute
probabilities at the edge of the distribution of Xn, that is with x growing to infinity. If x is
not too large, then Equation (1.1) stays true; in the case φ = NR(0, 1), we shall then speak
of the normality zone of Yn (or Xn). On the other hand, if x is too large, then Equation (1.1)
becomes false, but under the assumption of complex mod-φ convergence, one can correct
it for x belonging to a certain range. This correction involves the limit ψ of the residues
ψn(z) = E[ezXn ] e−tnη(z). Thus, mod-φ convergence implies precise large deviation estimates;
this is one of the main results of [FMN16].

B The hypothesis of convergence on a band. In the remainder of this section, (Xn)n∈N

is a sequence of real-valued random variables that converges in the mod-φ sense on a band
S(c,d) = {z ∈ R | c < Re(z) < d}, with c < 0 < d, and possibly c = −∞ or d = +∞.
In particular, we assume that the Laplace transform of (Xn)n∈N and of φ is well defined in
a neighborhood of 0; this forces the variables Xn and the reference distribution φ to have
moments of all order. Note that φ has a well-defined Laplace transform on the symmetric
band S(−d,d) if and only if its Lévy measure π satisfies

∫
|x|≥1 et|x| π(dx) < ∞ for any t < d.

We set

ψn(z) = E[ezXn ] e−tnη(z) ; ψ(z) = lim
n→∞

ψn(z).

The functions ψn are holomorphic on S(c,d), and so is their limit ψ; moreover, the local uniform
convergence ψn → ψ also holds true for the complex derivatives up to any order.

S(c,d)

c 0 d

Figure 1.4. Mod-φ convergence on a band S(c,d) of the complex plane yields a
normality zone and precise large deviations.
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In order to state the results on the zone of normality and the precise deviation estimates
that follow from these hypotheses, we need to recall the theory of Legendre–Fenchel transforms;
see [Roc70], and [DZ98, Section 2.2] for its applications in probability theory. Let η be a convex
and lower semicontinuous function on the real line (for any x, lim infx→x0 η(x) ≥ η(x0)), with
values in the extended real line Rt {+∞}, and not equal everywhere to +∞. The Legendre–
Fenchel transform of η is defined by:

F(x) = sup
h∈R

(hx− η(h)).

The Legendre–Fenchel transform is an involution on convex lower semicontinuous functions.
It is well known that, if (An)n∈N is a sequence of independent and identically distributed
random variables with log-Laplace transform η(x) = log E[exA1 ], then the large deviations of
Mn = 1

n ∑n
i=1 Ai are prescribed by the Legendre–Fenchel transform F of η:

lim sup
n→∞

log P[Mn ∈ A]

n
≤ − inf

x∈A
F(x);

lim inf
n→∞

log P[Mn ∈ A]

n
≥ − inf

x∈A◦
F(x).

We shall see in a moment that the same function F (the Legendre–Fenchel transform of the
logarithm of the Lévy exponent η) is involved in the large deviation estimates coming from
mod-φ convergence (Theorems 1.12 and 1.13). If φ = N (m, σ2), then

η(x) = mx +
σ2x2

2
; F(x) =

(x−m)2

2σ2 ,

and if φ = P(λ), then

η(x) = λ(ex − 1) ; F(x) =

{
x log x

λ − (x− λ) if x > 0
+∞ otherwise.

FN (m,σ2)

m

FP(λ)

λ

+∞

Figure 1.5. The Legendre–Fenchel transforms of the Lévy exponents of a
Gaussian law and of a Poisson law.

Another prerequisite for our results is the distinction between lattice distributed and non-
lattice distributed infinitely divisible laws. Let φ be a non-constant reference infinitely divis-
ible law, and (a, σ2, π) the triplet of its Lévy–Khintchine representation. The support of φ is
described by the following classification:

Lemma 1.11 (Support of an infinitely divisible law). The infinitely divisible law φ belongs to
one of the following classes:
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• Suppose that σ2 = 0, that π integrates |x| and that the support of π generates a discrete
subgroup Z[supp(π)] = λZ ⊂ R, with λ > 0. Then, the support of φ is included in the
shifted discrete subgroup γ + λZ, where γ = a−

∫
R

1|x|<1 x π(dx). We then say that φ is
lattice distributed, and the characteristic function

exp(η(iξ)) =
∫

R
eiξx φ(dx)

satisfies | exp(η(iξ))| = 1 if and only if ξ ∈ 2π
λ .

• Otherwise, we say that φ is non-lattice distributed, and | exp(η(iξ))| < 1 for any ξ 6= 0.
If σ2 = 0 and γ is well-defined, then the support of φ is γ + N[supp(π)]. Otherwise, the
support of φ is R, or one of the two half-lines (−∞, γ] or [γ,+∞).

We refer to [SH04, Chapter 4, Theorem 8.4] for a proof of this classification. In the lattice case,
replacing Y with law φ by Y

λ , one can assume without loss of generality that λ = 1; we then
say that Z is the lattice of φ, and | exp(η(iξ))| = 1 if and only if ξ ∈ 2πZ.

B Large deviation estimates. We can now state our results of large deviations, see [FMN16,
Theorems 3.2.2 and 4.2.1]. Recall that (Xn)n∈N is a sequence that converges mod-φ on a band
S(c,d) = (c, d) + iR with parameters (tn)n∈N and limit ψ. We exclude the trivial case where
φ is constant. We assume c < 0 < d, and if x ∈ (c, d), we denote h = h(x) the solution of
η′(h(x)) = x. Equivalently, if F is the Legendre–Fenchel transform of the Lévy exponent η of
φ, then F(x) = xh(x)− η(h(x)), and F′(x) = h(x). On the other hand, until the end of this
section, we assume that ψ does not vanish on the real part of the domain S(c,d) (by definition,
the residues ψn do not vanish on (c, d), but their limit might vanish and we exclude this case).

Theorem 1.12 (Large deviations in the lattice case). We suppose that the reference law is lattice
distributed, with lattice Z. If tnx ∈ Z and x ∈ (η′(c), η′(d)), then

P[Xn = tnx] =
e−tn F(x)

√
2πtnη′′(h)

ψ(h) (1 + o(1)).

If x is in the range of η′|(0,d), then

P[Xn ≥ tnx] =
e−tn F(x)

√
2πtnη′′(h)

ψ(h)
1− e−h (1 + o(1)).

If x is in the range of η′|(c,0), then

P[Xn ≤ tnx] =
e−tn F(x)

√
2πtnη′′(h)

ψ(h)
1− eh (1 + o(1)).

Theorem 1.13 (Large deviations in the non-lattice case). We suppose that the reference law φ
is non-lattice distributed. If x is in the range of η′|(0,d), then

P[Xn ≥ tnx] =
e−tn F(x)

h
√

2πtnη′′(h)
ψ(h) (1 + o(1)).

If x is in the range of η′|(c,0), then

P[Xn ≤ tnx] =
e−tn F(x)

|h|
√

2πtnη′′(h)
ψ(h) (1 + o(1)).
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Both theorems are proved by a careful use of the Parseval formula, either on the circle
(lattice case) or on the real line (non-lattice case); and by using the Laplace method to esti-
mate asymptotics of integrals. In the non-lattice case, an important intermediary result is the
following general Berry–Esseen estimate [FMN16, Proposition 4.1.1]:

Theorem 1.14 (General Berry–Esseen estimates). Let (Xn)n∈N be a sequence that converges
mod-φ on a band S(c,d) with c < 0 < d. We suppose that the reference law φ is non-lattice distributed,
and we consider the renormalisation

Yn =
Xn − tnη′(0)√

tn η′′(0)
,

which converges in law towards a standard Gaussian distribution by Proposition 1.9. We have more
precisely:

sup
x∈R

∣∣∣∣∣∣
P[Yn ≤ x]−

∫ x

−∞

(
1 +

ψ′(0) s√
tnη′′(0)

+
η′′′(0) (s3 − 3s)
6
√

tn(η′′(0))3

)
e−

s2
2√

2π
ds

∣∣∣∣∣∣
= o

(
1√
tn

)
.

The following remarks will help the understanding of these important asymptotic results.

Remark 1.15. In the lattice case, one can actually give a full expansion in powers of 1
tn

of the probabilities P[Xn = tnx] and P[Xn ≥ tnx]. Thus, with the same assumptions as in
Theorem 1.12, for any v ≥ 0

P[Xn = tnx] etn F(x)
√

2πtn η′′(h) = a0 +
a1

tn
+ · · ·+ av

(tn)v + o
(

1
(tn)v

)
,

where a0 = ψ(h), and more generally ak is a rational fraction in the derivatives of η and ψ at
h. Similarly, for x ∈ (η′(0), η′(d)),

P[Xn ≥ tnx] etn F(x)
√

2πtn η′′(h) (1− e−h) = b0 +
b1

tn
+ · · ·+ bv

(tn)v + o
(

1
(tn)v

)

for some other explicit rational fractions bk in the derivatives of η and ψ at h. As far as we
know, it is not possible to have such an expansion in the non-lattice case, but in this setting
we have Berry–Esseen estimates (see Theorem 1.14 and Section 1.3).

Remark 1.16. In the non-lattice case, Theorem 1.14 gives an estimate of the Kolmogorov
distance between Yn and a standard Gaussian G ∼ NR(0, 1):

dKol(Yn, G) = sup
s∈R

|P[Yn ≤ s]−P[G ≤ s]|

. sup
x∈R

(
e−

x2
2

∣∣∣∣ψ′(0) + (x2 − 1)
η′′′(0)
6η′′(0)

∣∣∣∣
)

1√
2πtn η′′(0)

.

In particular, dKol(Yn, G) = O( 1√
tn
). If ψ′(0) = η′′′(0) = 0, then we can get much better

estimates, see Section 1.3.

Remark 1.17. Theorems 1.12 and 1.13 are examples of precise large deviation results, be-
cause they give estimates of probabilities and not of their logarithms. They are reminiscent
of a result due to Bahadur and Rao [BR60] that is a precise large deviation estimate for means
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Mn = 1
n ∑n

i=1 Ai of i.i.d. random variables:

∀x > E[A1], P[Mn ≥ x] =





e−n F(x)

(1−e−F′(x))
√

2πn Var(A1)
(1 + o(1)) in the Z-lattice case,

e−n F(x)

F′(x)
√

2πn Var(A1)
(1 + o(1)) in the non-lattice case,

where F is the Legendre–Fenchel transform of the log-Laplace transform of A1. In [FMN16,
Section 4.5.1], we explained how to recover these results from our general theory of mod-φ
convergence.

Example 1.18 (Number of cycles in a random permutation). Let Cn = c(σn) be the total
number of cycles (including cycles of length 1 which are fixed points) of a random permuta-
tion σn of S(n) chosen according to Ewens’ measure [Ewe72]

P[σn = σ] =
θc(σ)

θ(θ + 1)(θ + 2) · · · (θ + n− 1)
,

with θ > 0. We recover the uniform measure for θ = 1. The identity in the symmetric group
algebra C(θ)(S(n))

∑
σ∈S(n)

θc(σ) σ =
n

∏
i=1

((1, i) + · · ·+ (i− 1, i) + θ) (1.2)

proves that the number of cycles has the same law as a sum of independent random Bernoulli
variables:

Cn =law

n

∑
i=1
B
(

θ

θ + i− 1

)
.

The algebraic formula (1.2) can be seen as one of the many properties of the so-called Jucys–
Murphy elements; see the papers [Juc74; Mur81; OV04], and [CST10, §3.2] or [Mél17, Chapter
8] for a survey of their properties. In probability theory, the decomposition of Cn is known as
Feller’s coupling; see for instance [ABT03, Chapter 4]. A consequence is the formula

E[ezCn ] =
n

∏
i=1

(
1 +

θ(ez − 1)
θ + i− 1

)
= e(∑n

i=1
θ

θ+i−1)(e
z−1)

n

∏
i=1

(
1 +

θ(ez − 1)
θ + i− 1

)
e−

θ(ez−1)
θ+i−1 .

The product ψn(z) converges to an entire function as n goes to infinity, which one can com-
pute by using the infinite product representation of the Γ function. We shall give the details
of the computation in Section 2.1, in the more general situation of probabilities on permuta-
tions given by a family of weights (θk)k≥1 associated to the different lengths of the cycles. So,
one has mod-Poisson convergence on the whole complex plane, with parameters tn = θ log n
and limit ψ(z) = Γ(θ)

Γ(θez)
. It follows then from Theorem 1.12 that for any x > 1 such that

x θ log n ∈N,

P[Cn ≥ x θ log n] =
e−θ log n(x log x−(x−1))

√
2π log n

√
x

x− 1
Γ(θ)

Γ(θx)
(1 + o(1)),

since F(x) = x log x − (x − 1), h(x) = log x and η′′(h(x)) = eh(x) = x. In [FMN16, Section
7.4], we gave with a similar analysis the precise large deviations of the number of rises in a
uniform random permutation of S(n).

Example 1.19 (Number of prime divisors). With essentially the same calculations as in the
previous example, we get the asymptotics of the number of distinct prime divisors ωn of a
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random integer smaller than n. For instance, for any x > 1 such that x log log n ∈N,

P[ωn = x log log n] =
e− log log n(x log x−(x−1))
√

2πx log log n
1

Γ(x)

(
∏
p∈P

(
1 +

x− 1
p

)
e−

x−1
p

)
(1 + o(1)).

This result was also obtained by Radziwiłł in [Rad09]. In [FMN16, Section 7.2], we extended
these estimates to a larger class of arithmetic functions of random integers; see Example 2.8.

Example 1.20 (Characteristic polynomials of random matrices). Consider as in Example
1.8 the real part Xn of the logarithm log det(In −Mn), where Mn ∈ U(n) is Haar-distributed.
The mod-Gaussian convergence of this quantity implies the following large deviation results:

∀x > 0, P
[
|det(In −Mn)| ≥ n

x
2

]
=

G(1 + x
2 )

2

G(1 + x)
n−

x2
4

x
√

π log n
(1 + o(1));

∀x ∈ (0, 1), P
[
|det(In −Mn)| ≤ n−

x
2

]
=

G(1− x
2 )

2

G(1− x)
n−

x2
4

x
√

π log n
(1 + o(1)).

Besides, if Yn =
√

2/ log n Xn, then dKol(Yn,NR(0, 1)) is asymptotically a o((log n)−1/2), be-
cause in this case ψ′(0) = 0 and η′′′(0) = 0. The theory of zones of control which we shall
develop in Section 1.3 allows one to show that dKol(Yn,NR(0, 1)) is actually a O((log n)−1),
and in fact that dKol(

Xn√
var(Xn)

,NR(0, 1)) = O((log n)−3/2).

B Normality zones. The previous theorems regard the behavior of Xn at the scale tn.
On the other hand, in the lattice and in the non-lattice cases, by combining the two items
of Proposition 1.9, one sees that under the hypotheses of mod-φ convergence made at the
beginning of this section,

Yn =
Xn − tnη′(0)√

tn η′′(0)

converges in law towards a standard Gaussian distribution NR(0, 1). In other words, once
recentred, at the scale

√
tn, Xn has a Gaussian behavior. A natural problem is then to describe

what happens between these two scales
√

tn and tn. It turns out that one can again use the
theory of mod-φ convergence to compute the zone of normality of the sequence (Xn)n∈N,
which is the largest scale (tn)α up to which the asymptotic behavior of the random variables
Xn is prescribed by the Gaussian distribution. A small caveat is that in the non-lattice case,
one needs to assume that φ is absolutely continuous with respect to the Lebesgue measure.
This happens as soon as σ2 > 0, or if σ2 = 0 and the Lévy measure π of φ has an absolutely
continuous part with infinite mass [SH04, Chapter 4, Theorem 4.20]. We then obtained in
[FMN16, Theorems 3.3.1 and 4.3.1]:

Theorem 1.21 (Zone of normality). We consider as before a sequence (Xn)n∈N of random vari-
ables that converges mod-φ on a band S(c,d) which contains 0 in its interior. Suppose that φ is lattice
distributed, or non-lattice distributed and absolutely continuous with respect to the Lebesgue measure.

(1) If y = o((tn)1/6) and Yn = Xn−tnη′(0)√
tn η′′(0)

, then

P[Yn ≥ y] = P[NR(0, 1) ≥ y] (1 + o(1)).
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In particular, if 1� y� (tn)1/6, then

P[Yn ≥ y] =
e−

y2
2

y
√

2π
(1 + o(1)),

the right-hand side being the tail of a standard Gaussian distribution.

(2) Suppose more generally that y = o((tn)1/2), and denote x = η′(0) +
√

η′′(0)
tn

y. Then,

P[Yn ≥ y] = P[Xn ≥ tnx] =
e−tn F(x)

y
√

2π
(1 + o(1)),

where F is as in Theorems 1.12 and 1.13 the Legendre–Fenchel transform of the log-Laplace
transform of φ.

y

P[Yn ≥ y]

O(1) O((tn)1/6) O((tn)1/2)

e−
y2
2

y
√

2π

normality zone

e−tn F(x)

y
√

2π

correction by the LF transform
correction by the residue ψ

e−tn F(x)

h(x)
√

2πtnη′′(h(x))
ψ(h(x))

Figure 1.6. Panorama of the fluctuations of a mod-φ convergent sequence.

Let us restate Theorem 1.21 in terms of zones of normality. If y = o((tn)1/6), then the
y-tail of the distribution of Yn is asymptotically equivalent to the Gaussian tail. Hence, the
generic zone of normality of Yn is o((tn)1/6). When y becomes larger but stays a o((tn)1/4),
the Gaussian tail has to be corrected by an exponential of y3:

P[Yn ≥ y] =
e−

y2
2

y
√

2π
exp

(
η′′′(0)

6 (η′′(0))3/2
y3
√

tn

)
(1 + o(1)).

This is a consequence of the second part of Theorem 1.21, by making a Taylor expansion of
F around η′(0). Between (tn)1/4 and (tn)3/10, one needs to add another term in y4, and more
generally, if y = o((tn)

1
2− 1

m ) with m ≥ 3, then

P[Yn ≥ y] =
e−

y2
2

y
√

2π
exp

(
−

m

∑
i=3

F(i)(η′(0))
i!

(η′′(0))
i
2 yi

(tn)
i−2

2

)
(1 + o(1)).

When y = O((tn)1/2), by Theorems 1.12 and 1.13, one has the full Legendre–Fenchel trans-
form F in the asymptotic expansion of P[Yn ≥ y], plus a new correcting term which involves
the limiting residue ψ of mod-φ convergence.

Remark 1.22. The size of the zone of normality is o((tn)1/6) unless η′′′(0) = 0, in which
case it can be larger. A particular case is when φ is a Gaussian law NR(m, σ2). Then, all the
derivatives of F but the two first vanish, and therefore, the zone of normality is in this case
(at least) a o((tn)1/2).
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Remark 1.23. Our results on the zone of normality are close to those obtained by Hwang
by using the formalism of quasi-powers ([Hwa96; Hwa98] and [FS09, Section IX.5]). One of
the main difference is the hypothesis of analyticity that we make on

∫
R

ezx φ(dx) = eη(z). It
is more restrictive than the framework of quasi-powers, but it allows one to describe a full
panorama of fluctuations, from the central limit theorem of Proposition 1.9 to the moderate
or large deviations of Theorems 1.12 and 1.13.

Example 1.24 (Zones of normality). The zone of normality of the rescaled number of cycles

Cn − θ log n√
θ log n

of a random permutation under Ewens’ measure is o((log n)1/6), and the zone of normality
of the rescaled number of prime divisors

ωn − log log n√
log log n

of a random integer smaller than n is o((log log n)1/6). On the other hand, because one has
mod-Gaussian convergence, the zone of normality of (2/ log n)1/2 Re(log det(In−Mn)) with
Mn Haar-distributed unitary matrix is a o((log n)1/2) (and not just a o((log n)1/6)).

1.3 Estimates on the speed of convergence
In this section, (Xn)n∈N is a sequence of random variables that converges mod-φ on D =

iR. Another way to precise the central limit theorem that follows from this hypothesis is
to estimate the distance between the distribution of Xn and the distribution of an infinitely
divisible random variable Zn of exponent tnη, where η is the exponent of φ. Concretely, when
φ = φc,α,β is a stable law, one tries to find an upper bound on the Kolmogorov distance

dKol(Xn, Zn) = sup
x∈R

|P[Xn ≤ x]−P[Zn ≤ x]| (1.3)

= sup
x∈R

|P[Yn ≤ x]−P[Z ≤ x]| ,

where Yn is the same renormalisation of Xn as in the first item of Proposition 1.9, and Z is a
stable random variable with law φc,α,β. This is the problem of the speed of convergence in the
central limit theorem, and the objective of this section is to explain how to compute it. Such
results were obtained in [FMN17b]. In order to obtain optimal estimates, we shall replace the
hypothesis of mod-φ convergence by the closely related hypothesis of zone of control (Defi-
nition 1.25); in most examples, it comes from the same arguments and it is simultaneously
satisfied.

When the reference law φ is discrete (lattice-distributed with lattice Z), one does not have
a rescaled random variable Yn to compare with φ, but one can still look at the first line of
Equation (1.3), and compare directly Zn with the law of exponent tnη. We followed this
approach in [Chh+15]. In this setting, two other interesting quantities are the local distance

dloc(Xn, Zn) = sup
k∈Z

|P[Xn = k]−P[Zn = k]|

and the total variation distance

dTV(Xn, Zn) = sup
A⊂Z

|P[Xn ∈ A]−P[Zn ∈ A]| = 1
2 ∑

k∈Z

|P[Xn = k]−P[Zn = k]| .
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We shall see that all these distances are bounded by negative powers of tn, and that in the
discrete case, there exists a general scheme of approximation (Definition 1.35 and Remark
1.41) that allows one to improve these bounds, by replacing the infinitely divisible law of
exponent tnη by certain signed measures.

B Zone of control for mod-stable sequences. We start with the continuous case and we
consider a sequence of random variables (Xn)n∈N, and a reference law φ that is stable with
parameters (c, α, β). We set as in Proposition 1.9

Yn =

{ Xn
(tn)1/α if α 6= 1,
Xn
tn
− 2cβ

π log tn if α = 1.

To control the speed of convergence, we shall work with the Fourier transform and with the
residues

θn(ξ) = E[eiξXn ] e−tnηc,α,β(iξ).

Under the hypothesis of mod-φ convergence, θn(ξ) converges locally uniformly towards a
function θ which is continuous and satisfies θ(ξ) = 1. To compute the Kolmogorov distance
between Yn and a random variable Y with law φc,α,β, it will be more convenient to have a
control on θn(ξ)− 1, with a zone of control that might grow with n. The right definition is the
following [FMN17b, Definition 5]:

Definition 1.25 (Zone of control). Fix v, w > 0 and γ ∈ R. We say that (Xn)n∈N has a zone
of control [−K(tn)γ, K(tn)γ] with exponents v and w and constants K1 and K2 if the two following
conditions are satisfied:

(Z1) For any ξ in the zone of control,

|θn(ξ)− 1| ≤ K1|ξ|v exp(K2|ξ|w).
(Z2) The parameters of the zone of control satisfy:

α ≤ w ; −1
α
< γ ≤ 1

w− α
; 0 < K ≤

(
cα

2K2

) 1
w−α

.

Example 1.26 (Sums of i.i.d. random variables). Consider a sum Sn = ∑n
i=1 Ai of i.i.d. cen-

tered random variables with a moment of order 3. We set σ2 = E[(A1)
2] and L = E[(A1)

3],
and we consider the renormalised random variables

Xn =
Sn

σ n1/3 ,

which converge mod-Gaussian with parameters tn = n1/3 and limit θ(ξ) = exp( L(iξ)3

6σ3 ). Here,
there is also a zone of control with exponents v = 3 and w = 3. Indeed, integrating the
inequality ∣∣∣∣eiξ − 1− iξ +

ξ2

2

∣∣∣∣ ≤
|ξ|3

6

against the law of A1
σn1/3 yields

∣∣∣∣E
[

e
iξA1

σn1/3

]
− 1 +

ξ2

2n2/3

∣∣∣∣ ≤
ρ|ξ|3
6nσ3 ,
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where ρ = E[|A1|3]. Set K = ρ
σ3 . Combining the previous inequality with K ≤ 1 and |a −

b|n ≤ n (max(|a|, |b|))n−1 |a− b|, one obtains on the zone [−Kn1/3, Kn1/3] the inequality

|θn(ξ)− 1| ≤ 7e
1
2 ρ

24σ3 |ξ|
3 e

ρ

6σ3 |ξ3|.

Therefore, there is a zone of control with v = w = 3, γ = 1, α = 2, K = ρ
σ3 , K1 = 7e

1
2 K

24 and
K2 = K

6 . The inequalities of the second item of Definition 1.25 are all satisfied.

Example 1.27 (Winding numbers). Consider as in Example 1.7 the winding number ϕt of
a complex Brownian motion Zt starting from Z0 = 1. Analyzing Spitzer’s formula, we obtain
for any time t > 0 and any ξ ∈ R:

|θt(ξ)− 1| =
∣∣∣E[eiξϕt ] e

log 8t
2 |ξ| − 1

∣∣∣ ≤ |ξ|,
see [FMN17b, §3.2]. Therefore, one has a zone of control with v = w = 1, α = 1, γ = K = +∞,
K1 = 1 and K2 = 0.

B Berry–Esseen type estimates. The notion of zone of control is the right tool in order to
compute optimal bounds on the Kolmogorov distance between Yn and Y ∼ φc,α,β. Thus, the
main result obtained in [FMN17b, Theorem 20] is the following:

Theorem 1.28 (Bounds on the Kolmogorov distance). Let (Xn)n∈N be a sequence of real-
valued random variables, (tn)n∈N a sequence growing to infinity, and φ = φc,α,β a reference stable
law. We denote Y a random variable with law φ, and we suppose that (Xn)n∈N admits a zone of
control [−K(tn)γ, K(tn)γ] of exponents (v, w).

(1) If (Yn)n∈N is defined as in the first part of Proposition 1.9, then one has convergence in law
Yn ⇀n→∞ Y.

(2) Suppose γ ≤ v−1
α . Then,

dKol(Yn, Y) ≤ C(c, α, v, K, K1)
1

(tn)
γ+ 1

α

.

The constant C(c, α, v, K, K1) can be taken equal to

inf
λ>0


1 + λ

απc


2

v
α Γ
( v

α

)
K1

cv−1 +
Γ
(

1
α

)

3
√

π K

(
4 3

√
1 +

1
λ
+ 3 3
√

3

)


 .

Before giving applications of this result, let us detail a bit its proof. The fastest way to
prove Theorem 1.28 is by means of an inequality already involved in the proof of the classical
Berry–Esseen bounds, see [Fel71, Lemma XVI.3.2]: if X and Y are two random variables with
the density of Y bounded by m, then for any T > 0,

dKol(X, Y) ≤ 1
π

∫ T

−T

∣∣∣∣
E[eiξX]−E[eiξY]

ξ

∣∣∣∣ dξ +
24m
πT

.

Using this inequality with T = K(tn)γ yields Theorem 1.28, though not with the same con-
stant. In [FMN17b, Proposition 16], we proved precise bounds on test functions:

E[ fn(Yn)− fn(Y)] ≤ C(c, α, v, K1, fn)
1

(tn)
v
α

.
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These bounds hold true for any smooth function fn whose Fourier transform has its support
included in [−K(tn)

γ+ 1
α , K(tn)

γ+ 1
α ]. They are also true for certain tempered distributions,

and this allows one to use smoothing techniques in order to replace fn(y) by an Heaviside
function 1y≤x. Thus, Theorem 1.28 can be seen as a particular case of a general bound on test
functions.

Remark 1.29. Another extremely popular method to get optimal bounds on Kolmogorov
distances is Stein’s method, see the survey [Ros11] or the two monographs [BC05; CGS11].
When both methods can be applied to the same model, they usually give the same bound up
to a constant. One of the advantage of our method is that it only relies on Fourier analysis.
On the other hand, it yields without additional work moderate deviations and local limit
theorems. Finally, there are many examples where one can apply Theorem 1.28 and where
Stein’s method is not known to yield an estimate of the speed of convergence. To the best of
our knowledge, this is for instance the case for the fluctuations of the models from Section
2.3, and for the magnetisation of the Ising model (Section 2.4).

Remark 1.30. In the mod-Gaussian case, let us compare the general Berry–Esseen estimate
of Theorem 1.14 with the bound from Theorem 1.28. Given a mod-Gaussian convergent se-
quence (Xn)n∈N, we saw in Remark 1.16 that dKol(Yn, G) is:

• asymptotically equivalent to |θ
′(0)|√
2πtn

if θ′(0) 6= 0;

• a o( 1√
tn
) if θ′(0) = 0.

In the next chapter, we shall explain which kinds of models yield mod-Gaussian convergent
sequences. Many of these models yield a residue θ(ξ) = exp(L(iξ)3), where L is a certain
constant. Therefore, the second situation is more frequent, and Theorem 1.14 is not optimal
in this case. On the other hand, the form of the limiting residue θ(ξ) = exp(L(iξ)3) implies
most of the time that one has a zone of control of size O(tn), with v = w = 3. The Kolmogorov
distance dKol(Yn, G) is in this case a O( 1

(tn)3/2 ), and Theorem 1.28 provides an optimal bound
(up to a multiplicative constant). This comparison explains why one had to introduce the
notion of zone of control.

Example 1.31 (Classical Berry–Esseen estimates). If one applies Theorem 1.28 to sums
of i.i.d. centered random variables, one recovers the classical Berry–Esseen estimates from
[Ber41; Ess45]:

dKol

(
1

σ
√

n

n

∑
i=1

Ai , NR(0, 1)

)
≤ Cρ

σ3
√

n
,

with a constant C = 4.815. This is better than the original constant C = 7.59 of Esseen, but
worse than the best known constant today, which is C = 0.4748. On the other hand, Theorem
1.28 applies to a much larger set of examples.

Example 1.32 (Winding numbers). If ϕt is the winding number of a complex Brownian
motion, then

dKol

(
2ϕt

log 8t
, C
)
≤ 4

log 8t
,

where C is the standard Cauchy distribution.

Example 1.33 (Compound Poisson laws). Consider any stable law φ = φc,α,β, and denote
Y a random variable with law φ, and Yn a compound Poisson process of intensity n µn, where
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µn is the unique stable law such that (µn)∗n = φ. The Fourier transform of Yn is

E[eiξYn ] = exp
(

n
(

e
ηc,α,β(iξ)

n − 1
))
→n→∞ eηc,α,β(iξ) = E[eiξY],

so one has convergence in law Yn ⇀ Y (cf. [Sat99, Chapter 2, §8]). By using a zone of control,
one can control the Kolmogorov distance:

dKol(Yn, Y) =





O
(

n−
1
α

)
if α ∈ (1, 2];

O((log n)2 n−1) if (α = 1, β 6= 0);
O(n−1) if α ∈ (0, 1) or (α = 1, β = 0);

see [FMN17b, §3.3].

In the mod-Gaussian case, numerous other examples stemming from Markov chains, ran-
dom graphs, models from statistical mechanics, etc. will be given in Chapter 2.

B Approximation of discrete mod-φ convergent random variables. Consider now a se-
quence of Z-valued random variables (Xn)n∈N, and a reference infinitely divisible law φ
supported on this lattice. We denote µn the law of Xn, and νn the infinitely divisible law with
Lévy exponent tnη, where η is the exponent of φ, and (tn)n∈N is a sequence growing to in-
finity. If (Xn)n∈N converges mod-φ with parameters (tn)n∈N, then we can try as before to
bound

dKol(µn, νn) = sup
l∈Z

∣∣∣∣∣
l

∑
k=−∞

(µn(k)− νn(k))

∣∣∣∣∣ .

To measure how close the distribution of Xn is from νn, we can also look at the local distance

dloc(µn, νn) = sup
k∈Z

|µn(k)− νn(k)|

and at the total variation distance

dTV(µn, νn) = sup
A⊂Z

|µn(A)− νn(A)| = 1
2 ∑

k∈Z

|µn(k)− νn(k)| .

These distances are related by the inequalities

1
2

dloc(µ, ν) ≤ dKol(µ, ν) ≤ dTV(µ, ν).

Example 1.34 (Poisson approximation). In the aforementioned framework, the toy-model
is the Poisson approximation of a sum Xn = ∑n

i=1 Bi of independent Bernoulli random vari-
ables, with P[Bi = 1] = pi and P[Bi = 0] = 1 − pi. Set tn = ∑n

i=1 pi, and suppose that
limn→∞ tn = +∞. If ∑∞

i=1(pi)
2 < +∞, then one has mod-Poisson convergence:

E[eiξXn ] e−tn(eiξ−1) =
n

∏
i=1

(
1 + pi(eiξ − 1)

)
e−pi(eiξ−1) →n→∞

∞

∏
i=1

(
1 + pi(eiξ − 1)

)
e−pi(eiξ−1).

On the other hand, Le Cam’s inequality allows one to bound the total variation distance
between Xn and the Poisson law P(tn):

dTV(Xn,P(tn)) ≤
n

∑
i=1

(pi)
2,
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see [Cam60; Ker64]. Using Stein’s method, Chen and Steele improved this bound:

dTV(Xn,P(tn)) ≤
(

1− e−∑n
i=1 pi

) ∑n
i=1(pi)

2

∑n
i=1 pi

,

see [Che74; Che75; Ste94], and [AGG89] for an extension to dependent random variables.
We shall see in this paragraph that the theory of mod-φ convergence leads to a similar in-
equality; besides, the inequality can be improved by an adequate modification of the Poisson
approximation.

The Poisson approximation of a sum of independent Bernoulli random variables yields
a distribution which is close to Xn up to a O((tn)−1) for the total variation distance. If one
wants a better approximation, say up to a O((tn)−2), it is convenient to allow signed measures.
This is possible in the following setting, which we called general approximation scheme in
[Chh+15, Definition 8]:

Definition 1.35 (Approximation scheme). Let (Xn)n∈N be a sequence of Z-valued random
variables that converges mod-φ with parameters (tn)n∈N, φ being an infinitely divisible law with
lattice Z and Lévy exponent η. An approximation scheme for the laws µn of the variables Xn is a
sequence of signed measures (νn)n∈N on Z, such that

µ̂n(ξ) = etnη(iξ) θn(ξ);

ν̂n(ξ) = etnη(iξ) χn(ξ)

with limn→∞ θn = θ and limn→∞ χn = χ. The residues θn, θ, χn and χ are functions on the circle
T = R/2πZ which are equal to 1 at ξ = 0 (hence, νn(Z) = 1).

In this definition, we did not precise the nature of the convergence of the residues ψn and
χn; typically, we want it to happen in a space of functions C r(T), with respect to the topology
of uniform convergence of all the derivatives up to order r. Before stating the exact hypothe-
ses of convergence that are required, let us present the standard approximation schemes for a
mod-φ convergent sequence. Let (Xn)n∈N be a Z-valued mod-φ convergent sequence, and
(θn)n∈N be the sequence of residues. We suppose that these residues θn can be represented as
convergent power series on the circle:

θn(ξ) = 1 +
∞

∑
k=1

bn,k (e
iξ − 1)k +

∞

∑
k=1

cn,k (e
−iξ − 1)k

The coefficients bn,k and cn,k can be expressed in terms of the coefficients of the Fourier series
of θn(ξ) = ∑k∈Z an,k eikξ if θn is sufficiently smooth. The standard approximation scheme of
order r ≥ 0 of the sequence (Xn)n∈N is the sequence of signed measures (ν(r)n )n∈N defined by

ν̂
(r)
n (ξ) = etnη(iξ)

(
1 +

r

∑
k=1

bn,k (e
iξ − 1)k +

r

∑
k=1

cn,k (e
−iξ − 1)k

)
.

In other words, one keeps the Taylor expansion up to order r of the residue θn to define χ
(r)
n ,

so that ν̂
(r)
n (ξ) = etnη(iξ) χ

(r)
n (ξ). The calculation of the residues χ

(r)
n will be performed in the

next chapter, see Section 2.1.

Let us now detail the hypotheses required in order to have bounds on the distances be-
tween the distributions of the variables Xn and their approximation schemes. Until the end
of this section, we assume that the reference infinitely divisible law φ with lattice Z has a
moment of order 2. This amounts to the following:
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• the Lévy measure π of φ is supported on Z and satisfies ∑k 6=0 π(k) k2 < +∞.

• if (a, σ2, π) is the Lévy–Khintchine triplet of φ, then σ2 = 0 and a ∈ Z.

We fix an approximation scheme (νn)n∈N of (µn)n∈N, and we consider the following hypothe-
ses:

(H1) We have

∀n ∈N, θn(ξ)− χn(ξ) = βn (iξ)r+1 (1 + oξ(1))

and θ(ξ)− χ(ξ) = β (iξ)r+1 (1 + oξ(1))

with limn→∞ βn = β.

(H2) The residues θn, θ, χn and χ are in C 1(T), and we have

∀n ∈N, θ′n(ξ)− χ′n(ξ) = i(r + 1) βn (iξ)r + i(r + 2) γn (iξ)r+1 (1 + oξ(1))

and θ′(ξ)− χ′(ξ) = i(r + 1) β (iξ)r + i(r + 2) γ (iξ)r+1 (1 + oξ(1))

with limn→∞ βn = β and limn→∞ γn = γ.

Since θn(0) = χn(0) = θ(0) = χ(0) = 1, integrating Condition (H2) gives estimates
on θn − χn and θ − χ, so (H2) is stronger than (H1). On the other hand, if θn converges
in C r+1(T) (respectively, in C r+2(T)) to θ and if χn = χ

(r)
n is the residue of the standard

approximation scheme of order r, then (H1) (respectively, (H2)) is satisfied. Thus, one easily
produces approximation schemes that satisfy the hypotheses of the following result, up to an
arbitrary order r (Theorems 3.4, 3.7 and 3.12 in [Chh+15]).

zr+1
z

Hr(z)

Figure 1.7. The Hermite function H9, which attains its global extremas at the
smallest zeroes of H10.

Theorem 1.36 (Bounds on the local, Kolmogorov and total variation distances). In the pre-
vious framework, consider an approximation scheme (νn)n∈N of (Xn)n∈N, with Fourier transforms
ν̂n(ξ) = etnη(iξ) χn(ξ). We denote η′′(0) the variance of φ.

(1) Under the hypothesis (H1),

dloc(µn, νn) =
|β| |Hr+1(zr+2)|√
2π (η′′(0) tn)

r
2+1

+ o

(
1

(tn)
r
2+1

)
,
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where Hr(z) = ∂r

∂zr

(
e−

z2
2

)
is the r-th Hermite function , and zr+1 is the smallest zero in

absolute value of Hr+1, and a global extrema of |Hr| (see Figure 1.7).

(2) Under the same hypothesis (H1),

dKol(µn, νn) =
|β| |Hr(zr+1)|√
2π (η′′(0) tn)

r+1
2

+ o

(
1

(tn)
r+1

2

)
.

(3) Under the stronger hypothesis (H2), if φ has a third moment, then

dTV(µn, νn) =
|β|

2
√

2π (η′′(0) tn)
r+1

2

(∫

R
|Hr+1(z)| dz

)
+ o

(
1

(tn)
r+1

2

)
.

Remark 1.37. Our results are exact asymptotics of the distances, but they are not uncon-
ditional bounds. Still, one can easily adapt the proofs to get such unconditional bounds; see
in particular [BKN09, Propositions 2.1, 2.2 and 2.4]. The two first inequalities of Theorem
1.36 rely mainly on the Laplace method and on a careful use of the hypothesis (H1). On
the other hand, to obtain the inequality on the total variation distance, we used various for-
mulas and approximation techniques in the Wiener algebra A (T), which is the convolution
algebra of absolutely convergent Fourier series f (ξ) = ∑k∈Z ak eikξ endowed with the norm
‖ f ‖A (T) = ∑k∈Z |ak|. For instance, an important tool in the proof of the bounds on distances
is the inequality

‖ f ‖A (T) ≤ |a0( f )|+ π√
3
‖ f ′‖L 2(T),

see [Kat04, §6.2]. If µ and ν are two (signed) measures, then their total variation distance
is nothing else than the norm in A (T) of 1

2(µ̂− ν̂); this explains why the Wiener algebra is
the adequate setting for these computations. Thus, we were able to reduce the problem of
approximation of discrete laws to harmonic analysis on the circle.

Remark 1.38. The first values of Mr = |Hr(zr+1)| are

M0 = 1, M1 = e−
1
2 , M2 = 1, M3 = e−

3−
√

6
2 (3
√

6− 6), M4 = 3,

and we have in fact M2r = (2r − 1)!! = (2r − 1)(2r − 3) · · · 3 ·1 for any r ≥ 0. On the other
hand, the first values of Vr =

∫
R
|Hr(z)| dz are

V0 = 2, V1 = 4e−
1
2 , V2 = 2

(
1 + 4e−

3
2

)
.

B Basic scheme of approximation and derived scheme of approximation. A particular
case is when the scheme of approximation (νn)n∈N is given by the infinitely divisible laws,
that is with residues χn(ξ) = χ(ξ) = 1. We then speak of the basic scheme of approxima-
tion. Let us analyze it for the classical Poisson approximation of a sum Xn = ∑n

i=1 B(pi) of
independent Bernoulli random variables. We then have η(iξ) = eiξ − 1, and

θn(ξ) =
n

∏
i=1

(
1 + pi(eiξ − 1)

)
e−pi(eiξ−1) = exp

(
n

∑
i=1

log(1 + pi(eiξ − 1))− pi(eiξ − 1)

)

= exp

(
n

∑
i=1

∞

∑
k=2

(−1)k−1

k
(pi(eiξ − 1))k

)
= exp

(
∞

∑
k=1

(−1)k−1 pk,n

k
(eiξ − 1)k

)
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where the parameters pk,n are defined by

p1,n = 0 ; pk≥2,n =
n

∑
i=1

(pi)
k.

The expansion of the exponential can be performed by using the algebra of symmetric func-
tions Sym, see [Mac95, Chapter 1] or [Mél17, Chapter 2]. We shall explain this expansion in
a general setting in Section 2.1; for the moment we only detail what is needed for the clas-
sical Poisson approximation. Let Y be the set of integer partitions, that are non-increasing
sequences λ = (λ1 ≥ λ2 ≥ · · · ≥ λ`(λ)) of positive integers. The size of an integer par-
tition λ is the sum |λ| of its parts, and we denote Y(k) ⊂ Y the set of integer partitions
of size k. On the other hand, if λ is an integer partition, we can write it multiplicatively
λ = 1m1(λ)2m2(λ) . . . sms(λ); for instance λ = (4, 4, 2, 2, 2, 1), which is of size 15, writes also as
λ = 1 23 42. Set zλ = ∏s≥1 sms(λ) (ms(λ))!; hence, λ = (4, 4, 2, 2, 2, 1) gives zλ = 1536. The
combinatorial coefficient zλ is the size of the centralizer of a permutation with cycle type λ in
S(|λ|). We now define for any k ≥ 1:

ek,n = ∑
λ∈Y(k)

(−1)|λ|−`(λ)
pλ,n

zλ
,

where pλ,n = ∏
`(λ)
i=1 pλi,n. These coefficients are those of the expansion in power series of θn:

θn(ξ) =
∞

∑
k=0

ek,n (e
iξ − 1)k

with by convention e0,n = 1. We have:

e1,n = 0 ; e2,n = −p2,n

2
; e2,n = −p3,n

3
.

Since e1,n = 0, the basic scheme of approximation for a sum of independent Bernoulli random
variables is the standard scheme of order r = 1. It follows from Theorem 1.36 that, if p2 =
∑∞

i=1(pi)
2 < ∞ and if νn is the Poisson law of parameter tn = ∑n

i=1 pi, then

dloc(µn, νn) '
p2

2
√

2π (tn)
3
2

;

dKol(µn, νn) '
p2

2
√

2πe tn
;

dTV(µn, νn) '
p2√

2πe tn
.

This agrees with the classical results coming from the Chen–Stein method.

When dealing with the standard schemes of higher order, it is convenient to introduce
the notion of derived scheme of an approximation scheme. Suppose given an approximation
scheme (νn)n∈N of the sequence of discrete laws (µn)n∈N; their Fourier transforms are

ν̂n(ξ) = etnη(iξ) χn(ξ).

Instead of working with the approximating residues χn(ξ) which vary with n, one can look
at the signed measures σn defined by

σ̂n(ξ) = etnη(iξ) χ(ξ), with χ = lim
n→∞

χn.

One then says that (σn)n∈N is the derived scheme of approximation of (νn)n∈N. Dealing
with a fixed approximating residue is more practical for applications, and on the other hand,
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in many cases, the convergences θn → θ and χn → χ happen at a speed faster than any
power of tn. Therefore, one does not lose much by working with derived schemes. A precise
statement is the following (cf. [Chh+15, Theorem 3.17]):

Theorem 1.39 (Derived scheme of approximation). Let (νn)n∈N be a general approximation
scheme of (µn)n∈N, and (σn)n∈N be the derived scheme of (νn)n∈N. Suppose that ‖χn − χ‖∞ =

o((tn)−
r
2−1) and that ‖χ′n − χ′‖∞ = o((tn)

− r
2− 5

4 ). Then, under the hypotheses of Theorem 1.36
(Conditions (H1) and (H2)), one has the same estimates as before with σn instead of νn, so for instance

dTV(µn, σn) =
|β|

2
√

2π (η′′(0) tn)
r+1

2

(∫

R
|Hr+1(z)| dz

)
+ o

(
1

(tn)
r+1

2

)

if φ has a third moment and if Condition (H2) is satisfied.

Example 1.40 (Derived schemes for the classical Poisson approximation). In the classical
Poisson approximation with ∑∞

i=1 pi = +∞ and ∑∞
i=1(pi)

2 < +∞, the limiting residue θ(ξ) =

∏∞
i=1(1 + pi(eiξ − 1)) e−pi(eiξ−1) admits for expansion θ(ξ) = ∑∞

k=0 ek (eiξ − 1)k, where ek =

∑λ∈Y(k)(−1)|λ|−`(λ) pλ
zλ

, p1 = 0 and pk≥2 = ∑∞
i=1(pi)

k.

The derived scheme of the standard scheme of approximation of order r ≥ 1 is the sequence
of signed measures (σ(r)

n )n∈N defined by:

σ̂
(r)
n (ξ) = etn(eiξ−1)

(
r

∑
k=0

ek (e
iξ − 1)k

)

with tn = ∑n
i=1 pi. When r = 1, we recover the basic scheme of approximation. When r = 2,

we obtain

σ̂
(2)
n (ξ) = etn(eiξ−1)

(
1− p2

2
(eiξ − 1)2

)
;

σ
(2)
n (k) =

e−tn (tn)k

k!

(
1− p2

2

(
1− 2k

tn
+

k(k− 1)
(tn)2

))
.

It is a much better approximation of Xn than the basic scheme, since

dloc(Xn, σ
(2)
n ) =

(
√

6− 2) p3√
2π e3−

√
6 (tn)2

+ o
(

1
(tn)2

)
;

dKol(Xn, σ
(2)
n ) =

p3

3
√

2π (tn)
3
2
+ o

(
1

(tn)
3
2

)
;

dTV(Xn, σ
(2)
n ) =

(1 + 4e−
3
2 ) p3

3
√

2π (tn)
3
2

+ o

(
1

(tn)
3
2

)

as soon as the convergent series ∑∞
i=1(pi)

2 has a sufficiently small tail (in order to apply The-
orem 1.39, we need ∑∞

i=n+1(pi)
2 = o((tn)

− 9
4 )).

Remark 1.41. Let us summarize the general technique of approximation of the laws of a
sequence (Xn)n∈N of discrete random variables:

(1) We find an infinitely divisible reference law φ with exponent η, such that Xn looks
like a large random variable of exponent tnη, in the sense of mod-φ convergence.
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(2) We fix an order r ≥ 0 sufficiently large, depending on the order of approximation
O((tn)−α) that is needed for the distances. For instance, if we want a total variation
distance of order O((tn)−2), then we take r = 3.

(3) We consider the derived scheme (σ
(r)
n )n∈N of the standard approximation scheme

(ν
(r)
n )n∈N of order r. It is defined by

σ̂
(r)
n (ξ) = etnη(iξ) P(r)(ξ),

where P(r) is a Laurent polynomial of degree r in eiξ , with the same Taylor expansion
at ξ = 0 up to order r than the residue θ(ξ) = limn→∞ E[eiξXn ] e−tnη(iξ).

Then, assuming that certain technical conditions are satisfied, σ
(r)
n is the required approxima-

tion of the law µn of Xn. In Section 2.1, we shall apply this program to a large set of examples:
number of cycles in a random permutation, number of prime divisors of a random integer,
number of prime factors of a random polynomial over Fq, etc. The use of symmetric functions
and formal alphabets will shed light on the structure of discrete mod-φ convergent random
variables, and it will enable the explicit approximation of their laws up to any order r ≥ 0.

1.4 Local limit theorems and multi-dimensional extensions
The two previous Sections 1.2 and 1.3 have shown that the theory of mod-φ convergence

allows an excellent understanding of the speed of convergence in a central limit theorem,
and of the behavior of the random variables at the edge of their limiting distribution. In
this last section of the chapter, we shall discuss some asymptotic results that we have not
yet explored as thoroughly as the previous ones but that fall in the same framework of mod-
φ convergence. They correspond to the preprint [FMN17c], and to an ongoing project with
Ashkan Nikeghbali and his student Martina Dal Borgo on local limit theorems [BMN17].

B Multi-dimensional mod-Gaussian convergence. We start with the multi-dimensional
generalisation of the previous results. Let d ≥ 2 be a fixed positive integer, and (Xn)n∈N be a
sequence of random vectors in Rd. Though the theory of infinitely divisible distributions can
be extended without difficulty to finite-dimensional vector spaces, here we shall only con-
sider mod-Gaussian convergent sequences when d ≥ 2. For non-lattice distributed reference
laws, this is the only case where we were able to prove significant results.

Definition 1.42 (Mod-Gaussian convergence in dimension d ≥ 2). Let K be a positive-definite
symmetric matrix of size d× d, and (tn)n∈N a sequence growing to infinity. We say that (Xn)n∈N

is mod-Gaussian convergent with parameters tnK and limit ψ(z) on a domain D ⊂ Cd if, locally
uniformly on this domain,

lim
n→∞

E[e〈z |Xn〉] e−tn
ztKz

2 = lim
n→∞

ψn(z) = ψ(z),

where 〈z | Xn〉 = ztXn, and ψ is a continuous function on D.

As before, the domain D is always assumed to contain 0, and it is usually taken equal to
(iR)d, or Cd, or possibly a multi-band ∏d

i=1 S(ci,di)
. Assuming that D contains (iR)d, the mod-

Gaussian convergence of (Xn)n∈N implies as in Proposition 1.9 a central limit theorem:

Yn =
Xn√

tn
⇀ NRd(0, K).
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Here,NRd(0, K) denotes the multi-dimensional Gaussian distribution with covariance matrix

K; its Fourier transform is E[ei〈ξ |X〉] = exp(− ξtKξ
2 ).

Suppose that (Xn)n∈N is a mod-Gaussian convergent sequence of random vectors, with
parameters tnK and limit ψ on Cd. To state the multi-dimensional analogue of Theorem 1.13,
one can assume without loss of generality that K = Id: indeed, if (Xn)n∈N is mod-Gaussian
convergent with parameters tnK and limit ψ(z), then X̃n = K−1/2Xn is mod-Gaussian conver-
gent with parameters tn Id and limit ψ(K−1/2z). Now, we proved in [FMN17c, Proposition 27
and Theorem 28]:

Theorem 1.43 (Large deviations in dimension d ≥ 2). Let (Xn)n∈N be a mod-Gaussian con-
vergent sequence of random vectors in Rd, with parameters tn Id and limit ψ on Cd. We suppose that
ψ does not vanish on Rd. We fix a subset S ⊂ Sd−1 of the unit sphere that is Jordan measurable, and
with non-zero surface measure. If B = S× [b,+∞) is the spherical sector with basis bS (b > 0), then

P[Xn ∈ tnB] =
(

tn

2π

)d
2 e−

tnb2
2

tnb

(∫

bS
ψ(s) µsurface(ds)

)
(1 + o(1)).

In dimension d = 1, one recovers the results of Theorem 1.13, since the surface measure on
the 0-dimensional sphere S0 is the counting measure. The proof of Theorem 1.43 relies on a
general study of the difference on convex Borel subsets C ⊂ Rd between the distribution of
Yn = Xn/

√
tn and the Gaussian distribution NRd(0, K). Indeed, one can prove an analogue

of Theorem 1.14 in dimension d ≥ 2 if one replaces the Kolmogorov distance by the convex
distance

dconvex(µ, ν) = sup
C convex Borel

subset of Rd

|µ(C)− ν(C)|.

We refer to [BR10] for a study of the relation between convergence in convex distance, and
weak convergence of probability measures. The two notions are not always equivalent, but
they become equivalent if the limiting distribution is regular with respect to convex sets
[BR10, Theorem 2.11].

Theorem 1.44 (Berry–Esseen estimates in dimension d ≥ 2). Let (Xn)n∈N be a sequence of
random vectors in Rd that is mod-Gaussian convergent on D = Cd, with parameters tnK and limit
ψ. We set Yn = Xn√

tn
, and we denote µn the law of Yn, and ν = NRd(0, K). Then,

dconvex(µn, ν) = O
(

1√
tn

)
,

see [FMN17c, Theorem 18]. More precisely, if νn is the deformation of ν defined as the signed measure
with density

νn(dx) =
1√

(2π)d det K
e−

xtK−1x
2

(
1 +

xtK−1(∇ψ)(0)√
tn

)
dx

and with Fourier transform

ν̂n(ξ) = e−
ξtKξ

2

(
1 + i

ξt(∇ψ)(0)√
tn

)
,

then dconvex(µn, νn) = o
(

1√
tn

)
[FMN17c, Theorem 22].

Using the second part of Theorem 1.44 and an argument of tilting (exponential change of
measure), one can compute estimates of the probability of Xn being in a cone tnC, and then by
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approximation the probability of Xn being in any spherical sector tnB with Jordan measurable
basis; this leads to Theorem 1.43.

Remark 1.45. In dimension d ≥ 2, one can define zones of control similarly to Definition
1.25, and they yield much better estimates of the convex distance. However, the only exam-
ples that we have in mind rely on the method of cumulants, so we postpone the presentation
of these results to Section 2.2.

Example 1.46 (Characteristic polynomials of random unitary matrices). We consider as in
Example 1.8 a unitary matrix Mn taken according to the Haar measure of the unitary group,
and we set Xn = log det(In−Mn), Thus, we consider the complex logarithm of the character-
istic polynomial of Mn, instead of its real part. The random variable Xn = X(1)

n + iX(2)
n con-

verges in the mod-Gaussian sense on C = R2, with parameters log n
2 I2 and limiting residue

ψ(z) = ψ(z(1), z(2)) =
G
(

1 + z(1)+iz(2)
2

)
G
(

1 + z(1)−iz(2)
2

)

G(1 + z(1))
;

cf. [KN12, Equation (24)]. The domain of convergence is D = S(−1,+∞) ×C. Since (∇ψ)(0) =
0, the second part of Theorem 1.44 guarantees that

dconvex

(√
2

log n
Xn , NR2(0, I2)

)
= o

(
1√

log n

)
.

On the other hand, by using Theorem 1.43 and considering the spherical sector C(r, θ1, θ2) =
{z = Reiθ | R ≥ r, θ ∈ (θ1, θ2)}, one sees that for any r < 1,

P

[
Xn ∈

log n
2

C(r, θ1, θ2)

]
= n−

r2
4

(∫ θ2

θ1

G(1 + reiθ

2 ) G(1− reiθ

2 )

G(1 + r cos θ)

dθ

2π

)
(1 + o(1)).

The restriction on r is due to the fact that the domain of convergence is smaller than C2. With
r fixed, the function

Gr(θ) =
G(1 + reiθ

2 ) G(1− reiθ

2 )

G(1 + r cos θ)

takes higher values for θ close to π, and smaller values for θ close to 0 (Figure 1.8). So,
conditioned to be of size O(log n), Xn has a higher probability to have its argument close to
π.

0 π 2π
0

1

2

Gr(θ)

Figure 1.8. Breaking of symmetry of the logarithm of the characteristic polyno-
mial Xn, when conditioned to be of size O(log n) (here, r = 0.7).
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Example 1.47 (Random walk on the lattice Z2). Consider a random walk Sn = ∑n
i=1 Ai,

where the steps Ai are independent and identically distributed on Z2, with

P[Ai = (1, 0)] = P[Ai = (−1, 0)] = P[Ai = (0, 1)] = P[Ai = (0,−1)] =
1
4

.

If Xn = Sn
n1/4 , then (Xn)n∈N converges in the mod-Gaussian sense with parameters n1/2

2 I2 and
limit

ψ(z) = exp

(
− (z(1))4 + (z(2))4 + 6(z(1)z(2))2

96

)
.

Figure 1.9. The function F(r, θ) measuring the breaking of symmetry of a two-
dimensional random walk Sn conditioned to be of size O(n3/4).

Our general Berry–Esseen estimate 1.44 is not very good in this case, but we shall describe in
the next chapter a technique to get an optimal bound on the convex distance. On the other
hand, the large deviation result 1.43 leads in this setting to the following estimate:

P
[
Sn ∈ n3/4 C(r, θ1, θ2)

∣∣ ‖Sn‖ ≥ n3/4r
]
=

(∫ θ2

θ1

F(r, θ) dθ

)
(1 + o(1))

where C(r, θ1, θ2) denotes the same spherical sector as in the previous example, and

F(r, θ) =
exp(− r4(sin 2θ)2

6 )
∫ 2π

θ=0 exp(− r4(sin 2θ)2

6 ) dθ
.

The function F(r, θ) drawn in Figure 1.9 is larger when θ is close to {0, π
2 , π, 3π

2 }. Thus, in
order to be larger than its expected size O(n1/2), a random walk on the lattice Z2 needs to
stay close to one of the four cardinal axes, and mod-Gaussian convergence allows one to make
this statement quantitative. This result generalizes readily to arbitrary dimensions d ≥ 2, see
[FMN17c, Section 4.1].

Remark 1.48. In [Chh+15, Section 5], mod-φ convergent sequences with values in Zd and
with reference law φ supported on this lattice are studied. In this setting, one can define
schemes of approximation as in Definition 1.35, and prove bounds on the local distance and
the total variation distance similar to those of Theorem 1.36. This allows one to study for
instance the asymptotic distribution of conjugacy classes of random coloured permutations in
S(n) o (Z/dZ), or the number of prime divisors of a random integer that fall in a fixed residue
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class in (Z/aZ)∗. Thus, we also have interesting results related to mod-φ convergence in the
multi-dimensional discrete setting.

BMod-φ convergence and local limit theorems. Another direction that one can explore
in the framework of mod-φ convergence is local limit theorems (the first part of Theorem 1.12
is already a kind of local limit). A general principle in real harmonic analysis is that, if one
has a control on the Fourier transform µ̂(ξ) of a probability measure on a large interval, then
it gives information on the regularity of the distribution µ on a small interval. Therefore,
mod-φ convergence should lead to local limit theorems, and mod-φ convergence with a zone
of control should lead to better local limit theorems. Let us state the following theorem (see
[BMN17, Theorem 9]), which confirms this intuition and is an amelioration of earlier results
from [KN12; DKN15]:

Theorem 1.49 (Local limit theorem with a zone of control). Let φ = φc,α,β be a reference stable
law. We denote mc,α,β(x) its density with respect to the Lebesgue measure, and we consider a sequence
(Xn)n∈N that admits a zone of control [−K(tn)γ, K(tn)γ] with exponents (v, w). Let Yn be the usual
renormalisation of Xn (Proposition 1.9), such that Yn ⇀ φ. For every δ ∈ (0, 1

α + γ), any x ∈ R and
any bounded Jordan measurable subset B ⊂ R with Lebesgue measure L(B) > 0,

lim
n→∞

(tn)
δ P

[
Yn − x ∈ 1

(tn)δ
B
]
= mc,α,β(x) L(B).

Thus, the size of the zone of control dictates up to which scale the approximation given by
the central limit theorem can be used, when looking at small scales. On the other hand, if φ
is the Gaussian distribution, then there is an immediate generalisation of Theorem 1.49 to a
multi-dimensional setting, see [BMN17, Proposition 18] and our Proposition 2.17.

Remark 1.50. If one only assumes mod-φ convergence of (Xn)n∈N in Theorem 1.49, then
one has a zone of control with index γ = 0. This case corresponds to [KN12, Theorem 4],
which was stated in the multi-dimensional mod-Gaussian setting.

Example 1.51 (Characteristic polynomials of random unitary matrices). With Mn Haar-
distributed in U(n), consider as before Xn = Re(log det(In − Mn)). One can show that the
mod-Gaussian convergence of (Xn)n∈N, which occurs with parameters tn =

log n
2 , can be

given a zone of control of size O(tn) (γ = 1, v = 2, w = 3). Therefore, for any δ ∈ (0, 3
2) and

any x ∈ R,

lim
n→∞

(log n)δ P

[√
2

log n
Xn − x ∈ B

(log n)δ

]
=

e−
x2
2√

2π
L(B).

Similar results can be stated for characteristic polynomials of random matrices in the fol-
lowing classical ensembles: GUE, β-Laguerre, β-Jacobi, β-Gram and circular β-Jacobi, see
[BMN17, Section 5].

Perspectives
This chapter focused on the theoretical consequences of the notion of mod-φ convergence;

the most interesting examples will be presented in the next chapter. We consider the results
of Sections 1.2-1.3 (large deviations and speed of convergence) to be quite optimal, and we
do not expect to be able to get better results in these directions. On the opposite, the results
of Section 1.4 are not always optimal. For instance, the local limit theorem 1.49 yields the
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asymptotics of the probabilities of Yn being in a small interval up to size� (tn)
−(γ+ 1

α ). Un-
fortunately, when Yn is the renormalisation of a discrete random variable (e.g., a statistic of a
combinatorial model), this exponent γ+ 1

α is not always the one such that (tn)δ Yn ∈ Z. Thus,
one can have γ + 1

α < δ, and then one cannot say anything precise on the probabilities

P[Yn ∈ (tn)
−ε(a, b)]

with γ+ 1
α ≤ ε < δ. So, we still have to understand what happens at these scales, in particular

when the mod-Gaussian convergence follows from the method of cumulants (to be presented
in Section 2.2).

On the other hand, the multi-dimensional large deviation principle of Theorem 1.43 only
concerns spherical sectors tnC, but one can also be interested in other growing sets tnD with
D not spherical. If D touches Dmin = {x ∈ D | xtKx is minimal} along a hypersurface of
dimension d− 1, then Theorem 1.43 usually suffices. Otherwise, it needs to be extended to
more general situations, e.g. when Dmin is of dimension < d − 1. In this setting we expect
to obtain similar asymptotics, but with a different power of tn. Another extension of Theo-
rem 1.43 that we shall look for is with respect to other reference infinitely divisible laws, in
particular multi-dimensional self-decomposable laws [Sat99, Chapter 3, Section 15]. These
self-decomposable laws are naturally approached by marginales of Ornstein–Uhlenbeck type
processes (Section 17 in loc. cit.), and in this framework one has mod-φ convergence. It would
be an interesting example to look at, for which Theorems 1.43 and 1.44 need to be generalised.

Another important perspective is the transposition of all the results from this chapter to
the framework of free probability (see [NS06] or [Mél17, Section 9.1] for an introduction to this
non-commutative analogue of probability theory). Roughly speaking, free probability theory
is the study of random variables that stem:

• from algebras of (infinite-dimensional) operators,

• and also from large random matrices, which in many situations can be considered as
approximations of infinite-dimensional operators.

In this framework, the notion of independence of random variables is replaced by the notion
of freeness, and the Gaussian distribution, which is the limit of sums of independent random
variables, gets replaced by Wigner’s semicircle distribution [Voi91]. One can develop a theory
of free-infinitely divisible distributions [Maa92; BV93; BP99; Ben05], so it is natural to try to
develop a theory of free-mod-φ convergence. The convergence in law in free probability is
usually obtained by looking at the Cauchy–Stieltjes transform

Cµ(z) =
∫

R

1
z− s

µ(ds)

and at various other related functions on the upper-half plane, in particular the R-transform.
Thus, in a free analogue of the mod-φ theory, the Fourier transform needs to be replaced
by the R-transform. Additionally, the cumulants of random variables which play a crucial
role in many proofs of mod-Gaussian convergence have free analogues (the so-called free
cumulants). So, one can hope to also extend the main techniques of proof of mod-Gaussian
convergence to the free setting.



Chapter 2

Structure of mod-φ convergent sequences

We now have a good understanding of the theory of mod-φ convergence, and the main
goal is then to establish the mod-φ convergence for large classes of models and random vari-
ables. This second chapter is devoted to this objective, and we shall describe some general
structures and constructions that ensure a mod-Poisson or a mod-Gaussian convergence. If
one has an exact formula for the generating function E[ezXn ], possibly as a contour integral
of a function of two variables, then standard techniques from complex analysis (singular-
ity analysis, Laplace method, stationary phase or steepest descent method) yield the mod-φ
convergence of (Xn)n∈N. This is already a large source of examples, which we present in Sec-
tion 2.1. A particularly interesting class is provided by random combinatorial objects whose
generating series have algebraico-logarithmic singularities. In this framework, a quite fasci-
nating fact is that one can use the formalism of symmetric functions and formal alphabets in
order to give a totally explicit description of the approximation schemes of order r ≥ 0 of the
sequence (Xn)n∈N (Theorem 2.9).

In the special case where φ = NR(0, 1) is the Gaussian distribution, it turns out that
one can prove mod-Gaussian convergence without computing precisely the Laplace transforms
E[ezXn ]. Indeed, it suffices to prove adequate upper bounds on the coefficients of the series
log(E[ezXn ]), which are called the cumulants of the random variable Xn. One of the most
important result from [FMN16; FMN17b] is that, if Xn is a renormalisation of a sum Sn of
dependent random variables with a sparse dependency graph, then one can bound accordingly
the cumulants of Xn, thereby proving the mod-Gaussian convergence of the sequence, and
even with a large zone of control (Proposition 2.13 and Theorems 2.14 and 2.19). Section 2.2 is
devoted to the presentation of this theory of dependency graphs. In Section 2.3, we describe
spaces of models of

• random graphs,

• random permutations,

• random integer partitions,

whose statistics are always mod-Gaussian [FMN17a]. Indeed, for all these models, the fluc-
tuations of the statistics have underlying sparse dependency graphs. A general conjecture is
that many random combinatorial objects behave similarly.

If a random variable Sn does not admit an underlying sparse dependency graph, in certain
cases, one can still prove upper bounds on the cumulants of Sn that look exactly the same
as if there were a dependency graph. A typical example of this theory is provided by the
empirical measures of finite Markov chains. We study these examples in Section 2.4, also
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examining certain models from statistical mechanics [MN15; FMN17b]. The upper bounds on
cumulants obtained for these models involve weighted dependency graphs, which generalise
the standard dependency graphs from Sections 2.2-2.3.

2.1 Analysis of generating functions and formal alphabets
In the first chapter, the mod-φ convergent sequences that we studied had explicit Laplace

transforms E[ezXn ]. Let us give two more important examples with this property:

Example 2.1 (Zeroes of a random analytic series). Set f (z) = ∑∞
n=0 An zn, where (An)n∈N

is a sequence of independent complex Gaussian variables, with

E[A1] = 0 ; E[(Re(A1))
2] = E[(Im(A1))

2] =
1
2

; E[(Re(A1))(Im(A1))] = 0.

The radius of convergence of the random series f (z) is almost surely equal to 1, and the set
of zeroes Z( f ) = {z ∈ C | |z| < 1, f (z) = 0} is a determinantal point process with kernel

K(z, w) =
1

π(1− wz)2 ;

see [PV05] and [Hou+09, Theorem 5.1.1]. Now, a general property of determinantal point
processes [Hou+09, Theorem 4.5.3] is that, if C is a compact subset of the open disk of radius
1, then the number of points of Z( f ) that fall in C has the law of a sum of independent
Bernoulli variables:

card(Z( f ) ∩ C) =law

∞

∑
k=1
B(λk),

where the λk’s are the eigenvalues of the integral operator K|C : L 2(C) → L 2(C). When
C = D(0,r) is the disk of radius r < 1, these eigenvalues can be computed, and one obtains
the identity in law

Nr = card{z ∈ Z( f ) | |z| ≤ r} =law

∞

∑
k=1
B(r2k).

Hence, the Laplace transform of Nr is explicit, given by the infinite product:

E[ezNr ] =
∞

∏
k=1

(1 + r2k(ez − 1)).

Let h = 4πr2

1−r2 be the hyperbolic area of D(0,r). As r goes to 1, h goes to +∞ and Nr = Nh admits
a renormalisation that is mod-Gaussian convergent [FMN16, Section 7.1]:
(

Nh − h
4π

h1/3

)

h≥0

is mod-Gaussian with parameters
h1/3

8π
and limit ψ(z) = exp

(
z3

144π

)
.

More generally, given a determinantal point process with trace-class kernel K on a domain D,
if (Cn)n∈N is a growing sequence of compact subsets of D, then the number of points Sn of
the determinantal point process that fall in Cn is given by a series of independent Bernoulli
variables. Therefore, if the eigenvalues of K|Cn satisfy certain limiting conditions, then one
has mod-Gaussian convergence of a certain renormalisation of (Sn)n∈N. Unfortunately, it is
usually not possible to compute explicitly the eigenvalues of K|Cn .
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Example 2.2 (Magnetisation of the one-dimensional Ising model). Fix an inverse temper-
ature β > 0. The Ising model on the discrete torus Z/nZ is the probability measure on
configurations σ : Z/nZ→ {±1} that is proportional to

exp

(
β

2

n

∑
i=1

σ(i)σ(i + 1)

)
.

We refer to [Bax82; FV17] for a mathematical study of this model, which is a toy-model in
a large class of models stemming from statistical mechanics. If Mn = ∑n

i=1 σ(i) is the total
magnetisation of the system, then the transfer matrix method yields

E[ezMn ] =
tr(T(z))n

tr(T(0))n , where T(z) =
(

e−z ez−β

e−z−β ez

)
is the transfer matrix.

The two eigenvalues of T(z) are cosh z ±
√
(sinh z)2 + e−2β, so Mn has an explicit Laplace

transform. Its asymptotic analysis shows that Mn
n1/4 is mod-Gaussian convergent with param-

eters n1/2eβ and limit

ψ(z) = exp
(
− (3e3β − eβ) z4

24

)
.

This model and the Curie–Weiss model were studied in [MN15]. The analogue result in
dimension d ≥ 2 will be presented in Section 2.4. On the other hand, if one considers the
Ising model on an interval [[1, n]] instead of the torus Z/nZ, then Mn is a linear statistic of a
Markov chain, and we shall also see in Section 2.4 (Example 2.36) that these functionals are
generically mod-Gaussian (after an appropriate renormalisation).

B Double generating series and their asymptotic analysis. A more complex situation
is when Xn = X(ωn) is a statistic of a random object ωn of size n, such that one has an
explicit formula for the double generating series of (Xn)n∈N. Consider a combinatorial class
C = (Cn)n∈N, that is a sequence of finite sets [FS09, Section I.1]. We endow each set Cn with
a probability measure Pn and with a statistic X : Cn → N. For example, if one considers
the combinatorial class S = (S(n))n∈N of permutations, then Pn can be Ewens’ measure
(defined in Example 1.18), and X(σ) can be the number of cycles of a permutation σ. We
also fix a sequence (αn)n∈N of positive renormalisation parameters. The double or bivariate
generating series of the random variables Xn = X(σ ∈ Cn) is defined by:

F(t, w) =
∞

∑
n=0

αntn En[wXn ].

Usually, the renormalisation parameters are taken in one of the following sequences:

αn = 1 ; αn =
1
n!

; αn = |Cn| ; αn =
|Cn|
n!

,

where |Cn| denotes the cardinality of the finite set Cn. Given a random combinatorial model,
the choice of the double generating series is made so that F(t, w) satisfies the following hy-
potheses:

Definition 2.3 (Algebraico-logarithmic singularities, [FO90]). Consider an annular domain
A(a,b) = {w ∈ C | exp(a) < |w| < exp(b)} = exp(S(a,b)), with a < 0 < b. We say that F(t, w)
is a generating series with algebraico-logarithmic singularities if the following assertions are satisfied:
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(1) For any w ∈ A(a,b), the map t 7→ F(t, w) is holomorphic on a domain ∆0(r(w), R(w), φ),
where 0 < r(w) < R(w) and 0 < φ < π

2 , and

∆0(r, R, φ) = {z ∈ C | |z| < R, z 6= r, | arg(z− r)| > φ}.

R

0 r

φ

Figure 2.1. Domain of analyticity ∆0(r, R, φ).

(2) As t converges to r(w), F(t, w) admits a singularity of algebraico-logarithmic type:

F(t, w) = K(w)

(
1

1− z
r(w)

)α(w)(
log

(
1

1− z
r(w)

))β(w)

(1 + o(1)).

A well-known principle in analytic combinatorics is that the singularities of a generating
series dictate the asymptotics of its coefficients; see [FS09, Chapter VI]. This follows from an
asymptotic analysis of the Cauchy formula

αn E[wXn ] = [tn] (F(t, w)) =
1

2iπ

∮ F(t, w)

tn+1 dt,

where the integral is taken over any contour that makes a single loop around 0 (for the as-
ymptotic analysis, one chooses a contour that follows closely the boundary of the domain
∆0(r, R, φ)). Hence, one has the following transfer theorem:

Theorem 2.4 (Transfer theorem, [FO90]). Under the assumptions of Definition 2.3, if w ∈
A(a,b), then

E[wXn ] =
[tn](F(t, w))

[tn](F(t, 1))

=
K(w)

K(1)
Γ(α(1))
Γ(α(w))

(
r(1)
r(w)

)n

nα(w)−α(1) (log n)β(w)−β(1)
(

1 + O
(

1
log n

))
.

The remainder O( 1
log n ) can be taken uniform if w stays in a sufficiently small compact subset ofA(a,b).

If β(w) = β(1) for all w, then the remainder is in fact a O( 1
n ).

Setting w = ez, the transfer theorem leads to many results of complex mod-Poisson conver-
gence, which we list hereafter; they come from [NZ13], [FMN16, Section 7.3] and [Chh+15,
Section 4].
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Example 2.5 (Random permutations under a generalised weighted measure). We fix a se-
quence of non-negative parameters Θ = (θk)k≥1, and we consider the combinatorial class of
permutations S. We endow each symmetric group S(n) with the probability measure

Pn,Θ[σ] =
1

n! hn(Θ) ∏
k≥1

(θk)
mk(σ),

where mk(σ) is the number of cycles of length k in σ; and hn(Θ) = 1
n! ∑σ∈S(n) ∏k≥1(θk)

mk(σ)

is the normalisation constant such that Pn,Θ is a probability measure. This model appears in
the study of the quantum Bose gas in statistical mechanics, see [BU09; BU11; BUV11; EU12].
One recovers the Ewens measures when Θ = (θ)k≥1 is a constant sequence. As in Example
1.18, we are interested in the number of cycles of σ under Pn,Θ; `n = X(σ) = ∑k≥1 mk(σ).
Consider the following double generating series:

F(t, w) =
∞

∑
n=0

tn hn(Θ)En,Θ[w`n ] =
∞

∑
n=0

tn

n! ∑
σ∈S(n)

∏
k≥1

(wθk)
mk(σ)

=
∞

∑
n=0

tn hn(wΘ) = exp

(
∞

∑
k=1

wθk
k

tk

)
. (2.1)

For the last identity in Equation (2.1), one considers the specialisation of the algebra of sym-
metric functions Sym that sends the k-th power sum pk to pk(wΘ) = wθk, see [Mac95, Chapter
1] or [Mél17, Chapter 2]; and one uses the identity of symmetric functions

hn = ∑
λ∈Y(n)

pλ

zλ
=

1
n! ∑

λ∈Y(n)
|Cλ| pλ,

where |Cλ| is the number of permutations with cycle type λ in S(n). Set gΘ(t) = ∑∞
k=1

θktk

k ,
and suppose that gΘ is a power series that is convergent on a domain ∆0(r, R, φ) and with
logarithmic singularity:

gΘ(t) = θ log

(
1

1− t
r

)
+ L + O(|t− r|).

Then, F(t, w) = exp(wgΘ(t)) satisfies the hypotheses of Theorem 2.4 with r(w) = r, R(w) =
R, K(w) = ewL, α(w) = wθ and β(w) = 0. Therefore, one has the mod-Poisson convergence

E[ez`n ] = e(θ log n+L)(ez−1) Γ(θ)
Γ(θez)

(1 + O(n−1))

with parameters tn = θ log n + L and limit ψ(z) = Γ(θ)
Γ(θez)

. For Ewens measures, gΘ(t) =

gθ(t) = −θ log(1− t) and L = 0.

Example 2.6 (Connected components in functional graphs). Let F(n) be the set of maps
from [[1, n]] to [[1, n]]; it contains S(n). If f ∈ F(n), its functional graph is the directed graph
with vertex set V = [[1, n]], and with edge set E = {(k, f (k)) | k ∈ [[1, n]]}. The functional graph
G( f ) is a disjoint union of a finite number X( f ) of connected components, these connected
components being cycles on which trees are grafted (Figure 2.2). We endow the sets F(n) with
their uniform probability measures. The double generating series with αn = |F(n)|

n! = nn

n! is

F(t, w) =
∞

∑
n=0

tn

n! ∑
f∈F(n)

wX( f ) = exp(−w log(1− T(t))) ,
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where

T(t) =
∞

∑
n=1

tn |T(n)|
n!

is the generating series of unordered rooted labeled trees, and is the entire solution of T(t) =
t eT(t). The hypotheses of Theorem 2.4 are satisfied with r(w) = 1

e , K(w) = 2−
w
2 , α(w) = w

2
and β(w) = 0. Hence, one has the complex mod-Poisson convergence

En[ezX( f )] = e(
1
2 log n

2 )(e
z−1) Γ(1

2)

Γ( ez

2 )
(1 + O(n−1)),

with parameters tn = 1
2 log n

2 and limit ψ(z) = Γ(1/2)
Γ(ez/2) .

1

3 4

7

5

8 6

2

Figure 2.2. The functional graph associated to the function f ∈ F(8) with word
38471814.

Example 2.7 (Number of irreducible factors in a polynomial over Fq). Let P(n, Fq) be the
set of monic polynomials of degree n over Fq, and I(n, Fq) be the set of monic irreducible
polynomials of degree n over Fq. We are interested in:

• the number of distinct irreducible factors Xn = X(P) of a random polynomial P ∈
P(n, Fq), with P taken according to the uniform probability measure;

• and the number of irreducible factors Yn = Y(P), this time counted with multiplici-
ties.

Their generating series are

FX(t, w) =
∞

∑
n=0

tn ∑
P∈P(n,Fq)

wX(P) = exp

(
∞

∑
k=1

I(tk)

k
(1− (1− w)k)

)
;

FY(t, w) =
∞

∑
n=0

tn ∑
P∈P(n,Fq)

wY(P) = exp

(
∞

∑
k=1

I(tk)

k
wk

)
.

Here, I(t) is the generating series of the irreducible polynomials over Fq, given by

I(t) =
∞

∑
n=1

tn |I(n, Fq)| =
∞

∑
k=1

µ(k)
k

log
(

1
1− qtk

)
.
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This leads to the complex mod-Poisson convergences:

E[ezXn ] = e(log n+R(q−1))(ez−1) 1
Γ(ez)

exp

(
∞

∑
k=2

(−1)k−1 I(q−k)

k
(ez − 1)k

)
(1 + O(n−1));

E[ezYn ] = e(log n+R(q−1))(ez−1) 1
Γ(ez)

exp

(
∞

∑
k=2

I(q−k)

k
(ekz − 1)

)
(1 + O(n−1)),

where R(t) = ∑∞
k=2

µ(k)
k log

(
1

1−qtk

)
.

Similar techniques can be used in analytic number theory, leading to the mod-Poisson
convergence of certain statistics of random integers. More precisely, let f : N → Z be an
arithmetic function, and L f (s, w) be its double Dirichlet series

L f (s, w) =
∞

∑
n=0

w f (n)

ns .

If the parameter w is fixed, then the Dirichlet series usually converges absolutely on a half-
plane {s ∈ C |Re(s) > r(w)}. The analogue of Cauchy’s formula in this setting is Perron’s
summation formula [Ten95, Chapter II.2]: if fn is the random variable f (k) with k random
integer in [[1, n]], then

E[ez fn ] =
∫ r+i∞

r−i∞
L f (s, ez)

ns−1

s
ds +

ez f (n)

2n

for any r > max(0, r(ez)). A careful analysis of this formula relates the behavior of L f (s, w)

near its pole r(w), and the asymptotics of E[ez fn ], in a fashion similar to Theorem 2.4. We
refer to [Ten95, Section II.5, Theorem 3] for the details.

Example 2.8 (Additive arithmetic functions with linear growth). Let f : N → Z be an
arithmetic function with the three following properties:

(1) f is additive: if m ∧ n = 1, then f (mn) = f (m) + f (n);

(2) f (p) = 1 for any prime number p;

(3) | f (pk)| ≤ Ck + B for some positive constants B, C that do not depend on the prime
number p.

The double Dirichlet series has then an infinite Euler product:

L f (w, s) = ∏
p∈P

(
1 +

w f (p)

ps +
w f (p2)

p2s + · · ·
)

.

In this framework, one has complex mod-Poisson convergence of ( fn)n∈N, with parameters
tn = log log n, domain S

(− log 2
C , log 2

C )
and limit

ψ(z) =
1

Γ(ez) ∏
p∈P

(
1 +

ez f (p)

p
+

ez f (p2)

p2 + · · ·
)

eez log(1− 1
p );

see [FMN16, Proposition 7.2.11].
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BApproximation of lattice-valued random variables. In the previous paragraph, we saw
that if (Xn)n∈N is a sequence of random variables whose double generating series or dou-
ble Dirichlet series admits an explicit formula with known singularities, then this formula
leads in many situations to the mod-Poisson convergence of the sequence (Xn)n∈N. There is
more to this story: it turns out that in all the previous examples, one can describe precisely
the derived approximation schemes of the standard approximation schemes of order r ≥ 0
[Chh+15, Section 4]. To this purpose, let us recall briefly some facts from the theory of sym-
metric functions. The algebra of symmetric functions Sym is the projective limit in the category
of graded algebras of the algebras C[x1, x2, . . . , xn]S(n) of symmetric polynomials. So, Sym is
the algebra of power series in an infinity of (commutative) variables x1, x2, . . . , xn, . . . that are:

• invariant under any finite permutation of the variables,

• with bounded degree.

A transcendence basis of Sym over C consists in the power sums

pk≥1 =
∞

∑
i=1

(xi)
k.

Two other transcendence bases are the homogeneous symmetric functions

hk≥1 = ∑
1≤i1≤i2≤···≤ik

xi1 xi2 · · · xik

and the elementary symmetric functions

ek≥1 = ∑
1<i1<i2<···<ik

xi1 xi2 · · · xik .

The connection between these three bases is encoded in the relations H(t) E(−t) = 1 and
H(t) = exp(P(t)), where

H(t) = 1 +
∞

∑
k=1

hk≥1 tk;

E(t) = 1 +
∞

∑
k=1

ek≥1 tk;

P(t) =
∞

∑
k=1

pk
k

tk.

A formal alphabet is a specialisation of Sym, that is a morphism of algebras Sym → C. It
is convenient to denote such morphisms f 7→ f (A). Among the formal alphabets, the true
alphabets are the summable sequences A = (a1, a2, . . . an, . . .), which yield the morphisms

pk 7→ pk(A) =
∞

∑
i=1

(ai)
k.

Given a formal alphabet A, the conjugate alphabet ε(A) is the formal alphabet defined by
pk(ε(A)) = (−1)k−1 pk(A). On the other hand, given two formal alphabets A and B, their sum
A + B is the formal alphabet defined by pk(A + B) = pk(A) + pk(B). These two operations on
alphabets are related to the Hopf algebra structure of Sym, see [Mél17, Section 2.3]. Finally,
consider a sequence A = (a1, a2, . . . , an, . . .) that is not summable, but with ∑∞

i=1 |ai|2 < +∞.
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We then convene that A is associated to the specialisation

p1(A) = 0 ; pk≥2(A) =
∞

∑
i=1

(ai)
k.

The results of [Chh+15, Section 4] are summarised by the following:

Theorem 2.9 (Approximation schemes and formal alphabets). Consider the following ran-
dom sequences (Xn)n∈N, associated to sequences of parameters (tn)n∈N and to formal alphabets A:

Xn tn formal alphabet A
sum of independent Bernoulli

∑n
i=1 pi {p1, p2, p3 . . .}

variables with parameters pj

number of cycles of a random
log n + γ

{
1, 1

2 , 1
3 , . . .

}
uniform permutation
number of cycles of a random Ewens

θ(log n + γ)
{

1, θ
θ+1 , θ

θ+2 , . . .
}

permutation with parameter θ

number of connected components 1
2 (log 2n + γ)

{
1, 1

3 , 1
5 , . . .

}
of a uniform random map
number of distinct irreducible factors

log n + R(q−1) + γ
{

1, 1
2 , 1

3 , . . .
}
+
{

1
qdeg P | P ∈ I(Fq)

}
of a random monic polynomial
number of irreducible factors of a

log n + S(q−1) + γ
{

1, 1
2 , 1

3 , . . .
}
+ ε

({
1

qdeg P−1 | P ∈ I(Fq)
})

random monic polynomial
number of distinct prime divisors

log log n + γ
{

1, 1
2 , 1

3 , . . .
}
+
{ 1

2 , 1
3 , 1

5 , 1
7 , . . .

}
of a random integer

Here, n is the size (or degree) of the random object whose statistic is Xn; γ is the Euler–Mascheroni
constant; I(Fq) is the set of irreducible polynomials over Fq; and

R(q−1) =
∞

∑
k=2

µ(k)
k

log
(

1
1− q1−k

)
;

S(q−1) =
∞

∑
k=2

ϕ(k)
k

log
(

1
1− q1−k

)

where µ and ϕ are Möbius’ and Euler’s arithmetic functions.

(1) In all the previous examples, one has mod-Poisson convergence on D = iR of (Xn)n∈N, with
parameters (tn)n∈N and limit

θ(ξ) = 1 +
∞

∑
k=1

ek(A) (eiξ − 1)k.

(2) The derived scheme (σ(r)
n )n∈N of the standard approximation scheme (ν(r)n )n∈N of order r ≥

0 of the law µn of Xn is defined by

σ̂
(r)
n (ξ) = etn(eiξ−1)

(
1 +

r

∑
k=1

ek(A) (eiξ − 1)k

)
,
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or equivalently by

σ
(r)
n (m) =

e−tn(tn)m

m!

(
1 +

r

∑
k=1

ek(A) c(k, m, tn)

)
,

where c(k, m, tn) = ∑
min(k,m)
l=0 (−1)k−l(k

l)
(tn)−lm!
(m−l)! is a Poisson–Charlier polynomial.

(3) For any r ≥ 1, the scheme of approximation (σ
(r)
n )n∈N satisfies in the previous examples:

dloc(µn, σ
(r)
n ) =

|er+1(A) Gr+1(zr+2)|√
2π(tn)

r
2+1

+ o

(
1

(tn)
r
2+1

)
;

dKol(µn, σ
(r)
n ) =

|er+1(A) Gr(zr+1)|√
2π(tn)

r+1
2

+ o

(
1

(tn)
r+1

2

)
;

dTV(µn, σ
(r)
n ) =

|er+1(A)|
∫

R
|Gr+1(z)| dz

2
√

2π(tn)
r+1

2
+ o

(
1

(tn)
r+1

2

)
.

Thus, the approximation of the lattice-valued random variables introduced in this section is
reduced by Theorem 2.9 to a simple algorithm depending on a set of parameters A (the for-
mal alphabet), which is naturally connected to the structure of the model. For instance, when
studying the numbers of prime divisors in random integers, the corresponding alphabet in-
volves the inverses of the integers and the inverses of the prime numbers. So far, we do not
have a clear explanation of why we obtain very simple alphabets in all the aforementioned
cases.

2.2 Joint cumulants and dependency graphs
In the previous section, we proved the mod-Gaussian or mod-Poisson convergence of se-

quences of random variables (Xn)n∈N that had explicit generating series, possibly given by
contour integrals. However, the complete knowledge of E[ezXn ] is not required to establish
the mod-Gaussian convergence of the sequence, and in many situations it suffices to prove
estimates on the coefficients of this series (or its logarithm). This idea leads to the powerful
method of cumulants.

B Cumulants, joint cumulants and mod-Gaussian convergence. Let X be a random vari-
able that admits a convergent Laplace transform E[ezX] in a disc around the origin; in partic-
ular, X has moments of all order.

Definition 2.10 (Cumulant). The cumulants of X are the coefficients κ(r)(X) of

log E[ezX] =
∞

∑
r=1

κ(r)(X)

r!
zr.

In other words, κ(r)(X) = dr

dzr (log E[ezX])|z=0.

The first cumulants of a random variable X are

κ(1)(X) = E[X] ; κ(2)(X) = E[X2]−E[X]2 = var(X) ;

κ(3)(X) = E[X3]− 3 E[X2]E[X] + 2 (E[X])3.
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In general, the r-th cumulant of X is a homogeneous polynomial of degree r in the moments
E[Xk]. The relation between cumulants and moments is better understood by introducing the
notion of joint cumulants [LS59], which generalises Definition 2.10:

Definition 2.11 (Joint cumulant). Let X1, X2, . . . , Xr be real random variables with moments of
all order. The joint cumulant of X1, . . . , Xr is

κ(X1, X2, . . . , Xr) =
∂r

∂z1∂z2 · · · ∂zr

(
log E[ez1X1+z2X2+···+zrXr ]

)∣∣∣∣
z1=z2=···=zr=0

.

Proposition 2.12 (Properties of joint cumulants). Denote P(r) the set of set partitions of [[1, r]],
and if π = π1 t π2 t · · · t π`(π) belongs to P(r), set µ(π) = (−1)`(π)−1 (`(π) − 1)! (Möbius
function of the lattice of set partitions). The joint cumulant of the random variables X1, . . . , Xr is
given by the following formula:

κ(X1, . . . , Xr) = ∑
π∈P(r)

µ(π)
`(π)

∏
i=1

E

[
∏
j∈πi

Xj

]
.

Moreover, the joint cumulants have the following properties:

(1) Multilinearity and invariance by permutation.

(2) If X is a random variable with moments of all order, then

κ(r)(X) = κ(X, X, . . . , X︸ ︷︷ ︸
r occurrences

).

(3) If {X1, . . . , Xr} can be split into two non-empty families {Xi1 , . . . , Xis} and {Xj1 , . . . , Xjt}
that are independent, then κ(X1, . . . , Xr) = 0.

The Gaussian distributions are characterised by the vanishing of their cumulants of order
r ≥ 3. On the other hand, a sequence of random variables is mod-Gaussian if its Fourier or
Laplace transform is close to the one of a Gaussian. Therefore, it is natural to characterise
mod-Gaussian convergence by means of cumulants. The right way to do it is the following
([FMN16, Chapter 5] and [FMN17b, Definition 28 and Lemma 29]):

Proposition 2.13 (Method of cumulants). Let (Sn)n∈N be a sequence of real-valued random
variables. We say that (Sn)n∈N satisfies the hypotheses of the method of cumulants with parameters
(Dn, Nn, A) if:

(MC1) The sequences of real numbers (Dn)n∈N and (Nn)n∈N satisfy Nn → +∞ and Dn
Nn
→ 0.

(MC2) The first cumulants of Sn satisfy:

κ(1)(Sn) = 0;

κ(2)(Sn) = (σn)
2 NnDn;

κ(3)(Sn) = Ln Nn(Dn)
2

with limn→∞(σn)2 = σ2 > 0, and limn→∞ Ln = L.

(MC3) The cumulants of Sn are bounded as follows:

∀r ≥ 1, |κ(r)(Sn)| ≤ Ar rr−2 Nn (2Dn)
r−1.
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Set Xn = Sn
(Nn)1/3(Dn)2/3 . Under the assumptions (MC1)-(MC3), (Xn)n∈N is mod-Gaussian conver-

gent on the complex plane, with

tn = (σn)
2
(

Nn

Dn

)1/3

; ψ(z) = exp
(

Lz3

6

)
.

Moreover, one has a zone of control [−Ktn, Ktn] with exponents (3, 3) and

K =
1

(8 + 4e)A3 ; K1 = K2 = (2 + e)A3.

Theorem 2.14 (Fluctuations of random variables with the method of cumulants). Consider
a sequence (Sn)n∈N that satisfies the hypotheses of the method of cumulants, and Yn = Sn√

var(Sn)
.

(1) Central limit theorem: Yn ⇀ NR(0, 1).

(2) Normality zones and moderate deviations [FMN16, Proposition 5.2.1]: if y = o((Nn
Dn

)1/6),
then

P[Yn ≥ y] = P[NR(0, 1) ≥ y] (1 + o(1)).
If y = o((Nn

Dn
)1/4) and y� 1, then

P[Yn ≥ y] =
e−

y2
2

y
√

2π
exp

(
Ly3

6σ3

√
Dn

Nn

)
(1 + o(1)).

(3) Speed of convergence [FMN17b, Corollary 30 and Remark 31]:

dKol(Yn,NR(0, 1)) ≤ 76.36 A3

(σn)3

√
Dn

Nn
.

(4) Local limit theorem: for any ε ∈ (0, 1
2), and any bounded Jordan measurable subset B with

Lebesgue measure L(B),

lim
n→∞

(
Nn

Dn

)ε

P

[
Yn − y ∈

(
Dn

Nn

)ε

B
]
=

L(B)√
2π

e−
y2
2 .

Remark 2.15. In the method of cumulants, if limn→∞ σn = 0, then the asymptotic normal-
ity and the bound on the speed of convergence still hold, assuming only that

tn = (σn)
2
(

Nn

Dn

)1/3

→ +∞.

More generally, if there exists ε ∈ (0, 1) such that

(σn)
2
(

Nn

Dn

)ε

→ +∞,

then one still has the asymptotic normality Yn ⇀ NR(0, 1) (without estimates of the speed of
convergence when ε > 1

3 ).

Remark 2.16. If Ln = 0, which happens for instance when Sn is a symmetric random vari-
able, then one gets improved normality zones and moderate deviation estimates, depending

on the first index r ≥ 3 such that limn→∞
κ(r)(Sn)

Nn(Dn)r−1 6= 0.
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In a moment, we shall see that given a sum Sn = ∑Nn
i=1 Ai,n of random variables, the bound

(MC3) of the method of cumulants can be proven under certain natural hypotheses on the
dependency structure of the variables Ai,n. This is the reason why the method of cumulants
is such a powerful tool in the theory of mod-Gaussian convergence. Before that, let us evoke
the multi-dimensional generalisation of this method [FMN17c, Theorems 32 and 33].

Proposition 2.17 (Multi-dimensional method of cumulants). Let (Sn)n∈N be a sequence of
random vectors in Rd. We say that (Sn)n∈N satisfies the hypotheses of the multi-dimensional method
of cumulants with parameters (Dn, Nn, A) if (MC1) is satisfied, as well as:

(MC2-d) The first cumulants of the coordinates of Sn satisfy:

κ(S(i)
n ) = 0;

κ(S(i)
n , S(j)

n ) = Kij NnDn

(
1 + O

(√
Dn

Nn

))
;

κ(S(i)
n , S(j)

n , S(k)
n ) = Ln,(i,j,k) Nn(Dn)

2

with Kij positive-definite symmetric matrix, and limn→∞ Ln,(i,j,k) = Li,j,k.

(MC3-d) The cumulants of the coordinates of Sn are bounded as follows:

∀r ≥ 1, |κ(S(i1)
n , . . . , S(ir)

n )| ≤ Ar rr−2 Nn (2Dn)
r−1.

Then, Xn = Sn/((Nn)1/3(Dn)2/3) is mod-Gaussian convergent on Cd, with parameters (Nn
Dn

)1/3 K.
This implies in particular the convergence in law of Yn = Sn

(NnDn)1/2 toNRd(0, K), and more precisely,

dconvex(Yn , NRd(0, K)) = O

(√
Dn

Nn

)
.

One has also the following local limit theorem: assuming to simplify that K = Id, for any ε ∈ (0, 1
2),

and any bounded Jordan measurable subset B with d-dimensional Lebesgue measure L(B),

lim
n→∞

(
Nn

Dn

)dε

P

[
Yn − y ∈

(
Dn

Nn

)ε

B
]
=

e−
‖y‖2

2

(2π)d/2 L(B).

Note that in this setting, the method of cumulants yields better estimates of speed of conver-
gence than the general estimates from Theorem 1.44.

B Sums of random variables with a sparse dependency graph. We now explain how to
obtain the bounds (MC3) that enable the method of cumulants. Consider a sum S = ∑v∈V Av
of bounded random variables, with ‖Av‖∞ ≤ A.

Definition 2.18 (Dependency graph). A dependency graph for a family of random variables
{Av}v∈V is a graph G = (V, E) such that, if {Av}v∈V1 and {Av}v∈V2 are two disjoint subsets of
variables without edges (v1, v2) ∈ E with v1 ∈ V1 and v2 ∈ V2, then these two families {Av}v∈V1
and {Av}v∈V2 are independent.

The definition is better understood on an example. Suppose that one has a family of random
variables with dependency graph drawn in Figure 2.3. The random vectors (A1, A2, . . . , A5)
and (A6, A7) are independent, because these vectors belong to two distinct connected com-
ponents of G. However, the vectors (A1, A2, A3) and A5 are also independent, because there
is no direct edge between the corresponding vertices of G.
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1
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3
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6
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Figure 2.3. A dependency graph for a family of random variables.

The parameters of a dependency graph for a family of bounded random variables (Av)v∈V
are:

D = 1 + max
v∈V

deg(v);

N = card(V);

A = sup
v∈V
‖Av‖∞.

The dependency graphs and the cumulants of random variables have been used to prove
asymptotic normality in [PL83; Jan88; BR89a; BR89b; AB93; CS04; PY05; DE13]. In [FMN16,
Theorem 9.1.7], we obtained the following strong improvement of these previous results:

Theorem 2.19 (Dependency graphs and bounds on cumulants). Let S = ∑v∈V Av be a sum
of bounded random variables admitting a dependency graph G with parameters (D, N, A). Then, for
any r ≥ 1,

|κ(r)(S)| ≤ Ar rr−2 N (2D)r−1.

Corollary 2.20 (Sums of random variables with a sparse dependency graph). Let (Sn)n∈N

be a sequence of sums Sn = ∑Nn
i=1 Ai,n of random variables. We fix for each family (Ai,n)1≤i≤Nn a de-

pendency graph Gn with parameters (Dn, Nn, A). Then, the bound (MC3) of the method of cumulants
holds true, so assuming that the graphs Gn are sparse ( Dn

Nn
→ 0) and that the first cumulants satisfy

(MC2), we get all the results from Theorem 2.14.

In particular, one gets asymptotic normality and an estimate of the speed of convergence
for sums of random variables with a sparse dependency graph; these estimates were also
obtained by Rinott, who used Stein’s method [Rin94]. Before examining applications of The-
orem 2.19, let us give a few details on its proof. The main idea is to develop by multilinearity

κ(r)(S) = ∑
v1,...,vr∈V

κ(Av1 , Av2 , . . . , Avr),

and to prove a bound on each joint cumulant κ(Av1 , Av2 , . . . , Avr). We already know that if
G = (V, E) is a dependency graph for {Av}v∈V , then the sum can be restricted to families
{Av1 , . . . , Avr} such that the induced mulitgraph H = G[v1, v2, . . . , vr] is connected (other-
wise, the joint cumulant vanishes). Actually, one has the more precise bound:

|κ(Av1 , . . . , Avr)| ≤ 2r−1Ar STH,

where STH denotes the number of spanning trees of the multigraph H. The bound on κ(r)(S)
follows by summing these inequalities, and using the fact that the number of Cayley trees on
r vertices is rr−2. On the other hand, the apparition of spanning trees brings light to certain
combinatorial properties of the joint cumulants, and it will lead us to a generalisation of the
notion of dependency graph, see Section 2.4.
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Figure 2.4. Count of triangles in a random Erdös–Rényi graph with parameters
n = 30 and p = 0.1. Here, there are | hom(K3, G(n, p))| = 4× 3! = 24 ways to
embed a triangle in the graph.

Example 2.21 (Subgraph counts in Erdös–Rényi random graphs). As a first application of
Theorem 2.19, consider a random Erdös–Rényi graph G(n, p), that is a random graph on n
vertices with each edge {i, j} that appears with probability p, independently of all the other
edges [ER59; ER60]. We are interested in the random number of copies of a fixed graph H
in G = G(n, p). It is defined as the number | hom(H, G)| of maps ψ : VH → VG such that, if
{h1, h2} ∈ EH, then {ψ(h1), ψ(h2)} ∈ EG (one could also look at injective maps, with similar
results). Set Sn = | hom(H, G(n, p))|, H and p ∈ (0, 1) being fixed. The random variable Sn is
a sum of dependent random Bernoulli variables:

Sn = ∑
ψ:[[1,k]]→[[1,n]]


 ∏
{i,j}∈EH

1{ψ(i),ψ(j)}∈EG(n,p)




where k = card(H), and VH is identified with [[1, k]]. The random variables Bψ,n indexed by
maps ψ : [[1, k]]→ [[1, n]] admit a dependency graph with parameters

Dn = 2
(

k
2

)2

nk−2 ; Nn = nk ; A = 1,

Indeed, if ψ and φ are two maps that do not share at least two values ψ(i) = φ(j) and
ψ(k) = φ(l), then the corresponding random variables Bψ,n and Bφ,n do not share any edge
and therefore are independent. One can check that the other hypotheses of the method of
cumulants are satisfied, with

σ2 =

(
h

(k
2)

)2

p2h−1(1− p) ; L =

(
h

(k
2)

)4

p3h−2(1− p)
(

3(1− p) +
p− 2

h

)
,

where k and h are the numbers of vertices and of edges of H. Therefore, if one considers the
renormalised random variable

Yn =
| hom(H, G(n, p))| − nk ph
√

var(| hom(H, G(n, p))|)
,
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then Yn ⇀ NR(0, 1); this result already appeared in [Ruc88; JŁR00]. However, we also get
without additional work

dKol(Yn,NR(0, 1)) = O
(

k4(k− 1)4

p3h(p−1 − 1)3/2h3
1
n

)

or the moderate deviation estimate

P[Yn ≥ n1/3x] =
e−

n2/3x2
2

n1/3x
√

2π
exp

(
x3 (3h(1− p) + p− 2)

6

√
2p

1− p

)
(1 + o(1)) for x > 0.

2.3 Mod-Gaussian moduli spaces
In [FMN17b, Example 36] and [FMN17c, Section 4.3], we applied Theorem 2.19 to a model

of random walks with positively correlated steps, in one or several dimensions. In this sec-
tion, we present three models which have more structure, and which illustrate the following
informal result: each time one tries to approximate a continuous object by a random discrete
one, some observables of the corresponding random model are mod-Gaussian convergent
and satisfy the hypotheses of the method of cumulants. The results of this section correspond
to an ongoing work with Valentin Féray and Ashkan Nikeghbali [FMN17a].

B The space of graphons, the space of permutons and the Thoma simplex. We start by
introducing three spaces G , P and T which are parameter spaces for models of random
graphs, of random permutations and of random integer partitions.

→ Graphons. Let us start with random graphs. The following definition is due to Lovász and
Szegedy [LS06]; see also [Bor+06; LS07; Bor+08].

Definition 2.22 (Graphon). A graph function is a measurable function g : [0, 1]2 → [0, 1] that is
symmetric: g(x, y) = g(y, x) almost everywhere (with respect to the Lebesgue measure). A graphon
is an equivalence class of graph functions for the relation

g ∼ h ⇐⇒ ∃σ Lebesgue isomorphism of [0, 1] such that h(x, y) = g(σ(x), σ(y)).

We denote F the space of graph functions, and G = F /∼ the space of graph functions.

0 10
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= 0
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2 3
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Figure 2.5. The graph function gG associated to a graph G.
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The space of graphons is a universal object for the parametrisation of models of dense
random graphs. If G = (V, E) is a simple graph on n vertices, identifying V with [[1, n]], one
can associate to it a canonical graph function g = gG: it is the function on the square that
takes its values in {0, 1}, and is such that

g(x, y) = 1 if x ∈
(

i− 1
n

,
i
n

]
, y ∈

(
j− 1

n
,

j
n

]
and {i, j} ∈ EG,

and 0 otherwise. The function gG is essentially the adjacency matrix of G, drawn as a func-
tion on the square [0, 1]2. Therefore, any graph G yields a canonical graphon γG = [gG].
Conversely, starting from a graphon γ, one can produce for any n a random graph G(n, γ):

(1) one picks at random n independent uniform random variables X1, . . . , Xn in [0, 1];

(2) if γ = [g], then one connects i to j in G(n, γ) according to a Bernoulli random variable
Bij with parameter g(Xi, Xj), these random variables being independent condition-
nally to X1, . . . , Xn (in practice, one can define Bij = 1Uij≤g(Xi,Xj)

, where (Ui,j)1≤i<j≤n

is a new family of independent uniform random variables in [0, 1]).

The law of G(n, γ) does not depend on the choice of a representative g of the equivalence class
γ. We refer to Figure 2.6 for two examples of random graphs associated to two graphons, in
size n = 20. When γ = p is a constant function, one recovers the Erdös–Rényi random graphs
from Example 2.21. We shall see in this section that the random graphs G(n, γ) are associated
to random graphons γG(n,γ) = Γ(n, γ) that converge back to γ (in a sense to be precised later),
and that the fluctuations of these models are mod-Gaussian.
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Figure 2.6. Two random graphs of size n = 20 associated to the graph functions
g(x, y) = x+y

2 and g′(x, y) = xy.

→ Permutons. A construction similar to the space of graphons allows one to study models of
random permutations [Hop+11; Hop+13].

Definition 2.23 (Permuton). A permuton is a Borel probability measure π on the square [0, 1]2
whose marginale laws are uniform:

(p1)∗π = (p2)∗π = uniform measure on [0, 1],

where p1(x, y) = x, p2(x, y) = y, and (p1)∗, (p2)∗ : M 1([0, 1]2)→M 1([0, 1]) are the correspond-
ing maps between sets of probability measures. We denote P the space of permutons.
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Again, the space of permutons is a universal object for the parametrisation of models of
random permutations. Denote S(n) the symmetric group of order n, and consider a permu-
tation σ ∈ S(n). One can associate to it a canonical permuton πσ, which is the probability
measure on [0, 1] with density

πσ(dx dy) = n 1σ(dnxe)=dnye dx dy.

We refer to Figure 2.7 for an example; the permuton πσ is essentially the graph of the permu-
tation σ, drawn inside the square [0, 1]2.

0 1
0

1

= n = 6

= 0

Figure 2.7. The density of the permuton πσ associated to the permutation σ =
245361.

Conversely, starting from a permuton π, one can produce for any n ∈ N a random per-
mutation σ(n, π). If (x1, y1), . . . , (xn, yn) is a family of points in the square [0, 1]2, we say that
these points are in a general configuration if all the xi’s are distinct, and if all the yi’s are also
distinct. To a general family of k points, we can associate a unique permutation σ ∈ S(n)
with the following property: if ψ1 : {x1, . . . , xn} → [[1, n]] and ψ2 : {y1, . . . , yn} → [[1, n]] are
increasing bijections, then

σ(ψ1(xi)) = ψ2(yi)

for any i ∈ [[1, n]]. We then say that σ is the configuration of the set of points; and we denote
σ = conf((x1, y1), . . . , (xn, yn)). What this means is that the graph of σ is the same as the graph
of the points (x1, y1), . . . , (xn, yn), up to translations of these points that do not change their
order (horizontally or vertically). Given a permuton π, if (X1, Y1), . . . , (Xn, Yn) are random
points of [0, 1]2 chosen independently and according to the probability measure π, then they
are with probability 1 in a general configuration, which allows one to define

σ(n, π) = conf((X1, Y1), . . . , (Xn, Yn)).

When π is the uniform measure on [0, 1]2, one simply obtains the uniform random permuta-
tions in S(n). We shall see that the random permutations σ(n, π) are associated to random
permutons πσ(n,π) = Π(n, π) that converge back to π in the sense of weak convergence of
probability measures; and that the fluctuations of these models are mod-Gaussian.

→ Partitions. Finally, there is a third parameter space that allows one to construct random
integer partitions:
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Definition 2.24 (Thoma simplex). The Thoma simplex is the set T of pairs ω = (α, β) of infinite
non-negative and non-increasing sequences

α = (α1 ≥ α2 ≥ · · · ≥ 0) , β = (β1 ≥ β2 ≥ · · · ≥ 0)

that satisfy
∞

∑
i=1

αi +
∞

∑
i=1

βi = 1− γ ≤ 1.

Recall that an integer partition of size n is a sequence λ = (λ1 ≥ λ2 ≥ · · · ≥ λr) of non-
negative integers with |λ| = ∑r

i=1 λi = n; the set of integer partitions of size n is denoted
Y(n). Given such a partition, its Young diagram is the diagram with n boxes and λ1 boxes on
the first row, λ2 boxes on the second row, etc. The Frobenius coordinates A(λ) and B(λ) of a

Figure 2.8. The Young diagram of the integer partition (5, 3, 2) of size 10.

partition λ are then defined as follows. Denote d ≥ 0 the number of boxes of the diagram
that are on the principal diagonal. We set A(λ) = (a1, a2, . . . , ad) and B(λ) = (b1, b2, . . . , bd),
where ai − 1

2 is the number of boxes on the right of the i-th diagonal box, and bi − 1
2 is the

number of boxes on top of the i-th diagonal box. Equivalently, the ai’s and the bi’s can be
described as the lengths of the segments connecting the center of the diagonal boxes to the
borders of the Young diagram; see Figure 2.9. With the previous example λ = (5, 3, 2), we

a1

a2

b1 b2

Figure 2.9. Frobenius coordinates of the Young diagram λ = (5, 3, 2).

obtain A = (9
2 , 3

2) and B = (5
2 , 3

2). Note that the sum of the Frobenius coordinates is equal to
the size of λ. The Frobenius coordinates enable us to associate to any integer partition λ an
element ωλ of the Thoma simplex:

ωλ =

(( a1

n
,

a2

n
, . . . ,

ad
n

, 0, . . .
)

,
(

b1

n
,

b2

n
, . . . ,

bd
n

, 0, . . .
))

,

where n = |λ|. The parameter ωλ encodes the row and column frequencies of the Young
diagram of λ.

As for graphons and permutons, there is conversely a way to associate to any parameter
ω ∈ T a random integer partition λ(n, ω) ∈ Y(n). However, it is much more complicated
than before, since it relies on the combinatorics of the RSK algorithm (see for instance [Ful97,
Chapter 4] and [Mél17, Section 3.2]) and of the operation of shuffling. First, let us associate
to ω a random permutation σ(n, ω) ∈ S(n); this construction appeared first in [Ful02], and
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it was reinterpreted in the setting of the Hopf algebra of free quasi-symmetric functions in
[Mél12] and [Mél17, Chapter 12].

Figure 2.10. Shuffling two blocks of cards.

The parameter ω being fixed, we start from a deck of ordered cards 12 . . . n, and we per-
form the following operations:

(GRS1) We cut the deck in blocks of sizes a1 + a2 + · · ·+ b1 + b2 + · · ·+ c = n chosen ran-
domly according to the probability measure

P[a, b, c] =
n!

(∏∞
i=1 ai!) (∏∞

i=1 bi!) c!

∞

∏
i=1

(αi)
ai

∞

∏
i=1

(βi)
bi γc.

The blocks of sizes a1, a2, . . . will be called type A, the blocks of sizes b1, b2, . . . will be
called type B, and the last block of size c will be called type C.

(GRS2) We reverse each block of cards (k + 1)(k + 2) . . . (k + bi) of type B in order to obtain a
block (k + bi) . . . (k + 2)(k + 1), and we randomize the last block of type C, replacing
(n− c + 1)(n− c + 2) . . . n by a uniform random permutation of these c letters.

(GRS3) We shuffle randomly all the blocks, the random shuffle of words w1, . . . , wr of lengths
`1, . . . , `r being the random word of length `1 + · · · + `r that is chosen uniformly
among the (`1+`2+···+`r

`1,`2,...,`r
) words w that can be decomposed into disjoint subwords

w1, . . . , wr.

This operation is called generalised riffle shuffle, and the arrangement of the cards in the result-
ing deck is a random permutation σ(n, ω) ∈ S(n). The shuffle operation is really intuitive in
terms of decks of cards, see Figure 2.10.

Example 2.25 (Generalised riffle shuffle). Set n = 15 and ω = ((1
6 , 1

4 , 0, . . .), (1
3 , 0, . . .)). We

start from the deck of cards
123456789ABCDEF.

(1) The probability measure on sequences (a, b, c) that is associated to the parameter ω
is supported by sequences ((a1, a2), b1, c), all the other numbers ai≥3 and bi≥2 being
equal to 0. One possibility is a1 = 3, a2 = 3, b1 = 6, and c = 3. We then cut the deck
into the four blocks

123 | 456 | 789ABC |DEF.

(2) For the second step, we reverse the third block which is of type B, and we randomize
the last block, one possibility being FDE. Thus, we get

123 | 456 |CBA987 | FDE.
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(3) Finally, we shuffle back together these four blocks, and one possibility is

4CB1A25F9387D6E.

Thus, one possible result of the generalized riffle shuffle with parameter ω and with n = 15
is the permutation σ(n, ω) = 4CB1A25F9387D6E.

A standard tableau of shape λ ∈ Y(n) is a numbering of the cells of the Young diagram of
λ by the numbers 1, 2, . . . , n, such that the rows and the columns are strictly increasing. For
instance,

7 10
2 5 8
1 3 4 6 9

is a Young tableau of shape (5, 3, 2). If σ ∈ S(n) is a permutation, one can associate to it
two standard tableaux P(σ) and Q(σ) with the same shape λ(σ) ∈ Y(n). This operation is
bijective and known as the Robinson–Schensted–Knuth correspondence; see [Rob38; Sch61]
or the aforementioned chapter of the book by Fulton [Ful97]. The most important property
of λ = λ(σ) is that it encodes the length of the longest increasing and decreasing subwords
of σ: for any r ≥ 1

λ1 + · · ·+ λr = max{`(w1) + · · ·+ `(wr), w1, . . . , wr disjoint increasing subwords of σ},
and

λ′1 + · · ·+ λ′r = max{`(w1) + · · ·+ `(wr), w1, . . . , wr disjoint decreasing subwords of σ},
where λ′i denotes the length of the i-th column of the Young diagram of λ. Using the RSK al-
gorithm, we can thus associate to any parameter ω ∈ T a random integer partition λ(n, ω) =
λ(σ(n, ω)).

Proposition 2.26 (Fulman, Méliot). The law of λ(n, ω) is given by

P[λ(n, ω)] = (dim λ) sλ(ω),

where:

• dim λ is the number of standard tableaux of shape λ, and is equal to the dimension of the
irreducible Specht representation Sλ of S(n) with Young diagram λ.

• sλ is the Schur function of label λ, that is the symmetric function in Sym defined as the
projective limit of the symmetric polynomials

sλ(x1, . . . , xn) =
det((x

λj+n−j
i )1≤i,j≤n)

det((xn−j
i )1≤i,j≤n)

.

• sλ(ω) is the specialisation of the function sλ ∈ Sym obtained from:

p1(ω) = 1 ; pk≥2(ω) =
∞

∑
i=1

(αi)
k + (−1)k−1

∞

∑
i=1

(βi)
k.

In particular, the law of λ(n, ω) is equal to the central measure on partitions associated to the extremal
character of label ω of the infinite symmetric group S(∞) [Tho64; KV81; KV86].

Remark 2.27. One can also give a formula for the law of σ(n, ω), by using specialisations
of the Hopf algebra QSym of quasi-symmetric functions; see [Mél17, Theorem 12.17].
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Remark 2.28. If ω = ((0, 0, . . .), (0, 0, . . .)), then σ(n, ω) is the uniform random permu-
tation in S(n), and λ(n, ω) is the random integer partition under the well-known Plancherel
measure Pn of S(n), whose asymptotics have been studied for instance in [LS77; KV77]. These
probability measures are connected to the problem of the longest increasing subsequence
[Ula61; Ham72; AD95] and to random matrix theory [BDJ99; BOO00; Oko00; Joh01].

If we consider the random parameter ωλ(n,ω) = Ω(n, ω), then it has been proved by Kerov
and Vershik that for any fixed parameter ω, Ω(n, ω) → ω in probability, the convergence
in the Thoma simplex T being coordinate-wise. Again, we are going to explain that this
convergence is mod-Gaussian.

B Topology and observables of the mod-Gaussian moduli spaces. We have now three
spaces of parameters (or moduli spaces) G , P and T which correspond to models of random
graphs, random permutations and random integer partitions. Moreover, these combinatorial
objects can be considered as elements of the spaces of parameters. To study the mod-Gaussian
convergence of these models, we need to introduce observables in all these cases. These
functionals will actually control the topology of the moduli spaces.

→ Graphons. If g is a graph function and F = (VF, EF) is a finite graph, the density of F in g is
the real number

t(F, g) =
∫

Rk


 ∏
{i,j}∈EF

g(xi, xj)


 dx1 dx2 · · · dxk

where k is the number of vertices of F, and VF is identified with [[1, k]]. The density of F in
g is invariant by Lebesgue isomorphisms of [0, 1], so t(F, ·) is well-defined on the space of
graphons G . On the other hand, if g = gG is the graph function associated to a graph G, then

t(F, gG) = t(F, G) =
| hom(F, G)|
|VG||VF|

,

where as in Example 2.21, hom(F, G) denotes the set of morphisms from F to G.

We endow the space F with the cut-metric d(g1, g2) = infσ ‖(g1)
σ − g2‖@, where the infi-

mum runs over Lebesgue isomorphisms σ : [0, 1]→ [0, 1], and where

‖g‖@ = sup
S,T measurable subsets of [0,1]

∣∣∣∣
∫

S×T
g(x, y) dx dy

∣∣∣∣ .

The cut metric d(g1, g2) depends only on the equivalence classes [g1] and [g2] in G , and
it yields a map δ : G × G → R+ which makes G into a compact metric space [Bor+08,
Proposition 3.6]. Let OG be the algebra of finite graphs, defined over R and with product
F1 × F2 = F1 t F2 if F1, F2 are two graphs. We evaluate a formal sum of graphs f = ∑F cF F on
a graphon by the rule

f (γ) = ∑
F

cF t(F, γ).

In [Bor+08, Theorem 3.8], it is shown that this rule yields a map OG → C (G ) whose image
is a dense subalgebra of the algebra of continuous functions. Hence, a sequence of graphons
(γn)n∈N converges in G if and only if all the observables f (γn) with f ∈ OG converge. More-
over, for any graphon γ and any graph F, one can show that

E[t(F, Γ(n, γ))] = t(F, γ) ; var(t(F, Γ(n, γ))) = O
(

1
n

)
.

Therefore, (Γ(n, γ))n∈N converges in probability to γ.
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→ Permutons. A similar approach can be followed with permutons. If π is a permuton and τ
is a permutation of size k, the density of τ in π is defined by

t(τ, π) =
∫

R2k
1conf((x1,y1),...,(xk,yk))=τ dπ⊗k(x1, y1, . . . , xk, yk).

If τ ∈ S(k) and π = πσ is the permuton associated to a permutation σ ∈ S(n), then one can
relate t(τ, πσ) to the density

t(τ, σ) =
card{S ⊂ [[1, n]] | |S| = k and conf({(i, σ(i)), i ∈ S}) = τ}

(n
k)

of the motive τ in σ. Hence,

|t(τ, πσ)− t(τ, σ)| ≤
(

k
2

)
1
n

,

see [Hop+13, Lemma 3.5]. Therefore, the density of τ in permutons and in permutations is
almost the same notion.

Let OP be the algebra of all permutations, which is defined over R and endowed with the
following product. If τ1 ∈ S(n) and τ2 ∈ S(m), then

τ1 × τ2 =
n! m!

(n + m)! ∑
ρ

ρ,

where the sum runs over the multiset of ( (n+m)!
n! m! )2 permutations ρ ∈ S(n + m) whose graphs

{(i, ρ(i)) | i ∈ [[1, n + m]]} can be split into two disjoint subsets S1 = {(i, ρ(i)) | i ∈ I1} and
S2 = {(i, ρ(i)) | i ∈ I2} of size n and m and with respective configurations τ1 and τ2. Here we
count the permutations ρ according to the sets S1 and S2, so a permutation ρ can be counted
several times. This graphical shuffle product of permutations is compatible with the densities:
if τ1 × τ2 = n! m!

(n+m)! ∑ρ∈R ρ, then for any permuton π ∈P ,

t(τ1, π) t(τ2, π) =
n! m!

(n + m)! ∑
ρ∈R

t(ρ, π).

Therefore, one has a natural map OP → C (P), the space of permutons P ⊂ M 1([0, 1]2)
being endowed with the topology of weak convergence of probability measures. Again, one
can show that the image of this map is a dense subalgebra of the algebra of continuous func-
tions, see [Hop+13]. Therefore, a sequence of permutons (πn)n∈N converges in P if and only
if all the observables f (πn) with f ∈ OP converge. Moreover, for any permuton π and any
permutation τ, one can show that

E[t(τ, σn(π))] = t(τ, π) ; var(t(τ, σn(π))) = O
(

1
n

)
.

Therefore, (Π(n, π))n∈N converges in probability to π.

→ Partitions. If ω = (α, β) is a parameter of the Thoma simplex, we associate to it the proba-
bility measure

πω =
∞

∑
i=1

αi δαi +
∞

∑
i=1

βi δ−βi + γ δ0,

where γ = 1−∑∞
i=1 αi−∑∞

i=1 βi. This rule enables us to embed T into the space of probability
measures M 1([−1, 1]), and T is a compact metrisable subset, where convergence in law is
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equivalent to the pointwise convergence of all the coordinates αi and βi. For k ≥ 1, we define
the observable

pk(ω) =
∫ 1

−1
tk−1 πω(dt) =

{
∑∞

i=1(αi)
k + (−1)k−1 ∑∞

i=1(βi)
k if k ≥ 2,

1 if k = 1.

If λ is an integer partition and ωλ is the associated parameter of the Thoma simplex, then
pk(ω(λ)) is a renormalisation of a power sum of the Frobenius coordinates of λ:

pk(ωλ) =
1
|λ|k

(
d

∑
i=1

(ai)
k + (−1)k−1

d

∑
i=1

(bi)
k

)
.

One can show that if n = |λ| and if χλ(k) is the value on a cycle of length k of the normalised

irreducible character χλ = tr ρλ(·)
tr ρλ(1) of the Specht representation Sλ of S(n), then

pk(ωλ) = χλ(k) + O
(

1
n

)
.

Thus, the functions pk belong to a large algebra of observables which relate the geometry of
the integer partitions λ to the algebraic properties of the corresponding irreducible represen-
tations Sλ. We refer to [KO94; Ker98; IK99; IO02] and [Mél17, Chapter 7] for details on this
essential tool of the asymptotic representation theory of the symmetric groups; it played a
major role in the papers written during the Ph.D. thesis of the author [Mél10; Mél11; Mél12;
FM12; Mél14a].

The algebra of partitions OT is the algebra defined over R, with combinatorial basis formed
by the integer partitions of arbitrary size, and with product µ× ν = µ t ν. The rule

t(µ, ω) =
`(µ)

∏
i=1

pµi(ω)

yields a natural map OT → C (T ) which generates a dense subalgebra of the algebra of
continuous functions. Therefore, a sequence of parameters (ωn)n∈N converges in T if and
only if all the observables f (ωn) with f ∈ OT converge. For any integer partition µ and any
parameter ω ∈ T , if n ≥ |µ|, then

E[χλn(ω)(µ)] = t(µ, ω) ; var(χλn(ω)(µ)) = O
(

1
n

)
.

Therefore, (Ω(n, ω))n∈N converges in probability to ω; this result was first obtained by Kerov
and Vershik in [KV81].

B Mod-Gaussian convergence for graphons, permutons and Thoma parameters. We
can now state a result of mod-Gaussian convergence for the random models (Γ(n, γ))n∈N,
(Π(n, π))n∈N and (Ω(n, ω)); they correspond to [FMN17a, Theorems 21, 26 and 29].

Theorem 2.29 (Féray–Méliot–Nikeghbali, 2017). There exists two linear maps

κ2,G : OG ⊗OG → OG and κ3,G : OG ⊗OG ⊗OG → OG

such that, if f ∈ OG is an observable of graphons of degree k, γ ∈ G is a graphon, and Sn( f , γ) =
nk ( f (Γ(n, γ))− f (γ)), then (Sn( f , γ))n∈N satisfies the hypotheses of the method of cumulants with
parameters Dn = k2 nk−1, Nn = nk, A = ‖ f ‖OG and

σ2 = κ2,G( f , f )(γ) ; L = κ3,G( f , f , f )(γ).
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Therefore, if κ2,G( f , f )(γ) 6= 0, then Yn( f , γ) = Sn( f , γ)/
√

var(Sn( f , γ)) satisfies all the limiting
results listed in Theorem 2.14.

Here, by observable of degree k we mean a linear combination f = ∑F cF F of graphs with
k vertices, and the norm ‖ f ‖OG is then ∑F |cF|. On the other hand, the linear maps κ2 and κ3
that enable the computation of the limiting variances and third cumulants are related to the
operation of junction of graphs. For instance,

κ2,G(F1, F2) =
1
k2 ∑

1≤a,b≤k
(F1 ./ F2)(a, b)− F1 × F2,

where (F1 ./ F2)(a, b) is the graph on 2k − 1 vertices obtained by identifying the vertex a
in F1 with the vertex b in F2. A similar but more complicated description can be given for
κ3,G(F1, F2, F3).

Example 2.30 (Number of triangles in a graphon model). We fix a graphon γ, and we
consider the subgraph counts in G(n, γ) of the triangle

F = K3 = .

Let
H = ;

this is the only isomorphism class of graphs that can be written as (F ./ F)(a, b). If t(H, γ) 6=
(t(K3, γ))2, then

Yn =
t(K3, Γ(n, γ))− t(K3, γ)√

var(t(K3, Γ(n, γ)))
=
√

n
t(K3, Γ(n, γ))− t(K3, γ)

3
√

t(H, γ)− (t(K3, γ))2

(
1 + O

(
1
n

))

converges to a standard Gaussian distribution NR(0, 1). Moreover, dKol(Yn,NR(0, 1)) =
O( 1√

n ), and the Gaussian approximation of Yn can be used between the scales n−1/2 and

n1/6.

We also have the mod-Gaussian convergence of observables for the permuton models and
the models of random integer partitions:

Theorem 2.31 (Féray–Méliot–Nikeghbali, 2017). There exists two linear maps

κ2,P : OP ⊗OP → OP and κ3,P : OP ⊗OP ⊗OP → OP

such that, if f ∈ OP is an observable of permutons of degree k, π ∈P is a permuton, and Sn( f , π) =
nk ( f (Π(n, π))−E[ f (Π(n, π))]), then (Sn( f , π))n∈N satisfies the hypotheses of the method of cu-
mulants with parameters Dn = k2 nk−1, Nn = nk, A = ‖ f ‖OP and

σ2 = κ2,P( f , f )(π) ; L = κ3,P( f , f , f )(π).

Similarly, there exists two linear maps

κ2,T : OT ⊗OT → OT and κ3,T : OT ⊗OT ⊗OT → OT

such that, if f ∈ OT is an observable of degree k, ω ∈ T is a Thoma parameter, and Sn( f , ω) =
nk ( f (Ω(n, ω)) − E[ f (Ω(n, ω))]), then (Sn( f , ω))n∈N satisfies the hypotheses of the method of
cumulants with parameters Dn = k2 nk−1, Nn = nk, A = ‖ f ‖OT and

σ2 = κ2,T( f , f )(ω) ; L = κ3,T( f , f , f )(ω).
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The linear maps κi,P and κi,T can be described by means of the operations of junction of two
or three permutations, or of junction of two or three integer partitions; these combinatorial
operations are quite similar to those defined for graphs. On the other hand, the proofs of The-
orems 2.29 and 2.31 rely on Theorem 2.19 and on the construction of adequate dependency
graphs for the random variables considered.

Remark 2.32. In the same setting, one can show that:

(1) For any permuton π ∈ P and any permutation τ of size k, the random variables
(n

k) t(τ, σn(π)) satisfy the hypotheses of the method of cumulants with parameters
Dn = k( n

k−1), Nn = (n
k) and A = 1.

(2) For any Thoma parameter ω ∈ T and any integer partition µ of size k, the random
variables n↓kχλn(ω)(µ) satisfy the hypotheses of the method of cumulants with pa-
rameters Dn = k2n↓k−1, Nn = n↓k and A = 1. Here, n↓k = n(n− 1)(n− 2) · · · (n−
k + 1).

Hence, the motive subcounts in random permutations, and the random character values are
also generically mod-Gaussian convergent (as soon as the limiting variance does not vanish).

M

m

×
×

××

M(1, m)

M(2, m)M(4, m)

M(3, m)

mod-Gaussian fluctuations
(in the sense of observables)

Figure 2.11. Mod-Gaussian moduli spaces as fields of fluctuations.

We have thus shown that generically, an observable

• of a random graph in a graphon model,

• or of a random permutation in a permuton model,

• or of a random integer partition under a central measure

is mod-Gaussian. The last case was essentially dealt with in [FMN16, Chapter 11], by adapt-
ing the theory of dependency graphs to a setting of variables in a non-commutative probabil-
ity space. We call these classes of models mod-Gaussian moduli spaces. Each time, we have:

• a compact topological space M ;

• a graded algebra OM endowed with a natural morphism OM → C (M ) with dense
image, and therefore which determines the topology of M ;

• and a way to construct for any parameter m ∈ M a sequence of random discrete
objects M(n, m) which can be considered as elements of M , and which:

– converge in probability back to the parameter m as n goes to infinity.

– provide for any homogeneous observable f ∈ OM a sequence ( f (M(n, m)))n∈N

of random variables whose fluctuations are mod-Gaussian (unless f and m yield
a limiting variance κ2( f , f )(m) equal to zero).
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There are several advantages to this geometric study of the random models. First, one is able
to prove generic central limit theorems, local limit theorems, etc. which are valid simultane-
ously for almost any model associated to a parameter of the moduli space. On the other hand,
the cases where κ2( f , f )(m) = 0 and where one does not have a priori mod-Gaussian conver-
gence can be considered as singularities of the moduli space. The singular parameters corre-
spond most of the time to models with additional symmetries (this is one of the reasons why
the terminology of moduli spaces is relevant). For these singularities, one can sometimes find
another (non-generic) normalisation of the random observables that yields mod-Gaussian se-
quences. For instance, the constant graph functions g = p correspond to the Erdös–Rényi ran-
dom graphs, and the corresponding graphons yield generic limiting variances κ2( f , f )(p) = 0
for any observable. As detailed in Example 2.21, for these Erdös–Rényi random graphs, one
needs to renormalise the densities t(F, Γ(n, p)) in a different way: indeed, when looking at
the subgraph count for a graph with k vertices, the parameters of the method of cumulants in
this setting are Dn = O(nk−2) and Nn = O(nk), instead of Dn = O(nk−1) and Nn = O(nk) in
the generic case. A similar phenomenon occurs in the Thoma simplex, when looking at the
parameter ω = 0 = ((0, 0, . . .), (0, 0, . . .)) which corresponds to the Plancherel measures on
partitions:

P[λn(0) = λ] = Pn[λ] =
(dim Sλ)2

n!
, where Sλ is the Specht module of label λ for S(n).

Kerov’s central limit theorem [Ker93; IO02] shows that the fluctuations of certain observables
of the Plancherel model are asymptotically normal, but not with the same renormalisation as
in the generic case (we also do not know whether the fluctuations are mod-Gaussian). In this
setting, one can also try to develop a differential calculus in the neighborhood of the singu-
lar point m ∈ M , and study the fluctuations of observables f (M(n, mn)) when the driving
parameter mn of the models converges to m at an adequate speed and with a certain asymp-
totic direction. For parameters of the Thoma simplex close to the point 0, this is essentially
what was done in [Bia01; Śni06a; Śni06b; Mél11], and central limit theorems were proved for
instance for Schur–Weyl measures (the mod-Gaussian framework did not exist at that time).

To conclude this section, let us mention an additional result which is implied by the method
of cumulants and the theory of dependency graphs (see [FMN17a, Propositions 6 and 7]).

Proposition 2.33 (Concentration inequality). Let (Sn)n∈N be a sequence of random variables
whose cumulants satisfy the bound (MC3) in the method of cumulants, with parameters (Dn, Nn, A).
We assume moreover that |Sn| ≤ Nn A almost surely; this is always the case if the bound (MC3) comes
from the existence of dependency graphs with parameters (Dn, Nn, A). Then, for any ε ≥ 0,

P[|Sn| ≥ ε] ≤ 2 exp
(
− ε2

9DnNn A2

)
.

For instance, if F is a graph with k vertices and if γ is a graphon, then

P[|t(F, Gn(γ))− t(F, γ)| ≥ ε] ≤ 2 exp
(
−nε2

9k2

)

for any ε > 0. These concentration inequalities were previously obtained by means of martin-
gale techniques, and they played an essential role in the study of the topology of the spaces G
and P . Here, we obtain them immediately as a consequence of the existence of adequate de-
pendency graphs, and similar inequalities hold true for the observables of permuton models
and the observables of the models of random partitions.
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2.4 Weighted dependency graphs
In the two previous sections, we studied random variables that satisfied the hypotheses

of the method of cumulants, because they wrote as sums of random variables with a sparse
dependency graph. It turns out that one can also establish the validity of these hypotheses
for sums of random variables that do not admit a sparse dependency graph, but that have a
weak dependency structure, for instance Markovian. The key notion that enables this method
is:

Definition 2.34 (Weighted dependency graph). A (uniform) weighted dependency graph for a
family of random variables {Av}v∈V is a graph G = (V, E) endowed with a weight map wt : E→ R+

such that, for any variables Av1 , . . . , Avr , the joint cumulant of these variables satisfies:

|κ(Av1 , . . . , Avr)| ≤ Ar ∑
T spanning tree
of G[v1,v2,...,vr]

(
∏

e∈ET

wt(e)

)

for some positive constant A.

This notion was introduced in [Fér16] in a slightly more general setting, and in [FMN17b,
Section 5], it was used to establish the mod-Gaussian convergence of certain random vari-
ables. Since the proof of the method of cumulants for sums with sparse dependency graphs
involved spanning trees (Theorem 2.19), Definition 2.34 is a natural generalisation of the dis-
cussion of Section 2.2. In particular, a dependency graph in the sense of Definition 2.18 is a
weighted dependency graph with a weight wt(e) = 2 for all its vertices.

Theorem 2.35 (Weighted dependency graphs and bounds on cumulants). Let S = ∑v∈V Av
be a sum of random variables endowed with a weighted dependency graph (G = (V, E), A, wt). We
set

N = card V ; D =
1
2

(
1 + max

v∈V

(
∑

w 6=v
wt({v, w})

))
,

being understood that wt({v, w}) = 0 if {v, w} /∈ E. Then, for any r ≥ 1,

|κ(r)(S)| ≤ Ar rr−2 N (2D)r−1.

As a consequence, given a sequence (Sn)n∈N of sums of random variables, if one can construct
weighted dependency graphs for the Sn’s whose weights are summable, or at least such that

max
v∈Vn

(
∑

w 6=v
wt({v, w})

)
� card(Vn),

then one usually obtains the mod-Gaussian convergence of the sequence.

Example 2.36 (Linear functional of a Markov chain). Consider an ergodic Markov chain
(irreducible and aperiodic) (Xn)n∈N on a finite state space X = [[1, M]], with transition matrix
P and stationary measure π. We assume that X0 is distributed as π, and we fix a state a ∈ X.
The number of visits

Na,n =
n

∑
i=1

1Xi=a

is a sum of random variables that admit a weighted dependency graph with constant A = 1
and weight map

wt({i, j}) = 2 (θP)
|j−i|,
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where θP is some constant strictly smaller than 1 and determined by P. More precisely, let us
introduce the time reversal

P̃(x, y) =
π(y) P(y, x)

π(x)
of the transition matrix P, and the multiplicative reversiblisation M(P) = PP̃ [Fil91]. The
matrix M(P) is a reversible stochastic matrix, and we define

(θP)
2 = max{|z| | z 6= 1 and z is an eigenvalue of M(P)}.

As a consequence of the existence of a weighted dependency graph, we get that the sequence
(Na,n− nπ(a))n∈N satisfies the hypotheses of the method of cumulants with parameters Dn =
1+θP
1−θP

, Nn = n and A = 1. Therefore, the sequence

Ya,n =
Na,n − nπ(a)√

var(Na,n)

satisfies all the limiting results of Theorem 2.14. In particular, denoting Ta the first return time
to a, since var(Na,n) ' n (π(a))3 var(Ta), for n large enough, one obtains the Berry–Esseen
estimate

dKol(Ya,n , NR(0, 1)) = O

((
1 + θP

1− θP

)2 1
(π(a))9/2 (vara(Ta))3/2

1√
n

)
,

with a universal constant in the O(·). The result extends to the fluctuations of any linear
functional ∑n

i=1 f (Xi) with f : X → R; then, the constant A in the method of cumulants
depends on f and on the size M of the space X [FMN17b, Sections 5.4-5.5]. Similar estimates
of the speed of convergence had previously been obtained by using different techniques in
[Bol80; Lez96; Man96]; the advantage of our approach is that it gives without additional work
normality zones and large deviation estimates (besides, it only relies on Fourier analysis).

Example 2.37 (Magnetisation of the Ising model in dimension d ≥ 2). Consider the Ising
model in dimension d ≥ 2: in a box [−C, C]d, it is the unique probability measure Pβ,h,[−C,C]d

on spin configurations σ : [−C, C]d → {±1} such that Pβ,h,[−C,C]d [σ] is proportional to

exp


β ∑

{x,y} | x∼y
σ(x)σ(y) + h ∑

x
σ(x)


 .

In this expression, the sums are restricted to a box [−C, C]d, β > 0 is the inverse temperature
of the system, and h is the value of the external magnetic field. We refer to Figure 2.12 for an
example in dimension 2 and at high temperature, without external field. If h 6= 0, or if h = 0
and β < βc(d) (high temperature), then the probability measures Pβ,h,[−C,C]d have a unique
limiting distribution (Gibbs measure) Pβ,h,Zd as C goes to infinity. This allows us to deal with
infinite spin configurations on Zd, see for instance [FV17, Theorem 3.41]. With β and h fixed
in this domain of uniqueness, let us consider a growing sequence of boxes (Λn)n∈N with⋃

n∈N Λn = Zd, and the total magnetisations

Mn = ∑
x∈Λn

σ(x)

of these boxes. One can show that if h 6= 0 or if h = 0 and β < βb(d) < βc(d) (very
high temperature), then under the Gibbs measure Pβ,h,Zd , the family of spins (σ(x))x∈Zd ad-
mits a weighted dependency graph for a certain constant A = A(d, β, h) and for the weight
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Figure 2.12. A configuration of the Ising model when d = 2, β = 0.2 and h = 0.

wt(x, y) = ε‖x−y‖1 with ε < 1. This result was obtained by Duneau, Iagolnitzer and Souillard
in the seventies [DIS73; DIS74], in the framework of strong cluster properties. As a conse-
quence, (Mn −E[Mn])n∈N satisfies the hypotheses of the method of cumulants with param-
eters Dn = O(1), Nn = |Λn| and A = O(1). We thus obtain a Berry–Esseen estimate

dKol

(
Mn −Eβ,h,Zd [Mn]√

var(Mn)
, NR(0, 1)

)
= O

(
1√
|Λn|

)
,

or the concentration inequality:

Pβ,h,Zd

[∣∣∣Mn −Eβ,h,Zd [Mn]
∣∣∣ ≥ |Λn|ε

]
≤ 2 exp(−K|Λn|ε2)

for some K = K(d, β, h) > 0. These probabilistic estimates are true when the magnetic field is
non-zero, or at very high temperature [FMN17b, Section 5.3].

Perspectives
In this chapter, we have presented various mathematical structures leading to mod-φ con-

vergence: generating series with algebraico-logarithmic singularities, dependency graphs,
weighted dependency graphs, etc. An important goal of future works will consist in:

• identifying new structures that also imply mod-φ convergence,

• using the corresponding probabilistic estimates in order to prove new results on a
large variety of models.
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In the following, we detail several research directions fulfilling this objective.

→Moment conjecture and Ramachandra’s conjecture. The theory of mod-φ convergence initially
found its source in several conjectures on Riemann’s ζ function, see [KS00b; KS00a; Kea05;
Con+05] and [JKN11, Section 4.1]. Recall that the ζ function on the critical line satisfies Sel-
berg’s central limit theorem [Sel46; Sel92; Gho83; BH95; RS15]: if t ∈ [T, 2T] is chosen at
random and uniformly, then as T goes to infinity, the random variables

YT =
log ζ(1

2 + it)√
log log T

converge in distribution to a complex Gaussian variable NC = NR(0, 1√
2
) + iNR(0, 1√

2
). The

Keating–Snaith moment conjecture is a much stronger statement: for any z ∈ C with Re(z) >
−2,

lim
T→∞

1

T (log T)
z2
4

∫ T

0

∣∣∣∣ζ
(

1
2
+ it

)∣∣∣∣
z

dt = M(z) A(z),

where M(z) =
(G(1+ z

2 ))
2

G(1+z) is the limiting residue of mod-Gaussian convergence for the char-
acteristic polynomials of random unitary matrices (Example 1.8), and A(z) is an arithmetic
factor:

A(z) = ∏
p∈P



(

1− 1
p

)z2
4
(

∞

∑
n=0

(
Γ(n + z

2)

n! Γ( z
2)

)2 1
pn

)
 .

In other words, the random variables XT = Re(log ζ(1
2 + it)) with t ∼ U ([0, T]) are conjec-

tured to be mod-Gaussian convergent on S(−2,+∞), with parameters tT = (log log T)/2 and
limit ψ(z) = M(z) A(z). There exist analogue conjectures for random values of L-functions,
and for the complex random variables log ζ(1

2 + it). Besides, the moment conjecture for Rie-
mann’s ζ function is known to hold true for z = 2 and z = 4.

Though the moment conjecture seems out of reach with the tools developed so far, a con-
sequence of its validity might be easier to deal with, namely, Ramachandra’s conjecture: the
values of ζ on the critical line form a dense subset of C. We refer to Figure 2.13 for a repre-
sentation of the function t 7→ ζ(1

2 + it) with t ∈ [0, 100]; Ramachandra’s conjecture ensures
that this curve eventually fills the whole complex plane. This conjecture was first stated at
the conference Recent progress in analytic number theory held in Durham in 1979; it is for in-
stance mentioned in [Tit86, Section 11.13]. In probabilistic terms, the density of the values of
t 7→ ζ(1

2 + it) can be reinterpreted as a local limit theorem for the random variables YT. Con-
sequently, in order to prove this result, instead of attacking directly the moment conjecture,
one can:

• try to compare the random values of the ζ function on [0, T] with those of the Euler
products ∏p≤N

1

1−p−
1
2−it

, and then compare the Euler products with the random zeta

functions

ZN = ∏
p≤N

1

1− Xp√
p

,

where the Xp’s are independent and uniformly distributed on the unit circle.

• use the mod-Gaussian convergence of the variables log ZN and the corresponding
local limit theorem.
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Figure 2.13. Values of ζ(1
2 + it) for t ∈ [0, 100].

Notice that the first item is a natural approach in order to understand the behavior of the
ζ function on large intervals; see for instance [LLR14] for results outside the critical line.
Ramachandra’s conjecture is one of the main incentive to studying local limit theorems in the
framework of mod-φ convergence, and it would also be its most spectacular application.

Easier cases or analogues of Ramachandra’s conjecture should also be considered in the
framework of mod-φ convergence of complex-valued random variables. More precisely:

• The Bohr–Jessen central limit theorem ensures that if σ > 1
2 , then the random vari-

ables
YT,σ = log ζ(σ + it)

with t uniform in [T, 2T] converge as T goes to infinity towards limiting distributions
BJσ, which are supported by the whole complex plane if σ ∈ (1

2 , 1]; see [BJ30; BJ32;
JW35; BJ48]. Note that the convergence in distribution occurs here without renor-
malisation. The article [LLR14] yields strong estimates of the speed of convergence
in these central limit theorems, and the theory of mod-φ convergence should enable
one to recover or improve on these results.

• On the other hand, it is known since the works of Montgomery that

– the Riemann ζ(σ + it) function on its critical line σ = 1
2 ,

– and the characteristic polynomial det(In− zMn) with z on the unit circle and Mn
unitary Haar-distributed random matrix of size n

share many asymptotic properties, at least conjecturally. We refer in particular to
[KS00a; HKO01] for the central limit theorems; to [Mon73; RS96; CNN17] for the
correlations of zeroes or eigenvalues; to [KS00b; Kea05; Con+05] for the asymptotics
of moments; and to [Arg+16; ABB17; CMN16] for the asymptotics of the extreme
values. In particular, the analogue of Selberg’s central limit theorem is the following
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result from [HKO01]: if U is uniformly distributed on the circle, then

log det(In −U Mn)√
log n

is a random variable whose law converges in probability towards the law of a com-
plex Gaussian variableNC. A local limit theorem in this framework would prove that
the characteristic polynomial Pn(z) = det(In − zMn) is a random curve which fills a
large part of the complex plane with high probability as n goes to infinity; see Fig-
ure 2.14. This is a unitary analogue of Ramachandra’s conjecture, which is related to
the computation of bounds on the cumulants of the random variables (tr(Mn)r) (the
traces of powers of random unitary matrices are known to converge towards inde-
pendent complex Gaussian variables, see [DS94; Joh97], and [Sos00a; Sos00b; Sos01]
for partial results on the cumulants).
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Figure 2.14. The characteristic polynomial Pn of a random unitary matrix of
size n = 20, viewed as a function on the unit circle.

→ Sums of random arithmetic functions. The connection between Ramachandra’s conjecture
and the theory of mod-φ convergence is an instance of a general method in number theory:
in order to predict the behavior of some arithmetic functions, one can replace them by appro-
priate random variables which are easier to deal with. For instance, it is well known that the
Riemann hypothesis is equivalent to the statement

∀ε > 0, ∑
k≤n

µ(k) = O
(

n
1
2+ε
)

,

where µ(n) is the arithmetic Möbius function defined by µ(p1p2 · · · pk) = (−1)k, and µ(n) =
0 if n has a square factor. To understand the behavior of the Mertens function M(n) =
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∑k≤n µ(k), one can try to replace the arithmetic function µ(n) by random variables

Xn =

{
∏k

i=1 εpi if n = p1p2 · · · pk,
0 if n has a square factor,

where the εp’s are independent random variables labeled by the prime numbers p ∈ P, and
uniformly distributed over {±1} or over the unit circle. Then, M̃(n) = ∑k≤n Xk satisfies
M̃(n) = O(n1/2+ε) almost surely [Hal83]. Moreover, if one restricts the sum to small intervals
or to integers with a small number of prime factors:

M̃(n, n + y) = ∑
n≤k≤n+y
y=O( n

log n )

Xk ; M̃(L)(n) = ∑
k≤n, ω(k)≤L
L�log log n

Xk

then these sums are asymptotically normal; see [CS12; Har13]. In this setting, we would
like to show that the method of cumulants can be used, by exhibiting an adequate weighted
dependency graph. Note that the classical theory of sparse dependency graphs can be ap-
plied here. However, it does not yield mod-Gaussian convergence: the random variables Xn
are pairwise independent, and as a consequence, with the notations of Proposition 2.13 and
with a natural choice for a dependency graph, σ2 = 0. This is why we need to look for a
weighted dependency graph, whose structure would shed light on the arithmetic properties
of the prime numbers. This problem might also require the construction of new dependency
structures which would be adapted to the study of sums of symmetric and pairwise inde-
pendent random variables. Similar questions can be asked when the ring Z and the prime
numbers are replaced by a finite function field Fq[X] and by the monic irreducible polynomi-
als over Fq. The moment conjecture for the zeta function of a random irreducible polynomial
is then a theorem (see for instance [JKN11, Proposition 4.8]), and one could study the random
arithmetic sums corresponding to these function fields, as a first step in the understanding of
the case of number fields.

→ Mixing dynamical systems. In Example 2.36, we explained that under the appropriate hy-
potheses, a linear functional of a Markov chain is mod-Gaussian convergent (after an ade-
quate renormalisation). A more general framework where the cumulant method could be
used is the theory of mixing ergodic dynamical systems. Let X be a compact metric space,
and T : X → X be a measurable map. We recall that T is called ergodic with respect to some
probability measure µ on X if T preserves µ, and if the only T-invariant measurable subsets
of X have µ-measure 0 or 1 [KH95, Definition 4.1.6]. The map T is called (strongly) mixing if,
for any measurable subsets A and B, limn→∞ µ(T−n(A) ∩ B) = µ(A) µ(B) [KH95, Definition
4.2.8]; this is stronger than the ergodicity. Classical examples of mixing maps are:

• the expanding maps Em : x ∈ R/Z 7→ mx ∈ R/Z with m integer greater than 2 and
with respect to the Lebesgue measure;

• the hyperbolic automorphisms of the torus Td = (R/Z)d with respect to the Lebes-
gue measure;

• the Gauss map G : x ∈ R/Z 7→ 1
x ∈ R/Z with respect to the Gauss measure 1

log 2
dx

1+x
(see Figure 2.15);

• the Bernoulli shifts σ : [[1, M]]N → [[1, M]]N with respect to any probability measure
on sequences associated to an irreducible Markov chain.
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Figure 2.15. Distribution of the 105 first iterates of the Gauss map, starting from
a random point in [0, 1].
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Figure 2.16. Fluctuations Yn(T, f ) = 1√
n ∑n

i=1( f (Tn(x))− µ( f )), when T is the

Gauss map, f = 1[0, 1
2 ]

and n = 1000, over N = 105 tries.

Given an ergodic map T : (X, µ)→ (X, µ), for µ-almost any x ∈ X,

1
n

n

∑
i=1

f (Tn(x))→
∫

X
f (y) µ(dy)

for any function f ∈ L 1(X, µ) (Birkhoff ergodic theorem). The mixing condition can then be
used to prove a central limit theorem for

Yn(T, f ) =
1√
n

n

∑
i=1

( f (Tn(x))− µ( f )),
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x being chosen at random according to µ. We refer to [Ros56; Ibr62; Ibr75; Bra81; Pel96],
and [Bra05] for a survey of the various possible mixing conditions. For instance, the empir-
ical distribution of these fluctuations when T is the Gauss map and f = 1[0, 1

2 ]
is drawn in

Figure 2.16, and one has indeed asymptotic normality. To the best of our knowledge, the cu-
mulants of such random variables have never been considered, and their study would be an
interesting contribution to the theory of mixing processes. Notice that when the state space
is the torus Td, the ergodic theory of the corresponding dynamical systems is often attained
by means of Fourier analysis (see e.g. [KH95, Section 4.2]). In this setting, a first step would
therefore consist in estimating the cumulants of Yn(T, f ) with f (t) = ei〈m | t〉 character of the
torus.

→ Statistics of random processes. Many examples of mod-φ convergent random variables can
probably be found in the theory of random processes. We already mentioned in Example 1.7
the winding number of a planar Brownian motion, which is mod-Cauchy convergent. Other
interesting statistics stemming from the planar Brownian motion are the occupation densities

DV(t) =
∫ t

0
1V(Bs) ds,

where (Bs)s≥0 is a standard 2-dimensional Brownian motion started from 0, and V is a bound-
ed measurable domain with positive area. The Kallianpur–Robbins theorem [KR53] ensures
that these densities are distributed asymptotically like exponential random variables:

2π

(log t)
DV(t) ⇀t→+∞ E

(
1

area(V)

)

where E ( 1
λ ) denotes the exponential distribution with density 1x>0

λ e−
x
λ , and with mean λ. It

would be interesting to restate this result in terms of mod-exponential convergence, as this
would imply local limit theorems and speed of convergence estimates.

Another domain where mod-φ convergence is conjectured to occur is the theory of self-
similar processes. For example, let us detail the case of the random clocks associated to these
processes. If α > 0, a positive self-similar Markov process of index α is a strong Markov
process with càdlàg paths on R+, which satisfies the identities in law

((bXb−αt)t≥0, Pa) =law ((Xt)t≥0, Pba)

for any a, b > 0. Here, Pa is the law of the Markov process starting from a. Lamperti’s
representation theorem [Lam62; Lam72] establishes a bijection between positive self-similar
Markov processes and Lévy processes starting from 0. Hence, let (X, (Pa)a>0) be a pssmp of
index α, and

T(X)(t) =
∫ t

0

1
(Xs)α

ds ; A(X)(t) = inf{u ≥ 0 | T(X)(u) ≥ t}.

The process (T(X)(t))t≥0 is called the clock of the pssmp, and (A(X)(t))t≥0 is the inverse of
this increasing process. If

Yt = log

(
XA(X)(t)

X0

)
,

then (Yt)t≥0 is under Pa a Lévy process started from 0. Moreover, one can reconstruct entirely
(X, (Pa)a>0) from (Yt)t≥0; in particular, every pssmp is the exponential of a time-changed
Lévy process. In the recent paper [DRZ15], the large deviations of the clocks T(X)(t) of pssmp
are studied (as t goes to +∞), by means of a careful estimation of the Laplace transforms of
these random variables. A central limit theorem is also conjectured, see Equation (30) in
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loc. cit., and the article [YZ01] in the case where X is a Bessel process. In this framework, one
expects that an adequate renormalisation of (T(X)(t))t≥0 is mod-Gaussian convergent.

→ Random measured metric spaces. In Section 2.3, we introduced the notion of mod-Gaussian
moduli space, which formalises the idea that for some classes of random models (graphs,
permutations, integer partitions), a generic observable of a generic model is mod-Gaussian
convergent. Hence, the mod-Gaussian convergence is a universal result for certain classes
of models. A natural objective is then to find new classes of random models with this prop-
erty. A space of parameters where we expected this to be true was the space M of separable
complete metric spaces (X, dX) equipped with a probability measure PX. This space was
introduced in [GPW09], and it is polish (complete metrisable separable) for the topology in-
duced by the Gromov–Hausdorff–Prohorov metric:

dGHP ((X, dX, PX), (Y, dY, PY))

= inf
ψX :X→Z
ψY :Y→Z

(
inf{ε > 0 | ∀C closed subset of Z, (ψX)∗PX(C) ≤ (ψY)∗PY(Cε) + ε}

)
.

Here,

• the infimum is taken over all isometric embeddings ψX : X → Z and ψY : Y → Z of
(X, dX) and (Y, dY) into a common metric space (Z, dZ);

• (ψX)∗PX and (ψY)∗PY are the images of the probability measures PX and PY by ψX
and ψY, and thus are probability measures on Z;

• if C ⊂ Z, then Cε = {z ∈ Z | dZ(z, C) < ε}.
There is an algebra OM of observables corresponding to this topology, see [GPW09, Theorem
5]. If φ : (R+)(

n
2) → R is a bounded continuous function, denote

t(φ, (X, dX, PX)) =
∫

Xn
φ((d(xi, xj))1≤i<j≤n) (PX)

⊗n(dx1 dx2 · · · dxn).

The convergence with respect to the Gromov–Hausdorff–Prohorov topology is equivalent to
the convergence of all the observables t(φ, ·). On the other hand, given a separable complete
metric and measured space υ = (X, dX, PX), one can associate to it random discrete spaces:

• Xn(υ) = {x1, . . . , xn} is a finite set of points taken independently in X and according
to the probability measure PX.

• dn(υ) is the restriction of dX to Xn(υ).

• finally, Pn(υ) is the uniform probability measure 1
n ∑n

i=1 δxi on Xn(υ).

One can then study the convergence of Υ(n, υ) = (Xn(υ), dn(υ), Pn(υ)) to υ, and the fluctua-
tions of the observables t(φ, Υ(n, υ)).

My first Ph. D. student Jacques de Catelan is currently working on this subject, and he
proved recently the mod-Gaussian convergence for a generic observable and a generic model
υ. Hence, the pair (M , OM) forms a (non-compact) mod-Gaussian moduli space. Moreover, it
turns out that the singularities of this mod-Gaussian moduli space are precisely the compact
homogeneous spaces X = G/K, X being endowed with a G-invariant distance d and with
the projection of the Haar measure of G. We now conjecture that these singularities still
yield mod-Gaussian observables, but with a non-generic renormalisation and a non-generic
underlying dependency structure. On the other hand, as an application of these results, we
hope to obtain asymptotic estimates on random metric trees, which are important random
combinatorial models.
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→ Random partitions under Plancherel measure and random matrices. To conclude this list of
sequences of random variables that we conjecture to be mod-φ convergent, let us evoke
the random character values under the Plancherel measures of the symmetric groups. We
thus consider a random integer partition λ ∈ Y(n) under the Plancherel measure Pn[λ] =
(dim λ)2/n!, and we look at the random variable

Xn(k) = χλ(k) =
tr ρλ(ck)

tr ρλ(1)

where ck is a k-cycle, ρλ : S(n) → GL(Sλ) is the defining morphism of the irreducible repre-
sentation Sλ, and λ is chosen at random according to Pn. By Kerov’s central limit theorem,
for any k ≥ 2,

n
k
2 Xn(k)√

k
⇀n→∞ NR(0, 1).

Quite surprisingly, this was one of the first example that we tried to study five years ago,
and this led eventually to the theory of sparse dependency graphs and to the method of cu-
mulants. Unfortunately, the parameter ω = 0 corresponding to the Plancherel measures in
the Thoma simplex is a singularity of this mod-Gaussian moduli space, and the generic argu-
ment does not apply. Therefore, we were not able to prove the mod-Gaussian convergence of
(Xn(k))n∈N. The more recent theory of weighted dependency graphs, or a new 2-dimensional
theory of dependency surfaces might remove the problems that we encountered in our first
approach. On the other hand, it is well known that the Poissonised Plancherel measures

Pθ =
∞

∑
n=0

e−θ θn

n!
Pn

give rise to determinantal point processes [BOO00, Theorem 1], so the suspected connection
between determinantal correlations and mod-Gaussian asymptotics (see the discussion in
Example 2.1) might bring a new approach to the estimation of the fluctuations of the random
character values under Plancherel measures.

Another domain of mathematics that produces mod-Gaussian convergent sequences and
that we already evoked for the unitary Ramachandra conjecture is random matrix theory;
see the recent papers [BHR17a; BHR17b]. The linear statistics of the eigenvalues of the clas-
sical ensembles from random matrix theory satisfy a central limit theorem (see for instance
[DS94; Joh97; Joh98; Sos00b; Sos01; Cab01; LP09]), and several techniques might be used in
order to establish their mod-Gaussian convergence: cumulant method, determinantal struc-
ture, Szegö’s asymptotics of Toeplitz determinants, formulas of topological recursion, etc. In
this setting, another problem is the identification of the class of functions that yield mod-
Gaussian linear statistics. Thus, with the terminology of mod-Gaussian moduli spaces, a
difficult question will be to find an appropriate algebra of observables (subalgebra of the
algebra of continuous functions on spectral measures).



Chapter 3

Random objects on symmetric spaces

In the two previous chapters, we explained how to use classical harmonic analysis on the
real line in order to study the fluctuations of numerous random models. If the observables of
a model are not real-valued and if they take their values in another kind of parameter space X,
then one can still use harmonic analysis in order to study them, but it is then required to deal
with the Fourier transform of X (instead of the classical Fourier transform L 2(R)→ L 2(R)).
A case that is particularly interesting is when X is a compact Lie group, or more generally a
compact symmetric space. This class of parameter spaces includes spheres, projective spaces,
Grassmannians, and orthogonal or unitary groups. By using classical results from the repre-
sentation theory of Lie groups (due to Cartan, Weyl, etc.), we were able to study several kinds
of random objects drawn on X:

(1) random processes (Yt)t≥0 with values in X, and which converge to the uniform mea-
sure [Mél14b];

(2) random geometric graphs drawn on X, and the spectra of the associated random
adjacency matrices ([Mél18], work in progress).

The second topic actually led us to new conjectures in the representation theory of com-
pact Lie groups, so the connection between representation theory and random objects on
Lie groups goes both ways: one can prove new results on the random objects by using har-
monic analysis, but one can also discover new properties of the representations of Lie groups
by means of probabilistic models.

This last chapter is organised as follows. In Section 3.1, we propose a survey of the har-
monic analysis on compact symmetric spaces.

• It will considerably ease the understanding of the later sections, particularly for read-
ers with a probabilistic background.

• It allows us to fix notations and to introduce all the relevant objects, including those
on which we shall make conjectures and which correspond to recent developments
in representation theory (crystals and string polytopes).

• Except for the theory of crystal bases, everything that we shall say about the har-
monic analysis on a compact symmetric space can be found in the celebrated books
by Helgason [Hel78; Hel84]. However, it is not always easy to extract the relevant
information from these 1000+ pages, in particular because the hypotheses are some-
times stated for the isometry group of the symmetric space, and sometimes for the
corresponding Lie algebra, or complexification thereof. For one particular result due



70 3.1. Symmetric spaces and non-commutative Fourier transforms.

to Cartan and Helgason (Theorem 3.11), a concise statement of its exact hypotheses
(H1) and (H2) is especially difficult to find in the literature (to the best of our knowl-
edge, if one wants to avoid to have to search several articles or book chapters, then
one can only find them in [GW09, Section 12.3]).

This is why we decided to recall the main results of this theory.

In Section 3.2, we show that a Brownian motion drawn on a compact symmetric space
converges in law towards the uniform measure with a cut-off, meaning that the total variation
distance to the stationary measure decreases abruptly after a certain time tcut-off which one
can compute explicitly for any symmetric space. These results are presented in such a way
that one can easily adapt the method of proof to other random processes on groups, e.g. the
mixing of cards and the corresponding random walks on the symmetric groups.

In Section 3.3, we introduce the random geometric graphs on symmetric spaces, which
have two interesting limiting regimes as their size grows to infinity: the Gaussian regime
(large dense graphs) and the Poissonian regime (large sparse graphs). We explain how to
compute the limiting spectrum of a random geometric graph in the Gaussian regime, when
the underlying graph X is a simple simply connected compact Lie group, or a compact sym-
metric space of rank 1. Last, in Section 3.4, we present conjectures and partial results on
the Poissonian regime of random geometric graphs drawn on Lie groups. The result that
one expects (Conjecture 3.41) is a convergence in probability of the spectral measures of these
graphs, with the moments of the limit that can be computed by using techniques from asymp-
totic representation theory. This theorem depends on a conjecture on certain functionals of
the dominant weights of the compact Lie groups (Conjecture 3.50). These functionals should
admit a combinatorial description as numbers of integers points in polytopes determined by
certain linear equations.

3.1 Symmetric spaces and non-commutative Fourier
transforms

In this first section, we recall the main results of harmonic analysis on a compact Lie group
or symmetric space:

• Peter–Weyl’s decomposition of the space of square-integrable functions (Theorem
3.2);

• Cartan’s classification of simple simply connected compact Lie groups and symmet-
ric spaces (Theorems 3.6 and 3.8);

• Weyl’s highest weight theorem and the Cartan–Helgason classification of spherical
representations (Theorems 3.9 and 3.11);

• finally, Lusztig–Kashiwara theory of crystal bases, for which we provide Littelmann’s
interpretation using paths in the weight lattice (Theorem 3.15), and the Berenstein–
Zelevinsky description using string polytopes (Propositions 3.19 and 3.20).

This survey does not contain any new result, but its content is required in order to have a full
understanding of the later sections.

B Harmonic analysis on a compact group. Let G be a compact topological group. Recall
that there exists a unique Borel probability measure on G called the Haar measure and denoted
Haar(dg) or simply dg, which is invariant on the left and on the right: if Lh : g 7→ hg and
Rh : g 7→ gh, then (Lh)∗Haar = (Rh)∗Haar = Haar for any h ∈ G (see [Lan93, Chapter
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XII]). The harmonic analysis on G relies on a Fourier transform of the space L 2(G, dg) of
(complex-valued) measurable functions on G that are square-integrable with respect to the
Haar measure. This space L 2(G) is an Hilbert space for the scalar product

〈 f1 | f2〉 =
∫

G
f1(g) f2(g) dg

and a Banach algebra for the convolution product

( f1 ∗ f2)(g) =
∫

G
f1(gh−1) f2(h) dh.

On the other hand, recall that a linear (complex) representation of G is given by a finite-dimens-
ional complex vector space V and by a continuous morphism of groups ρ : G → GL(V) (cf.
[Ser77, Chapter 4]). Then, one can always find an Hermitian scalar product 〈· | ·〉V on V such
that ρ takes its values in the unitary group U(V) with respect to this scalar product. The
action of G on vectors v ∈ V is denoted (ρ(g))(v), or simply g · v. A linear representation
(V, ρ) is called irreducible if one cannot find a vector subspace W with 0 ( W ( V and that is
G-stable, i.e., g · w ∈ W for any g ∈ G and any w ∈ W. If V is a linear representation of G,
then one can always split it into irreducible components:

V =
⊕

λ∈Ĝ

mλVλ,

where Ĝ is the countable set of isomorphism classes of irreducible representations λ =
(Vλ, ρλ) of G, and the coefficients mλ are non-negative integers. Moreover, this decompo-
sition is unique, so the Grothendieck group of isomorphism classes of representations of G
is

R(G) = ZĜ =
⊕

λ∈Ĝ

ZVλ.

Let us now introduce the non-commutative Fourier transform of G:

Definition 3.1 (Non-commutative Fourier transform). Let G be a compact group, and f ∈
L 1(G, dg). The Fourier transform of f is the function f̂ on Ĝ with values in

⊔
λ∈Ĝ EndC(Vλ) and

that is defined by:

f̂ (λ) =
∫

G
f (g) ρλ(g) dg.

If f ∈ L 2(G), then it is convenient to see the Fourier transform f̂ as an element of

L 2(Ĝ) =
⊥⊕

λ∈Ĝ

EndC(Vλ),

where the direct sum is orthogonal and completed to get an Hilbert space. Here, each endo-
morphism space EndC(Vλ) is endowed with the scalar product

〈u | v〉End(Vλ) = dλ tr(u∗v),

where dλ = dimC(Vλ), and where the adjoint u∗ of u is taken with respect to a G-invariant
scalar product on Vλ.

Theorem 3.2 (Peter–Weyl, [PW27]). The map f ∈ L 2(G) 7→ f̂ ∈ L 2(Ĝ) is an isometry of
Hilbert spaces, and an isomorphism of algebras. It is also compatible with the action of G on the left or
the right of L 2(G) and L 2(Ĝ).
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Here, L 2(G) and the spaces EndC(Vλ) are endowed with their natural structures of (G, G)-
bimodules:

((g1, g2) · f )(h) = f (g1hg2) ; (g1, g2) · u = (ρλ(g1)) ◦ u ◦ (ρλ(g2)).

Theorem 3.2 amounts to the properties (0.2) and (0.3) listed in the preface (Parseval’s formula
and convolution formula). The inversion formula (Equation (0.1)) reads in this setting:

f (g) = ∑
λ∈Ĝ

dλ tr
(

f̂−(λ) ρλ(g)
)

,

where f−(g) = f (g−1), and the sum on the right-hand side converges in the Hilbert space
L 2(G). This formula is a generalisation to arbitrary compact groups of the Fourier expansion
of square-integrable functions on the circle:

f (θ) = ∑
n∈Z

cn( f ) einθ, with cn( f ) =
1

2π

∫ 2π

0
f (θ) e−inθ dθ.

There is an extension of Theorem 3.2 to quotients X = G/K of a compact topological group
by a closed subgroup. The most convenient setting for this extension is the one of compact
Gelfand pairs (cf. [CST08]):

Definition 3.3 (Gelfand pair). If G is a compact topological group and K ⊂ G is a closed sub-
group, one says that (G, K) is a compact Gelfand pair if, for any irreducible representation Vλ of G,
the space of fixed vectors

Vλ,K = {v ∈ Vλ | ∀k ∈ K, k · v = v}
has dimension 0 or 1.

Given a compact Gelfand pair (G, K), an irreducible representation Vλ is called spherical if
dimC(Vλ,K) = 1. We denote ĜK the set of spherical representations of the pair (G, K), and if
λ ∈ ĜK, we denote eλ a unit vector in Vλ,K (with respect to a G-invariant scalar product); it is
unique up to multiplication by a scalar of modulus 1.

Definition 3.4 (Spherical Fourier transform). If (G, K) is a compact Gelfand pair, the spherical
Fourier transform of a function f ∈ L 1(G/K) is the function f̃ from ĜK to

⊔
λ∈ĜK Vλ that is defined

by

f̃ (λ) =
√

dλ

(
f̂ (λ)

)
(eλ) =

√
dλ

∫

G
f (g)

(
ρλ(g)

)
(eλ) dg.

If f ∈ L 2(G/K), then it is convenient to see f̃ as an element of L 2(ĜK) =
⊕

λ∈ĜK Vλ. We
endow each spherical representation Vλ with the product

a · b =
1√
dλ

〈
eλ
∣∣∣ b
〉

Vλ
a.

We then have an analogue of the Peter–Weyl theorem 3.2 for compact Gelfand pairs (see
[Hel84, Chapter IV]):

Theorem 3.5 (Cartan). The map f ∈ L 2(G/K) 7→ f̃ ∈ L 2(ĜK) is an isometry of Hilbert
spaces, and an isomorphism of algebras. It is compatible with the left action of G on these spaces, and
one has the spherical Fourier inversion formula:

f (x = gK) = ∑
λ∈ĜK

√
dλ

〈
f̃ (λ)

∣∣∣ (ρλ(g))(eλ)
〉

Vλ
.
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As a particular case of Theorems 3.2 and 3.5, one gets the Fourier expansions of conjugacy-
invariant functions on G and of bi-K-invariant functions on G:

• The irreducible characters
chλ(g) = tr ρλ(g)

form an orthonormal basis of the Hilbert space L 2(G)G of square-integrable func-
tions on G that are invariant by conjugation: f (ghg−1) = f (h) for any g, h ∈ G.
Moreover,

chλ ∗ chµ =
δλ,µ

dλ
chλ.

• Given a compact Gelfand pair (G, K), the zonal spherical functions

zonλ(g) =
√

dλ

〈
eλ
∣∣∣ (ρλ(g))(eλ)

〉
Vλ

form an orthonormal basis of the Hilbert space L 2(K\G/K) of bi-K-invariant func-
tions: f (k1gk2) = f (g) for any k1, k2 ∈ K. Moreover,

zonλ ∗ zonµ =
δλ,µ√

dλ

zonλ.

BCompact Lie groups. In the remainder of this section, we shall make the previous results
explicit in the case where G is a (semi)simple compact Lie group. Recall that a real Lie group
is a smooth manifold G endowed with a product ∇ : G × G → G and with an inversion
i : G → G that are smooth maps, and that make G into a group. One associates to a Lie group
G its Lie algebra g = TeG, which is the tangent space of G at the neutral element e = eG. It is
endowed with the Lie bracket [X, Y] = (ad X)(Y), where

Ad : G → EndR(TeG) ; ad : TeG → EndR(TeG)

g 7→ De(cg) X 7→ (De(Ad))(X)

cg : G → G being the conjugation by g, and De the differential at e. There is an equivalence of
categories between real Lie algebras and simply connected real Lie groups. Thus, any real Lie
algebra g is the Lie algebra of a connected Lie group G, which is unique up to isomorphism if
one assumes G simply connected; see for instance [Kna02, Chapter I, Section 10]. Moreover,
a simply connected Lie group G is compact if and only if the Killing form

B(X, Y) = tr((ad X) ◦ (ad Y))

of its Lie algebra g is negative definite. Cartan’s criterion for semisimplicity [Kna02, Theorem
1.45] implies then that a simply connected compact Lie group can always be written as a
direct product G = G1 × G2 × · · · × Gr, where the Gi’s are simple simply connected compact
Lie group (in short sscc Lie group). Here, by simple we mean a Lie group G whose Lie
algebra g is simple, that is nonabelian and without non-trivial ideal. A classification of all the
simple complex Lie algebras has been given by Cartan [Car33], and it was later related to the
classification of root systems by Dynkin [Dyn47]. For a modern treatment, we refer to [Hel78,
Chapter X] or [Kna02, Chapter II]; other useful references are [BD85; FH91; GW09; Bum13].
In order to present this classification, it is useful to introduce the notions of weights and roots
of G. Given a compact Lie group G, we fix a maximal torus T ⊂ G, that is a connected abelian
subgroup of maximal dimension. A weight of a representation of G on a complex vector space
V is a character χ : T → U(1) such that

V(χ) = {v ∈ V | ∀t ∈ T, t · v = χ(t) v} 6= {0}.
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Let g be the Lie algebra of G, t be the Lie algebra of T, and gC and tC be the corresponding
complex Lie algebras obtained by tensoring by C. The differential at e of a weight χ is a linear
function ω : t → iR, so it can be seen as an element of (tC)∗. With this interpretation, the
weights form a discrete additive subgroup of (tC)∗ (the weight lattice ZΩ), and the evaluation
of a weight ω writes multiplicatively:

χ(eX) = eω(X)

if X ∈ t and ω = Deχ. Any complex linear representation V of G splits into its weight spaces
[Kna02, Proposition 5.4]:

V =
⊕

ω∈ZΩ
V(ω) 6={0}

V(ω).

In the following, we denote RΩ = R⊗Z ZΩ the real vector subspace of (tC)∗ spanned by the
weight lattice. We endow tC with the restriction of the Killing form of gC, (tC)∗ with the dual
of this non-degenerate bilinear form, and RΩ ⊂ (tC)

∗ with the restriction of this dual form.
One can show that this restriction is a positive-definite scalar product on RΩ; in the following
we always use this particular scalar product on elements of the weight space. The Weyl group
W = Norm(T)/T of G is a finite group, and its action on T induces an action by isometries
on RΩ. For any linear representation V of G, the weights of V and their multiplicities are
invariant by action of the Weyl group. We call root of G a non-zero weight of the adjoint
representation of G on its Lie algebra g. All these roots have multiplicity one in the adjoint
representation, and one has the decomposition gC = (

⊕
α∈Φ gC(α)) ⊕ tC, where Φ denotes

the set of roots. This set Φ is a (reduced, crystallographic) root system in RΩ [Kna02, Theorem
2.42], meaning that:

(RS1) The roots span linearly RΩ.

(RS2) If α is a root, the the roots β colinear to α are β = ±α.

(RS3) If α ∈ Φ, then the reflection sα : x 7→ x− 2 〈x |α〉〈α |α〉 α yields a permutation of the roots.

(RS4) If α, β ∈ Φ, then 2 〈α | β〉〈α |α〉 is an integer.

The second condition allows one to split Φ into two sets Φ+ and Φ− = −Φ+. A positive
root α ∈ Φ+ is called simple if it cannot be written as a sum of two other positive roots.
The Weyl group W is a Coxeter group generated by the reflections sα with α simple root
[Bum13, Theorem 18.3]. The geometry of the root system Φ is classically encoded by the
Dynkin diagram of the simple roots (see [Hel78, Section X.3.3]), and one has the following
classification:

Theorem 3.6 (Cartan’s classification of sscc Lie groups). If G is a sscc Lie group, then G falls
into one of the following infinite families:

• type An≥1: special unitary group SU(n + 1), with Dynkin diagram
· · ·

1 2 3 4 n
;

• type Bn≥2: odd spin group Spin(2n + 1), with Dynkin diagram
· · ·

1 2 3 n− 1 n
;
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• type Cn≥3: compact symplectic group USp(n), with Dynkin diagram
· · ·

1 2 3 n− 1 n
;

• type Dn≥4: even spin group Spin(2n), with Dynkin diagram

· · ·
1 2 3 n− 2

n− 1

n
;

or, it is one of the five exceptional compact Lie groups associated to the root systems E6, E7, E8, F4 or
G2:

E6:
1 2 3 4 5

6

E7:
1 2 3 4 5 6

7

E8:
1 2 3 4 5 6 7

8

F4:
1 12 23 4

G2: .

Given a sscc Lie group, since the Killing form B(·, ·) on g is negative definite, its opposite
defines a scalar product on TeG, which can be transported to all the other tangent spaces TgG
by using the action of the group. We thus obtain a left G-invariant Riemannian structure on
G, which is also right G-invariant since B is (Ad G)-invariant. This is the standard structure
of Riemannian manifold on a compact Lie group, and in the classical cases An, Bn, Cn, and
Dn, the opposite of the Killing form is a multiple of

〈X | Y〉g = −Re(tr(XY)),

the real part being only needed in type Cn. Depending on the applications, it is convenient
to use certain renormalisations of this scalar product, and the corresponding Riemannian
structures. For instance, in random matrix theory, a common choice is

〈X | Y〉g = −
βn
2

Re(tr(XY)), (3.1)

where n is the size of the matrices considered, and β = 1, 2 or 4 for real, complex or quater-
nionic matrices.

B Symmetric spaces. The sscc Lie groups belong to a larger class of compact Riemannian
manifolds called symmetric spaces:

Definition 3.7 (Symmetric space). A (globally) symmetric space is a complete Riemannian man-
ifold X with the following property: for any x ∈ X, there exists a (unique) isometry ix : X → X such
that, if t 7→ γ(t) is a geodesic with constant speed and with γ(0) = x, then ix(γ(t)) = γ(−t).

Intuitively, a symmetric space is a Riemannian manifold where geodesics are nicely ar-
ranged in a symmetric way around any point, see Figure 3.1. Given a compact symmetric
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non-symmetric space

γ2(t2)γ1(t1)

γ1(−t1)γ2(−t2)

γ2(t2)

γ1(t1)

γ1(−t1)

γ2(−t2)

symmetric space

Figure 3.1. Geodesics on a symmetric space.

space X, its universal cover X̃ is again a symmetric space, and the cover map π : X̃ → X has
finite degree. On the other hand, any simply connected compact symmetric space is isometric
to a product of simple simply connected compact symmetric spaces (in short ssccss), which
cannot be split further. A classification of all the ssccss has been proposed by Cartan [Car27]:

Theorem 3.8 (Cartan’s classification of ssccss). Let X be a ssccss. The connected component
G of the identity in Isom(X) is a compact Lie group, and there exists an involutive automorphism
σ : G → G such that X = G/K and

Gσ,0 ⊂ K ⊂ Gσ,
where Gσ = {g ∈ G | σ(g) = g} and Gσ,0 is the connected component of the identity in this subgroup
of G. Moreover, (G, K) forms a compact Gelfand pair, and X is one of the following objects:

(1) group type: X = K is a sscc Lie group classified by Theorem 3.6, G = K×K and σ(k1, k2) =
(k2, k1) (and X is the diagonal subgroup).

(2) non-group type: X falls into one of the following infinite families:

• real Grassmannians: SO(p + q)/(SO(p)× SO(q);

• complex Grassmannians: SU(p + q)/(S(U(p)×U(q)));

• quaternionic Grassmannians: USp(p + q)/(USp(p)×USp(q));

• space of real structures on a complex space: SU(n)/SO(n);

• space of quaternionic structures on an even complex space: SU(2n)/USp(n);

• space of complex structures on a quaternionic space: USp(n)/U(n);

• space of complex structures on an even real space: SO(2n)/U(n);

or, it is one of the twelve exceptional sscc symmetric spaces that write as quotients of one of
the five exceptional compact Lie groups (all of them being related to the geometry of octonions,
see [Bae02]).

Given a symmetric quotient X = G/K as in Theorem 3.8, the tangent space of X at eGK can
be identified with the orthogonal p of k in g with respect to the Killing form. The restriction
of the opposite Killing form to p can then be transported to any other tangent space TxX by
using the action of G, and one thus gets a G-invariant Riemannian structure on X, which is
up to a scalar multiple its structure of Riemannian symmetric space. As in the group case,
if X falls into one of the seven infinite families of symmetric spaces of non-group type, then
it is sometimes convenient to rescale the distances and work with another renormalisation
of the scalar product on p, for instance the one given by Equation (3.1). As explained in the
introduction of the chapter, a general objective consists in studying random objects drawn on
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a ssccss, by using the non-commutative Fourier transform if X = G is a Lie group, and the
spherical Fourier transform if X = G/K is a symmetric space of type non-group.

B Irreducible and spherical representations. Given a ssccss, we now make explicit the
set Ĝ in the group case, and the set ĜK in the non-group case. The positive roots α ∈ Φ+

determine in RΩ a cone

C = {x ∈ RΩ | ∀α ∈ Φ+, 〈α | x〉 ≥ 0}
called the fundamental Weyl chamber, and which is a fundamental domain for the action of
the Weyl group W. This cone determines a partial order on the set of weights:

ω1 ≤ ω2 ⇐⇒ ω2 −ω1 ∈ C.

A weight is called dominant if it belongs to C.

Theorem 3.9 (Weyl’s highest weight theorem, [Wey25; Wey26; Wey32]). The representations
of a sscc Lie group G are completely reducible, and there is an equivalence of categories between the
representations of G and those of the complexified Lie algebra gC. Given an irreducible complex linear
representation V of G, it admits a unique highest weight λ, which is dominant. This highest weight
determines the isomorphism class of V, so

Ĝ = C ∩ZΩ

is in bijection with the set of dominant weights.

Example 3.10 (Representation theory of SU(3)). Consider the group G = SU(3). A maxi-
mal torus is T = {diag(z1, z2, z3) | |zi| = 1 and z1z2z3 = 1}, and a basis of the weight lattice
consists in the two fundamental weights ω1 and ω2 with eω1(z) = z1 and eω2(z) = (z3)

−1.
The positive roots are α1 = 2ω1 − ω2, α2 = 2ω2 − ω1 and α1 + α2. The dominant weights,
which label the irreducible representations of SU(3), are the linear combinations n1ω1 + n2ω2
with n1, n2 ∈N, see Figure 3.2. The Weyl group is W = S(3).

C

0

α1

α2

ω1

ω2

Figure 3.2. The weight lattice of the group SU(3).

The highest weight theorem is completed by a formula for the character chλ of the module
Vλ with highest weight λ. Every element g ∈ G is conjugated to an element t of the maximal
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torus, which is unique up to action of the Weyl group W; hence, it suffices to give a formula
for chλ(t) with t ∈ T. This formula is

chλ(t) = ∑w∈W ε(w) eλ+ρ(w(t))
∑w∈W ε(w) eρ(w(t))

,

where ρ = 1
2 ∑α∈Φ+

α [Bum13, Chapter 22]. Specializing to t = e, one gets Weyl’s dimension
formula:

dimC

(
Vλ
)
=

∏α∈Φ+
〈λ + ρ | α〉

∏α∈Φ+
〈ρ | α〉 .

Consider now a symmetric space of non-group type X = G/K. The identification of the
spherical irreducible representations of the pair (G, K) is due to Cartan; the first rigorous
proofs of this rule are due to Helgason and Satake, see [Sat60; Sug62; Hel70; Hel84]. The
precise hypotheses (H1) and (H2) of this rule are quite subtle, and as mentioned in the intro-
duction of the chapter, it is a bit difficult to find them written in a concise way in the literature.
Let σ be the Cartan automorphism associated to a ssccss X = G/K, such that K is an open
subgroup of Gσ; we denote P = {g ∈ G | σ(g) = g−1}.

(H1) The maximal torus T in G is chosen so that A = T ∩ P is a maximal torus inside P: it
is always possible to do so, up to conjugation of T (or, up to conjugation of K and of
the Cartan automorphism σ).

We then set S = T ∩ K; it is always a product of a subtorus of T by an elementary abelian 2-
group. At the level of Lie algebras, the hypothesis (H1) is equivalent to the fact that a = t∩ p
is a maximal abelian subalgebra of p.

(H2) The decomposition of the set of roots Φ into positive and negative roots is such that,
for a ∈ a, the set of inequalities

∀α ∈ Φ+, α(ia) ≥ 0

determine a non-degenerate cone in ia (the R+-span of a linear basis of ia).

The maximal torus T being chosen according to (H1), there always exists a specific choice of
positive and negative roots that ensures that (H2) is also satisfied; see [GW09, Section 12.3]
for details.

Theorem 3.11 (Cartan–Helgason). Consider a ssccss X = G/K of type non-group. Under the
hypotheses (H1) and (H2), a dominant weight λ ∈ Ĝ is spherical (hence, in ĜK) if and only if, viewed
as a morphism T → U(1), it is trivial on S:

∀s ∈ S, (eλ)(s) = 1.

Moreover, one can always find a sublattice L ⊂ ZΩ such that ĜK = C ∩ L, and the rank of this
sublattice corresponds to the geometric rank of the symmetric space (maximal dimension of a flat totally
geodesic submanifold).

Example 3.12 (Spherical representations for the complex projective plane). Consider the
complex projective plane CP2 = G/K, with G = SU(3) and K = S(U(2)×U(1)). A Cartan
automorphism that determines a subgroup Gσ isomorphic to K is

σ(g) = NgN with N =




0 0 1
0 1 0
1 0 0


 .
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Then,

T ∩ P = {diag(z1, 1, (z1)
−1) | |z1| = 1};

T ∩ K = {diag(z1, (z1)
−2, z1) | |z1| = 1}.

One can check that Hypotheses (H1) and (H2) are satisfied. The dominant weights that are
trivial on S are the multiples of the spherical weight eρ(t) = eω1+ω2(t) = t1(t3)

−1, so by
Theorem 3.11, ĜK = Nρ, see Figure 3.3.

�

�
ĜK

C

0 ω1

ω2

Figure 3.3. The spherical weights for the symmetric space CP2.

B Crystals, Littelmann paths and string polytopes. The harmonic analysis of the spaces
L 2(G)G and L 2(K\G/K) is entirely solved by the previous results. Hence, these results
enable the study of random objects drawn on a compact symmetric space, under an addi-
tional symmetry condition (invariance by conjugation in the group case, and bi-K-invariance
in the non-group case). Unfortunately, this additional symmetry is easily broken, and for
many calculations, a better understanding of the weight distribution of a representation of
G is required. The modern point of view on this problem is the theory of crystal bases; we
summarise it hereafter, trying to make it as concrete as possible. We shall see in Section 3.4
that the study of random geometric graphs on Lie groups leads to some conjectures related to
the crystals of representations. Until the end of this section, G is a fixed sscc Lie group, g is its
Lie algebra, and d is the rank of G (dimension of the maximal torus). The set of simple roots
of G is denoted (αi)i∈[[1,d]]. This is a linear basis of RΩ, and we denote (α∨i )i∈[[1,d]] the basis of
simple coroots in (RΩ)∗, defined by the relations

∀i, j ∈ [[1, d]] , αi(α
∨
j ) = 2

〈
αi
∣∣ αj
〉

〈
αj
∣∣ αj
〉 .

The elements of the dual basis (ωi)i∈[[1,d]] of the basis of coroots (α∨i )i∈[[1,d]] are the fundamental
weights, such that ZΩ = SpanZ(ω1, . . . , ωd).

→ Crystals. Let Uq(gC) be the quantum group of the complexification gC of the Lie algebra
g; it is a deformation with a complex parameter q of the universal enveloping algebra U(gC),
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see [Jim85; Jim86]. There is a corresponding deformation Vλ
q of the irreducible module Vλ,

and a notion of weight vectors in Vλ
q , such that if

Vλ
q =

⊕

ω∈ZΩ
Vλ

q (ω) 6=0

Vλ
q (ω),

then the weights and the multiplicities are the same for Vλ and for Vλ
q :

∀ω ∈ ZΩ, dimC

(
Vλ

q (ω)
)
= dimC

(
Vλ(ω)

)
.

This is the Lusztig–Rosso correspondence, see the original papers [Lus88; Ros88; Ros90], and
[Mél17, Chapter 5] for a detailed exposition of the case g = gl(n). The correspondence holds
for any q that is not 0 or a root of unity.

Definition 3.13 (Crystal basis and crystal of a representation). A crystal basis of the irre-
ducible representation Vλ

q is a linear basis C(λ) of Vλ
q that consists of weight vectors, and such that

if (ei, fi, qhi)i∈[[1,d]] are the Chevalley generators of Uq(gC), then for any vector v of the crystal basis,
ei · v is either 0 or another vector v′ of the crystal basis; and similarly for fi · v. The crystal of Vλ

q is
the weighted labeled oriented graph:

• with vertices v ∈ C(λ),

• with labeled oriented edges v→ fi v′ if v′ = fi · v,

• with a weight map wt(·) that associates to v ∈ C(λ) the corresponding weight in ZΩ.

Theorem 3.14 (Lusztig–Kashiwara, [Lus90; Kas90]). Let gC be a semisimple complex Lie alge-
bra, and λ a dominant weight. There exists a crystal basis C(λ) of the irreducible module Vλ, and the
combinatorial structure of the corresponding weighted labeled oriented graph does not depend on q or
on the choice of a crystal basis.

If one knows the crystal C(λ)of an irreducible representation Vλ, then one recovers imme-
diately the highest weight of the representation, and all the multiplicities of the weights: for
any ω ∈ ZΩ,

dimC

(
Vλ(ω)

)
= card{v ∈ C(λ) | v has weight ω}.

→ Paths. There is a concrete description of the crystal C(λ) due to Littelmann, see [Lit95;
Lit98b], and [BBO05; BBO09] for applications of this path model in probability. We call path
on the weight space RΩ a piecewise linear map π : [0, 1] → RΩ starting at 0, and such that
π(1) belongs to the weight lattice ZΩ. We identify two paths if they differ by a continuous
reparametrisation. The set of paths is a semigroup for the operation of concatenation:

(π1 ∗ π2)(t) =

{
π1(2t) if t ∈ [0, 1

2 ],
π1(1) + π2(2t− 1) if t ∈ [1

2 , 1].

Fix a simple root α. Given a path π, we set gα(π, t) = π(t)(α∨) = 2 〈π(t) |α〉
〈α |α〉 ; this is a piecewise

linear function on [0, 1]. Suppose

mα = min
t∈[0,1]

gα(π, t) ≤ −1.

We cut the path π in parts π0, π1, . . . , π`, π`+1 such that π = π0 ∗ π1 ∗ · · · ∗ π` ∗ π`+1 and:
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(0) π0 ∗ π1 ∗ · · · ∗ π` ends at a point with a value of gα minimal, and it is the smallest
part of the whole path π with this property; and then π0 is the largest part of the path
π0 ∗ π1 ∗ · · · ∗ π` that ends with a value of gα equal to mα + 1.

(1) either gα(π) is strictly decreasing on the interval [ti−1, ti] corresponding to the part
πi, and gα(π, s) ≥ gα(π, ti−1) for s ≤ ti−1; in other words, gα(π) is minimal on the
segment [ti−1, ti].

(2) or, gα(π, ti−1) = gα(π, ti) and gα(π, s) ≥ gα(π, ti−1) for s ∈ [ti−1, ti].

0

α1

π0

π1

π2

π3

π4

mα
1

Figure 3.4. The decomposition of a path in the weight lattice of SU(3).

This decomposition is better understood in a picture, see Figure 3.4 for an example on the
weight lattice of type A2. Denote sα the reflection with respect to the root α, that is the map
x 7→ x− 2 〈x |α〉〈α |α〉 α. For j ∈ [[1, `]], we define

π′j =

{
sα(πj) if πj is of type (1),
πj if πj is of type (2).

We then set

eα(π) =

{
∅ if mα > −1,
π0 ∗ (π′1 ∗ π′2 ∗ · · · ∗ π′`) ∗ π`+1 if mα ≤ −1,

and fα(π) = c ◦ eα ◦ c(π), where c is the map on paths defined by (c(π))(t) = π(1− t)−π(1).
Here, ∅ is a "ghost" path. An example of action of a root operator eα is drawn in Figure 3.5.

Theorem 3.15 (Littelmann). Let λ be a dominant weight in Ĝ, and πλ be the segment that con-
nects 0 to λ, considered as a path. We introduce the weighted labeled oriented graph:

• with vertices the paths π = fαi1
fαi2
· · · fαir

(πλ) that are not the ghost path ∅, and that are
obtained from πλ by applying operators fαi ;

• with an oriented labeled edge π → fi π′ if π′ = fαi(π);

• with the weight map wt : π 7→ π(1).
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0

α1

π0

π′1

π′2

π′3

π4

Figure 3.5. The action of e1 = eα1 on the path of Figure 3.4.

The crystal C(πλ) that one obtains is finite, and it is isomorphic to the crystal C(λ) of the irreducible
representation Vλ. In particular,

dimC

(
Vλ(ω)

)
= card{paths in the crystal C(πλ) with endpoint ω},

and the character chλ is given by the formula chλ = ∑π∈C(πλ)
ewt(π). Moreover, one can take instead

of πλ any path from 0 to λ that stays in the Weyl chamber: all these paths span the same crystal C(λ).

Example 3.16 (Crystal of the adjoint representation of SU(3)). Consider the adjoint repre-
sentation of SU(3) on su(3), which has dimension 8. The highest weight of this representation
is λ = ρ = ω1 + ω2, and the crystal C(λ) is drawn in Figure 3.6.

C

λ
f1

f2f1
f1f2

f2

f2

f1

Figure 3.6. The crystal of the adjoint representation of SU(3), viewed as a set of
paths.

Suppose that one needs to compute the moments of some random variables stemming
from random objects drawn on G, and that one uses to this purpose harmonic analysis on G.
One then often needs to calculate tensor products of irreducible representations, and the path
model is particularly useful in this setting [Lit98b, Proposition 2 and Corollary 1]:
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Proposition 3.17 (Tensor product of crystals). Fix two dominant weights λ and µ, and consider
the tensor product

Vλ ⊗Vµ = ∑
ν∈Ĝ

cλ,µ
ν Vν.

The concatenation product of crystals C(πλ) ∗ C(πµ) is a set of paths such that the action of the root
operators on these paths generate a crystal whose connected components are isomorphic to the elements
of the multiset {

(C(πν))
cλ,µ

ν , ν ∈ Ĝ
}

.

In particular, the Littlewood–Richardson coefficient cλ,µ
ν is equal to the number of paths π ∈ C(πµ)

such that πλ ∗ π always stays in the Weyl chamber C, and πλ ∗ π ends at the dominant weight ν.

→ Polytopes. The previous paragraph has shown how to interpret the Kostka numbers Kλ
ω =

dimC(Vλ(ω)) and the Littlewood–Richardson coefficients cλ,µ
ν as certain numbers of paths in

the weight lattice. If one is interested in the asymptotics of these quantities as the weights
λ, µ, . . . grow to infinity, instead of the path description of the crystal C(λ), it is more con-
venient to deal with a polyhedral description, which first appeared in works of Berenstein,
Littelmann, Nakashima and Zelevinsky [BZ93; BZ96; NZ97; Lit98a; BZ01]. In this paragraph,
we fix a dominant weight λ, and a decomposition of the longest element w0 of the Weyl group
as a product of reflections sαi along the walls of the Weyl chamber C:

w0 = sαi1
sαi2
· · · sαil

, with l = card Φ+.

If v is an element of the crystal C(λ), we call string parametrisation of v the vector of integers
(n1, n2, . . . , nl) ∈Nr such that:

• n1 is the maximal integer such that en1
αi1
(v) 6= 0;

• n2 is the maximal integer such that en2
αi2

en1
αi1
(v) 6= 0;

• if n1, . . . , ns−1 are known, then ns is the maximal integer such that ens
αis
· · · en1

αi1
(v) 6= 0.

Example 3.18 (String parametrisation of a SU(3)-crystal). For SU(3), we fix the decom-
position s1s2s1 of the longest element w0 of the Weyl group W = S(3). Then, the string
parametrisation of the crystal graph of the adjoint representation appears in Figure 3.7.

(0,0,0)

(0,1,0)

(1,0,0)

(1,1,0)

(0,1,1)

(2,1,0)

(0,2,1)

(1,2,1)

f1

f2f1

f1
f2

f2

f2

f1

Figure 3.7. String parametrisation of the elements of the crystal of the adjoint
representation of SU(3).



84 3.1. Symmetric spaces and non-commutative Fourier transforms.

Given a vertex v ∈ C(λ) with string parametrisation (n1, . . . , nl), one has

v = f n1
αi1

f n2
αi2
· · · f nl

αil
(vλ),

where vλ is the unique element of the crystal with weight λ. As a consequence,

wt(v) = λ−
l

∑
j=1

nj αij .

We denote S (λ) the set of all string parametrisations of elements of the crystal C(λ), and
S (G) =

⋃
λ∈Ĝ S (λ). We also denote SC (G) the string cone of G, that is the real cone (set

of non-negative linear combinations) spanned by the elements of S (G). Finally, for λ ∈ Ĝ,
let P(λ) be the string polytope of λ: it is the set of elements (u1, . . . , ul) in the string cone and
such that

ul ≤ λ(α∨il );

ul−1 ≤ (λ− ulαil)(α
∨
il−1

);

ul−2 ≤ (λ− ulαil − ul−1αil−1)(α
∨
il−2

);
...

...

u1 ≤ (λ− ulαil − · · · − u2αi2)(α
∨
i1).

Proposition 3.19 (Littelmann). The string cone SC (G) is a rational convex cone delimited by
a finite number of hyperplanes in Rl. The string parametrisations in S (G) are the integer points of
the string cone SC (G), and the string parametrisations in S (λ) are the integer points of the string
polytope P(λ).

The string polytope P(λ) has maximal dimension l as long as λ does not belong to the walls
of the Weyl chamber. On the other hand, an explicit description of the string cone is given
in [BZ01, Theorem 3.10]. A trail from a weight φ to another weight π of an (irreducible)
representation V of gC is a sequence of weights φ = φ0, φ1, . . . , φl = π of V such that:

(1) φj−1 − φj = k j αij for any j ∈ [[1, l]], with the k j’s non-negative integers;

(2) ek1
i1

ek2
i2
· · · ekl

il
is a non-negative linear map from V(π) to V(φ).

The trails are simply the images by the weight map of the directed paths on the crystal graph.

Proposition 3.20 (Berenstein–Zelevinsky). Let LgC be the dual Langlands Lie algebra of the
complexified Lie algebra gC of a sscc Lie group G; it is the Lie algebra obtained from gC by exchanging
roots and coroots, respectively weights and coweights. The string cone SC (G) consists in all the
sequences (x1, x2, . . . , xl) ∈ (R+)l such that, for any i ∈ [[1, d]] and any trail (φ∨0 , φ∨1 , . . . , φ∨l ) from
ω∨i to w0si(ω

∨
i ) in the fundamental representation Vω∨i of LgC,

l

∑
j=1

xj αij

(
φ∨j−1 + φ∨j

2

)
≥ 0.

Example 3.21 (String cone and string polytope of a representation of SU(3)). For G =
SU(3), the string cone is the set of triples (x, y, z) ∈ (R+)3 such that y ≥ z; see [Lit98a,
Corollary 2]. The string polytope of the adjoint representation with highest weight λ = ω1 +
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ω2 is then the subset of the string cone:

P(ω1 + ω2) = {(x, y, z) ∈ (R+)
3 | z ≤ 1, z ≤ y ≤ 1 + z, x ≤ 1− 2z + y}.

This polytope is drawn in Figure 3.8, and one can check that it contains eight integer points.
2

x

y

z

Figure 3.8. The string polytope of the adjoint representation of SU(3).

Propositions 3.19 and 3.20 show that the combinatorics of the representations of a sscc Lie
group can often be restated in terms of numbers of integer points in a polyhedral domain.
For instance, if λ is a dominant weight and if ω is a weight, then the Kostka number Kλ

ω is the
number of integer points (x1, x2, . . . , xl) in the string polytope P(λ) such that

λ−
l

∑
j=1

xj αij = ω.

Moreover, the equations determining the string polytope P(λ) are homogeneous in λ, which
allows one to prove asymptotic results. For instance, by using the fact that the image of
the Lebesgue measure on a compact polytope by an affine map is a piecewise polynomial
measure which is also compactly supported by a polytope, one shows readily (see [BBO09,
§5.3] and [Mél18, Proposition 5.18]):

Proposition 3.22 (Asymptotics of Kostka numbers). Fix a direction x in the Weyl chamber
C ⊂ RΩ, and a continuous bounded function f on RΩ. We assume that x does not belong to the
walls of the Weyl chamber. Then, there exists a probability measure mx(y) dy on RΩ that is supported
by Conv({w(x) |w ∈W}), that has a piecewise polynomial density mx, and such that

lim
t→∞
tx∈Ĝ

(
∏α∈Φ+

〈ρ | α〉
tl ∏α∈Φ+

〈x | α〉 ∑
ω∈ZΩ

Ktx
ω f

(ω

t

))
=
∫

Conv(W(x))
f (y)mx(y) dy.

The local degree of y 7→ mx(y) is bounded by l − d = |Φ+| − rank(G), and one has the scaling
property

mγx(γy) =
mx(y)

γd .
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The probability measure mx(y) dy is a version of the Duistermaat–Heckman measure. Here,
dy is the Lebesgue measure with respect to the scalar product on RΩ associated to the Killing
form. Informally, Proposition 3.22 can be restated as

Ktx
ty ' tl−d

(
∏

α∈Φ+

〈x | α〉
〈ρ | α〉

)
mx(y)

√
det RG 1t(x−y)∈R, (3.2)

where RG = (
〈
αi
∣∣ αj
〉
)1≤i,j≤d, and

√
det RG is the volume of a fundamental domain of the root

lattice R = SpanZ(α1, . . . , αd) of G. There are similar results for the Littlewood–Richardson
coefficients, which we shall give in Section 3.4 (see Proposition 3.48). Moreover, a polyhedral
description of more general structure coefficients of the representations of G is conjectured,
and conditionally to this conjecture, we shall be able to describe the asymptotic behavior of
Poissonian random geometric graphs, see Conjectures 3.41 and 3.50 and the corresponding
discussion.

3.2 Cut-off phenomenon for Brownian motions
Let X be a fixed sscc symmetric space that is either a classical compact Lie group in one

of the four infinite families of Theorem 3.6, or a quotient in one the seven infinite families
described in Theorem 3.8. Thus, we exclude the case of the five exceptional compact Lie
groups and of the twelve exceptional quotients. In the case of the spin groups, we shall
actually state our results for the special orthogonal groups, which are covered twice by the
corresponding spin groups; it is easy to deduce one case from the other case, see Remark 3.32.
If X = G is of group type, then we endow X with its Riemannian structure corresponding
to the normalisation (3.1). If X = G/K is of non-group type, then we endow X with the
Riemannian structure corresponding to the restriction to p = k⊥ of the scalar product on g
given again by Equation (3.1).

B Brownian motions and their asymptotic behavior. We are interested in the behavior of
a Brownian motion (Bt)t≥0 drawn on X and started from eG in the group case, and from eGK in
the non-group case. This is the continuous Feller process on X whose infinitesimal generator
restricted to the space of twice differentiable functions is 1

2 ∆, where ∆ is the Laplace–Beltrami
operator. This random process is unique in law, and for any t > 0, the random variable Bt has
a smooth density pt(x) dx with respect to the Haar measure of the ssccss. We refer to [Lia04b]
for details on the construction of these processes; it suffices to deal with the group case, be-
cause the projection on X = G/K of a Brownian motion on the sscc Lie group G is a Brownian
motion on X. The Brownian motions on compact matrix groups can be written as solutions
of certain stochastic differential equations, and also as translation-invariant continuous Lévy
processes. As t goes to infinity, the law µt of Bt converges to the uniform probability mea-
sure on X, and the density pt(x) = dµt(x)/dx converges uniformly to 1; this is actually true
for more general hypo-elliptic diffusion processes, see [Lia04a] and [Lia04b, Chapter 4]. This
raises the question of the speed of convergence, which can be measured thanks to the total
variation distance:

dTV(µt, Haar) = sup
A⊂X
|P[Bt ∈ A]−Haar(A)| = 1

2

∫

X
|pt(x)− 1| dx.

It was well known since the works of Diaconis [DS81; AD86; BD92; Dia96] that random walks
on groups can exhibit a cut-off phenomenon, meaning that the total variation distance between
the marginal law and the stationary measure goes from 1 to 0 in a very short window of time.
In [Mél14b, Theorem 6], we proved an analogue result for Brownian motions on ssccss:
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Theorem 3.23 (Cut-off times of Brownian motions). Let (µt)t≥0 be the family of marginal laws
of the Brownian motion traced on a ssccss X of size n. There exist positive constants α, γa, γb, c, C such
that

∀ε ∈ (0, 1/4), dTV(µt, Haar) ≥ 1− c
nγbε

if t = α (1− ε) log n; (3.3)

∀ε ∈ (0, ∞), dTV(µt, Haar) ≤ C
nγaε/4 if t = α (1 + ε) log n. (3.4)

These constants only depend on the type of the ssccss that is considered. Assuming n ≥ 10, we can
take the following constants:

X β α γb γa c C
SO(n) 1 2 2 2 36 6
SU(n) 2 2 2 4 8 10

USp(n) 4 2 2 2 5 3
Gr(n, q, R) 1 1 1 1 32 2
Gr(n, q, C) 2 1 1 2 32 2
Gr(n, q, H) 4 1 1 1 16 2

SO(2n)/U(n) 1 1 2 1 8 2
SU(n)/SO(n) 2 1 2 2 24 8

SU(2n)/USp(n) 2 1 2 2 22 8
USp(n)/U(n) 4 1 2 1 17 2

where Gr(n, q, F) is the Grassmannian of q-dimensional vector subspaces in Fn, with F ∈ {R, C, H}.
Thus, the convergence to the stationary measure occurs at a very specific time α log n, with

α = 2 in the group case and α = 1 in the non-group case; see Figure 3.9. One can also show
that the other L p-distances ‖pt− 1‖L p(X) with p ∈ (1,+∞) have a cut-off at the same time as
the L 1-distance, and that the L ∞-distance has a cut-off at twice this time [Mél14b, Theorem
7]; this extension relied on previous results of Chen and Saloff-Coste [Sal94; Sal04; CS08].

1

0

dTV(µt, Haar)

t
α log n

Figure 3.9. Total variation distance between µt and the Haar distribution on a
ssccss of size n.

B Upper bound and eigenvalues of the kernel. The method of proof of Theorem 3.23
can theoretically be adapted to many other cases, so let us detail it a bit. To obtain the upper
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bound (3.4), one can use the Cauchy–Schwarz inequality and the isometric properties of the
non-commutative Fourier transform (Theorems 3.2 and 3.5). Thus, in the group case,

(dTV(µt, Haar))2 =
1
4

(
‖pt − 1‖L 1(G)

)2
≤ 1

4

(
‖pt − 1‖L 2(G)

)2

≤ 1
4 ∑

λ∈Ĝ
λ 6=0

dλ tr(( p̂t(λ))
∗( p̂t(λ))) =

1
4 ∑

λ∈Ĝ
λ 6=0

∣∣∣∣
∫

G
chλ(g) pt(g) dg

∣∣∣∣
2

.

Similarly, in the non-group case, one has the inequality

(dTV(µt, Haar))2 ≤ 1
4 ∑

λ∈ĜK

λ 6=0

∣∣∣∣
∫

X
zonλ(x) pt(x) dx

∣∣∣∣
2

,

where zonλ is the zonal spherical function of label λ. It turns out that one can compute exactly
the terms of these series:

f (λ) =

{
(dλ)

2 e−aλt in the group case,
dλ e−aλt in the non-group case

with positive constants aλ which are polynomials of degree 2 in the coordinates of the dom-
inant weights λ. Moreover, at time t = tcut-off = α log n, each individual term f (λ) is uni-
formly bounded (independently of λ and of n). When t = α (1 + ε) log n, one can then com-
pare the total variation distance with what is essentially the generating series of non-empty
integer partitions:

∑
λ∈Y
λ 6=0

n−ε|λ| = O(n−ε).

This explains the decay of the total variation distance after cut-off time, and this approach
is general in the following sense. Suppose that one wants to compute the speed of conver-
gence of a Markov process on a space X, and that the kernel of this process is associated
to compact operators on the space L 2(X, µ), µ being a reference measure (for instance, the
stationary measure of the Markov process). Then, a careful estimation of the eigenvalues of
these operators usually provides the time to stationarity, or at least an upper bound. Thus, if
the eigenvalues of the convolution by the law µt of the random process are {eλ(t), λ ∈ Λ},
with each eigenvalue eλ(t) that has multiplicity mλ, then the time to stationarity is usually
obtained by solving the equation

mλ eλ(t) ≈ 1
for any λ ∈ Λ.

B Lower bound and discriminating functions. Before cut-off time, in order to prove the
lower bound (3.3), the idea is to find discriminating functions whose values are close to 0 on an
Haar distributed element of X, and close to a different value when evaluated on a Brownian
motion at time t < tcut-off. These discriminating functions are the irreducible characters or the
zonal spherical functions associated to the dominant weights λ = λmin that yield the smallest
constants aλ:

X discriminating representation Vλmin

SO(n) Cn

SU(n) Cn

USp(n) C2n
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X discriminating representation Vλmin

Gr(n, q, R) so⊥(n, C) ⊂ sl(n, C)
Gr(n, q, C) sl(n, C)
Gr(n, q, H) sp⊥(2n, C) ⊂ sl(2n, C)

SO(2n)/U(n) A2(C2n)
SU(n)/SO(n) S2(Cn)

SU(2n)/USp(n) A2(C2n)
USp(n)/U(n) S2(C2n)

For instance, when X = SU(n), the discriminating function is just the trace of a random ma-
trix. Under the Haar measure, it is a complex random variable with mean 0 and E[|tr M|2] =
1. On the other hand, under the Brownian measure µt, it is a complex random variable with
mean

n e−
t
2

(
1− 1

n2

)

and variance smaller than 1. Therefore, as long as t ≤ 2 log n, the trace of a unitary Brownian
random matrix stays with high probability far from 0, whereas the trace of a Haar distributed
unitary random matrix stays close to 0 (Figure 3.10).

!5

0

5

10

15
!5

0

5

Figure 3.10. Densities of the trace of a random unitary matrix under the Haar
measure (left peak) and under the Brownian measure before cut-off time (right
peak).

This can be made rigorous by using the Bienaymé–Chebyshev inequality and by comput-
ing the two first moments of the discriminating function. In the non-group case, this requires
to compute squares of zonal spherical functions, and this was done by relating this calcula-
tion to certain stochastic differential equations, and by a brute-force computation. Again, the
use of discriminating functions is a general approach if one wants to find a lower bound for
the time to stationarity of a random process.
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3.3 Spectra of random geometric graphs
In the two last sections of this chapter, we study random graphs drawn on a fixed ssccss.

By graph, we mean here a simple unoriented graph without loop or multiple edge, hence a
pair Γ = (V, E) with E subset of the set of pairs {v, w} with v 6= w and v, w ∈ V. The size of
a graph Γ is the cardinality N = |V| of its vertex set, and the adjacency matrix is the matrix AΓ
of size N × N, with rows and columns labeled by the vertices of Γ, and with coefficients

AΓ(v, w) =

{
1 if {v, w} ∈ E,
0 otherwise.

In particular, the diagonal coefficients of the adjacency matrix of a simple graph are equal to
zero.

1

2

3

4

5

6

7

8

AΓ =




0 1 0 0 0 0 0 0
1 0 1 0 1 1 0 0
0 1 0 1 0 0 0 0
0 0 1 0 1 0 0 0
0 1 0 1 0 1 0 0
0 1 0 0 1 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0




-3 -2 -1 0 1 2 3

Figure 3.11. A (simple, unoriented) graph, its adjacency matrix and its spectrum.

The spectrum Spec(Γ) of a graph Γ consists of the N real eigenvalues e1 ≥ e2 ≥ · · · ≥ eN
of the symmetric matrix AΓ (see Figure 3.11). The knowledge of the spectrum yields many
informations on the geometry of the graph [Chu97; GR01]: mean and maximal number of
neighbors of a vertex; chromatic number; number of edges, triangles, spanning trees; expan-
sion properties, Cheeger constant; etc. The purpose of the last sections of this memoir is to
study the asymptotic properties of the spectra of certain random graphs defined by a geomet-
ric condition on a compact symmetric space. Most of the results hereafter appear with more
details in the preprint [Mél18].

B Random geometric graphs. Let (X, d, µ) be a compact metric space endowed with a
Borel probability measure µ. We fix a level L > 0 and an integer N ≥ 1.

Definition 3.24 (Random geometric graph). The random geometric graph on X with N points
and level L is the random graph Γ(N, L) obtained

• by taking at random N independent points v1, . . . , vN on X according to the measure µ⊗N,

• and by connecting vi to vj if and only if d(vi, vj) ≤ L.

Example 3.25 (Random geometric graph on the sphere). In Figure 3.12, we have drawn in
stereographic projection a random geometric graph on the real sphere RS2, with µ equal to
Lebesgue’s spherical measure, N = 100 points, and L = π

8 (one eighth of the diameter of the
space).
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Figure 3.12. A random geometric graph on RS2, with N = 100 and L = π
8 (the

blue circle is the equator).

A particular case is when X is a sscc symmetric space, endowed with the unique probabil-
ity measure µ that is invariant by action of the isometry group Isom(X); µ is a scalar multiple
of the volume form. In this setting, there are two interesting regimes that one can consider:

(1) the Gaussian regime, where L is fixed but N goes to infinity; in this setting the adja-
cency matrix AΓ is dense.

(2) the Poissonian regime, where L = LN decreases to zero in such a way that each vertex
of Γ(N, LN) has a O(1) number of vertices; in this setting the adjacency matrix AΓ is
sparse. To be more precise, one takes

LN =

(
`

N

) 1
dim X

,

so that the number of neighbors of a fixed vertex vi in Γ(N, LN) follows a law close
to the Poisson law of parameter

λ = `
vol(BRdim X(0, 1))

vol(X)
.

Remark 3.26. The spectrum of the adjacency matrix of a random graph is a classical ob-
ject in random matrix theory; see for instance [Erd+12; Erd+13] for the more recent results
in the case of Erdös–Rényi graphs. For the spectral analysis of random geometric graphs in
the Euclidean space or on a torus, we refer to [Bor08; BEJ06; DGK17]. Quite surprisingly, the
more symmetric case that we present here has not yet been studied. On the other hand, the
model of random geometric graphs mimics certain (but not all) properties of large social net-
works, and the spectral analysis of these networks and of the random graphs approximating
these networks has become recently an important research field [Fri93; New03; Vu08; TVW13;
NN13].
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The two regimes lead to very different asymptotic behaviors for Spec(AΓ(N,L)). In the
Gaussian regime, the asymptotics are discrete (see the next paragraph): the eigenvalues of
AΓ(N,L) with the largest modules are of size O(N), and after being rescaled, they converge in
probability to specific values. On the opposite, in the Poissonian regime, the asymptotics are
continuous (cf. Section 3.4). Hence, the random spectral measure

νN =
1
N ∑

ei eigenvalue of AΓ(N,LN )

δei (3.5)

is conjectured to have a limit in probability, which is a probability measure ν∞ on R whose
moments can be explicitly computed, and which is related to the asymptotic representation
theory of the group underlying the symmetric space.

B Approximation of integral operators and asymptotics of the Gaussian regime. Until
the end of this section, X is a fixed ssccss and L > 0 is a fixed level, and we are interested
in the spectrum of Γ(N, L) as N grows to infinity. Denote h(x, y) = 1d(x,y)≤L; the adjacency
matrix AΓ(N,LN) is equal to

((1− δij) h(vi, vj))1≤i,j≤N, with the vi’s i.i.d. random variables.

A natural idea from random matrix theory is that after appropriate rescaling, the spectrum of
AΓ(N,LN) should approximate the spectrum of the integral operator by convolution by h. More
precisely, consider a real symmetric function h on X such that

∫∫
X2(h(x, y))2 dx dy < +∞. The

convolution by h induces an auto-adjoint integral operator Th on L 2(X, dx):

Th : L 2(X, dx)→ L 2(X, dx)

f 7→
(

Th( f ) : x 7→
∫

X
h(x, y) f (y) dy

)
.

This operator is compact, and even of Hilbert–Schmidt class: if (ei)i∈I is an orthonormal basis
of L 2(X, dx), then

‖Th‖HS =

√
∑
i∈I

(
‖Th(ei)‖L 2(G)

)2
= ‖h‖L 2(X2).

We label the discrete real spectrum of Th by integers:

Spec(Th) = (e−1 ≤ e−2 ≤ · · · ≤ 0 ≤ · · · ≤ e2 ≤ e1 ≤ e0),

with lim|k|→∞ ek = 0 (here, we add an infinity of zeroes to the sequence (ek)k∈Z if needed, for
instance when Th is of finite rank). The Hilbert–Schmidt class ensures that ∑k∈Z(ek)

2 < +∞,
and a general result due to Giné and Kolchinskii (see [GK00, Theorem 3.1]) ensures that the
random matrices

Th(N) =
1
N

((1− δij) h(vi, vj))1≤i,j≤N (3.6)

have their spectrum close to the one of Th. Thus:

Theorem 3.27 (Giné–Koltchinskii). Let (X, dx) be a probability space, h a square-integrable ker-
nel on X, and Th the associated Hilbert–Schmidt operator. We consider the random matrices Th(N)
given by Equation (3.6), with the vi’s independent and distributing according to dx. We denote the
spectrum of Th(N)

Spec(Th(N)) = (e−1(N) ≤ e−2(N) ≤ · · · ≤ 0 ≤ · · · ≤ e2(N) ≤ e1(N) ≤ e0(N)).
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Under these assumptions,

δ (Spec(Th(N)), Spec(Th)) =
√

∑
k∈Z

(ek(N)− ek)2 → 0 almost surely.

It turns out that one can use the non-commutative Fourier transform of compact Lie groups
and symmetric spaces in order to compute the spectrum of the operators Th with h(x, y) =
1d(x,y)≤L. In the sequel, we assume that X = G is a fixed sscc Lie group, with distances
normalised in the following way: the scalar product on g is taken equal to

〈X | Y〉g = −B(X, Y) = −tr(ad X ◦ ad Y), (3.7)

that is the opposite Killing form. Beware that this is not the same normalisation as in Equation
(3.1) and in Section 3.2. For g ∈ G, set ZL(g) = h(eG, g) = 1d(eG,g)≤L. We then have

(Th( f ))(g1) =
∫

G
h(g1, g2) f (g2) dg2 =

∫

G
h(e, g1g−1

2 ) f (g2) dg2 = (ZL ∗ f )(g1)

so Th is the convolution on the left by the function ZL. By Theorem 3.2, it is conjugated
by isometries to the diagonal operator on L 2(Ĝ) that acts on each endomorphism space
EndC(Vλ) by multiplication by

cλ =
1

dλ

∫

G
ZL(g) chλ(g) dg.

Moreover, one can use Weyl’s integration formula [Bum13, Chapter 17] to compute these
eigenvalues cλ: the integral on the compact group G becomes an integral over a maximal
torus T, and one uses the fact that the Fourier transform of a Euclidean ball is given by a
Bessel function of the first kind. One obtains [Mél18, Theorem 3.1]:

Theorem 3.28 (Spectral asymptotics of a random geometric graph, Gaussian regime). Let
G be a sscc Lie group and Γ(N, L) be a random geometric graph of level L and with N points on G.
We suppose L ∈ (0, π), and we denote d = rank(G). As N goes to +∞, the almost sure limits of the
set of eigenvalues of 1

N AΓ(N,L) are given by the infinite multiset

⊔

λ∈Ĝ





cλ, cλ, . . . , cλ︸ ︷︷ ︸
(dλ)2 occurrences





,

with

cλ =
1

dλ vol(t/tZ)
∑

w∈W
ε(w)

(
L

2π ‖λ + ρ− w(ρ)‖

)d
2

J d
2
(L ‖λ + ρ− w(ρ)‖).

In this formula:

• The sum runs over elements of the Weyl group W of G, and ε(w) is the parity of the number
of reflections sα with α simple root that are needed to write w.

• The weight ρ = 1
2 ∑α∈Φ+

α is the half-sum of positive roots, and the norm ‖ · ‖ is the Eu-
clidean norm on RΩ coming from the scalar product (3.7) on g.
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• The lattice 2πtZ is the kernel of the exponential map exp : t → T, and the volume of a
fundamental domain of the lattice tZ ⊂ t is given in the classical cases by:

G = SU(n) : vol(t/tZ) = 2
n−1

2 n
n
2 ;

G = USp(n) : vol(t/tZ) = 2n (n + 1)
n
2 ;

G = Spin(2n + 1) : vol(t/tZ) = 2
n
2+1 (2n− 1)

n
2 ;

G = Spin(2n) : vol(t/tZ) = 2n+1 (n− 1)
n
2 .

• The function Jβ(z) is the Bessel function given by the convergent power series

Jβ(z) =
∞

∑
m=0

(−1)m

m! Γ(m + β + 1)

( z
2

)2m+β
,

see Figure 3.13 for the case β = 1.

5 10 15 20

−0.2

0.2

0.4

0.6

Figure 3.13. The Bessel function J1(x).

Corollary 3.29 (Spectral radius of a random geometric graph, Gaussian regime). Given a
sscc Lie group G and a level L ∈ (0, π), the spectral radius of Γ(N, L) is asymptotically equivalent to

N
vol(t/tZ)

(
∑

w∈W
ε(w)

(
L

2π ‖ρ− w(ρ)‖

)d
2

J d
2
(L ‖ρ− w(ρ)‖)

)
.

Example 3.30 (Random geometric graphs on SU(2) and SU(3)). Suppose G = SU(2).
Then, there is one limiting eigenvalue ck of 1

N AΓ(N,L) for each integer k ≥ 0, with multiplicity
(k + 1)2. We have

ck≥1 =
1

π (k + 1)

(
1
k

sin
(

k L
2
√

2

)
− 1

k + 2
sin
(
(k + 2) L)

2
√

2

))
;

c0 =
1

2π

(
L√
2
− sin

(
L√
2

))
.

Suppose now G = SU(3). The formula for cλ with λ = n1ω1 + n2ω2 dominant weight in the
Weyl chamber involves 6 weights close to λ, namely, the weights λ + µ with

µ ∈ {0, 3ω1, 3ω2, 2ω2 −ω1, 2ω1 −ω2, 2ω1 + 2ω2},
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see Figure 3.14. Thus,

cn1,n2 =
L

6π
√

3(n1 + 1)(n2 + 1)(n1 + n2 + 2)


 ∑

w∈S(3)
ε(w)

J1(L ‖λ + ρ− w(ρ)‖)
‖λ + ρ− w(ρ)‖




and each eigenvalue cn1,n2 has multiplicity ( (n1+1)(n2+1)(n1+n2+2)
2 )2. In this formula, the norm

of a weight k1ω1 + k2ω2 is ‖k1ω1 + k2ω2‖ = 1
3

√
(k1)2 + k1k2 + (k2)2.

C

0 ω1

ω2

��

�
��

�

λ

Figure 3.14. The weights involved in the computation of cλ for G = SU(3).

Remark 3.31. The formula in Theorem 3.28 involves a kind of discrete derivative of the
analytic function

J̃RΩ : RΩ→ R

x 7→ ‖x‖− rank(G)
2 J rank(G)

2
(‖x‖) = 1

2
rank(G)

2

∞

∑
m=0

(−1)m

m! Γ(m + rank(G)
2 + 1)

(‖x‖
2

)2m

. (3.8)

In the Poissonian regime, these discrete derivatives will degenerate into true derivatives of
the function J̃RΩ.

Remark 3.32. The restriction to simply connected compact Lie groups is made in order to be
simplify a bit the discussion, and to use Weyl’s highest weight theorem and the correspond-
ing description of Ĝ (Theorem 3.9). When working with a semisimple connected compact Lie
group, the set Ĝ of irreducible representations of G can be identified with a subset of the set
ZΩ ∩ C of dominant weights of the Lie algebra g of G. Moreover, the lattice Λ spanned by Ĝ
in ZΩ has finite index, and ZΩ/Λ is isomorphic to the finite fundamental group π1(G) (see
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for instance [Bum13, Theorem 23.2]). Thus, the whole discussion of this section or of the pre-
vious section on Brownian motions still holds for semisimple connected compact Lie groups,
and the only difference is that one has to work with a smaller set of dominant weights. In par-
ticular, the case of special orthogonal groups can be dealt with without additional difficulty,
although π1(SO(n)) = Z/2Z for n ≥ 3.

B Compact symmetric spaces of rank 1. The same analysis as before can be performed for
random geometric graphs on a ssccss of non-group type. The only additional difficulty is the
manipulation of zonal spherical functions. Hence, in the Gaussian regime with L fixed and N
going to infinity, the limit of the spectrum of 1

N AΓ(N,L) with Γ(N, L) random geometric graph

on a sscc symmetric space X = G/K is the multiset
⊔

λ∈Ĝ{c
⊗dλ
λ }, where

cλ =
1√
dλ

∫

X
1d(eK,x)≤L zonλ(x) dx =

∫

G
1d(eK,gK)≤L

〈
eλ
∣∣∣ (ρλ(g))(eλ)

〉
Vλ

dg.

Suppose that X = G/K has rank one, meaning that the only flat totally geodesic submanifolds
of X are one-dimensional. These compact symmetric spaces are important examples in the
study of random geometric graphs, because of the following characterisation (see [Wol67,
Chapter 8]): a compact connected Riemannian manifold X is a compact symmetric space
of rank one if and only if it is 2-point homogeneous, meaning that given two pairs of points
(x1, x2) and (y1, y2) such that d(x1, x2) = d(y1, y2), there is an isometry i : X → X with i(x1) =
y1 and i(x2) = y2. The second assertion is a natural condition to look at if one wants random
geometric graphs that are as symmetric as possible. On the other hand, one has the following
classification of the compact symmetric spaces of rank one and of the corresponding spherical
representations:

Proposition 3.33 (Compact symmetric spaces of rank one). The compact symmetric spaces of
rank one are:

• the real spheres RSn≥1 = SO(n + 1)/SO(n),

• the real projective spaces RPn≥2 = SO(n + 1)/O(n),

• the complex projective spaces CPn≥2 = SU(n + 1)/U(n),

• the quaternionic projective spaces HPn≥2 = USp(n + 1)/(USp(n)×USp(1)),

• the octonionic projective plane OP2 = F4/Spin(9).

All of them are simply connected but the real projective spaces, which have a twofold universal cover
for n ≥ 2. The set of spherical representations ĜK is each time a half-line Nω0 in a one-dimensional
sublattice of Ĝ. The representation Vω0 and the dimensions dimC(Vkω0) with k ≥ 0 are given by the
following table:

X Vω0 dimC(Vkω0)

RSn geometric representation on Cn+1 2k+n−1
k+n−1 (

k+n−1
n−1 )

RPn so⊥(n + 1, C) ⊂ sl(n + 1, C) 4k+n−1
2k+n−1(

2k+n−1
n−1 )

CPn adjoint representation sl(n + 1, C) 2k+n
n (k+n−1

n−1 )
2

HPn sp⊥(2n + 2, C) ⊂ sl(2n + 2, C) 2k+2n+1
(2n+1)(k+1) (

k+2n
2n )(k+2n−1

2n−1 )

OP2 tracefree part of the 27-dimensional Albert algebra A(3, O) 2k+11
385 (k+7

4 )(k+10
10 )
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Let us now describe the zonal spherical functions of these spaces, and then compute the
eigenvalues cλ (their multiplicities dλ are given by the previous table). We refer to [Gri83;
VV09; AH10], where it is shown that the Legendre polynomials are the zonal spherical functions
of the real spheres, and that the Jacobi polynomials are the zonal spherical functions of the
projective spaces (with parameters depending on the base field). Hence, if the real sphere RSn

is endowed with coordinates (x1, x2, . . . , xn+1) such that ∑n+1
i=1 (xi)

2 = 1, and if the projective
space KPn is endowed with projective coordinates [x1 : x2 : · · · : xn+1] with the xi’s in K,
then the zonal spherical functions of these spaces are given by the following table:

X spherical coordinate law of the spherical coordinate
normalised zonal
spherical function

RSn x = xn+1
Γ( n+1

2 )

Γ( 1
2 ) Γ( n

2 )
(1− x2)

n−2
2 1x∈[−1,1] dx Pn,k(x)

RPn s = |xn+1|2
|x1|2+···+|xn+1|2

Γ( n+1
2 )

Γ( 1
2 ) Γ( n

2 )
(1− s)

n−2
2 s−

1
2 1s∈[0,1] ds J(

n
2 , 1

2 ),k(s)

CPn t = |zn+1|2
|z1|2+···+|zn+1|2 n (1− t)n−1 1t∈[0,1] dt J(n,1),k(t)

HPn u = |hn+1|2
|h1|2+···+|hn+1|2 2n(2n + 1) u(1− u)2n−1 1u∈[0,1] du J(2n,2),k(u)

OP2 ξ = |θ3|2
|θ1|2+|θ2|2+|θ3|2 1320 ξ3(1− ξ)7 1ξ∈[0,1] dξ J(8,4),k(ξ)

In this table, the zonal spherical functions are renormalised so that f (eGK) = 1, so they differ
from the functions zonλ by a factor

√
dλ. The Pn,k’s are the (real) Legendre polynomials given

by Rodrigues’ formula

Pn,k(x) =
(−1)k

2k (n−2
2 + k)↓k

1

(1− x2)
n−2

2

dk

dxk (1− x2)
n−2

2 +k,

and the J(a,b),k’s are the Jacobi polynomials given by Rodrigues’ formula

J(a,b),k(x) =
1

(a + k− 1)↓k
1

(x− 1)a−1xb−1
dk

dxk ((x− 1)a+k−1xb+k−1).

The Legendre polynomials are the orthogonal polynomials for the law of the last coordinate
of a point on the sphere, and the Jacobi polynomials of index (a, b) are the orthogonal poly-
nomials for the β-distribution

β(a,b)(dx) =
Γ(a + b)
Γ(a) Γ(b)

(1− x)a−1 xb−1 1x∈[0,1] dx.

Remark 3.34. The manipulation of the coordinates of the exceptional compact symmetric
space of rank one F4/Spin(9) is a bit complicated: this space can be considered as the octo-
nionic projective plane, but since octonions form a non-associative algebra, the definition of
a projective plane is not as straightforward as in the other cases. The right way to construct
OP2 is by gluing affine charts, and it is also convenient to relate this space to the geometry of
the exceptional Albert algebra A(3, O) of dimension 27; see [Joh76; Ada96; Bae02].

On the sphere RSn, the distance from x = (x1, x2, . . . , xn+1) to the base point (0, 0, . . . , 1) is
(proportional to) arccos xn+1. Similarly, on the projective space KPn, the distance from x =

[x1 : x2 : · · · : xn+1] to the base point [0 : 0 : · · · : 1] is arccos(|xn+1|/
√
|x1|2 + · · ·+ |xn+1|2).
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In the sequel, we choose the normalisation of the distance so that the distance is equal to
the arccosine (not just proportional). Using these formulas and Rodrigues’ formula for the
orthogonal polynomials, we obtain:

Theorem 3.35 (Random geometric graphs on rank one compact symmetric spaces, Gauss-
ian regime). Let X be a compact symmetric space of rank one, and Γ(N, L) be a random geometric
graph of level L and with N points on X. We suppose L ∈ (0, π

2 ). As N goes to +∞, the almost sure
limits of the set of eigenvalues of 1

N AΓ(N,L) are given by the infinite multiset

∞⊔

k=0





ck, ck, . . . , ck︸ ︷︷ ︸
dk occurrences





,

with dk = dimC(Vkω0) given by the table of Proposition 3.33, and with ck given by the following
table:

X eigenvalue c0 eigenvalue ck≥1

RSn
∫ L

0 sinn−1 θ dθ∫ π
0 sinn−1 θ dθ

(sin L)n

n
∫ π

0 sinn−1 θ dθ
Pn+2,k−1(cos L)

RPn
∫ L

0 sinn−1 θ dθ
∫ π

2
0 sinn−1 θ dθ

(sin L)n cos L

n
∫ π

2
0 sinn−1 θ dθ

J(
n+2

2 , 3
2 ),k−1(cos2 L)

CPn (sin L)2n (sin L)2n (cos L)2 J(n+1,2),k−1(cos2 L)

HPn (sin L)4n (1 + 2n cos2 L) (2n + 1) (sin L)4n (cos L)4 J(2n+1,3),k−1(cos2 L)

OP2 (sin L)16 (1+8 cos2 L
+36 cos4 L+120 cos6 L

) 165 (sin L)16 (cos L)8 J(9,5),k−1(cos2 L)

Example 3.36 (Random geometric graphs on the real sphere RS2). For the real sphere of
dimension 2, the spherical representation Vkω0 has dimension 2k + 1. The corresponding
zonal spherical function is proportional to the Legendre polynomial P2,k(x). The limiting
eigenvalues of the rescaled adjacency matrix of a random geometric graph of level L on RS2

are

c0 =
sin2 L

4
2

1 + cos L
;

ck≥1 =
sin2 L

4
P4,k−1(cos L)

with ck that has multiplicity 2k + 1, and where

P4,k−1(x) =
1

2k−1 k!
1

(x2 − 1)
dk−1

dxk−1 (x2 − 1)k.

Thus, up to the multiplicative factor sin2 L
4 , all the limiting eigenvalues of the random geomet-

ric graph of level L can be obtained by looking at the values at x = cos L of the family of
functions {

f (x) =
2

1 + x

}
t {P4,k(x), k ≥ 0}

see Figure 3.15.
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f

P4,0

P4,1

P4,2

P4,3

P4,4

1

−1

1−1

cos L

Figure 3.15. The limiting eigenvalues of a random geometric graph on the 2-
dimensional real sphere, in the Gaussian regime.

There is no theoretical obstruction to the generalisation of these results to symmetric spaces
of non-group type and with higher rank. However, the corresponding zonal spherical func-
tions are much more difficult to deal with (and sometimes not very well known), and we
do not know yet if there exist closed formulas for the limiting eigenvalues in the Gaussian
regime of random geometric graphs on general Grassmannian manifolds, or on Lagragian
spaces of structures.

3.4 Poissonian regime and asymptotic representation theory
In this last section, we fix a sscc Lie group G, and we consider random geometric graphs

Γ(N, LN) on G with levels LN that vary with N as follows:

LN =

(
`

N

) 1
dim G

.

The normalisation of the distances on G is chosen according to Equation (3.7). In this Poisso-
nian regime, we are interested in the asymptotics of the random spectral measure νN given
by Equation (3.5). As in Section 3.1, we set d = rank(G) and l = |Φ+|.

B Local convergence and conjecture on the limiting spectral distribution. For any fixed
positive real number R and any fixed g ∈ G,
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• the subgraph of the random geometric graph of level LN that is included in the ball
of radius RLN around g in G,

• and the random geometric graph of level 1 obtained from a Poissonian cloud of in-
tensity `

vol(G)
dx in a Euclidean ball of radius R in Rdim G,

look essentially the same. Indeed, as N goes to infinity, a small ball in G of radius RLN is
almost isometric to its Euclidean approximation in the tangent space to G, and the points
falling in this small ball are asymptotically described by a Poisson point process. As a con-
sequence, a limit ν∞ of the spectral measures νN can be considered as “the spectral measure
of a Poissonian random geometric graph in Rdim G”, whence the terminology of Poissonian
regime. This can be made more precise by means of the following notion of local convergence
of rooted graphs:

Definition 3.37 (Benjamini–Schramm local convergence). A sequence of random rooted (pos-
sibly infinite) graphs (Γn, rn)n∈N converges to a random rooted graph (Γ, r) if and only if, for any
radius R ∈N and any rooted graph (H, s) whose vertices are all at distance smaller than R from s,

lim
n→∞

P[Γn ∩ B(rn, R) = (H, s)] = P[Γ ∩ B(r, R) = (H, s)].

Here the balls B(r, R) are taken with respect to the graph distance. We refer to [BS01; AL07;
Abé+11] for details on this notion of convergence of graphs; beware that it is not the same
as the convergence in the graphon sense (Section 2.3). One of the main results from [Mél18,
Theorem 4.2] is:

Theorem 3.38 (Local convergence of Poissonian random geometric graphs). Consider a ran-
dom geometric graph Γ(N, LN) with LN = ( `

N )
1

dim G , and with a root rN chosen randomly uniformly
among the N vertices of this graph. The pair (Γ(N, LN), rN)N∈N converges in the local Benjamini–
Schramm sense towards the following random rooted graph (Γ∞, 0):

• One takes random points in Rdim G according to a Poisson point process with intensity
`

vol(G)
dX, dX being the Lebesgue measure; and one adds the point 0.

• One connects these vertices when they are at Euclidean distance smaller than 1, and the root
of the resulting random graph is 0.

Remark 3.39. It should be noted that although quite intuitive, this result of local conver-
gence is not at all easy to prove, for the following reason. As explained above, a neighbor-
hood of size RLN of a point g ∈ G is almost isometric to the corresponding ball in Rdim G,
but since this is only an almost isometry, the projection in Rdim G of a geometric graph with
level LN in the ball on G is not a geometric graph with level LN in Rdim G. This important
problem can be solved by using the regularity with respect to the Benjamini–Schramm topol-
ogy of the limiting random geometric graph (Γ∞, 0) on Rdim G with respect to the parameter
`. We actually developed a general theory relating convergence in the Lipschitz sense of
random pointed proper metric spaces and convergence of random geometric graphs in the
Benjamini–Schramm sense; see [Mél18, Theorem 4.6].

Given a sequence of finite random rooted graphs (ΓN, rN) with a uniform bound D on the
degrees of the vertices, a Benjamini–Schramm convergence (ΓN, rN) → (Γ∞, r∞) towards a
(possibly infinite) random rooted graph implies the weak convergence of the expected spec-
tral measures µN = E[νN] ∈M 1(R), where νN is as before the mean of the Dirac distributions
δe at the eigenvalues of AΓN . This result appears in [Abé+11, Theorem 4], and under the as-
sumption of a uniform bound on the degrees, one also have convergence of the atoms. For
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the random geometric graphs Γ(N, LN), one does not have a uniform bound on the degrees,
but one can still adapt the method of proof to establish:

Corollary 3.40 (Convergence of the expected spectral measure of a Poissonian random
geometric graph). Consider a random geometric graph Γ(N, LN) on a sscc Lie group G with LN =

( `
N )

1
dim G , there exists a probability distribution µ∞ on R such that

E[νN] = µN ⇀N→∞ µ∞.

We refer to [Mél18, Theorem 4.16] for a proof of this result. Unfortunately, this proof does
not give any information on the limit µ∞. However, another approach to the proof of the
convergence in distribution µN ⇀ µ∞ led us to the following precise conjecture:

Conjecture 3.41 (Spectral asymptotics of a random geometric graph, Poissonian regime).
Let (Γ(N, LN))N∈N be the sequence of random geometric graphs on a sscc Lie group G, with levels
LN = ( `

N )
1

dim G , ` > 0.

(1) The limit µ∞ = limN→∞ µN of the expected spectral measures is in fact the limit in probabil-
ity limN→∞ νN.

(2) For any r ≥ 1, the r-th moment Mr =
∫

R
xr µ∞(dx) of the limiting spectral distribution is an

explicit polynomial of degree (r− 1) in `, and its coefficients admit combinatorial expansions
involving:

• certain labeled graphs (reduced circuits),

• certain integrals over products of Weyl chambers Ch of products of partial derivatives of
the Bessel function J̃RΩ defined by Equation (3.8),

• and certain measures on products of Weyl chambers Ch which are piecewise polynomial,
and obtained by affine projection of uniform measures on certain string polytopes.

The most important and difficult part of Conjecture 3.41 is its second item, and the remainder
of this section is devoted to explaining why it should be true. We shall actually detail the
computation of the six first limiting moments Mr, and rely the previous conjecture to another
conjecture on certain functionals of the irreducible representations of G (Conjecture 3.50).

B Circuit expansion. In the sequel, we set Mr,N =
∫

R
xr µN(dx), and Mr = limN→∞ Mr,N.

The first step in the computation of the asymptotic moments Mr is an expansion of Mr,N as a
sum over certain labeled graphs. This combinatorial technique is classical in random matrix
theory, as it is involved in elementary proofs of the Wigner law of large numbers. If v1, . . . , vN
are independent Haar distributed points in G, then

Mr,N =
1
N ∑

i1,...,ir

E
[
hN(vi1 , vi2) hN(vi2 , vi3) · · · hN(vir , vi1)

]

with hN(x, y) = 1d(x,y)≤LN
, and the sum runs over indices ij ∈ [[1, N]] such that two consecu-

tive indices ij and ij+1 are not equal. An expectation Ei1,i2,...,ir = E[hN(vi1 , vi2) · · · hN(vir , vi1)]
only depends on the possible equalities of indices. For instance, when computing M4,N, we
have:

M4,N = (N − 1)(N − 2)(N − 3)E[hN(v1, v2) hN(v2, v3) hN(v3, v4) hN(v4, v1)]

+ 2 (N − 1)(N − 2)E[hN(v1, v2) hN(v2, v1) hN(v1, v3) hN(v3, v1)]

+ (N − 1)E[hN(v1, v2) hN(v2, v1) hN(v1, v2) hN(v2, v1)] .
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The first term corresponds to the case where all the indices i1, i2, i3, i4 are distinct; the second
term corresponds to the identities i1 = i3 or i2 = i4; and the last term is when i1 = i3 and
i2 = i4 simultaneously. We associate to these four cases the circuits of Figure 3.16. By circuit,

1

2 3

4

1

2 3

4

4

1 2

3
1 2 3 4

Figure 3.16. The circuits for the calculation of M4,N.

we mean a directed graph H, possibly with multiple edges but without loops, endowed with
a distinguished traversal T that goes through each directed edge exactly once, and that is
cyclic (the starting point is the same as the end point of the traversal). We identify two circuits
(H1, T1) and (H2, T2) if there exists a graph isomorphism ψ : H1 → H2 that is compatible
with the traversals: ψ(T1) = T2. A larger example of size 12 and associated to the identities
of indices i2 = i5 = i7, i3 = i11 and i6 = i12 is drawn in Figure 3.17.

12

3 4 5
6

7

89

10

11 12

Figure 3.17. Circuit of length r = 12 and with k = 8 vertices, associated the set
of identities {i2 = i5 = i7, i3 = i11, i6 = i12}.

Given a circuit (H, T) with r edges and k ≤ r vertices, we associate to it the expectation of a
function of k independent points v1, . . . , vk on G: EH,T,N = E[∏(i,j)∈T hN(vi, vj)]. Notice that
EH,T,N only depends on H, and not on the particular traversal T.

Proposition 3.42 (Circuit expansion). For any r ≥ 0, we have

Mr,N = ∑
(H,T)

(N − 1) · · · (N − |H|+ 1) EH,T,N,

where the sum runs over the finite set of circuits with r edges, and k = |H| denotes the number of
vertices in H.

In the combinatorial expansion of Mr,N, the circuits contain in fact too much information;
one can remove these redondancies by means of the operation of reduction of circuit. Let
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(H, T) be a circuit of length r. Its reduction is the labeled undirected graph which is allowed
to be disconnected and to have loops, and which is obtained by performing the following
operations:

• forgetting the orientation of the edges of H;

• replacing any multiple edge by a single edge;

• putting a label 1 on each of the (single) edges;

• cutting the graph at each of its cut vertices (also called articulation points), replacing
a configuration

L1 L2

with L1 6= ∅ and L2 6= ∅ by

L1 L2

• in the resulting connected components, removing recursively each vertex of degree
2, replacing a configuration

a b

by

a + b .

• finally, replacing the connected components 1 by loops 2 .

Example 3.43 (Reduction of circuits). The reduced circuits corresponding to the four cir-
cuits of length 4 are drawn in Figure 3.18, with the middle one that has multiplicity 2.

4 2

2

2

Figure 3.18. Reduction of the circuits of length 4.

The reduction of the circuit of Figure 3.17 is drawn in Figure 3.19.

Note that the operation of reduction can send many distinct circuits to the same reduction;
and that it produces two kinds of connected reduced circuits:

• reduced circuits with a single vertex and a single loop based on it.

• reduced circuits with at least two vertices, and where all the vertices have at least
degree 3.

It is easily seen that an expectation EH,T,N only depends on the reduction R(H, T) of the
circuit (H, T). Thus:
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2

4
1

1

1

2

ab

c

Figure 3.19. Reduction of the circuit of Figure 3.17.

Partial result 3.44 (Reformulation of Conjecture 3.41 in terms of reduced circuits). For any
r ≥ 0, we have the combinatorial expansion

Mr,N = ∑
(H,T)

(N − 1)↓|H|−1 ER(H,T),N,

where the sum runs over circuits (H, T) with r edges, and where ER(H,T),N = EH,T,N only depends
on the reduced circuit R(H, T). Moreover, for any reduced circuit, it is conjectured that there exists
a limit eR = limN→∞ N|R|−1 ER,N. The number of vertices |R| = |R(H, T)| = |H| is given by the
formula

|R| = k = k′ − (c− 1) + ∑
e labeled edge of R

( fe − 1),

where k′ is the number of vertices of R, c its number of connected components, and fe is the label of an
edge e in R. Then,

Mr = ∑
(H,T) circuit with r edges

eR(H,T).

B The five first moments. The previous discussion corresponds to the first part of the
second item in Conjecture 3.41. To explain the second part and the integrals of partial deriva-
tives of J̃RΩ, we shall look at the five first moments Mr; the case r = 1 is trivial since
M1 = M1,N = 0. We have the following circuit expansions:

M2 = e
2

; M3 = e
3

;

M4 = e
4
+ 2 e

2

2

+ e
2

; M5 = e
5
+ 5 e

3

2

+ 5 e
3

.

Let us explain how to compute eR when R is a single labeled loop
r

. We have:

ER,N = E[hN(v1, v2) hN(v2, v3) · · · hN(vr, v1)]

= E
[

ZLN(v1(v2)
−1) ZLN(v2(v3)

−1) · · · ZLN(vr−1(vr)
−1) ZLN(vr(v1)

−1)
]

= E
[
(ZLN)

∗(r−1)(v1(vr)
−1) ZLN(vr(v1)

−1)
]
=
〈
(ZLN)

∗(r−1)
∣∣∣ ZLN

〉
L 2(G, dg)

= ∑
λ∈Ĝ

(〈
chλ

∣∣∣ ZLN

〉)r

(dλ)r−2 = ∑
λ∈Ĝ

(Cλ,N)
r

(dλ)r−2 (3.9)
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where Cλ,N =
∫

G chλ(g) ZLN(g) dg. The value of Cλ,N = dλ cλ is given by Theorem 3.28:

Cλ,N =
1

vol(t/tZ)

(
LN√
2π

)d

∑
w∈W

ε(w) J̃RΩ(LN ‖λ + ρ− w(ρ)‖).

Let x = LN (λ + ρ); this is a point in the Weyl chamber C, and we assume that x = O(1). For
any root α and any smooth function f on RΩ, we define the partial derivative

(∂α f )(x) = lim
η→0

(
f (x + ηα)− f (x)

η

)
= lim

η→0

(
f (x + ηα

2 )− f (x− ηα
2 )

η

)
.

By [Bum13, Proposition 22.7], ∏α∈Φ+
(e

α
2 − e−

α
2 ) = ∑w∈W ε(w) ew(ρ) in the group algebra of

the space of weights RΩ, therefore, setting ∂Φ− = ∏α∈Φ−(∂α) = ∏α∈Φ+
(−∂α) and δ(x) =

∏α∈Φ+

〈x |α〉
〈ρ |α〉 , we have

Cλ,N '
(LN)

(d+l)

vol(t/tZ) (2π)
d
2
(∂Φ− J̃RΩ)(x);

Nr−1(Cλ,N)
r

(dλ)r−2 ' (LN)
d `r−1

(vol(t/tZ))r(δ(x))r−2

(
(∂Φ− J̃RΩ)(x)

(2π)
d
2

)r

as LN → 0, since dimR(G) = dimR(g) = rank(G) + 2|Φ+|. The formula (3.9) for Nr−1 ER,N
becomes then a Riemann sum over the lattice LN(C ∩ZΩ). The points of this lattice corre-
spond to domains of volume

(LN)
d

vol(t/tZ)
,

so we obtain (see [Mél18, Theorem 5.8]):

Partial result 3.45 (Conjecture 3.41 for the single loop contributions). Suppose (H, T) is a
simple cycle of length r ≥ 2. Then,

e r = lim
N→∞

Nr−1 EH,T,N =

(
`

vol(t/tZ)

)r−1 ∫

C

1
(δ(x))r−2

(
(∂Φ− J̃RΩ)(x)

(2π)
d
2

)r

dx,

where dx is the Lebesgue measure on RΩ associated to the scalar product of weights coming from
Equation (3.7).

Example 3.46 (Asymptotics of the five first moments). Set Ir =
∫

C
((∂Φ− J̃RΩ)(x))r

(δ(x))r−2 (2π)rd/2 dx and

`′ = `
vol(t/tZ)

. We then have:

M2 = I2 `
′;

M3 = I3 (`
′)2;

M4 = I4 (`
′)3 + 2 (I2)

2 (`′)2 + I2 (`
′);

M5 = I5 (`
′)4 + 5 I3 I2 (`

′)3 + 5 I3 (`
′)2.
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For instance, for G = SU(2), we get

M2 =
1
3

(
`

8π
√

2

)
;

M3 =
5
96

(
`

8π
√

2

)2

;

M4 =
34

2835

(
`

8π
√

2

)3

+
2
9

(
`

8π
√

2

)2

+
1
3

(
`

8π
√

2

)
;

M5 =
40949

13934592

(
`

8π
√

2

)4

+
25
288

(
`

8π
√

2

)3

+
25
96

(
`

8π
√

2

)2

.

B The sixth moment. Starting with the sixth moment, the circuit expansion of Mr involves
reduced circuits with more than one vertex:

M6 = e
6
+ 6 e

4

2

+ 3 e
3

3

+ 6 e
4
+ 6 e

22

2

+ 9 e
22 1

+ 6 e
2

2

+ 4 e
3
+ e

2

These new reduced circuits (see Figure 3.20) correspond to integrals over products of Weyl
chambers Ch with a measure that is not uniform anymore, and that stems from the crystal
theory of the group G (Section 3.1).

12

3

4 5

6
22 1

Figure 3.20. The circuit and the reduced circuit in size r = 6 and corresponding
to the identities i1 = i4 and i2 = i5.

Let us explain how to compute ER with R as in Figure 3.20. We have:

ER,N = E[hN(v1, v2) hN(v2, v3) hN(v1, v3) hN(v1, v4) hN(v4, v1)]

= E
[
(Z∗2LN

(v1(v3)
−1))2 ZLN(v3(v1)

−1)
]
= N3

〈
((ZLN)

∗2)2
∣∣∣ ZLN

〉
L 2(G, dg)

= ∑
λ,µ,ν∈Ĝ

(Cλ,N)
2 (CN(µ))

2 CN(ν)

dλ dµ

〈
chλ × chµ

∣∣∣ chν
〉

. (3.10)

In comparison to Equation (3.9), the novelty is that one needs to understand the asymptotics
of the Littlewood–Richardson coefficients

cλ,µ
ν =

〈
chλ × chµ

∣∣∣ chν
〉

L 2(G)

when λ = x
LN

, µ = y
LN

and LN → 0. To this purpose, one can introduce the relative string
polytope P(λ, µ) ⊂P(µ), which is the subset of the string polytope P(µ) ⊂ Rl that consists
in sequences (x1, x2, . . . , xl) ∈ (R+)l such that, for any i ∈ [[1, d]] and any trail (φ∨0 , φ∨1 , . . . , φ∨l )
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from si(ω
∨
i ) to w0(ω

∨
i ) in the fundamental representation Vω∨i of LgC,

l

∑
j=1

xj αij

(
φ∨j−1 + φ∨j

2

)
≥ −λ(α∨i ).

Berenstein and Zelevinsky proved in [BZ01, Theorem 2.3]:

Proposition 3.47 (Berenstein–Zelevinsky). For any dominant weights λ, µ, ν, the Littlewood–
Richardson coefficient cλ,µ

ν is the number of integer points in the relative string polytope P(λ, µ) that
have weight ν− λ, the weight of a sequence (n1, n2, . . . , nl) ∈P(µ) being

µ−
l

∑
j=1

nj αij .

We then have the analogue of Proposition 3.22 for Littlewood–Richardson coefficients:

Proposition 3.48 (Asymptotics of Littlewood–Richardson coefficients). Fix two directions x
and y in the interior C′ of the Weyl chamber C ⊂ RΩ. There exists a function qx,y(z) that is

• a compactly supported piecewise polynomial function in z, of total integral over C smaller
than min(δ(x), δ(y)),

• symmetric in x and y,

• such that for any bounded continuous function f on C,

lim
t→∞

tx,ty∈Ĝ

(
1
tl ∑

ν∈Ĝ

ctx,ty
ν f

(ν

t

))
=
∫

C
f (z) qx,y(z) dz.

One has the scaling property qγx,γy(γz) = γl−d qx,y(z). More precisely, the function of three variables
(x, y, z) ∈ (C′)3 7→ qx,y(z) ∈ R+ is:

• piecewise polynomial and locally homogeneous of total degree l − d in (x, y, z),

• with domains of polynomiality that are polyhedral cones in (C′)3 (subsets that are stable by
(x, y, z) 7→ (γx, γy, γz), and that are bounded by a finite number of affine hyperplanes).

Example 3.49 (Tensor product of two large representations of SU(3)). With G = SU(3),
λ = 10(ω1 + ω2) and µ = 10(2ω1 + ω2), we have drawn in Figure 3.21 the corresponding
Littlewood–Richardson coefficients. It is easily seen that they are approximated by a piece-
wise affine map (l = 3, d = 2) supported by a polytope.

The positive measures qx,y(z) dz appeared in [BBO09, Section 5.6]. Informally, Proposition
3.48 can be restated as

ctx,ty
tz ' tl−d qx,y(z)

√
det RG 1t(x+y−z)∈R, (3.11)

with a piecewise polynomial function of z that is compactly supported by a polytope. Propo-
sition 3.48 allows one to consider the series in Equation (3.10) as a Riemann sum, and one
obtains:

e
22 1

=

(
`

vol(t/tZ)

)3 ∫

C3

(∂Φ− J̃RΩ)
2(x) (∂Φ− J̃RΩ)

2(y) (∂Φ− J̃RΩ)(z)

(2π)
5d
2 δ(x) δ(y)

qx,y(z) dx dy dz.
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Figure 3.21. The multiplicities cλ,µ
ν with λ = 10(ω1 + ω2) and µ = 10(2ω1 + ω2).

Therefore, denoting I2,2,1 this integral without the factor (`′)3, we have the formula:

M6 = I6 (`
′)5 + (6 I4 I2 + 3 (I3)

2) (`′)4 + (6 I4 + 6 (I2)
3 + 9 I2,2,1) (`

′)3

+ (6 (I2)
2 + 4 I3) (`

′)2 + I2 `
′.

For instance, when G = SU(2), one obtains

M6 =
92377

121621500

(
`

8π
√

2

)5

+
93257

2903040

(
`

8π
√

2

)4

+
12887
34560

(
`

8π
√

2

)3

+
7
8

(
`

8π
√

2

)2

+
1
3

(
`

8π
√

2

)
.

The technique presented above allows one to compute eR for any connected reduced circuit
with 2 vertices and an arbitrary number h ≥ 3 of edges connecting them; see Theorem 5.28
in [Mél18]. Unfortunately, the moments Mr with r ≥ 7 involve connected reduced circuits
on more than 3 vertices, and for these reduced circuits we can for the moment only make
conjectures.

B A conjecture on crystals. Let us detail how we want to deal with the asymptotics of a
general circuit contribution Nk−1 EH,T,N, where H is some circuit with k vertices and r edges.
We denote R = R(H, T) the corresponding reduced circuit, and we fix an arbitrary indexation
of the k′ vertices of R. Without loss of generality, we can assume R connected, since the
contribution Nk−1 EH,T,N factorises over the connected components of R. As a consequence,
k − k′ = ∑e fe − 1. If e = ({a, b}, fe) is a labeled edge of R with a < b, then we convene to
orientate e in the direction a→ b. The contribution EH,T,N = ER,N is then

ER,N = E


 ∏

e=((a,b), fe) edge of R
(ZLN)

∗ fe(gag−1
b )


 ,



Chapter 3. Random objects on symmetric spaces. 109

where the random variables g1, . . . , gk′ are independent and Haar distributed. In the sequel
we denote LE(R) the set of labeled edges of the reduced circuit R, and h = |LE(R)| the
number of edges of R. Using the character expansion of ZLN , we obtain

ER,N = ∑
(λe)e∈LE(R)


 ∏

e∈LE(R)

(Cλe,N)
fe

(dλe)
fe−1


E


 ∏

e=(a,b)∈LE(R)
chλe(gag−1

b )


 ,

where the sum runs over ĜLE(R). If xe = LN(λe + ρ), then

Nk−1 ER,N

(`′)k−k′ Nk′−1(LN)lh

' ∑
xe∈LN(Ĝ+ρ)

e∈LE(R)


 ∏

e∈LE(R)

(LN)
d

vol(t/tZ)

(
(∂Φ− J̃RΩ)(xe)

(2π)d/2

)fe
1

(δ(xe)) fe−1


 F(R, (λe)e∈LE(R)), (3.12)

where `′ = `
vol(t/tZ)

and

F(R, (λe)e∈LE(R)) =
∫

Gk′


 ∏

e∈LE(R)
chλe(gag−1

b )


 dg1 dg2 · · · dg′k.

Note that the functional of dominant weights F(R, (λe)e∈LE(R)) and the renormalisation factor
Nk′−1 (LN)

lh only depend on the unlabeled directed graph S underlying R. The functional F can
be considered as a generalisation of the Littlewood–Richardson coefficients; indeed, if

S = ,

and if ν∗ is the highest weight associated to the conjugate of the irreducible representation of
G with highest weight ν, then F(R, (λ, µ, ν∗)) =

∫
G chλ(g) chµ(g) chν(g) dg = cλ,µ

ν . We call
F(R) a graph functional of the irreducible representations of G.

Conjecture 3.50 (Graph functional of representations and crystal theory). Let G be a simple
simply connected compact Lie group.

(1) For any connected reduced circuit R and any set of dominant weights (λe)e∈LE(R), the graph
functional F(R, (λe)e∈LE(R)) is an integer, and it is the number of integer points of a compact
polytope P((λe)e∈LE(R)) lying in the string cone S C (Gh) ⊂ Rlh of Gh, with l = |Φ+|
and h equal to the number of edges of R.

(2) The inequalities that define the polytope P((λe)e∈LE(R)) are affine functions of the domi-
nant weights λe, and the generic dimension of P((λe)e∈LE(R)) (for dominant weights in the
interior of the Weyl chamber) is equal to

(card Φ+) h− (dim G)(k′ − 1) = lh− (2l + d)(k′ − 1),

where h is the number of edges of R, and k′ is the number of vertices of R.
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Therefore, as t grows to infinity, if (xe)e∈LE(R) is a family of directions in the interior of the Weyl
chamber C, then we have the asymptotics

F(R, (txe)e∈LE(R)) 't→+∞ t(card Φ+) h−(dim G)(k′−1) qR((xe)e∈LE(R)) 1(txe)e∈LE(R)∈I ,

where the indicator function checks an integrality condition as in Equations (3.2) and (3.11), and where
qR is a piecewise polynomial function that is locally homogeneous of degree lh− (2l + d)(k′ − 1) in
its coordinates, and with domains of polynomiality that are polyhedral cones in Ch.

Assuming that Conjecture 3.50 holds true, one would obtain without too much additional
difficulty a formula for eR, by interpreting Formula (3.12) as a Riemann sum over Ch:

eR = lim
N→∞

Nk−1 ER,N

= `′k−1 IG

∫

Ch


 ∏

e∈LE(R)

(
(∂Φ− J̃RΩ)(xe)

(2π)
rank(G)

2

) fe
1

(δ(xe)) fe−1


 qR((xe)e∈LE(R)) ∏

e∈LE(R)
dxe,

where IG is some explicit real number that is related to the integrality condition that we did
not detail in Conjecture 3.50. A proof of this conjecture should make the polynomials qR
explicit, and thus end the computation of the limiting moments Mr by using the partial result
3.44. In particular, we should then be able to compute bounds on these moments Mr, and thus
get some information on the support of the limiting distribution µ∞. Indeed, an important
question which is not solved by the known proof of the convergence µN ⇀ µ∞ is whether µ∞
is compactly supported.

Remark 3.51. The formula (card Φ+) h − (dim G)(k′ − 1) does not give a non-negative
number for any connected reduced circuit R. Therefore, the corresponding polytope should
be empty if this number is negative, and our conjecture should imply some vanishing results,
which can be stated informally as follows: if one takes a graph functional of irreducible rep-
resentations with too many Haar distributed random variables g1, . . . , gk′ in comparison to
the number h of characters appearing, then this integral vanishes. This is not very surprising
since

∫
G chλ(g) dg = 0 for any non trivial representation, but our conjecture would make this

much more precise.

Perspectives
In this chapter, we explained how to use the non-commutative Fourier transform in or-

der to study random objects on sscc symmetric spaces. In this last section, we present two
research directions for which we plan to use the same tools.

→ Convergence to stationarity of hypo-elliptic Brownian motions. In Section 3.2, we studied the
convergence to the stationary law of the Brownian motions drawn on compact symmetric
spaces. Assume to simplify that the underlying space is a sscc Lie group G. The Brown-
ian motion on G is the diffusion process associated to the bi-invariant differential operator
∆ (the Laplace–Beltrami operator), which corresponds to the element ∑dim G

i=1 Xi ⊗ Xi of the
tensor algebra of g, (Xi)1≤i≤dim G being an orthonormal basis of g. More generally, one can
consider left-invariant differential operators L on G which are associated to hypo-elliptic ele-
ments ∑r

i=1 Yi ⊗Yi, where (Yi)1≤i≤r is a family of orthogonal vectors such that the Lie algebra
spanned by these elements is g. One can show that given a hypo-elliptic left-invariant dif-
ferential operator on G, the corresponding continuous Lévy process (gt)t≥0 started from eG
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has smooth marginal laws µt, and that dTV(µt, Haar) → 0 as t goes to infinity [Lia04b, The-
orem 4.2]. In this setting, it is natural to try to compute the speed of convergence, and to
see whether a cut-off phenomenon still occurs. Intuitively, a hypo-elliptic diffusion is less
diffusive than the standard Brownian motion, hence, the time to stationarity should be larger
than in the elliptic case. The main problem is then to compute the eigenvalues of the operator
L in each endomorphism space EndC(Vλ) (one has several distinct eigenvalues in each such
space, since L is not a bi-invariant operator).

Once the stationarity is attained, a (hypo-elliptic) Brownian motion (xt)t≥0 on a fixed ssccss
X has Gaussian fluctuations, in the following sense. For any sufficiently smooth function
f : X → R,

1√
t

(∫ t

0
f (xt) dt− t

∫

X
f (x) dx

)
⇀t→∞ NR(0, σ2( f )), (3.13)

where σ2( f ) is some limiting variance depending on f ; see [Lan03] for a general survey of
central limit theorems for statistics of Markov processes. This central limit theorem is a con-
tinuous analogue of the results on Markov chains presented in Example 2.36 and related to
the theory of mod-Gaussian convergence. Thus, Brownian motions and more generally dif-
fusions on ssccss provide an interesting example where one can try to understand the mod-
Gaussian convergence of linear statistics of Markov processes. An important point is that the
quality of the mod-Gaussian convergence in (3.13) should depend on the regularity of f ; in
particular, the speed of convergence should also depend on this regularity.

→Macdonald polynomials, harmonic analysis on the (q, t)-Young graph and alcove walks. Another
important problem that we want to attack and that sits right between probability theory and
representation theory of groups is the harmonic analysis of the (q, t)-Young graph. This prob-
lem is deeply related to the combinatorics of Macdonald polynomials and to their positive spe-
cialisations, and it is motivated by the recent theory of Macdonald processes. In [Oko01],
Okounkov introduced the Schur measures, which are generalisations of the Plancherel mea-
sures and which involve certain specialisations of Schur functions. Given two summable
sequences A = (a1, a2, . . .) and B = (b1, b2, . . .) of real numbers in [0, 1), the Schur measure
with parameters A and B is the probability measure on integer partitions defined by

MA,B(λ) = ∏
i,j≥1

(1− aibj) sλ(A) sλ(B),

assuming that the Cauchy product Z−1 = ∏i,j≥1(1− aibj) is convergent. In terms of symmet-
ric functions,

Z = exp

(
∞

∑
k=1

pk(A) pk(B)
k

)
,

and this allows one to define more generally Schur measures associated to specialisations
sλ 7→ sλ(A) of Sym that are non-negative on the set of Schur functions. In particular, if A = B
is the specialisation defined by

p1(A) =
√

θ ; pk≥2(A) = 0,

then

MA,B(λ) =
e−θ θ|λ|

|λ|!
(dim λ)2

|λ|!
is the Poissonised Plancherel measure of parameter θ (law of a random partition where the
size n is taken according to the Poisson law P(θ), and then the partition λ is taken accord-
ing to the Plancherel measure Pn on partitions of size n). The Schur measures were later
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generalised to Schur processes [OR03; OR07; Bor11], which are random processes on integer
partitions whose transition probabilities involve non-negative specialisations of skew Schur
functions. These Schur processes enabled the study of various particle systems and random
interfaces, see the aforementioned papers or [Joh03; Joh05]. The classification of all Schur pro-
cesses is related to the classification of all the specialisations of Sym which are non-negative
on the set of Schur functions. Assuming the normalisation p1(X) = 1, a specialisation X is
non-negative if and only if there exists a parameter ω = (α, β) of the Thoma simplex (Section
2.3) such that

p1(X) = 1 ; pk≥2(X) = pk(α + ε(β)) =
∞

∑
i=1

(αi)
k + (−1)k−1

∞

∑
i=1

(βi)
k;

see [Ais+51; Edr52; Edr53; Tho64; Oko97] and [Mél17, Chapter 11].

In [BC14], Borodin and Corwin proposed an important generalisation of the Schur pro-
cesses called the Macdonald processes, and which involve the (skew) Macdonald polynomials
defined in [Mac88]. The correlations of these processes are no longer determinantal, but one
can still study them and prove Kardar–Parisi–Zhang asymptotics for the related random par-
ticle systems. The Macdonald polynomials Pλ(q, t) are elements of the algebra C(q, t)⊗C Sym
of symmetric functions with two additional parameters, and one recovers the Schur functions
sλ by setting q = t; we refer to [Hai02; GR05] for a survey of their properties. A classification
of all the Macdonald processes rely on a classification of all the non-negative specialisations
of the Macdonald polynomials, the parameters q and t being fixed in [0, 1]. In the Schur case,
given a Thoma parameter ω = (α, β), one has the following formula for the generating series
of the ω-specialisation of the homogeneous symmetric functions:

∞

∑
n=0

hn(ω) zn = exp

(
∞

∑
k=1

pk(ω) zk

k

)
= eγz

∞

∏
i=1

1 + βiz
1− αiz

where γ = 1− ∑∞
i=1 αi − ∑∞

i=1 βi. In the Macdonald case, it has been conjectured by Kerov
[Ker03] that with q, t fixed in (0, 1), the normalised specialisations of Sym that are non-
negative on the basis (Pλ(q, t))λ are again indexed by the Thoma simplex, and that they
correspond to the following generating series:

∞

∑
n=0

(q; q)n

(t; q)n
Pn(q, t; ω) zn = eγz

∞

∏
i=1

(αitz; q)∞

(αiz; q)∞
(1 + βiz),

where (a; q)n = ∏n−1
k=0 (1− aqk) and (a; q)∞ = ∏∞

k=0(1− aqk).

Kerov’s conjecture has been solved very recently by Matveev in [Mat17]. However, this
result and its proof does not answer the following question: do these positive specialisations
of the Macdonald polynomials correspond to the extremal points of the convex set of nor-
malised non-negative harmonic functions on the (q, t)-Young graph? The (q, t)-Young graph
is the infinite oriented graph:

• whose vertices are the integer partitions of all sizes;

• whose edges are the pairs (λ ↗ Λ) such that the Young diagram of Λ is obtained
from the Young diagram of λ by adding one box;

• with on each edge a label c(λ ↗ Λ; q, t) which is the coefficient of PΛ(q, t) in the
Pieri product p1 Pλ(q, t) (this weight is given by an explicit formula involving the
arm lengths and the leg lengths of the cells of the Young diagrams).



Chapter 3. Random objects on symmetric spaces. 113

The Young graph without its labels is drawn in Figure 3.22. When q = t, the labels are all
equal to 1, and the extremal points of the convex set of non-negative functions h on the Young
graph which satisfy h(∅) = 1 and the harmonicity condition

h(λ) = ∑
λ↗Λ

h(Λ)

are indeed in bijection with the normalised non-negative specialisations of the Schur func-
tions. This correspondence relies on the Kerov–Vershik ring theorem (see [GO06, Section

∅

Figure 3.22. The four first levels of the Young graph.

8.7] or [Mél17, Theorem 11.5]), and on general arguments of harmonic analysis (cf. [Mar41;
Doo59; Car72a; Car72b], and some of the arguments of the recent paper [Tar15]). The same
correspondence holds true for the deformation of the Young graph corresponding to Jack
polynomials [KOO98].

For Macdonald polynomials and the (q, t)-Young graph, the ring theorem could be applied
if one were able to prove the following: with q and t fixed in (0, 1), the product

Pλ(q, t) Pµ(q, t) = ∑
ν

cλ,µ
ν (q, t) Pν(q, t) (3.14)

involves structure coefficients cλ,µ
ν (q, t) which are all non-negative. This positivity result is

the problem that we want to tackle, and the most promising approach relies on a formula
due to Ram and Yip for the (q, t)-Littlewood–Richardson coefficients [Ram06; RY11; Yip12],
and which is the analogue of the expansion on Littelmann paths of the classical Littlewood–
Richardson coefficients (Proposition 3.17). Fix a root system of rank n and the corresponding
weight lattice ZΩ and Weyl group W, for instance in type An. The extended affine Weyl group
Waff is the semi-direct product of the group of translations {Xω, ω ∈ ZΩ} by the Weyl group
W. Call alcove a pair A = (ω, A) that consists in a weight ω and a fundamental domain A
of the weight lattice ZΩ such that ω ∈ ∂A. The fundamental alcove is the pair Afund =
(0, A0) with A0 unique fundamental domain that contains 0 and is in the Weyl chamber C.
The action of the extended affine Weyl group on the fundamental alcove yields a bijection
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between alcoves and elements of Waff. On the other hand, any element of Waff can be written
as w = π∨s∨i1s∨i2 · · · s

∨
i`

, with ` minimal and where:

• the s∨i ’s with i ∈ [[0, n]] are either the reflections s∨1 , . . . , s∨n that span the Weyl group
W, or an additional allowed reflection s∨0 associated to the maximal root and to the
unique wall of A0 that is not a hyperplane containing the zero weight;

• π∨ is one of the |R/ZΩ| elements of length 0 in Waff, which are associated to alcoves
(ω, A0), and which can be considered as changes of sheet in a covering of the space
RΩ.

Given an element w = π∨s∨i1s∨i2 · · · s
∨
i`

in W, an alcove walk with type w is a sequence of con-
tiguous alcoves (A0,A1, . . . ,A`+1) where the two first alcoves differ by the change of sheet
induced by π∨, and where the alcoves Aj≥1 and Aj+1 share a wall associated to the reflection
s∨ij

(two consecutive alcoves can be equal).

0

Hs0 Hs1

Hs2

0, 1

2
3, 4

5
6

7, 8
9, 10

11

12

Figure 3.23. An alcove walk in type A2 starting from the fundamental alcove,
and with type s∨0 s∨2 s∨1 s∨0 s∨1 s∨2 s∨0 s∨1 s∨0 s∨2 s∨0 . The doubled walls indicate an alcove
fold (Aj,Aj+1) with Aj = Aj+1.

Recall the expansion of the character chλ = sλ as a sum over Littlemann paths in the crystal
C(λ) (Theorem 3.15). There exists a similar expansion of the Macdonald polynomial Pλ(q, t)
as a sum over certain alcove walks [RY11, Theorem 3.4]. There is also a formula involving
alcove walks for the (q, t)-Littlewood–Richardson coefficients cλ,µ

ν (q, t), see [Yip12, Theorem
4.4]. Moreover, this product formula can probably be reinterpreted in a setting of quantum
crystals; see [Ram06, Section 4.4] for the case of Hall–Littlewood polynomials, which are the
specialisations of the Macdonald polynomials with q = 0. There are signs ±1 appearing in
Yip’s formula, but there might be a way to gather the alcove walks of this expression in order
to make only appear positive terms.
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