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Abstract In this paper we complete our understanding of the role played by the limiting (or residue)
function in the context of mod-Gaussian convergence. The question about the probabilistic interpretation
of such functions was initially raised by Marc Yor. After recalling our recent result which interprets the
limiting function as a measure of "breaking of symmetry" in the Gaussian approximation in the frame-
work of general central limit theorems type results, we introduce the framework of L1-mod-Gaussian
convergence in which the residue function is obtained as (up to a normalizing factor) the probability
density of some sequences of random variables converging in law after a change of probability measure.
In particular we recover some celebrated results due to Ellis and Newman on the convergence in law of
dependent random variables arising in statistical mechanics. We complete our results by giving an alter-
native approach to the Stein method to obtain the rate of convergence in the Ellis-Newman convergence
theorem and by proving a new local limit theorem. More generally we illustrate our results with simple
models from statistical mechanics.

1 Introduction

Let (Xn)n∈N be a sequence of real-valued random variables. In the series of papers [JKN11, DKN11,
KN10, KN12, FMN13], we introduced the notion of mod-Gaussian convergence (and more generally of
mod-φ convergence, with respect to an arbitrary infinitely divisible law φ):

Definition 1. The sequence (Xn)n∈N is said to converge in the mod-Gaussian sense with parameters
tn → +∞ and limiting (or residue) function θ if, locally uniformly in R,

E[eitXn ] e
tn t

2

2 = θ(t) (1 + o(1)),

where θ is a continuous function on R with θ(0) = 1.

A trivial situation of mod-Gaussian convergence is when Xn = Gn+Yn is the sum of a Gaussian variable
of variance tn and of an independent random variable Yn that converges in law to a variable Y with
characteristic function θ. More generally Xn can be thought of as a Gaussian variable of variance tn, plus
a noise which is encoded by the multiplicative residue θ in the characteristic function. In this setting,
θ is not necessarily the characteristic function of a random variable (the residual noise). For instance,
consider

Xn =
1

n1/3

n∑
i=1

Yi,

where the Yi are centred, independent and identically distributed random variables with convergent
moment generating function. Then a Taylor expansion of E[eitY ] shows that (Xn)n∈N converges in the
mod-Gaussian sense with parameters n1/3 Var(Y ) and limiting function
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θ(t) = exp

(
E[Y 3] (it)3

6

)
,

which is not the characteristic function of a random variable, since it does not go to zero as t goes to
infinity. In 2008, during the workshop "Random matrices, L-functions and primes" held in Zürich, Marc
Yor asked the second author A. N. about the role of the limiting function θ. In [KNN13] it is proved that
the set of possible limiting functions is the set of continuous functions θ from R to C such that θ(0) = 1 and
θ(−t) = θ̄(t) for t ∈ R. But this characterization does not say anything on the probabilistic information
encoded in θ. We now wish to develop more on probabilistic interpretations of the limiting function and
the implications of mod-Gaussian convergence in terms of classical limit theorems of probability theory.

We first note that by looking at E[eitXn/
√
tn ], one immediately sees that mod-Gaussian convergence

implies a central limit theorem for the sequence ( Xn√
tn

):

Xn√
tn

⇀n→∞ N (0, 1), (1)

where the convergence above holds in law (see [JKN11, §2-3] for more details on this). On the other
hand, with somewhat stronger hypotheses on the remainder o(1) that appears in Definition 1, a local
limit theorem also holds, see [KN12, Theorem 4] and [DKN11, Theorem 5]. Thus, if Gn is a centred real
Gaussian random variable with variance tn, then

P[Xn ∈ B] = P[Gn ∈ B] (1 + o(1)) =
m(B)√

2πtn
(1 + o(1))

for relatively compact sets B with m(∂B) = 0, m denoting the Lebesgue measure.

In [FMN13], it is then explained that by looking at Laplace transforms instead of characteristic func-
tions, and by assuming the convergence holds on a whole band of the complex plane, one can obtain in
the setting of mod-Gaussian convergence precise estimates of moderate or large deviations. In fact these
results provide a new probabilistic interpretation of the limiting function as a measure of the "breaking
of symmetry" in the Gaussian approximation of the tails of Xn (see §1.1 for more details).

The goal of this paper is threefold:

• to propose a new interpretation of the limiting function in the framework of mod-Gaussian convergence
with Laplace transforms; these results allow us in particular to recover some well known exotic limit
theorems from statistical mechanics due to Ellis and Newman [EN78] and similar one for other models
or in higher dimensions.

• to show that once one is able to prove mod-Gaussian convergence, then one can expect to obtain finer
results than merely convergence in law, such as speed of convergence and local limit theorems. Results
on the rate of convergence in the Curie-Weiss model at critical temperature β = 1 were recently
obtained using Stein’s method (see e.g. [EL10]), while the local limit theorem, to the best of our
knowledge, is new (at high temperature, with β < 1, a local limit theorem is stated in [RR10, §4.2]).

• to explore the applications of the results obtained in [FMN13] on the "breaking of symmetry" in the
central limit theorem to some classical models of statistical mechanics. In particular our approach
determines the scale up to which the Gaussian approximation for the tails is valid and its breaking at
this critical scale.

Our results are best illustrated with some classical one-dimensional models from statistical mechanics,
such as the Curie-Weiss model or the Ising model. To illustrate the flexibility of our approach, we shall
also prove similar results for weighted symmetric random walks in dimensions 2 and 3. The statistics
of interest to us will be the total magnetization, which can be written as a sum of dependent random
variables. These examples add to the already large class of examples of sums of dependent random
variables we have already been able to deal with in the context of mod-φ convergence.
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In the remaining of the introduction we recall the results obtained in [FMN13] which led us to the
"breaking of symmetry" interpretation, as well as an underlying method of cumulants that enabled us to
establish the mod-Gaussian convergence for a large family of sums of dependent random variables. The
important aspect of the cumulant method is that it provides a tool to prove mod-Gaussian convergence in
situations where one cannot explicitly compute the characteristic function. We eventually give an outline
of the paper.

1.1 Complex convergence and interpretation of the residue

We consider again a sequence of real-valued random variables (Xn)n∈N, but this time we assume that
their Laplace transforms E[ezXn ] are convergent in an open disk of radius c > 0. In this case, they are
automatically well-defined and holomorphic in a band of the complex plane Bc = {z ∈ C, |Re(z)| < c} (see
[LS52, Theorem 6], and [Ess45] for a general survey of the properties of Laplace and Fourier transforms
of probability measures).

Definition 2. The sequence (Xn)n∈N is said to converge in the complex mod-Gaussian sense with pa-
rameters tn and limiting function ψ if, locally uniformly on Bc,

E[ezXn ] e−
tn z

2

2 = ψ(z) (1 + o(1)),

where ψ is a continuous function on Bc with ψ(0) = 1. Then, one has in particular convergence in the
sense of Definition 1, with θ(t) = ψ(it).

In this setting which is more restrictive than before, the residue ψ has a natural interpretation as a
measure of "breaking of symmetry" when one tries to push the estimates of the central limit theorem
from the scale

√
tn to the scale tn. The previously mentioned central limit theorem (1) tells us that:

P
[
Xn ≥ a

√
tn
]

=

(
1√
2π

∫ ∞
a

e−
x2

2 dx

)
(1 + o(1))

for any a ∈ R. In the setting of complex mod-Gaussian convergence, this estimate remains true with
a = o(

√
tn), so that if ε = o(1), then

P [Xn ≥ ε tn] =

(
1√
2π

∫ ∞
ε
√
tn

e−
x2

2 dx

)
(1 + o(1)),

=
e−

tnε
2

2

√
2πtn ε

(1 + o(1)) if 1� ε� 1√
tn
,

where the notation an � bn stands for bn = o(an). Then, at scale tn, the limiting residue ψ comes into
play, with the following estimate that holds without additional hypotheses than those in Definition 2:

∀x ∈ (0, c), P[Xn ≥ xtn] =
e−

tnx
2

2

√
2πtn x

ψ(x) (1 + o(1)), (2)

the remainder o(1) being uniform when x stays in a compact set of R∗+ ∩ (0, c). Notice that this formula
does not follow directly from the calculation of P[Xn ≥ εtn] with ε = o(1); thus, it requires additional
tools in order to be proven, see [FMN13]. The estimate of positive large deviations has the following
counterpart on the negative side:

∀x ∈ (0, c), P[Xn ≤ −xtn] =
e−

tnx
2

2

√
2πtn x

ψ(−x) (1 + o(1)).
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So for instance, if (Yn)n∈N is a sequence of i.i.d. random variables with convergent moment generating
function, mean 0, variance 1 and third moment E[Y 3

i ] > 0, then Xn = 1
n1/3

∑n
i=1 Yi converges in the

complex mod-Gaussian sense with parameters n1/3 and limiting function ψ(z) = exp(E[Y 3] z3/6), and
therefore for x > 0,

P

[
n∑
i=1

Yi ≥ xn2/3
]

= P
[
N (0, 1) ≥ xn1/6

]
exp

(
E[Y 3]x3

6

)
(1 + o(1)).

Thus, at scale n2/3, the fluctuations of the sum of i.i.d. random variables are no more Gaussian, and
the residue ψ(x) measures this "breaking of symmetry": in the previous example, it makes moderate
deviations on the positive side more likely than moderate deviations on the negative side, since ψ(x) >
1 > ψ(−x) for x > 0.

Remark 3. The problem of finding the normality zone, i.e. the scale up to which the central limit theorem
is valid, is a known problem in the case of i.i.d. random variables (see e.g. [IL71]). The description of
the "symmetry breaking" is new and moreover the mod-Gaussian framework covers many examples with
dependent random variables (see also [FMN13] for more examples).

Thus, the observation of large deviations of the random variables Xn provides a first probabilistic
interpretation of the residue ψ in the deconvolution of a sequence of characteristic functions of random
variables by a sequence of large Gaussian variables. In Section 3, we shall provide another interpretation
of ψ, which is inspired by some classical results from statistical mechanics (cf. [EN78, ENR80]).

1.2 The method of joint cumulants

The appearance of an exponential of a monomial Kxr≥3 as the limiting residue in mod-Gaussian
convergence is a phenomenon that occurs not only for sums of i.i.d. random variables, but more generally
for sums of possibly non identically distributed and/or dependent random variables. For instance,

1. the number of zeroes of a random Gaussian analytic function
∑∞
k=0(NC)k z

k in the disk of radius
1− 1

n , the variables (NC)k being independent standard complex Gaussian variables;
2. the number of triangles in a random Erdös-Rényi graph G(n, p);

are both mod-Gaussian convergent after proper rescaling, and with limiting function of the form exp(Lz3),
with the constant L depending on the model (see again [FMN13]). The reason behind these universal
asymptotics lies in the following method of cumulants. If X is a random variable with convergent Laplace
transform E[ezX ] on a disk, we recall that its cumulant generating function is

logE[ezX ] =
∑
r≥1

κ(r)(X)

r!
zr, (3)

which is also well-defined and holomorphic on a disk around the origin. Its coefficients κ(r)(X) are the
cumulants of the variable X, and they are homogenenous polynomials in the moments of X; for instance,
κ(1)(X) = E[X], κ(2)(X) = E[X2]− E[X]2, and κ(3)(X) = E[X3]− 3E[X2]E[X] + 2E[X]3.

Consider now a sequence of random variables (Wn)n∈N with κ(1)(Wn) = 0, and for r ≥ 2,

κ(r)(Wn) = Kr αn (1 + o(1)), (4)

with αn → +∞. This assumption is inspired by the case of a sum Wn =
∑n
i=1 Yi of centred i.i.d. random

variables for which κr(Wn) = nκ(r)(Y ). If Equation (4) is satisfied, then one can formally write
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log E
[
e
z Wn

(αn)1/3

]
= (αn)−2/3

κ(2)(Wn) z2

2
+ (αn)−1

κ(3)(Wn) z3

6
+
∑
r≥4

κ(r)(Wn)

r!
((αn)−1/3z)r

' (αn)1/3
K2 z

2

2
+
K3 z

3

6
+
∑
r≥4

Kr z
r

r!
(αn)1−r/3

' (αn)1/3
K2 z

2

2
+
K3 z

3

6

whence the mod-Gaussian convergence of Xn = (αn)−1/3Wn with parameters K2 (αn)1/3 and limiting
function exp(K3 z

3/6). The approximation is valid if the o(1) in the asymptotics of κ(2)(Wn) is small
enough (namely o((αn)−1/3)), and if the series

∑
r≥4 can be controlled, which is the case if

∀r, |κ(r)(Wn)| ≤ (Cr)r αn (5)

for some constant C. The method of cumulants in the setting of mod-Gaussian convergence amounts to
prove (4) for the first cumulants of the sequence (Xn)n∈N, and (5) for all the other cumulants. From such
estimates one then obtains mod-Gaussian convergence for an appropriate renormalisation of (Wn)r≥3,
with limiting function exp(Kr z

r/r!), where r is the smallest integer greater or equal than 3 such that
Kr 6= 0.

This method of cumulants works well with sequences (Wn)n∈N that write as sums of (weakly) dependent
random variables. Indeed, cumulants admit the following generalization to families of random variables,
see [LS59]. Denote Qr the set of partitions of [[1, r]] = {1, 2, 3, . . . , r}, and µ the Möbius function of this
poset (see [Rot64] for basic facts about Möbius functions of posets). If Π ∈ Qr, then

µ(Π) = (−1)`(Π)−1 (`(Π)− 1)!

where `(Π) = s if Π = π1tπ2t· · ·tπs has s parts. The joint cumulant of a family of r random variables
with well defined moments of all order is

κ(X1, . . . , Xr) =
∑
Π∈Qr

µ(Π)

`(Π)∏
i=1

E

∏
j∈πi

Xj

 .
It is multilinear and generalizes Equation (3), since

κ(X1, . . . , Xr) =
∂r

∂z1∂z2 · · · ∂zr

∣∣∣∣
z1=···=zr=0

(
logE[ez1X1+···+zrXr ]

)
κ
(
X, . . . ,X︸ ︷︷ ︸
r times

)
= κ(r)(X).

Suppose now that W = Wn =
∑n
i=1 Yi is a sum of dependent random variables. By multilinearity,

κ(r)(W ) =
∑

i1,...,ir

κ(Yi1 , . . . , Yir ), (6)

so in order to obtain the bound (5), it suffices to bound each "elementary" joint cumulant κ(Yi1 , . . . , Yir ).
To this purpose, it is convenient to introduce the dependency graph of the family of random variables
(Y1, . . . , Yn), which is the smallest subgraph G of the complete graph on n vertices such that the following
property holds: if (Yi)i∈I and (Yj)j∈J are disjoint subsets of random variables with no edge of G between
a variable Yi and a variable Yj , then (Yi)i∈I and (Yj)j∈J are independent. Then, in many situations, one
can write a bound on the elementary cumulant κ(Yi1 , . . . , Yir ) that only depends on the induced subgraph
G[i1, . . . , ir] obtained from the dependency graph by keeping only the vertices i1, . . . , ir and the edges
between them. In particular:
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1. κ(Yi1 , . . . , Yir ) = 0 if the induced graph G[i1, . . . , ir] is not connected.
2. if |Yi| ≤ 1 for all i, then |κ(Yi1 , . . . , Yir )| ≤ 2r−1 ST(G[i1, . . . , ir]), where ST(H) is the number of

spanning trees on a (connected) graph H.

By gathering the contributions to the sum of Formula (6) according to the nature and position of the
induced subgraph G[i1, . . . , ir] in G, one is able to prove efficient bounds on cumulants of sums of de-
pendent variables, and to apply the method of cumulants to get their mod-Gaussian convergence. We
refer to [FMN13] for precise statements, in particular in the case where each vertex in G has less than
D neighbors, with D independent of the vertex and of n. In Section 5, we shall apply this method to a
case where G is the complete graph on n vertices, but where one can still find correct bounds (and in
fact exact formulas) for the joint cumulants κ(Yi1 , . . . , Yir ): the one-dimensional Ising model.

1.3 Basic models

As mentioned above, the goal of the paper is to study the phenomenon of mod-Gaussian convergence
for probabilistic models stemming from statistical mechanics; this extends the already long list of models
for which we were able to establish this asymptotic behavior of the Fourier or Laplace transforms ([JKN11,
KN12, FMN13]). More precisely, we shall focus on one-dimensional spin configurations, which already
yield an interesting illustration of the theory and technics of mod-Gaussian convergence. Given two
parameters α ∈ R and β ∈ R+, we recall that the Curie-Weiss model and the one-dimensional Ising
model are the probability laws on spin configurations σ : [[1, n]]→ {±1} given by

CWα,β(σ) =
1

Zn(CW, α, β)
exp

α n∑
i=1

σ(i) +
β

2n

(
n∑
i=1

σ(i)

)2 ; (7)

Iα,β(σ) =
1

Zn(I, α, β)
exp

(
α

n∑
i=1

σ(i) + β

(
n−1∑
i=1

σ(i)σ(i+ 1)

))
. (8)

The coefficient α measures the strength and direction of the exterior magnetic field, whereas β measures
the strength of the interaction between spins, which tend to align in the same direction. This interaction
is local for the Ising model, and global for the Curie-Weiss model. Set Mn =

∑n
i=1 σ(i): this is the total

magnetization of the system, and a random variable under the probabilities CWα,β and Iα,β .

In Section 2, we quickly establish the mod-Gaussian convergence of the magnetization for the Ising
model, using the explicit form of the Laplace transform of the magnetization, which is given by the
transfer matrix method. Alternatively, when α = 0, in the appendix, we apply the cumulant method
and give an explicit formula for each elementary cumulant of spins (see Section 5). This allows us to
prove the analogue for joint cumulants of the well-known fact that covariances between spins decrease
exponentially with distance in the one-dimensional Ising model. This second method is much less direct
than the transfer matrix method, but we consider the Ising model to be a very good illustration of the
method of joint cumulants. Moreover it illustrates the fact that one does not necessarily need to be able
to compute precisely the moment generating function of the random variables.

In Section 3, we focus on the Curie-Weiss model, and we interpret the magnetization as a change of
measure on a sum of i.i.d. random variables. Since these sums converge in the mod-Gaussian sense, it leads
us to study the effect of a change of measure on a mod-Gaussian convergent sequence. We prove that in
the setting of L1-mod-Gaussian convergence, such changes of measures either conserve the mod-Gaussian
convergence (with different parameters), or lead to a convergence in law, with a limiting distribution that
involves the residue ψ. We thus recover some results of [EN78, ENR80] (in particular, [EN78, Theorem
2.1]), and extend them to the setting of L1-mod-Gaussian convergence. In Section 4, using Fourier analytic
arguments, we quickly recover the optimal rate of convergence of the Ellis-Newman limit theorem for the
Curie-Weiss model which was recently obtained in [EL10] using Stein’s method, and then we establish
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a local limit theorem, thus completing the existing limit theorems for the Curie-Weiss model at critical
temperature CW0,1.

2 Mod-Gaussian convergence for the Ising model: the transfer matrix
method

In this section, (σ(i))i∈[[1,n]] is a random configuration of spins under the Ising measure (8), and
Mn =

∑n
i=1 σ(i) is its magnetization. The mod-Gaussian convergence of Mn after appropriate rescaling

can be obtained by two different methods: the transfer matrix method, which yields an explicit formula
for E[ezMn ]; and the cumulant method, which gives an explicit combinatorial formula for the coefficients
of the series logE[ezMn ]. We use here the transfer matrix method, and refer to the appendix (Section 5)
for the cumulant method.

1

Fig. 1 Two configurations of spins under the Ising measures of parameters (α = 0, β = 0.3) and (α = 0, β = 1).

The Laplace transform E[ezMn ] of the magnetization of the one-dimensional Ising model is well-known
to be computable by the following transfert matrix method, see [Bax82, Chapter 2]. Introduce the matrix

T =

(
eα+β e−α−β

eα−β e−α+β

)
,

and the two vectors V = (eα, e−α) and W = ( 1
1 ). If the rows and columns of T correspond to the two

signs +1 and −1, then any configuration of spins σ = (σ(i))i∈[[1,n]] has under the Ising measure Iα,β
a probability proportional to Vσ(1)Tσ(1),σ(2)Tσ(2),σ(3) · · ·Tσ(n−1),σ(n). Therefore, the partition function
Zn(I, α, β) is given by

Zn(I, α, β) =
∑

σ(1),...,σ(n)

Vσ(1)Tσ(1),σ(2)Tσ(2),σ(3) · · ·Tσ(n−1),σ(n)

= V (T )n−1W = a+(λ+)n−1 + a−(λ−)n−1,

where

a+ = coshα+
eβ sinh2 α+ e−β√
e2β sinh2 α+ e−2β

; a− = coshα− eβ sinh2 α+ e−β√
e2β sinh2 α+ e−2β

λ+ = eβ coshα+
√

e2β sinh2 α+ e−2β ; λ− = eβ coshα−
√

e2β sinh2 α+ e−2β .

Indeed, λ± are the two eigenvalues of T , and a+ and a− are obtained by identification of coefficients in
the two formulas

Z1(I, α, β) = eα + e−α

Z2(I, α, β) = e2α+β + e−2α+β + 2e−β .

Then, the Laplace transform of Mn is given by
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Eα,β [ezMn ] =
Zn(I, α+ z, β)

Zn(I, α, β)
.

In particular,

Eα,β [Mn] =
∂Eα,β [ezMn ]

∂z

∣∣∣∣
z=0

=
∂

∂α
logZn(I, α, β) = n

eβ sinhα√
e2β sinh2 α+ e−2β

+O(1).

whence a formula for the (asymptotic) mean magnetization by spin:

m =
eβ sinhα√

e2β sinh2 α+ e−2β
.

A more precise Taylor expansion of Zn(I, α+ z, β) leads to the following:

Theorem 4. Under the Ising measure Iα,β, Mn−nm
n1/3 converges in the complex mod-Gaussian sense with

parameters

tn = n1/3
e−β coshα

(e2β sinh2 α+ e−2β)3/2

and limiting function

ψ(z) = exp

(
−2eβ sinh3 α+ (3eβ − e−3β) sinhα

6(e2β sinh2 α+ e−2β)5/2
z3
)
.

Proof. In the following, we are dealing with square roots and logarithms of complex numbers, but each
time in a neighborhood of R∗+, so there is no ambiguity in the choice of the branches of these functions.
That said, it is easier to work with log-Laplace transforms:

logEα,β
[
e
z Mn−nm

n1/3

]
= logZn

(
I, α+

z

n1/3
, β
)
− logZn(I, α, β)− zn2/3m

logZn(I, α, β) = log a+(α, β) + (n− 1) log λ+(α, β) + o(1)

logZn

(
I, α+

z

n1/3
, β
)

= log a+

(
α+

z

n1/3
, β
)

+ (n− 1) log λ+

(
α+

z

n1/3
, β
)

+ o(1)

= log a+(α, β) + (n− 1) log λ+(α, β) + zn2/3
∂

∂α
(log λ+(α, β))

+
z2n1/3

2

∂2

∂α2
(log λ+(α, β)) +

z3

6

∂3

∂α3
(log λ+(α, β)) + o(1).

Thus, it suffices to compute the first derivatives of log λ+(α, β) with respect to α:

log λ+(α, β) = log
(

eβ coshα+
√

e2β sinh2 α+ e−2β
)

∂

∂α
(log λ+(α, β)) =

eβ sinhα√
e2β sinh2 α+ e−2β

= m

∂2

∂α2
(log λ+(α, β)) =

e−β coshα

(e2β sinh2 α+ e−2β)3/2
= σ2

∂3

∂α3
(log λ+(α, β)) = −2eβ sinh3 α+ (3eβ − e−3β) sinhα

(e2β sinh2 α+ e−2β)5/2
= K3.

We therefore get

logEα,β
[
e
z Mn−nm

n1/3

]
= n1/3

σ2 z2

2
+
K3 z

3

6
+ o(1). ut
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By using Formula (2), this result leads to new estimates of moderate deviations for the probability
Pα,β [Mn ≥ nm+n1/3x]. In the special case when α = 0, the limiting function ψ(z) of Theorem 4 is equal
to 1, and one has to push the expansion of logZn(I, 0, β) to order 4 to get a meaningful mod-Gaussian
convergence (the same phenomenon will occur in the case of the Curie-Weiss model):

Theorem 5. Under the Ising measure I0,β, Mn

n1/4 converges in the complex mod-Gaussian sense with
parameters tn = n1/2 e2β and limiting function

ψ(z) = exp

(
−3e6β − e2β

24
z4
)
.

Proof. This time one has to compute the fourth derivative of log λ+(α, β), which is

∂4

∂α4
(log λ+(α, β)) = (2eβ sinh3 α+ (3eβ − e−3β) sinhα)

∂

∂α

(
− 1

(e2β sinh2 α+ e−2β)5/2

)
− 6eβ sinh2 α coshα+ (3eβ − e−3β) coshα

(e2β sinh2 α+ e−2β)5/2
.

The second term is the only contribution when α = 0, equal to −(3e6β − e2β). Thus,

logE0,β

[
e
z Mn−nm

n1/4

]
= n1/2

σ2 z2

2
− (3e6β − e2β) z4

24
+ o(1). ut

3 Mod-Gaussian convergence in L1 and the Curie-Weiss model

In this Section, (Xn)n∈N is a sequence of random variables with entire moment generating series
E[ezXn ], and we assume the following:

(A) One has mod-Gaussian convergence of the Laplace transforms, i.e., there is a sequence tn → +∞
and a function ψ continuous on R such that

ψn(t) = E[etXn ] e−
tn t

2

2

converges locally uniformly on R to ψ(t).
(B) Each function ψn, and their limit ψ are in L1(R).

We denote Pn the law of Xn,

Qn[dx] =
e
x2

2tn

E
[
e

(Xn)2

2tn

] Pn[dx], (9)

and Yn a random variable under the new law Qn. Note that hypothesis (B) implies that Zn = E[e(Xn)
2/2tn ]

is finite for all n ∈ N. Indeed,∫
R
ψn(t) dt = E

[∫
R

etXn−
tn t

2

2 dt

]
= E

[
e

(Xn)2

2tn

(∫
R

e−
(Xn−tnt)2

2tn dt

)]
=

√
2π

tn
E
[
e

(Xn)2

2tn

]
.

Therefore the new probability measures Qn are well defined. The goal of this section is to study the
asymptotics of the new sequence (Yn)n∈N. As we shall see in §3.3, the Curie-Weiss model defined by
Equation (7) is one of the main examples in this framework. However, it is more convenient to look at
the general problem, and we shall introduce later other models concerned by our general results.
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3.1 Ellis-Newman lemma and deconvolution of a large Gaussian noise

Suppose for a moment that hypothesis (A) is replaced by the stronger hypotheses of Definition
2, with c = +∞ and therefore Bc = C. Fix then 0 < a < b, and consider the partial integral
E[e(Xn)

2/2tn 1tna≤Xn≤tnb]. By integration by parts of Riemann-Stieltjes integrals, one has:∫ tnb

tna

e
x2

2tn Pn[dx] =
[
−e

x2

2tn Pn[Xn ≥ x]
]tnb
tna

+

∫ tnb

tna

x

tn
e
x2

2tn Pn[Xn ≥ x] dx

=

[
−e

tn x
2

2 Pn[Xn ≥ tnx]

]b
a

+

∫ b

a

tnx e
tn x

2

2 Pn[Xn ≥ tnx] dx

=

([
− ψ(x)√

2πtn x

]b
a

+

√
tn
2π

∫ b

a

ψ(x) dx

)
(1 + oa,b(1))

=

(√
tn
2π

∫ b

a

ψ(x) dx

)
(1 + oa,b(1))

because of the estimates of precise deviations (2). In this computation, oa,b(1) is uniform for a, b in
compact sets of (0,+∞). In fact this estimate remains true for a, b in a compact set of R; hence, a and b
can be possibly negative. If the estimate is also true with a = −∞ and b = +∞, then

Qn[tna ≤ Yn ≤ tnb] =
E[e(Xn)

2/2tn 1tna≤Xn≤tnb]

E[e(Xn)2/2tn ]

=

√
tn
2π

∫ b
a
ψ(x) dx√

tn
2π

∫ +∞
−∞ ψ(x) dx

(1 + o(1))

=

∫ b
a
ψ(x) dx∫ +∞

−∞ ψ(x) dx
(1 + o(1)),

so (Yntn )n∈N converges in law to the density ψ(x)/
∫
R ψ(x) dx.

We now wish to identify the most general conditions under which this convergence in law happens. To
this purpose, it is useful to produce random variables with density ψn(x)/

∫
R ψn(x) dx. They are given

by the following Proposition, which appeared in [EN78] as Lemma 3.3:

Proposition 6. Let Gn be a centred Gaussian variable with variance 1
tn
, and independent from Yn. The

law of Wn = Gn + Yn
tn

has density ψn(x)/
∫
R ψn(x) dx.

Remark 7. This Proposition is related to the so-called Hubbard-Stratonovich transformation, which is
commonly used in mean-field theory in order to replace a problem with interacting particles with a sum
or integration over non-integrating systems. We refer to [Bov06, p. 46] and references therein for precisions
on this method coming from statistical mechanics.

Proof. Denote Zn = E[e(Xn)
2/2tn ], and fX(x) dx (respectively, PX) the density (respectively, the law) of

a random variable X. One has
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P[Wn ≤ w] =

∫ w

−∞

(∫
R
fGn(x− u)PYn

tn

[du]

)
dx

=

√
tn
2π

∫ w

−∞

(∫
R

e−
tn (x− y

tn
)2

2 PYn [dy]

)
dx

=

√
tn
2π

∫ w

−∞

(∫
R

eyx−
y2

2tn Qn[dy]

)
e−

tn x
2

2 dx

=
1

Zn

√
tn
2π

∫ w

−∞

(∫
R

eyx Pn[dy]

)
e−

tn x
2

2 dx

=
1

Zn

√
tn
2π

∫ w

−∞
ψn(x) dx.

Making w go to +∞ gives an equation for Zn =
√

tn
2π

∫
R ψn(x) dx. One concludes that:

P[Wn ≤ w] =

∫ w
−∞ ψn(x) dx∫∞
−∞ ψn(x) dx

ut.

This important property was not used in our previous works: to get the residue of deconvolution ψn of a
random variable Xn by a large Gaussian variable of variance tn (that is to say that one wants to remove
a Gaussian variable of variance tn from Xn), one can make the exponential change of measure (9), and
add an independent Gaussian variable of variance tn: the random variable thus obtained, which is tnWn

with the previous notation, has density proportional to ψn(w/tn) dw.

3.2 The residue of mod-Gaussian convergence as a limiting law

We can now state and prove the main result of this Section. We assume the hypotheses (A) and (B),
and keep the same notation as before.

Theorem 8. The following assertions are equivalent:

(i) The sequence (Yntn )n∈N is tight.

(ii) The sequence (Yntn )n∈N converges in law to a random variable with density ψ(x)/
∫
R ψ(x) dx.

(iii) The convergence ψn → ψ, which is supposed locally uniform on R, also occurs in L1(R).

We shall then say that (Xn)n∈N converges in the L1-mod-Gaussian sense with parameters tn and limiting
function ψ. In this setting, the residue ψ can be interpreted as the limiting law of (Xn)n∈N after an
appropriate change of measure.

Proof. Since the Gaussian variable Gn of variance 1
tn

converges in probability to 0, (Yntn )n∈N converges to
a law µ if and only if (Wn)n∈N converges to the law µ. If (iii) is satisfied, then by Proposition 6,

lim
n→∞

P[Wn ≤ w] =

∫ w
−∞ ψ(x) dx∫∞
−∞ ψ(x) dx

,

so the cumulative distribution functions of the variables Wn converge to the cumulative distribution
function of the law ψ(x)/

∫
R ψ(x) dx, and (ii) is established. Obviously, one also has (ii)⇒ (i). Finally, if

(iii) is not satisfied, then by Scheffe’s lemma one also has∫
R
ψn(x) dx 6→

∫
R
ψ(x) dx.
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However, by Fatou’s lemma,
∫
R ψ(x) dx ≤ lim infn→∞

∫
R ψn(x) dx. Therefore, the non-convergence in L1

is only possible if
∫
R ψ(x) dx < lim supn→∞

∫
R ψn(x) dx. Thus, there is an ε > 0 and a subsequence

(nk)k∈N such that

∀k ∈ N,
∫
R
ψnk(x) dx ≥ ε+

∫
R
ψ(x) dx.

Then, for all a, b ∈ R,

lim sup
k→∞

P[a ≤Wnk ≤ b] = lim sup
k→∞

(∫ b
a
ψnk(x) dx∫

R ψnk(x) dx

)
=

∫ b
a
ψ(x) dx

lim infk→∞
∫
R ψnk(x) dx

≤
∫
R ψ(x) dx

ε+
∫
R ψ(x) dx

< 1

which amounts to saying that (Wn)n∈N (and therefore (Yntn )n∈N) is not tight; hence, (i) implies (iii). ut

To complete this result, it is important to compare the two notions of complex mod-Gaussian conver-
gence and of integral L1-mod-Gaussian convergence. Though there are no direct implication between these
two assumptions, the following Proposition shows that the latter notion is a stronger type of convergence:

Proposition 9. Let (Xn)n∈N be a sequence that converges in the L1-mod-Gaussian sense with parameters
tn →∞ and limiting function ψ ∈ L1(R). The estimate of precise large deviations (2) is then satisfied.

Proof. Recall that Zn = E[e(Xn)
2/2tn ] =

√
tn
2π

∫
R ψn(x) dx. We want to compute

P[Xn ≥ tnx] =

∫ ∞
tnx

Pn[dy] = Zn

∫ ∞
tnx

e−
y2

2tn Qn[dy] = Zn

∫ ∞
x

e−
tn u

2

2 PYn
tn

[du].

Suppose for a moment that we can replace the law of Yn
tn

by the one of Wn = Gn + Yn
tn

in the previous
computation. Then, one obtains from Proposition 6

Zn

∫ ∞
x

e−
tn u

2

2 PWn
[du] =

√
tn
2π

∫ ∞
x

e−
tnu

2

2 ψn(u) du.

Fix ε > 0. Since ψn converges locally uniformly to the continuous function ψ, there is an interval [x, x+η]
such that for n large enough and u ∈ [x, x+ η],

ψ(x)− ε < ψn(u) < ψ(x) + ε.

Therefore, for n large enough,

(ψ(x)− ε)
∫ x+η

x

e−
tnu

2

2 du ≤
∫ x+η

x

e−
tnu

2

2 ψn(u) du ≤ (ψ(x) + ε)

∫ x+η

x

e−
tnu

2

2 du

↓ ↓

(ψ(x)− ε) e−
tnx

2

2

tnx
(ψ(x) + ε)

e−
tnx

2

2

tnx
.

Indeed, by integration by parts,
∫ x+η
x

e−
tn u

2

2 du is asymptotic to e−
tn x

2

2

tn x
. On the other hand, since

ψn →L1 ψ, for the remaining part of the integral,∫ ∞
x+η

e−
tnu

2

2 ψn(u) du ≤ e−
tn(x+η)2

2

(∫ ∞
x+η

ψn(u) du

)
' e−

tn(x+η)2

2

(∫ ∞
x+η

ψ(u) du

)
which is much smaller than the previous quantities. Therefore, assuming that one can replace Yn

tn
by Wn,

we obtain the asymptotics
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P[Xn ≥ tnx] =
e−

tn x
2

2

√
2πtn x

ψ(x) (1 + o(1))

for all x > 0; this is what we wanted to prove. Finally, the replacement Yn
tn
↔Wn is indeed valid, because∫ ∞

x

e−
tn u

2

2 PWn [du] =

[
e−

tn u
2

2 P[Wn ≤ u]

]∞
x

+

∫ ∞
x

tnu e−
tn u

2

2 P[Wn ≤ u] du

'
[
e−

tn u
2

2 P[Yn/tn ≤ u]

]∞
x

+

∫ ∞
x

tnu e−
tn u

2

2 P[Yn/tn ≤ u] du

'
∫ ∞
x

e−
tn u

2

2 PYn
tn

[du]

by using on the second line the fact that both Yn
tn

andWn converge in law to the same limit, and therefore
have equivalent cumulative distribution function on R+. ut

In the same setting of L1-mod-Gaussian convergence, one has similarly the estimates on the negative
part of the real line, and around 0, as described on page 3 in the setting of complex mod-Gaussian
convergence.

3.3 Application to the Curie-Weiss model

Consider i.i.d. Bernoulli random variables (σ(i))i≥1 with P[σ(i) = 1] = 1− P[σ(i) = −1] = eα

2 coshα for
some α ∈ R. We set Un =

∑n
i=1 σ(i), so that

E[ezUn ] =

(
cosh(z + α)

coshα

)n
= (cosh z + sinh z tanhα)

n

E
[
e
z Un−n tanhα

n1/3

]
=

(
cosh(zn−1/3) + sinh(zn−1/3) tanhα

ezn−1/3 tanhα

)n
logE

[
e
z Un−n tanhα

n1/3

]
=

n1/3

2 cosh2 α
z2 − sinhα

3 cosh3 α
z3 + o(1)

so one has complex mod-Gaussian convergence of Un−n tanhα
n1/3 with parameters n1/3

cosh2 α
and limiting function

exp(− sinhα
3 cosh3 α

z3).

If α = 0, then the term of order 3 disappears in the Taylor expansion of the characteristic function,
and one obtains instead

logE
[
e
z Un

n1/4

]
=
n1/2 z2

2
− z4

12
+ o(1),

hence a complex mod-Gaussian convergence of Xn = Un
n1/4 with parameters n1/2 and limiting function

exp(−z4/12). Since this function restricted to R is integrable, this leads us to the following result, which
originally appeared in [EN78] (without the mod-Gaussian interpretation):

Theorem 10. Let Xn = n−1/4
∑n
i=1 σ(i) be a rescaled sum of centred ±1 independent Bernoulli ran-

dom variables. It converges in the L1-mod-Gaussian sense, with parameters n1/2 and limiting function
exp(− z

4

12 ). As a consequence, if Yn = n−1/4Mn is the rescaled magnetization of a Curie-Weiss model
CW0,1 of parameters α = 0 and β = 1, then Yn/n1/2 converges in law to the distribution

exp(−x
4

12 ) dx∫
R exp(−x4

12 ) dx
.
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Proof. The function ψn(t) is in our case

ψn(t) = e−
t2n1/2

2

(
cosh

t

n1/4

)n
,

and we have seen that it converges locally uniformly to ψ(t) = exp(− t4

12 ). By Scheffe’s lemma, to obtain
the L1-mod-convergence, it is sufficient to prove that

∫
R ψn(t) dt converges to

∫
R exp(− t4

12 ) dt. This is a
simple application of Laplace’s method:∫

R
ψn(t) dt =

∫
R

e−
t2n1/2

2

(
cosh

t

n1/4

)n
dt = n1/4

∫
R

(
e−

u2

2 coshu
)n

du

and the function u 7→ e−
u2

2 coshu attains its global maximum at u = 0, with a Taylor expansion
1− u4

12 + o(u4), see Figure 2.

-4 -2 2 4

0.5

1

1.5

Fig. 2 The function f(u) = e−
u2

2 coshu.

Then, the exponential change of measure (9) gives a probability measure on spin configurations propor-
tional to

exp

(
(Yn)2

2n1/2

)
= exp

(
1

2n
(Mn)2

)
,

so it is indeed the Curie-Weiss model CW0,1. ut

Remark 11. The method of change of measures that was used so far has allowed us to treat the fluctuations
of the Curie-Weiss model at critical temperature β = 1. One may ask what happens for other values of the
temperature. The case of high temperature (0 < β < 1) is treated later in Theorem 13, see in particular
the end of Example 14. For low temperatures (β > 1), there is no more a limiting law for Mn, though
one can state a central limit theorem for conditioned versions of the magnetization. As far as we know,
our results cannot be applied to this case.

It is easily seen that the proof of Theorem 10 adapts readily to the case where Bernoulli variables are
replaced by so-called pure measures, so we recover most of the limit theorems stated in [EN78, ENR80].
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However, by choosing the setting of mod-Gaussian convergence, we also obtain new limit theorems for
models that do not fall in the Curie-Weiss setting. The following result explains how it would work to
replace the Bernoulli distribution by more general ones; cf. [KNN13, Proposition 2.2].

Proposition 12. Let k ≥ 2 be an integer, and let (Bn)n≥1 be a sequence of i.i.d random variables in Lr

for some r > k + 1, such that the first k moments of B1 are the same as the corresponding moments of
the Standard Gaussian distribution. Then the sequence of random variables(

1

n1/(k+1)

n∑
k=1

Bk

)
n≥1

converges in the mod-Gaussian sense with parameters

tn = n(k−1)/(k+1),

and limiting function
θ(t) = e(it)

k+1 ck+1
(k+1)! ,

where ck+1 denotes the (k + 1)-th cumulant of B1.

When the random variables Bn have an entire moment generating function, then one can replace t
with −it to obtain mod-Gaussian convergence with the Laplace transforms. If B1 is symmetric, then k is
necessarily an odd number of the form 2s− 1 and hence

ψ(t) = e(−1)
st2s

c2s
(2s)! .

In the case of the Bernoulli random variables, s = 2 and c4 = −1/12. In order to have our theorem of
L1-mod-Gaussian convergence to hold, we need to find conditions on the distribution of B1 such that c2s
is negative and that

∫
R ψn converges to

∫
R ψ. The conditions in [EN78] and [ENR80] precisely imply these.

But within our more general framework, following the discussion in Section 1.2, we could well imagine a
situation which fulfils the assumptions of Theorem 8 but where the initial symmetric random variables
are not necessarily i.i.d but simply independent or even weakly dependent. The following paragraph yields
an example of such a setting.

3.4 Mixed Curie-Weiss-Ising model

Consider the one-dimensional Ising model of parameter α = 0, and β arbitrary. We have shown
in Section 2 the complex mod-Gaussian convergence of (n−1/4Mn)n∈N with parameters n1/2 e2β and
limiting function ψ(z) = exp(−(3e6β − e2β) z4/24). Restricted to R, this limiting function is integrable,
and again one has L1-mod-convergence. Indeed, recall that

E[etMn ] =
Zn(I, t, β)

Zn(I, 0, β)
=

1

2

(
a+(t, β)

(
λ+(t, β)

2 coshβ

)n−1
+ a−(t, β)

(
λ−(t, β)

2 coshβ

)n−1)
.

It will be convenient to work with n−1/4Mn+1 instead of n−1/4Mn in order to work with n-th powers.
Then,

ψn(t) = E
[
e
t
Mn+1

n1/4

]
e−

n1/2e2βz2

2∫
R
ψn(t) dt =

n1/4

2

∫
R
a+(u, β)

(
λ+(u, β)

2 coshβ
e−

e2βu2

2

)n
+ a−(u, β)

(
λ−(u, β)

2 coshβ
e−

e2βu2

2

)n
du

and for every parameter β ≥ 0, the functions



16 Pierre-Loïc Méliot and Ashkan Nikeghbali

u 7→ λ+(u, β)

2 coshβ
e−

e2βu2

2 and u 7→ λ−(u, β)

2 coshβ
e−

e2βu2

2

attain their unique maximum at u = 0, see Figure 3 for the graph of the first function.

Fig. 3 The function f(u, β) = λ+(u,β)

2 cosh β
e−

e2βu2

2 (using Mathematica).

Their Taylor expansions at u = 0 are respectively

1− 3e6β − e2β

24
u4 + o(u4) and tanhβ + o(1),

so again by the Laplace method we get limn→∞
∫
R ψn(t) dt =

∫
R ψ(t) dt and the L1-mod-convergence. As

a consequence, consider the random configuration of spins σ on [[1, n]] with probability proportional to

exp

β(n−1∑
i=1

σ(i)σ(i+ 1)

)
+

1

2ne2β

(
n∑
i=1

σ(i)

)2
 .

This model has a local interaction with coefficient β and a global interaction with coefficient 1
e2β

, so it
is a mix of the Ising model and of the Curie-Weiss model. The previous discussion and Theorem 8 show
that its magnetization satisfies the non standard limit theorem

Mn

n3/4
⇀n→∞

ψ(x) dx∫
R ψ(x) dx

with ψ(x) = exp

(
−3e6β − e2β

24
x4
)
.

3.5 Sub-critical changes of measures

In the mixed Curie-Weiss-Ising model, one may ask what happens if instead of β and 1
e2β

one puts
arbitrary coefficients for the local and the global interaction. More generally, given a sequence (Xn)n∈N
that converges in the L1-mod-Gaussian sense with parameters tn and limiting function ψ, one can look
at the change of measure
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Q(γ)
n [dx] =

e
γx2

2tn

E
[
e
γ(Xn)2

2tn

] Pn[dx]

with γ ∈ (0, 1) (for γ > 1, the change of measure is not necessarily well-defined, since the hypotheses (A)
and (B) do not ensure that E[eγ(Xn)

2/2tn ] < +∞). These subcritical changes of measures do not modify
the order of magnitude of the fluctuations of Xn, and more precisely:

Theorem 13. Suppose that (Xn)n∈N converges in the L1-mod-Gaussian sense with parameters tn and
limiting function ψ. Then, if (X

(γ)
n )n∈N is a sequence of random variables under the new probability

measures Q(γ)
n , it converges in the L1-mod-Gaussian sense with parameters tn

1−γ and limit t 7→ ψ
(

t
1−γ

)
.

Example 14. Consider a random configuration of spins σ on [[1, n]] with probability proportional to

exp

β(n−1∑
i=1

σ(i)σ(i+ 1)

)
+

γ

2n

(
n∑
i=1

σ(i)

)2
 ,

with γ < e−2β . The total magnetization of the system has order of magnitude n1/2, and more precisely,
one has the central limit theorem

Mn

n1/2
⇀n→∞ N

(
0,

e2β

1− γe2β

)
,

and in fact a L1-mod-Gaussian convergence of Mn

n1/4 , with parameters n1/2 e2β

1−γe2β and limiting function

ψ(x) = exp

(
− (3e6β − e2β)x4

24(1− γe2β)4

)
.

In particular, if β = 0 and one considers the Curie-Weiss model at high temperatures (γ < e−2×0 = 1),
then there is a L1-mod-Gaussian convergence of

√
1−γ Mn

n1/4 with parameters n1/2 and limiting function

ψ(x) = exp

(
− x4

12(1− γ)2

)
.

Proof (of Theorem 13). We denote as before (Yn)n∈N a sequence of random variables under the laws
Qn = Q(1)

n . We first compute the asymptotics of Z(γ)
n = E[eγ(Xn)

2/2tn ]:

Z(γ)
n = Zn E[e−(1−γ)(Yn)

2/2tn ]

=

√
tn
2π

(∫
R
ψ(x) dx

)
E
[
e−

tn(1−γ)
2 (Yntn )2

]
(1 + o(1))

=

√
tn
2π

(∫
R
ψ(x) dx

)
E
[
e−

tn(1−γ)
2 (Wn)

2
]

(1 + o(1))

=

√
1

1− γ
(1 + o(1))

by using on the third line an integration by parts as in the proof of Proposition 9 to replace Yn
tn

by Wn;
and the Laplace method on the fourth line to compute

∫
R e−tn(1−γ)x

2/2 ψn(x) dx. The same computations
give the asymptotics of
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E[etXn+γ(Xn)
2/2tn ] = Zn E[etYn−(1−γ)(Yn)

2/2tn ]

=

√
tn
2π

(∫
R
ψ(x) dx

)
E
[
etnt (

Yn
tn

)− tn(1−γ)
2 (Yntn )2

]
(1 + o(1))

=

√
tn
2π

(∫
R
ψ(x) dx

)
E
[
etntWn− tn(1−γ)

2 (Wn)
2
]

(1 + o(1))

= e
tnt

2

2(1−γ)

√
1

1− γ
ψ

(
t

1− γ

)
(1 + o(1))

with again a Laplace method on the fourth line. Since

E[etX
(γ)
n ] =

E[etXn+γ(Xn)
2/2tn ]

Z
(γ)
n

,

this shows the hypotheses (A) and (B) for the sequence (X
(γ)
n )n∈N, with parameters tn

1−γ , and limiting
function ψ( t

1−γ ). Then, since (Yn/tn)n∈N converges in law, by using the implication (ii)⇒ (iii) in Theorem

8 for the sequence (X
(γ)
n )n∈N, we see that the mod-Gaussian convergence of Laplace transforms necessarily

happens in L1(R). ut

3.6 Random walks changed in measure

In this section, we shall make a brief excursion in the higher dimensions. Since we do not want to enter
details on mod-Gaussian convergence for random vectors (for which we refer the reader to [KN12] and
[FMN13]), we shall only consider the simple case X = (X(1), . . . , X(d)) is a random vector with values
in Rd such that E[exp(z1X

(1) + · · · + zdX
(d))] is entire in Cd. We shall say that the sequence (Xn) of

random vectors converges in the complex mod-Gaussian sense with parameter tn and limiting function
ψ(z1, · · · , zd) if the following convergence holds locally uniformly on compact subsets of Cd:

ψn(t) = E[exp(z1X
(1)
n + · · ·+ zdX

(d)
n )] exp

(
−tn

(z1)2 + · · ·+ (zd)
2

2

)
→ ψ(z1, . . . , zd).

In this vector setting, the assumptions (A) and (B) of Section 3 now simply amount to the fact that the
convergence above holds locally uniformly for t = (t(1), · · · , t(d)) ∈ Rd and that ψn and ψ are both in
L1(Rd).

Following the case d = 1 we denote Pn the law of Xn on Rd,

Qn[dx] =
e
‖x‖2
2tn

E
[
e
‖Xn‖2

2tn

] Pn[dx],

and Yn a random variable under the new law Qn. Note that here again hypothesis (B) implies that
Zn = E[e‖Xn‖

2/2tn ] is finite for all n ∈ N. Indeed, with the notation 〈u, v〉 = u1v1 + · · ·+ udvd, we have∫
Rd
ψn(t) dt = E

[∫
Rd

e〈t,Xn〉−
tn ‖t‖2

2 dt

]
= E

[
e

(‖Xn‖2
2tn

(∫
Rd

e−
‖Xn−tnt‖2

2tn dt

)]
=

(
2π

tn

)d/2
E
[
e
‖Xn‖2

2tn

]
.

Therefore, the new probabilities Qn are well-defined and

Zn = E[e‖Xn‖
2/2tn ] =

(
tn
2π

)d/2 ∫
Rd
ψn(t) dt.
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Then it is clear that Proposition 6 holds with Gn being a Gaussian vector with covariance matrix 1/tn Id
where Id is the identity matrix of size d. Similarly one can establish an analogue of Theorem 8 in Rd.

LetWn be a simple random walk on the lattice Zd≥2: at each step, each of the 2d neighbors of the state
that is occupied has the same probability of transition (2d)−1. The d-dimensional characteristic function
of Wn = (W

(1)
n , . . . ,W

(d)
n ) is

E[ez1W
(1)
n +···+zdW (d)

n ] =

(
cosh z1 + · · ·+ cosh zd

d

)n
.

Therefore, one has the asymptotics

logE

[
e
z1W

(1)
n +···+zdW

(d)
n

n1/4

]
= n log

(
1 +

(z1)2 + · · ·+ (zd)
2

2dn1/2
+

(z1)4 + · · ·+ (zd)
4

24dn
+ o

(
1

n

))
= n1/2

(z1)2 + · · ·+ (zd)
2

2d
− 3((z1)2 + · · ·+ (zd)

2)2 − d((z1)4 + · · ·+ (zd)
4)

24d2
+ o(1).

One obtains a d-dimensional complex mod-Gaussian convergence of Xn = n−1/4Wn with parameters
n1/2

d and limiting function

ψ(z1, . . . , zd) = exp

(
−3 ((z1)2 + · · ·+ (zd)

2)2 − d ((z1)4 + · · ·+ (zd)
4)

24d2

)
.

In [FMN13], we used this mod-convergence to prove quantitative estimates regarding the breaking of
the radial symmetry when one considers random walks conditioned to be of large size (of order n3/4
instead of the expected order n1/2). With the notion of L1-mod-Gaussian convergence, one can give
another interpretation, but only for d = 2 or d = 3. Restricted to Rd, the limiting function is indeed not
integrable for d ≥ 4: if t2, . . . , td ∈ [−1, 1], then

3 ((t1)2 + · · ·+ (td)
2)2 − d ((t1)4 + · · ·+ (td)

4) ≤ 3 ((t1)2 + (d− 1))2 − d (t1)4

≤ (3− d)(t1)4 + 6(d− 1)(t1)2 + 3(d− 1)2.

So, restricted to the domain R × [−1, 1]d−1, ψ(t1, . . . , td) ≤ K exp(a(t1)4 − b(t1)2) for some positive
constants a, b and K; therefore, this function is not integrable.

On the other hand, if d = 2 or d = 3, then ψ is integrable on Rd, and one has L1-mod-Gaussian
convergence. Indeed, when d = 2, the limiting function is

ψ(t1, t2) = exp

(
− (t1)4 + (t2)4 + 6(t1t2)2

96

)
, (10)

which is clearly integrable; and the residues

ψn(t1, t2) = E

[
e
t1W

(1)
n +t2W

(2)
n

n1/4

]
e−

n1/2((t1)2+(t2)2)
4

converge locally uniformly on R2 to ψ(t1, t2), but also in L1(R2). Indeed,∫
R2

ψn(t1, t2) dt1 dt2 =

∫
R2

(
cosh t1

n1/4 + cosh t2
n1/4

2

)n
e−

n1/2((t1)2+(t2)2)
4 dt1 dt2

= n1/2
∫
R2

(
coshu1 + coshu2

2
e−

(u1)2+(u2)2

4

)n
du1 du2,
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and the function (u1, u2) 7→ coshu1+coshu2

2 e−
(u1)2+(u2)2

4 reaches its unique global maximum at u1 = u2 = 0,
with Taylor expansion

1− (u1)4 + (u2)4 + 6(u1u2)2

96
+ o(‖u‖4)

around this point (see Figure 4).

Fig. 4 The function f(u1, u2) = coshu1+coshu2
2

e−
(u1)2+(u2)2

4 .

Thus, by using the multi-dimensional Laplace method, the limit of the integral
∫
R2 ψn(t1, t2) dt1 dt2 is∫

R2 ψ(t1, t2) dt1 dt2, and the L1 convergence is shown. Similarly, when d = 3, the limiting function is

ψ(t1, t2, t3) = exp

(
− (t1t2)2 + (t1t3)2 + (t2t3)2

36

)
, (11)

and the following computation shows that it is integrable:∫
R3

ψ(x, y, z) dx dy dz =

∫
R2

e−
(yz)2

36

(∫
R

e−
y2+z2

36 x2

dx

)
dy dz

= 6
√
π

∫
R2

e−
(yz)2

36√
y2 + z2

dy dz

= 3
√
π

∫ ∞
r=0

∫ π

θ=0

e−
r4 sin2 θ

144 dr dθ

= 12
√

3π

∫ ∞
r=0

e−r
4

dr

∫ π
2

θ=0

dθ√
sin θ

< +∞

since 1√
sin θ

is integrable at 0. On the other hand, the residues

ψn(t1, t2, t3) = E

[
e
t1W

(1)
n +t2W

(2)
n +t3W

(3)
n

n1/4

]
e−

n1/2((t1)2+(t2)2+(t3)2)
6

converge to ψ(t1, t2, t3) locally uniformly on R3 and in L1(R3). Indeed, one has again
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R3

ψn(t1, t2, t3) dt = n1/2
∫
R3

(
coshu1 + coshu2 + coshu3

3
e−

(u1)2+(u2)2+(u3)2

6

)n
du

and the function in the brackets reaches its unique maximum at u1 = u2 = u3 = 0, with Taylor expansion
corresponding to the limiting function ψ after application of the Laplace method.

The multidimensional analogue of Theorem 8 thus yields the following multidimensional extension of
the limit theorem for the Curie-Weiss model:

Theorem 15. Let Wn be a simple random walk in dimension d ≤ 3. If Vn is obtained from Wn by a
change of measure by the factor exp(d ‖Wn‖2/2n), then

Vn
n3/4

⇀n→∞
ψ(x) dx∫
R3 ψ(x) dx

,

where ψ(x) = exp(−x4/12) in dimension 1, and ψ is given by Formulas (10) and (11) in dimension 2
and 3.

Remark 16. Suppose d = 2. Then, there is a limit in law not only for Vn
n3/4 , but in fact for the whole

random walk ( Vk
n3/4 )k≤n, viewed as a random element of C(R+,R2) or of the Skorohod space D(R+,R2),

see Figure 5.

22

Fig. 5 A 2-dimensional random walk changed in measure by e‖Wn‖
2/n, here with n = 10000.

4 Local limit theorem and rate of convergence in the Ellis-Newman limit
theorem

We keep the same notation as before and note In =
∫
R ψn(x) dx and I∞ =

∫
R ψ(x) dx.

In this section we wish to provide a quick approach based on Fourier analysis,

1. to compute the Kolmogorov distance between the rescaled magnetization Yn/n1/2 = Mn/n
3/4 in the

Curie-Weiss model and the random variable W∞ with density ψ(x)/I∞, where ψ(x) = exp(−x4/12).
This problem was recently solved in [EL10] using Stein’s method. As in [EL10], our method would
cover many more general models as well: it is just a matter of specializing Lemma 17 and Lemma 18
below which are stated in all generality.

2. to prove a new local limit theorem for the rescaled magnetization n−1/4Mn in the Curie-Weiss model.
Here again we shall indicate how one can establish local limit theorems in more general situations.
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4.1 Speed of convergence

Getting back to our special case of the Curie-Weiss model, we denote Xn = 1
n1/4

∑n
i=1Bi a scaled sum

of ±1 independent Bernoulli random variables; Yn the random variable with modified law

Qn[dy] =
e

y2

2n1/2 Pn[dy]

E
[
e

(Xn)2

2n1/2

] ;

Gn an independent Gaussian random variable of variance 1
n1/2 ; and Wn = Yn

n1/2 +Gn. It follows from the
previous results that the law of Wn has density

ψn(x)

In
=

1

In
e−

n1/2x2

2

(
cosh

x

n1/4

)n
,

which converges in L1 towards the law ψ(x)
I∞

= 1
I∞

e−
x4

12 . We hence wish for an upper bound for the
Kolmogorov distance between Yn

n1/2 and W∞. For this we shall need the following general lemmas.

Lemma 17. Consider the two distributions Wn = ψn(x) dx
In

and W∞ = ψ(x) dx
I∞

. The Kolmogorov distance
between them is smaller than

‖ψ − ψn‖L1

I∞
(1 + o(1)).

Proof. Fix a ∈ R, and suppose for instance that
∫
R ψ(x) dx ≥

∫
R ψn(x) dx. We have

FWn(a)− FW∞(a) =

(∫ a
−∞ ψn(x) dx

In
−
∫ a
−∞ ψ(x) dx

In

)
+

(∫ a
−∞ ψ(x) dx

In
−
∫ a
−∞ ψ(x) dx

I∞

)

=

∫ a
−∞(ψn(x)− ψ(x)) dx

In
+

(∫ a

−∞
ψ(x) dx

) ∫∞
−∞(ψ(x)− ψn(x)) dx

I∞In

≤ −
∫ a
−∞(ψ(x)− ψn(x)) dx

In
+

∫∞
−∞(ψ(x)− ψn(x)) dx

In

≤
∫∞
a

(ψ(x)− ψn(x)) dx

In
≤ ‖ψ − ψn‖L

1

In
.

Writing FW∞(a) − FWn
(a) = (1 − FWn

(a)) − (1 − FW∞(a)), one sees that the inequality is in fact
valid with an absolute value on the left-hand side. Since In = I∞(1 + o(1)), this shows the claim. If∫
R ψn(x) dx ≥

∫
R ψ(x) dx, it suffices to exchange the roles played by ψn and ψ to get the inequality. ut

The asymptotics of the L1-norm ‖ψ−ψn‖L1 in the Curie-Weiss model are computed as follows. Noting
that one always has ψn(x) ≥ ψ(x), it suffices to compute∫

R
ψn(x) dx =

∫
R

e−
n1/2 x2

2

(
cosh(xn−1/4)

)n
dx = n1/4

∫
R

(
e−

u2

2 cosh(u)
)n

du.

By the Laplace method (see [Zor04, Formula (19.17), p. 624-625]), the asymptotics of the integral is

n−
1
4

(
121/4 Γ ( 1

4 )

2

)
+ n−

3
4

(
123/4 Γ ( 3

4 )

10

)
+ smaller terms.

The first term corresponds to I∞ =
∫
R ψ(x) dx =

∫
R e−x

4/12 dx. As a consequence,



Mod-Gaussian convergence and its applications for models of statistical mechanics 23

‖ψ − ψn‖L1

I∞
=

1

n1/2

√
12Γ ( 3

4 )

5Γ ( 1
4 )

(1 + o(1)).

The main work now consists in computing dKol(
Yn
n1/2 ,Wn). We start by a Lemma which is a variation of

arguments used for i.i.d. random variables in [Tao12, p. 87]. In the following, given a function f ∈ L1(R),
we write its Fourier transform f̂(ξ) =

∫
R f(x) eiξx dx. Recall that the function

υ(ξ) =

{
e
− 1

1−4ξ2 if |ξ| < 1
2 ,

0 otherwise.

is even, of class C∞ and with compact support [− 1
2 ,

1
2 ]. We set ρ̂? = υ, so that

ρ?(x) =
1

2π

∫ 1
2

− 1
2

υ(ξ) e−ixξ dξ

by the Fourier inversion theorem. By construction, the Fourier transform of ρ? has support equal to
[− 1

2 ,
1
2 ]. Set now

ρ(x) =
(ρ?(x))2∫

R(ρ∗(y))2 dy
.

By construction, ρ is smooth, even, non-negative and with integral equal to 1. Moreover, ρ̂ is up to a
constant equal to ν ∗ν(ξ), so it has support included into [−1, 1]. The convolution of ρ with characteristic
functions of intervals will allow us to transform estimates on test functions into estimates on cumulative
distribution functions. More precisely, for a ∈ R and ε > 0, set ρε(x) = 1

ε ρ(xε ), and φa,ε(x) = φε(x− a),
where φε is the function 1(−∞,0] ∗ ρε. One sees φa,ε as a smooth approximation of the characteristic
function 1(−∞,a].

For all a, ε, φa,ε has Fourier transform compactly supported on
[
− 1
ε ,

1
ε

]
. Moreover, it has negative

derivative, and decreases from 1 to 0. Later, we will use the identity

φε(εx) = φ1(x) = φ(x).

On the other hand, we have the following estimates forK > 0 (we used Sage for numerical computations):

|ρ∗(K)| = 1

2πK2

∣∣∣∣∣
∫ 1

2

− 1
2

υ′′(ξ) e−iKξ dξ

∣∣∣∣∣ ≤ 1

2πK2

∫ 1
2

0

|υ′′(ξ)| dξ =
1.0166−
K2

;

∫
R

(ρ∗(y))2 dy =
1

2π

∫ 1
2

0

|υ(ξ)|2 dξ = 0.01059+.

Therefore, for any K > 0,

ρ(K) = ρ(−K) =
(ρ∗(K))2∫

R(ρ∗(y))2 dy
≤ 99

K4
;

φ(K) = 1− φ(−K) =

∫ ∞
0

ρ(K + y) dy ≤ 33

K3
.

Lemma 18. Let V and W be two random variables with cumulative distribution functions FV and FW .
Assume that for some ε > 0

|E[φa,ε(V )]− E[φa,ε(W )]| ≤ Bε,

where the positive constant B is independent of a. We also suppose that W has a density w.r.t. Lebesgue
measure that is bounded by m. Then,
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sup
a∈R
|FV (a)− FW (a)| ≤ 2(B + 10m) ε.

Proof. Fix a positive constant K, and denote δ = supa∈R |FV (a) − FW (a)| the Kolmogorov distance
between V and W . One has

FV (a) = E[1V≤a] ≤ E[φa+Kε,ε(V )] + E[(1− φa+Kε,ε(V )) 1V≤a]

≤ E[φa+Kε,ε(W )] + E[(1− φa+Kε,ε(V )) 1V≤a] +Bε.

The second expectation writes as

E[(1−φa+Kε,ε(V )) 1V≤a] =

∫
R

(1− φa+Kε,ε(x)) 1(−∞,a](x) fV (x) dx

= −
∫
R

((1− φa+Kε,ε(x)) 1(−∞,a](x))′ FV (x) dx

=

∫
R
φ′a+Kε,ε(x) 1(−∞,a](x)FV (x) dx+

∫
R

(1− φa+Kε,ε(x)) 1a(x)FV (x) dx.

For the first integral, since FV (x) ≥ FW (x)− δ and the derivative of φa+Kε,ε is negative, an upper bound
on I1 is ∫

R
φ′a+Kε,ε(x) 1(−∞,a](x)FW (x) dx− δ

∫
R
φ′a+Kε,ε(x) 1V≤a(x)

=

∫
R
φ′a+Kε,ε(x) 1(−∞,a](x)FW (x) dx+ (1− φa+Kε,ε(a)) δ

=

∫
R
φ′a+Kε,ε(x) 1(−∞,a](x)FW (x) dx+ (1− φ(−K)) δ.

As for the second integral, it is simply (1 − φa+Kε,ε(a))FV (a), and by writing FV (a) ≤ FW (a) + δ, one
gets the upper bound on I2∫

R
(1− φa+Kε,ε(x)) 1a(x)FW (x) dx+ (1− φa+Kε,ε(a)) δ

=

∫
R

(1− φa+Kε,ε(x)) 1a(x)FW (x) dx+ (1− φ(−K)) δ.

One concludes that

E[(1− φa+Kε,ε(V )) 1V≤a] ≤ E[(1− φa+Kε,ε(W )) 1W≤a] + 2(1− φ(−K))δ.

On the other hand, if m is a bound on the density fW of W , then

E[φa+Kε,ε(W ) 1W≥a] =

∫ ∞
a

φa+Kε,ε(y) fW (y) dy

≤ m
∫ ∞
a

φε(y − a−Kε) dy = m

∫ ∞
0

φε(y −Kε) dy

≤ mε
∫ ∞
0

φ(u−K) du ≤ mε (K + 4.82) ,

by using on the last line the bound φ(x) ≤ 33
x3 . As a consequence,

E[φa+Kε,ε(W )] ≤ E[φa+Kε,ε(W ) 1W≤a] +m (K + 4.82) ε

FV (a) ≤ FW (a) + (B +m (K + 4.82)) ε+ 2
33

K3
δ.

Similarly, FV (a) ≥ FW (a)− (B +m(K + 4.82))ε− 2 33
K3 δ, so in the end
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δ = sup
a∈R
|FV (a)− FW (a)| ≤ (B +m (K + 4.82)) ε+

66

K3
δ.

As this is true for every K, one can for instance take K = 3
√

132, which gives

δ ≤ 1

1− 1
2

(
B +m

(
3
√

132 + 4.82
))

ε ≤ 2(B + 10m) ε. ut

We are going to apply Lemma 18 with V = Yn
n1/2 and W = Wn. First, notice that a bound on the

density of Wn is
|ψn(x)|
In

≤ 1

I∞
=

2

121/4 Γ ( 1
4 )

= m.

On the other hand, using the Fourier transform of the Heaviside function

1̂(−∞,a](ξ) = eiaξ
(
πδ0(ξ) +

i

ξ

)
,

we get

E
[
φa,ε

(
Yn
n1/2

)]
− E[φa,ε(Wn)] =

1

2πIn

∫ 1
ε

− 1
ε

φ̂a,ε(ξ) ψ̂n(ξ)

(
e

ξ2

2n1/2 − 1

)
dξ

=
1

2πIn

∫ 1
ε

− 1
ε

ρ̂ε(ξ) eiaξ
(

i

ξ

)
ψ̂n(ξ)

(
e

ξ2

2n1/2 − 1

)
dξ;∣∣∣∣E[φa,ε( Yn

n1/2

)]
− E[φa,ε(Wn)]

∣∣∣∣ ≤ 1

2πIn n1/2

∫ 1
ε

− 1
ε

|ρ̂(εξ)| |ψ̂n(ξ)| e
ξ2

2n1/2 dξ

by controlling e
ξ2

2n1/2 − 1 by its first derivative (notice that we used the vanishing of this quantity at
ξ = 0 in order to compensate the singularity of the Fourier transform of the Heavyside distribution).
Since ‖ρ̂‖L∞ = ‖ρ‖L1 = 1, the previous bound can be rewritten as∣∣∣∣E[φa,ε( Yn

n1/2

)]
− E[φa,ε(Wn)]

∣∣∣∣ ≤ 1

2πIn n1/2

∫ 1
ε

− 1
ε

|ψ̂n(ξ)| e
ξ2

2n1/2 dξ.

We then need estimates on the Fourier transform of ψ̂n, and more precisely estimates of exponential
decay. To this purpose, we use the following Lemma, which is related to [RS75, Theorem IX.13, p. 18]:

Lemma 19. Let f be a function which is analytic on a band {z ∈ C | |Im(z)| < c}. For any b ∈ (0, c),

|f̂(ξ)| ≤ 2

(
sup
−b≤a≤b

‖f(·+ ia)‖L1

)
e−b|ξ|,

assuming that the supremum is finite.

Proof. Notice that the Fourier transform of τaf(·) = f(·+ ia) is∫
R
τaf(x) eixξ dx =

∫
R
f(x+ ia) eixξ dx =

(∫
R
f(x+ ia) ei(x+ia)ξ dx

)
eaξ.

By analyticity of the function in the integral, using Cauchy’s integral formula, one sees that the last term
is also (∫

R
f(x) eixξ dx

)
eaξ = f̂(ξ) eaξ,
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(see the details on page 132 of the book by Reed and Simon). It follows that

|f̂(ξ)| ea|ξ| ≤ |f̂(ξ)| (eaξ + e−aξ) ≤ |τ̂af(ξ)|+ |τ̂−af(ξ)| ≤ ‖τaf‖L1 + ‖τ−af‖L1 . ut

Thus we need to compute for a > 0 the L1-norm of ψn(·+ ia). We write

|ψn(x+ ia)| = e−
n1/2(x2−a2)

2

∣∣∣∣cosh

(
x+ ia

n1/4

)∣∣∣∣n
= |ψn(x)| en

1/2a2

2

∣∣∣cos2
( a

n1/4

)
+ tanh2

( x

n1/4

)
sin2

( a

n1/4

)∣∣∣n2
= |ψn(x)| en

1/2a2

2

∣∣∣1− (1− tanh2
( x

n1/4

))
sin2

( a

n1/4

)∣∣∣n2 .
For n large enough, sin2( a

n1/4 ) ≥ a2

n1/2 − a4

3n , and on the other hand, 0 ≤ tanh2
(

x
n1/4

)
≤ x2

n1/2 , so∣∣∣∣ψn(x+ ia)

ψn(x)

∣∣∣∣ ≤ e
n1/2a2

2 exp

(
−n

1/2a2

2

(
1− tanh2

( x

n1/4

))(
1− a2

3n1/2

))
≤ e

a4

3 e
a2x2

2 .

Since ψn(x) behaves as e−x
4/12, the previous Lemma can be applied, with an asymptotic bound

‖ψn(·+ ia)‖L1 . e
a4

3

∫
R

e−
x4

12 + a2x2

2 dx = e
13a4

12

∫
R

e−
(x2−3a2)2

12 dx

. e
13a4

12

(
2
√

3 a+ I∞

)
by cutting the integral in two parts according to the sign of x2 − 3a2. We have therefore proven:

Proposition 20. For any b ≥ 0,
|ψ̂n(ξ)| . K(b) e−b|ξ|,

where K(b) = 2e
13b4

12 (2
√

3 b + I∞) and where the symbol . means that the inequality is true up to any
multiplicative constant 1 + ε, for ε > 0 and n large enough.

We can now conclude. Fix b > 0, and D < 2b. On the interval [−Dn1/2, Dn1/2], we have

ξ2

2n1/2
− b|ξ| = −|ξ|

(
b− |ξ|

2n1/2

)
≤ −|ξ|

(
b− D

2

)
.

Therefore, with ε = 1
Dn1/2 ,∣∣∣∣E[φa,ε( Yn
n1/2

)]
− E[φa,ε(Wn)]

∣∣∣∣ . K(b)

2πI∞ n1/2

∫
R

e−(b−D2 )|ξ| dξ =
K(b)

πI∞ n1/2
(
b− D

2

)
.

K(b)D

πI∞
(
b− D

2

) ε.
So, Lemma 18 applies to V = Yn

n1/2 and W = Wn, with

dKol

(
Yn
n1/2

,Wn

)
. 2

(
K(b)D

πI∞
(
b− D

2

) +
10

I∞

)
ε =

2

I∞ n1/2

(
K(b)

π (b− D
2 )

+
10

D

)
.

Taking b = D = 0.77, we get finally

dKol

(
Yn
n1/2

,Wn

)
.

2

I∞ n1/2

(
2K(b)

π b
+

10

b

)
≤ 10.27

n1/2
.
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Adding the bound on dKol(Wn,W∞) yields then:

Theorem 21. For n large enough,

dKol

(
Yn
n1/2

,W∞

)
≤ 11n−1/2.

Notice that we have only used arguments of Fourier analysis and the language of mod-Gaussian conver-
gence in order to get this bound.

4.2 Local limit theorem

Combining Proposition 20 with Theorem 5 in [DKN11] on local limit theorems for mod-φ convergence,
we obtain the following local limit theorem for the magnetization in the Curie-Weiss model:

Theorem 22. In the Curie-Weiss model, if we note Mn for the total magnetization, then we have:

lim
n→∞

n1/2 P[n−1/4Mn ∈ B] =
2

121/4Γ ( 1
4 )
m(B),

for relatively compact sets B with m(∂B) = 0, m denoting the Lebesgue measure.

Proof. With the notation of §4.1, Yn = n−1/4Mn and we need to check assumptions H1, H2 and H3 of
[DKN11] for (Yn)n∈N in order to apply Theorem 5 in loc. cit.

• H1. The Fourier transform of the limiting law µ(dx) = ψ(x) dx
I∞

of Yn
n1/2 is in the Schwartz space, hence

is integrable.

• H2. The Fourier transforms ψ̂n(ξ)
In

e
ξ2

2n1/2 of Yn
n1/2 converge locally uniformly in ξ towards the Fourier

transform ψ̂(ξ)
I∞

. Indeed, by Theorem 10,

ψn(x)

In
→L1(R)

ψ(x)

I∞
,

so ψ̂n(ξ)
In
→ ψ̂(ξ)

I∞
, and the term e

ξ2

2n1/2 converges locally uniformly to 1.

• H3. Finally, we have to prove that for all k ≥ 0,

fn,k(ξ) = E
[
e
iξ Yn

n1/2

]
1|ξ|≤kn1/2

is uniformly integrable. Following Remark 2 in [DKN11], it is enough to show that∣∣∣E [eiξ Yn

n1/2

]∣∣∣ ≤ h(ξ)

for ξ such that |ξ| ≤ kn1/2 for some non-negative and integrable function h on R. This is a consequence
of Proposition 20: since |ψ̂n(ξ)| ≤ C(k) e−k|ξ| for any k > 0, one can write

∣∣∣E [eiξ Yn

n1/2

]∣∣∣ =
|ψ̂n(ξ)|
In

e
ξ2

2n1/2

≤ C(k)

I∞
e
−k|ξ|+ ξ2

2n1/2

≤ C(k)

I∞
e−

k
2 |ξ|
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for any |ξ| < k n1/2. We can hence apply Theorem 5 of [DKN11] with dµ
dm (0) = 1/I∞,and the value of

I∞ was computed in the proof of Lemma 18. ut

Remark 23. A similar result would more generally hold for Yn whenever one has some estimates of expo-
nential decay on ψ̂n(ξ) similar to the one given in Lemma 20:

lim
n→∞

tn P[Yn ∈ B] =
1

I∞
m(B).

In particular, the result holds for the random walks changed in measure studied in §3.6.

Remark 24. The idea behind the proof the local limit theorem above and which is found in [DKN11] is
the following: thanks to approximation arguments, one can show that it is enough to prove the local limit
theorem for functions whose Fourier transforms have compact support (instead of indicator functions
1B). Then, one uses Parseval’s relation for such functions f to write:

E[f(Yn)] =
1

2π

∫
R

ψ̂n(ξ)

In
e
ξ2

2tn f̂

(
− ξ

tn

)
dξ

and then use the assumptions to conclude.

5 Mod-Gaussian convergence for the Ising model: the cumulant method

In this appendix, we give another combinatorial proof of the mod-Gaussian convergence of the mag-
netization in the Ising model, without ever computing the Laplace transform of Mn. This serves as an
illustration of the cumulant method developed in [FMN13].

5.1 Joint cumulants of the spins

When α = 0, one can realize the Ising model by choosing σ(1) according to a Bernoulli random variable
of parameter 1

2 , and then each sign Xi = σ(i)σ(i+1) according to independent Bernoulli random variables
with

P[Xi = 1] = 1− P[Xi = −1] =
eβ

2 coshβ
.

In particular, one recovers immediately the value of the partition function Zn(I, 0, β) = 2n(coshβ)n−1.
We then want to compute the joint cumulants of the magnetization Mn; by parity, the odd cumulants
and moments vanish. By multilinearity, one can expand

κ(2r)(Mn) =

n∑
i1,...,i2r=1

κ(σ(i1), . . . , σ(i2r)),

so the problem reduces to the computation of the joint cumulants of the individual spins, and to the
gathering of these quantities. Notice that the joint moments of the spins can be computed easily. Indeed,
fix i1 ≤ i2 ≤ · · · ≤ i2r, and let us calculate E[σ(i1) · · ·σ(i2r)]. If i2r−1 = i2r, then the two last terms
cancel and one is reduced to the computation of a joint moment of smaller order. Otherwise, notice that

E[σ(i1) · · ·σ(i2r−2)σ(i2r−1)σ(i2r)] = E[σ(i1) · · ·σ(i2r−2)Xi2r−1
Xi2r−1+1 · · ·Xi2r−1]

= E[σ(i1) · · ·σ(i2r−2)]xi2r−i2r−1 where x = tanhβ.
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By induction, we thus get E[σ(i1) · · ·σ(i2r)] = x(i2−i1)+(i4−i3)+···+(i2r−i2r−1). Let us then go to the joint
cumulants. We fix i1 ≤ i2 ≤ · · · ≤ i2r, and to simplify a bit the notations, we denote i1 = 1, i2 = 2, etc.
We recall that the joint cumulants write as

κ(σ(1), . . . , σ(2r)) =
∑

Π∈Q2r

µ(Π)
∏
A∈Π

E

[∏
a∈A

σ(a)

]
,

where the sum runs over set partitions of [[1, 2r]]. By parity, the set partitions with odd parts do not
contribute to the sum, so one can restrict oneself to the set Q2r,even of even set partitions. If A = {a1 <
· · · < a2s} is an even part of [[1, 2r]], we write xp(A) = x(a2−a1)+···+(a2s−a2s−1). Thus,

κ(σ(1), . . . , σ(2r)) =
∑

Π∈Q2r,even

µ(Π)
∏
A∈Π

xp(A).

In this polynomial in x, several set partitions give the same power of x; for instance, with 2r = 4, the set
partitions {1, 2, 3, 4} and {1, 2} t {3, 4} both give x(2−1)+(3+4). Denote P2r the set of set partitions of
[[1, 2r]] whose parts are all of cardinality 2 (pair set partitions, or pairings). To every even set partition
Π, one can associate a pairing p(Π) by cutting all the even parts {a1 < a2 < · · · < a2s−1 < a2s} into the
pairs {a1 < a2}, . . . , {a2s−1 < a2s}. For instance, the even set partition Π = {1, 3, 4, 5} t {2, 6} gives the
pairing (1, 3)(4, 5)(2, 6). Then, with obvious notations,

κ(σ(1), . . . , σ(2r)) =
∑

Π∈Q2r,even

µ(Π)xp(Π). (12)

In Equation (12), two important simplifications can be made:

1. One can gather the even set partitions Π according to the pairing ρ = p(Π) ∈ P2r that they produce.
It turns out that the corresponding sum of Möbius functions F (ρ) has a simple expression in terms
of the pairing, see §5.1.3.

2. Some pairings ρ yield the same monomial xρ and the same functional F (ρ). By gathering these
contributions, one can reduce further the complexity of the sum, see §5.1.2.

In the end, we shall obtain an exact formula for κ(σ(1), . . . , σ(2r)) that writes as a sum over Dyck paths
of length 2r − 2, with simple coefficients; see Theorem 28.

5.1.1 Pairings, labelled Dyck paths and labelled planar trees

Before we start the reduction of Formula (12), it is convenient to recall some facts about the combi-
natorial class of pairings. We have defined a pairing ρ of size 2r to be a set partition of [[1, 2r]] in r pairs
(a1, b1), . . . , (ar, br). There are

cardP2r = (2r − 1)!! = (2r − 1)(2r − 3) · · · 3 1

pairings of size 2r, and it is convenient to represent them by diagrams:

1 2 3 4 5 6 7 8 9 10

2

Fig. 6 The diagram of a pairing of size 2r = 10.
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1

1 3

2

1

3

Fig. 7 The labelled Dyck path corresponding to the pairing of Figure 6.

On the other hand, a labelled Dyck path of size 2r is a path δ : [[0, 2r]]→ N with 2r steps either ascending
or descending, such that:

• the path δ starts from 0, ends at 0 and stays non-negative;
• each descending step δ(k) > δ(k + 1) is labelled by an integer i with i ∈ [[1, δ(k)]].

From a labelled Dyck path of size 2r, one constructs a pairing on 2r points as follows: one reads the
diagram from left to right, opening a bond when the path is ascending, and closing the i-th opened bond
available from right to left when the path is descending with label i. For instance, if one starts from the
Dyck path of Figure 7, one obtains the pairing of Figure 6. This provides a first bijection between pairings
ρ and labelled Dyck paths δ.

By considering a Dyck path as the code of the depth-first traversal of a rooted tree, one obtains a
second bijection betwen pairings of size 2r and labelled planar rooted trees with r edges. Here, by labelled
planar rooted tree, we mean a planar rooted tree with a label i on each edge e that is between 1 and the
height h(e) of the edge (with respect to the root). For instance, the following labelled tree T corresponds
to the Dyck path of Figure 7 and to the pairing of Figure 6:

1

1 2

1 3

4

Fig. 8 The labelled planar rooted tree corresponding to the pairing of Figure 6.

We shall denote Tr the set of planar rooted trees with r edges (without label), and D2r the corre-
sponding set of Dyck paths (again without label); they have cardinality

cardTr = cardD2r = Cr =
1

r + 1

(
2r

r

)
.

They correspond to the subsetN2r ofP2r that consists in non-crossing pair partitions of [[1, 2r]]; a bijection
is obtained by labelling each edge or descending step by 1, and by using the previous constructions. For
instance, the non-crossing pairing, the Dyck path and the planar rooted tree of Figure 9 do correspond.

In what follows, we shall always use the letters ν, δ and T respectively for non-crossing pairings, for
Dyck paths and for planar rooted trees. We shall then use constantly the bijections described above,
and denote for instance ν(T ) for the non-crossing pairing associated to a tree T , or δ(ν) for the Dyck
path associated to a non-crossing pairing ν. We shall also use the exponent + to indicate the following
operations on these combinatorial objects:
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1 2 3 4 5 6 7 8 9 10

5

Fig. 9 Bijection between non-crossing pairings, Dyck paths and planar rooted trees.

• transforming a non-crossing pairing ν of size 2r − 2 in a non-crossing pairing ν+ of size 2r by adding
the bond {1, 2r} "over" the bonds of ν.

• transforming a Dyck path δ of length 2r − 2 in a Dyck path δ+ of length 2r by adding an ascending
step before δ and a descending step after δ.

• transforming a rooted tree T with r − 1 edges in a rooted tree T+ with r edges by adding an edge
"below" the root.

All these operations are compatible with the aforementioned bijections, so for instance ν(T+) = (ν(T ))+

and δ(ν+) = (δ(ν))+.

5.1.2 Uncrossing pairings and the associated poset

Let us now see how the combinatorics of pairings, Dyck paths and planar rooted trees intervene in
Formula (12). We start by gathering the set partitions Π with the same associated pairing ρ = p(Π).
Thus, let us write

κ(σ(1), . . . , σ(2r)) =
∑
ρ∈P2r

xρ

 ∑
Π∈Q2r,even
p(Π)=ρ

µ(Π)

 =
∑
ρ∈P2r

xρ F (ρ),

where F (ρ) stands for the sum in parentheses. Notice that xρ is invariant if one replaces in a pairing
two crossing pairs {a1, a3}, {a2, a4} with a1 < a2 < a3 < a4 by two nested pairs (but non-crossing)
{a1, a4}, {a2, a3}; indeed,

(a3 − a1) + (a4 − a2) = (a4 − a1) + (a3 − a1).

We call uncrossing the operation on pairings which consists in replacing two crossing pairs by two nested
pairs as described above, and we denote ρ1 � ρ2 if there is a sequence of uncrossings from the pairing ρ1
to the pairing ρ2; this is a partial order on the set P2r.

6

Fig. 10 The operation of uncrossing on a pairing.
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Proposition 25. The poset (P2r,�) is a disjoint union of lattices, and each lattice contains a unique
non-crossing set partition ν, which is the minimum of this connected component of the Hasse diagram of
(P2r,�). Moreover:

1. On the lattice L(ν) associated to ν ∈ N2r, the monomial xρ and the functional F (ρ) are constant (equal
to xν and F (ν)).

2. The cardinality cardL(ν) = N(ν) is given by:

N(ν) =
∏

e∈E(T (ν))

h(e, T (ν)),

where h(e, T ) is the height of the edge e in the (planar) rooted tree T , and E(T ) is the set of edges of
a tree T .

Proof. First, notice that if ρ1 � ρ2 in P2r, then there is a sequence of pairings going from ρ1 to ρ2 such
that every two consecutive terms µ and ρ of the sequence differ only by the replacement of a simple
nesting by a simple crossing. By that we mean that we do not need to do replacements such as the one
on Figure 11, which creates 3 crossings at once.

7

Fig. 11 The crossing of a nesting that is not simple.

Indeed, denoting (i, j) the crossing of the i-th bond with the j-th bond, bonds being numeroted from
their starting point, one has (1, 3) = (1, 2) ◦ (2, 3) ◦ (1, 2), which is a composition of simple operations
of crossing; and the same idea works for nestings of higher depth. Thus, the Hasse diagram of the poset
(P2r,�) has edges that consist in replacements of simple nestings by simple crossings.

This being clarified, it suffices now to notice that via the bijection between pairings and labelled Dyck
paths explained in §5.1.1, the replacing a simple nesting by a simple crossing corresponds to the raising
of a label by 1:

1

1

2

1

8

Fig. 12 The operation of uncrossing is a change of labels on Dyck paths.

In particular, if ρ1 and ρ2 are two comparable pairings in (P2r,�), then the corresponding labelled Dyck
paths have the same shape; and for a given shape δ ∈ D2r, there is exactly one corresponding non-crossing
pair partition ν = ν(δ), which is minimal in its connected component in the Hasse diagram of (P2r,�).
Endowed with �, this connected component L(ν) is isomorphic as a poset to the product of intervals∏

e∈T (ν)

[[1, h(e, T (ν))]] .
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Indeed, the order on the set of labelled trees of shape T (ν) induced by (L(ν),�) and by the bijection
between pairings and labelled trees is simply the product of the orders of the intervals of labels. This
proves all of the Proposition but the invariance of F (·) on L(ν) (the invariance of x(·) was shown at the
beginning of this paragraph); we devote §5.1.3 to this last point and to the actual computation of the
functional F (·). ut

Assuming the invariance of F (·) on each lattice L(ν), we thus get:

κ(σ(1), . . . , σ(2r)) =
∑
ρ∈P2r

xρ F (ρ) =
∑
ν∈N2r

xν N(ν)F (ν), (13)

where N(ν) is explicit. Hence, it remains to compute the functional F (ρ).

5.1.3 Computation of the functional F

The main result of this paragraph is:

Proposition 26. The functional F (·) is constant on L(ν), and if ν is a non-crossing pairing, then

F (ν) = (−1)r−1
∏

e∈T (ν)
h(e,T (ν)) 6=1

(h(e, T (ν))− 1)

if T (ν) has a single edge of height 1, and 0 otherwise.

Lemma 27. The functional F vanishes on pairings associated to labelled rooted trees with more than one
edge of height 1.

Proof. Suppose that Π is an even set partition with p(Π) = ρ; ρ being a pairing of size 2r associated to
a labelled Dyck path that reaches 0 after 2a steps, with 2r = 2a+ 2b, a > 0 and b > 0 (this is equivalent
to the statement "having more than one edge of height 1"). We denote ρ1 and ρ2 the pairings associated
to the two parts of the Dyck path. There are several possibilities:

• either Π can be split as two even set partitions Π1 and Π2 of [[1, 2a]] and [[2a+ 1, 2r]], with respectively
k and l parts, and with p(Π1) = ρ1 and p(Π2) = ρ2;

• or, Π is one of the k× l possible ways to unite two such even set partitions Π1 and Π2 by joining one
part of Π1 with one part of Π2;

• or, Π is one of the
(
k
2

)
×
(
l
2

)
× 2! possible ways to unite two such even set partitions Π1 and Π2 by

joining two parts of Π1 with two parts of Π2;
• or, Π is one of the

(
k
3

)
×
(
l
3

)
× 3! possible ways to unite two such even set partitions Π1 and Π2 by

joining three parts of Π1 with three parts of Π2;
• etc.

So, F (ρ) can be rewritten as∑
p(Π1)=ρ1
p(Π2)=ρ2

(−1)t−1
(

(t− 1)!− kl (t− 2)! +

(
k

2

)(
l

2

)
2! (t− 3)!−

(
k

3

)(
l

3

)
3! (t− 4)! + · · ·

)
,

where t = k + l. However, for every possible value of k ≥ 1 and l ≥ 1, the term in parentheses vanishes.
Indeed, assuming for instance k ≤ l, we look at
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(k + l − 1)!

k∑
x=0

(−1)x
(
k

x

)(
l

x

)(
k + l − 1

x

)−1

= k! (l − 1)!

k∑
x=0

(−1)x
(
l

x

)(
k + l − 1− x

k − x

)
= k! (l − 1)!

(
k − 1

k

)
= 0

by using Riordan’s array rule for the second identity. ut

Thus, F vanishes on pairings ρ associated to labelled trees with more than one edge of height 1. In
other words, if F (ρ) 6= 0, then {1, 2r} is a pair in ρ, and we can look at the restricted pairing ρ̃ = ρ|[[2,2r−1]],
which is of size 2r − 2; and we can consider F as a functional on P2r−2. To avoid any ambiguity, we
denote this new functional

G(ρ ∈ P2r) =
∑

p(Π)=ρ

(−1)`(Π) (`(Π))!

We then expect the formula G(ρ) = (−1)r
∏
e∈E(T (ρ)) h(e). We proceed by induction on labelled rooted

planar trees, and we look at the action of adding a leave of label 1 to the tree, and of increasing a label
of an edge by 1. To fix the ideas, it is convenient to consider the following example of pairing ρ, and the
associated set of set partitions Π with p(Π) = ρ. The pairing ρ of Figure 13 is associated to the labelled
planar rooted tree on Figure 14, and it has functional G(ρ) = (−1)3 3! + 2 × (−1)2 2! = −2. We denote
N(l, ρ) the number of set partitions such that p(Π) = ρ and `(Π) = l. Hence,

G(ρ) =

r∑
l=1

N(l, ρ) (−1)l l!

ℓ = 3

ℓ = 2

9

Fig. 13 A pairing of size 2r = 6 (the upper diagram) and the associated set of set partitions, which contains 3 elements.

1 1

2

10

Fig. 14 The labelled planar rooted tree associated to the pairing of Figure 13.

1. Adding an edge. Suppose that one adds an edge with label 1, to obtain for instance:

1 1

21

11

Fig. 15 Addition of an new edge of label 1 to the planar rooted tree.
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Set ρ′ for the new pairing; notice that it is obtained from ρ by inserting a simple bond

14

. The
set partitions Π ′ with p(Π ′) = ρ′ are of two kinds:

a. those where the new bond is left alone. They all come from a set partition Π with p(Π) = ρ by
simply inserting the new bond:

ℓ = 4

ℓ = 3

12

Fig. 16 Set partitions where the new bond is left alone.

These terms give the following contribution to G(ρ′):

G(a)(ρ
′) = −

r∑
l=1

N(l, ρ) (−1)l (l + 1)!.

b. those where the new bond is linked to another part of a set partition Π with p(Π) = ρ. Starting
from a set partition Π with p(Π) = ρ, the number of parts of Π that can actually receive the
new bond is `(Π)− (h(e)− 1), because the new bond cannot be linked to the h(e)− 1 parts that
go above him. In our example:

ℓ = 3

ℓ = 2

13

Fig. 17 Set partitions where the new bound is integrated in another part.

These other terms give the following contribution to G(ρ′):

G(b)(ρ
′) =

r∑
l=1

N(l, ρ) (−1)l l! (l + 1− h(e)).

We conclude that G(ρ′) = G(a)(ρ
′) + G(b)(ρ

′) = −h(e)G(ρ), so the formula for G stays true when
one adds an edge of label 1.

2. Raising a label. As explained before, raising a label corresponds to adding a simple crossing to the
pairing ρ, which is done by exchanging two ends b and d of two simply nested pairs {a < b} and
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{c < d} of ρ. This does not change the structure of the set of even set partitions Π with p(Π) = ρ;
that is, N(l, ρ) = N(l, ρ′) for every l. So, the formula for G also stays true when one raises a label.

Since every labelled rooted tree is obtained inductively from the empty tree by adding edges and raising
labels, the proof of Proposition 26 is done.

5.1.4 Expansion of the joint cumulants as sums over Dyck paths

Recall that xν stands for x(a2−a1)+···+(a2r−a2r−1) if ν is the pairing {a1 < a2}, . . . , {a2r−1 < a2r}. We
adopt the same notations with Dyck paths and planar rooted trees, so xδ or xT stands for xν if δ = δ(ν)
or if T = T (ν). We also denote D∗2r the image of D2r−2 in D2r by the operation δ 7→ δ+. Notice that if
∆ = (δ(T ))+ with T tree with r − 1 edges, then

∏
e∈E(T )

h(e) (h(e) + 1) =

2r−1∏
i=1

∆i,

∆i denoting the value of the Dyck path ∆ after i steps. Starting from Equation (13) and using the explicit
formulas that we have obtained for N(ν) and F (ν), we therefore get:

Theorem 28. For every indices 1 ≤ · · · ≤ 2r,

κ(σ(1), . . . , σ(2r)) = (−1)r−1
∑
δ∈D∗2r

(
2r−1∏
i=1

δi

)
xδ.

Example 29. The two non-crossing pairings of size 4 are

15

and

15

, the
associated powers of x are

x(6−1)+(5−4)+(3−2) and x(6−1)+(5−2)+(4−3),

and the associated quantities G(ν) are 4 and 12, so, with r = 3,

κ(σ(1), . . . , σ(6)) = 4x6+5+3−4−2−1 + 12x6+5+4−3−2−1.

Theorem 28 has several easy corollaries. First of all, we see immediately from it that the sign of a joint
cumulant of spins is prescribed, which was a priori non-obvious. On the other hand, applying Theorem
28 to the case r = 1 yields

κ(σ(i), σ(j)) = x|j−i|,

that is, the correlation between two spins decreases exponentially with the distance between the spins.
More generally, one can use Theorem 28 to get a useful bound on cumulants. Notice that the minimal
exponent of x that appears in the right-hand side of the formula is

x(2r)+((2r−1)−(2r−2))+((2r−3)−(2r−4))+···+(3−2)−1.

Indeed, it is easily seen that the exponent of x in xT increases when one makes a rotation of a leaf of T
in the sense of Tamari (cf. [Tam62]). Since all trees are generated by leaf rotations from the tree with all
edges of height 1 (cf. [Knu04]), the previous claim is shown. It follows that

|κ(σ(1), . . . , σ(2r))| ≤

 ∑
δ∈D∗2r

2r−1∏
i=1

δi

x(2r)+((2r−1)−(2r−2))+···+(3−2)−1.

The quantity
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Q(r) =
∑
δ∈D∗2r

(
2r−1∏
i=1

δi

)
=

∑
T∈Tr−1

 ∏
e∈E(T )

h(e) (h(e) + 1)


has for first values 1, 2, 16, 272, 7936, . . . , and a simple bound on Q(r) is (2r − 2)!, see Proposition 37
hereafter. Hence, a generalization of the exponential decay of covariances is given by:

Proposition 30. For any positions of spins i1 ≤ i2 ≤ · · · ≤ i2r,

|κ(σ(i1), . . . , σ(i2r))| ≤ (2r − 2)! xi2r+(i2r−1−i2r−2)+···+(i3−i2)−i1 .

5.2 Bounds on the cumulants of the magnetization

As explained in the introduction, we now have to gather the estimates given by Theorem 28 to get the
asymptotics of the cumulants κ(2r)(Mn) of the magnetization.

5.2.1 Reordering of indices and compositions

Since the joint cumulants of spins have been computed for ordered spins i1 ≤ i2 ≤ . . . ≤ i2r, in the
right-hand side of the expansion

κ(2r)(Mn) =

n∑
i1,...,i2r=1

κ(σ(i1), . . . , σ(i2r)),

we need to reorder the indices i1, . . . , i2r, and take care of the possible identities between these indices.
We shall say that a sequence of indices i1, . . . , ir has type c = (c1, . . . , cl) with the ci positive integers
and |c| =

∑l
i=1 ci = r if, after reordering, the sequence of indices writes as

i′1 = i′2 = . . . = i′c1 < i′c1+1 = i′c1+2 = · · · = i′c1+c2 < i′c1+c2+1 = · · · .

Here, i′k stands for the k-th element of the reordered sequence. For instance, the sequence of indices
(3, 2, 3, 5, 1, 2) becomes after reordering (1, 2, 2, 3, 3, 5), so it has type (1, 2, 2, 1). The type of a sequence
of indices of length r can be any composition of size r, and we denote Cr the set of these compositions.
Conversely, given a composition of size r and length l, in order to construct a sequence of indices (i1, . . . , ir)
with type c and with values in [[1, n]], one needs:

• to choose which indices i will fall into each class (i′1, . . . , i
′
c1), (i′2, . . . , i

′
c1+c2), etc.; there are(

r

c

)
=

r!

c1! c2! · · · cl!

possibilities there.
• and then to choose 1 ≤ j1 < j2 < · · · < jl ≤ n so that j1 = i′1 = · · · = i′c1 , j2 = i′2 = · · · = i′c1+c2 , etc.

As a consequence,

κ(2r)(Mn) =
∑
c∈C2r

∑
1≤j1<j2<···<j`(c)≤n

(
2r

c

)
κ
(
σ(j1)c1 , . . . , σ(j`(c))

c`(c)
)

= (−1)r−1
∑
c∈C2r

∑
δ∈D∗2r

(
2r

c

)
C(δ)B(n, c, δ)

where C(δ) =
∏2r−1
i=1 δi is the quantity computed in the previous paragraph, and
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B(n, c, δ) =
∑

1≤j1<j2<···<j`(c)≤n

x
∑
{a<b}∈ν(δ)(ib−ia),

the indices i being computed from the indices j according to the rule previously explained, namely,

j1 = i1 = · · · = ic1 ;

j2 = ic1+1 = · · · = ic1+c2 ;

...
...

j`(c) = ic1+···+c`(c)−1+1 = · · · = i2r.

Example 31. Suppose r = 1. There are two compositions of size 2, namely, (2) and (1, 1), and one trivial
tree with 0 edge; therefore,

κ(2)(Mn) = B(n, (2), •) + 2B(n, (1, 1), •)

=

n∑
j1=1

1 + 2
∑

1≤j1<j2≤n

xj2−j1 .

The double geometric sum has the same asymptotics as
∑n
j1=1

∑∞
j2=j1+1 x

j2−j1 = n x
1−x , so

κ(2)(Mn) ' n 1 + x

1− x
= n e2β .

It is not hard to convince oneself that the approximation performed in the previous example can be
done in any case, so that a correct estimate of B(n, c, δ) is nB(c, δ), with

B(c, δ) =
∑

0=j1<j2<···<j`(c)

x
∑
{a<b}∈ν(δ)(ib−ia).

In this new expression, the indices j are unbounded (except the first one, fixed to 0), and what we mean
by approximation is that

nB(c, δ) = B(n, c, δ) +O(1),

with a positive remainder corresponding to terms of the geometric series with indices larger than n. So:

Proposition 32. An upper bound, and in fact an estimate of |κ(2r)(Mn)| is

|κ(2r)(Mn)| ≤ n
∑
c∈C2r

∑
δ∈D∗2r

(
2r

c

)
B(c, δ)C(δ).

5.2.2 Computation of the functional B

There is a simple algorithm that allows to compute B(c, δ) for any Dyck path δ and any composition
c. Let us explain it with the path δ associated to the non-crossing pairing ν of Figure 9 and with the
composition c = (3, 2, 1, 2, 2). This composition c corresponds to some identifications of indices, which we
make appear on the diagram of the pairing ν as follows:

18

Fig. 18 Identifications of indices corresponding to the composition c = (3, 2, 1, 2, 2).
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We now contract the green edges added above, obtaining thus:

j1 j2 j3 j4 j5

19

Fig. 19 Contraction of the diagram of a non-crossing partition along a composition.

This new diagram corresponds to the following simplification of the sum B(c, δ):

B(c, δ) =
∑

0=i1=i2=i3<i4=i5<i6<i7=i8<i9=i10

xi10+i9+i8−i7+i6−i5−i4+i3−i2−i1

=
∑

0=i1<i4<i6<i7<i9

x2i9+i5−2i4−i1 because of the identities of indices;

=
∑

0=j1<j2<j3<j4<j5

x(j5−j1)+(j5−j2)+(j3−j2) by relabeling the indices.

So, the new diagram, which we call the contraction of ν along c and denote ν ↓c, can be read similarly as
the previous diagrams of pairings, that is to say that

B(c, δ) =
∑

0=j1<j2<j3<j4<j5

x(ν(δ))↓c ,

where xν↓c stands for the product of factors xb−a, {a < b} running over the bonds of the contracted
diagram ν ↓c.

Given a contracted diagram ρ = ν ↓c of length `(c), denote δ1(ρ) the number of bonds opened between
j1 and j2; δ2(ρ) the number of bonds opened between j2 and j3; δ3(ρ) the number of bonds opened
between j3 and j4; etc. up to δ`(c)−1(ρ). For instance, in the previous example, there is one bond opened
between j1 and j2 (the one starting from j1); 3 bonds opened between j2 and j3 (the previous bond,
which has not been closed, and the two bonds starting from j2); and 2 bonds opened between j3 and j4
and between j4 and j5. So (δ1, δ2, δ3, δ4) = (1, 3, 2, 2).

Proposition 33. Set ρ = (ν(δ))↓c. One has

B(c, δ) =

`(c)−1∏
i=1

xδi(ρ)

1− xδi(ρ)
.

Example 34. Consider the previous contracted diagram ρ5, and the corresponding sum

B5 =
∑

0=j1<j2<j3<j4<j5

x(j5−j1)+(j5−j2)+(j3−j2).

We reduce inductively the size of the contracted diagram as follows. We first write

B5 =
∑

0=j1<j2<j3<j4<j5

x2(j5−j4)+(j4−j1)+(j4−j2)+(j3−j2)

=

 ∑
0=j1<j2<j3<j4

x(j4−j1)+(j4−j2)+(j3−j2)

 ∞∑
j5=j4+1

x2(j5−j4)


=

x2

1− x2

 ∑
0=j1<j2<j3<j4

x(j4−j1)+(j4−j2)+(j3−j2)

 =
xδ4

1− xδ4
B4,

where B4 is the sum corresponding to the diagram ρ4 which is obtained from ρ5 by identifying j4 and j5:
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j1 j2 j3 j4

20

Fig. 20 Reduction of the diagram of Figure 19.

We can then do it again to go to size 3:

B4 =
∑

0=j1<j2<j3<j4

x2(j4−j3)+(j3−j1)+(j3−j2)+(j3−j2)

=

 ∑
0=j1<j2<j3

x(j3−j1)+2(j3−j2)

 ∞∑
j4=j3+1

x2(j4−j3)


=

x2

1− x2

 ∑
0=j1<j2<j3

x(j3−j1)+2(j3−j2)

 =
xδ3

1− xδ3
B3,

where B3 is the sum corresponding to the diagram ρ3 which is obtained from ρ4 by identifying j3 and j4:

j1 j2 j3

21

Fig. 21 Further reduction of the diagram of Figure 19.

Two more operations yield similarly the factors xδ2

1−xδ2 and xδ1

1−xδ1 .

Proof (of Proposition 33). The algorithm presented above on the example gives clearly a proof of the
formula by induction on `(c). Indeed, at each step of the induction, the term that is factorized is

∞∑
j`(c)=j`(c)−1+1

xδ`(c)−1(j`(c)−j`(c)−1) =
xδ`(c)−1

1− xδ`(c)−1
,

because δ`(c)−1 is the number of bonds ending at j`(c). Then, as for the other factor, one obtains it by
replacing j`(c) by j`(c)−1 in the sum B(c, δ), and this amounts to do the identification between j`(c)−1
and j`(c) in the contracted diagram. This identification and reduction to lower length does not change
the values δ1, . . . , δ`(c)−2, so the formula is proven. ut

We recall that a descent of a composition c = (c1, . . . , c`) is one of the integers

c1, c1 + c2, c1 + c2 + c3, . . . , c1 + · · ·+ c`−1.

For instance, the descents of c = (3, 2, 1, 2, 2) are 3, 5, 6 and 8. The set of descents D(c) of a composition
c of size r can be any subset of [[1, r − 1]], so in particular, cardCr = 2r−1. The contraction of diagrams
along compositions presented at the beginning of this paragraph satisfies the rule:

{δ1(ρ), . . . , δ`(c)−1(ρ)} = {δd, d ∈ D(c)} if ρ = (ν(δ))↓c .

So, B(c, δ) =
∏
d∈D(c)

xδd

1−xδd , and Proposition 32 becomes:

Theorem 35. An upper bound, and in fact an estimate of |κ(2r)(Mn)| is

|κ(2r)(Mn)|
n

≤
∑
c∈C2r

∑
δ∈D∗2r

A(c)B(c, δ)C(δ)
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with A(c) =
(
2r
c

)
, B(c, δ) =

∏
d∈D(c)

xδd

1−xδd and C(δ) =
∏2r−1
i=1 δi.

Example 36. Suppose r = 2. There is one Dyck path in D∗4, with C(δ) = 2 since δ1 = δ3 = 1 and δ2 = 2.
The compositions of size 4 are (4), (3, 1), (2, 2), (1, 3), (2, 1, 1), (1, 2, 1), (1, 1, 2) and (1, 1, 1, 1); their
contributions A(c)B(c, δ) are equal to

1,
4x

1− x
,

6x2

1− x2
,

4x

1− x
,

12x3

(1− x)(1− x2)
,

12x2

(1− x)2
,

12x3

(1− x)(1− x2)
,

24x4

(1− x)2(1− x2)
.

So,

|κ(4)(Mn)| ' 2n

(
1 +

8x

1− x
+

6x2

1− x2
+

12x2

(1− x)2
+

24x3

(1− x)(1− x2)
+

24x4

(1− x)2(1− x2)

)
' 2n

(1 + x)(1 + 4x+ x2)

(1− x)3
= n (3 e6β − e2β).

5.2.3 Explicit bound on cumulants and the mod-Gaussian convergence

By examining the asymptotics of the first cumulants written as rational functions in x, one is lead to
the following result. Set

Pr(x) =

 ∑
c∈C2r

∑
δ∈D∗2r

A(c)B(c, δ)C(δ)

 (1− x)2r−1.

For instance, P1(x) = 1 + x and P2(x) = 2 (1 + x)(1 + 4x+ x2).

Proposition 37. For every r ≥ 1 and every x ∈ (0, 1),

0 ≤ Pr(x) ≤ (2r)!

r!

(2r − 2)!

(r − 1)!
.

Proof. For every composition c and every path δ, B(c, δ) (1−x)2r−1 is a non-negative and convex function
of x on [0, 1]. Therefore, 0 ≤ Pr(x) ≤ xPr(0) + (1 − x)Pr(1). When x = 1, all the rational functions
B(c, δ) (1− x)2r−1 vanish, except when c has 2r − 1 descents, that is to say that c = (1, 1, . . . , 1). Then,
A(c) = (2r)!, and

lim
x→1

B(c, δ) =

2r−1∏
i=1

1

δi
=

1

C(δ)
.

Therefore,

Pr(1) = (2r)! (cardD∗2r) =
(2r)!

r!

(2r − 2)!

(r − 1)!
.

On the other hand, when x = 0, all the rational functions B(c, δ) (1− x)2r−1 vanish, except when c has
no descent, that is to say that c = (2r). Then, A(c) = 1 and

Pr(0) = Q(r) =
∑
δ∈D∗2r

A(δ).

Among all Dyck paths in D∗2r, the one with the maximal product of values G(δ) is (0, 1, 2, . . . , r−1, r, r−
1, . . . , 2, 1, 0). So,

Pr(0) ≤ r! (r − 1)! (cardD∗2r) = (2r − 2)! ≤ Pr(1).

It follows that Pr(x) ≤ xPr(1) + (1− x)Pr(1) = Pr(1). ut
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Corollary 38. For every r,

|κ(2r)(Mn)| ≤ n (2r − 1)!! (2r − 3)!! (e2β + 1)2r−1.

Proof. Indeed,

|κ(2r)(Mn)| ≤ n

 ∑
c∈C2r

∑
δ∈D∗2r

A(c)B(c, δ)C(δ)

 = n
Pr(x)

(1− x)2r−1

≤ n Pr(1)

(1− x)2r−1
= n

(
1

1− x

)2r−1
(2r)!

r!

(2r − 2)!

(r − 1)!
.

Replacing x by tanhβ allows to conclude, and this gives another proof of Theorem 4. We rewrite the
logarithm of the Laplace transform of n−1/4Mn as

∞∑
r=1

κ(2r)(Mn)

(2r)!
z2r n−r/2 =

κ(2)(Mn) z2

2n1/2
+
κ(4)(Mn) z4

24n
+

∞∑
r=3

κ(2r)(Mn)

(2r)!
z2r n−r/2.

The series on the right-hand side is smaller than

∞∑
r=3

(2r − 1)!! (2r − 3)!!

(2r)!
(eβ + 1)2r−1 z2r n1−r/2 ≤ n−1/2

∞∑
r=3

((e2β + 1)z)2r n−(r−3)/2

≤ n−1/2 ((e2β + 1)z)6

1− ((e2β + 1)z)2 n−1/2
,

so it goes uniformly to zero on every compact set of the plane. On the other hand, we have seen that
κ(2)(Mn) = n e2β −O(1) and −κ(4)(Mn) = n (3 e6β − e2β)−O(1), so we conclude that

E
[
e
z Mn

n1/4

]
e−

n1/2e2β z2

2 = e−
(3 e6β−e2β) z4

24

(
1 +O(n−1/2)

)
,

and this is indeed the content of Theorem 4. ut

Remark 39. The method of cumulants that leads to Corollary 38, and eventually to Theorem 4, is de-
veloped in much more details in [FMN13]. In particular, our approach to the computation of cumulants
of sums of dependent random variables coming from complex systems can be made quite general. Thus,
given a sum S =

∑
v∈V Xv, one can obtain powerful bounds on κ(r)(S) by:

1. first, computing explicitly the elementary joint cumulants κ(r)(Xv1 , Xv2 , . . . , Xvr ), as in Theorem 28;
2. then, find clever rules in order to sum these cumulants and keep correct bounds. In this second part,

one needs in particular to identify which elementary cumulants κ(r)(Xv1 , Xv2 , . . . , Xvr ) give the main
contribution to κ(r)(S) =

∑
v1,...,vr

κ(r)(Xv1 , Xv2 , . . . , Xvr ).

An important open problem of combinatorial and geometric nature would be to adapt the arguments of
this Section to the 2-dimensional Ising model, for which one cannot compute explicitly the generating
function E[ezMn ]. We expect the methods of cluster expansion (cf. [Bov06, Chapter 5]) to be powerful
tools in this setting.
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