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ABSTRACT. We present several refinements on the fluctuations of sequences of random vec-
tors (with values in the Euclidean space Rd) which converge after normalization to a multi-
dimensional Gaussian distribution. More precisely we refine such results in two directions:
first we give conditions under which one can obtain bounds on the speed of convergence to
the multidimensional Gaussian distribution, and then we provide a setting in which one can
obtain precise moderate or large deviations (in particular we see at which scale the Gaussian
approximation for the tails ceases to hold and how the symmetry of the Gaussian tails is then
broken). These results extend some of our earlier works obtained for real valued random vari-
ables, but they are not simple extensions, as some new phenomena are observed that could
not be visible in one dimension. Even for very simple objects such as the symmetric random
walk in Zd, we observe a loss of symmetry that we can quantify for walks conditioned to
be far away from the origin. Also, unlike the one dimensional case where the Kolmogorov
distance is natural, in the multidimensional case there is no more such a canonical distance.
We choose to work with the so-called convex distance, and as a consequence the geometry
of the Borel measurable sets that we consider shall play an important role (also making the
proofs more complicated). We illustrate our results with some examples such as correlated
random walks, the characteristic polynomials of random unitary matrices, or pattern count-
ings in random graphs.
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1. INTRODUCTION

Let d ≥ 1 be a positive integer, and (Xn)n∈N be an arbitrary sequence of random vectors
with values in the finite-dimensional vector space Rd. For many probabilistic models, there
exists a renormalisation Yn = αn Xn that admits a limit in law: Yn ⇀n→∞ Y. For instance,
if Xn = ∑n

i=1 Ai is a sum of independent and identically distributed random vectors with a
second moment, then the multi-dimensional central limit theorem ensures the convergence
in law of

Yn =
1√
n
(Xn − n E[A1])

to a Gaussian distribution with covariance matrix K = (cov(A(i)
1 , A(j)

1 ))1≤i,j≤d; see [Fel71,
Section VIII.4, Theorem 2] or [Vaa00, Example 2.18]. Assuming that K is non-degenerate,
this means that for any Borel set A ⊂ Rd whose topological boundary has zero Lebesgue
measure,

lim
n→∞

P[Yn ∈ A] =
1√

(2π)d det K

∫
Rd

1x∈A e−
xtK−1x

2 dx. (1)

There are various ways to go beyond this convergence in law. A first direction consists in
describing what happens at the edge of the distribution of Yn, that is with Borel subsets
A = An that vary with n and that grow in size. For instance, one can try to estimate the
probability of A being in a spherical sector

P[Yn ∈ [Rn,+∞) B] ,

where B is a Borel subset of the Euclidean sphere Sd−1, and Rn → +∞. If (Rn)n∈N does not
grow too fast, one can guess that the normal approximation will still be valid, whereas if Rn
is too large, it will need to be corrected. These results belong to the theory of large deviations,
and for sums of i.i.d. random variables, the large deviations are described by Cramer’s
theorem [Cra38]; see [DZ98, Section 2.2.2] for an exposition of the multi-dimensional version
of this result.

Another way to make precise Equation (1) is by computing bounds on the difference
between P[Yn ∈ A] and its limit. In the one-dimensional case, if A = [a, b] is an interval
and (Ai)i≥1 is as before a sequence of i.i.d. random variables, then the Berry–Esseen estimates
[Ber41; Ess45] yield∣∣∣∣∣P[Yn ∈ [a, b]]− 1√

2π var(A1)

∫ b

a
e
− x2

2 var(A1) dx

∣∣∣∣∣ ≤ C√
n

,

assuming that A1 has a moment of order 3; see [Fel71, Section XVI.5]. The multi-dimensional
analogue of this result is much less straightforward: one way to state it is by replacing in-
tervals by convex sets, and this approach is followed in [BR10].

In two previous works [FMN16; FMN19], we proposed a general framework that enabled
us to prove large deviation results and estimates on the speed of convergence for sequences
(Xn)n∈N of one-dimensional random variables: the framework of mod-ϕ convergence. The
interest of this theory is that it allowed us to deal with examples that were much more gen-
eral than sums of i.i.d. random variables. In this setting we obtained asymptotic results for
statistics of random graphs, functionals of Markov chains, arithmetic functions of random
integers, characteristic polynomials of random matrices, etc.; see the aforementioned works
and [BMN19; Chh+20; FMN20; MN22]. In this article, we shall extend this theory to a multi-
dimensional setting. This extension is not trivial, as new phenomenons that cannot occur in
dimension 1 take place when d ≥ 2. In the next paragraphs of this introduction, we fix our
notation and we present the hypotheses of multi-dimensional mod-Gaussian convergence.
We then give an outline of the main results that we shall establish under these hypotheses
(Subsection 1.4).
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1.1. Notational conventions. We start by fixing some notation that will be used throughout
the article. Since we shall work with sequences of random vectors, we need to pay special
care to the exponents and indices of the quantities that we manipulate. We shall use the
following conventions:

• The numbers in R are written with regular letters x, y, X, Y, . . .; vectors in Rd are
written with bold letters x, y, X, Y, . . .

• Random numbers X, Y, . . . and random vectors X, Y, . . . are indicated by capital let-
ters. We shall also use capital letters for matrices.

• The coordinates of a vector x are written as exponents in parentheses:

x = (x(1), x(2), . . . , x(d)).

• The sequences of (random) numbers or vectors are labelled by an index n ∈ N;
thus, for instance, (Vn)n∈N is a sequence of random vectors in Rd. The previous
convention allows one to avoid any ambiguity between the label of a coordinate
(exponent) and the label of the sequence (index).

• Without loss of generality, we assume that our (random) vectors take their values in
Rd with d ≥ 2. Though all our results hold also when d = 1, one can give shorter,
and sometimes more precise proofs in this particular case, see our previous works
[FMN16; FMN19].

The vector space Rd is endowed with the three equivalent norms

∥x∥1 =
d

∑
i=1

|x(i)|;

∥x∥2 =

√√√√ d

∑
i=1

|x(i)|2;

∥x∥∞ = max
i∈[[1,d]]

|x(i)|,

and we denote:

• Bd
(x,ε) = {y ∈ Rd | ∥x − y∥2 ≤ ε} the Euclidean ball of radius ε and center x;

• and Cd
(x,ε) = {y ∈ Rd | ∥x − y∥∞ ≤ ε} = ∏d

i=1[x
(i) − ε, x(i) + ε] the hypercube of edge

2ε and centered at x.

As we shall mostly use the Euclidean norm, we simply note ∥x∥2 = ∥x∥. The corresponding
Euclidean distance is denoted by ∥x − y∥ = d(x, y). Finally, Sd−1 is the unit sphere {x ∈
Rd | ∥x∥ = 1}.

If X is a random vector in Rd, we denote its complex Laplace transform

φX(z) = E[e⟨z |X⟩] = E
[
e∑d

i=1 z(i) X(i)
]

for z = (z(1), . . . , z(d)) ∈ Cd.

This quantity might not be well defined for certain values of z, for instance if the coordinates
of z have too large real parts; on the other hand the Fourier transform

ϕX(ζ) = φX(iζ) = E
[
ei ∑d

i=1 ζ(i) X(i)
]

is well defined for any vector ζ in Rd. In this article, we shall compare the distribution of ran-
dom vectors Vn with a reference Gaussian distribution NRd(m, K); let us recall briefly what
needs to be known about them. We denote S+(d, R) the set of positive-definite symmetric
matrices of size d × d, and we fix m ∈ Rd and K ∈ S+(d, R). The Gaussian distribution with
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mean m and covariance matrix K on Rd is the probability distribution NRd(m, K) whose
density with respect to Lebesgue measure is

1√
(2π)d det K

e−
(x−m)tK−1(x−m)

2 dx.

The Laplace transform of a random vector X with Gaussian law NRd(m, K) is given over
the complex domain Cd by the formula

φX(z) = e⟨m | z⟩+ ztKz
2 .

In particular, the Fourier transform of X is ϕX(ζ) = ei⟨m | ζ⟩− ζtKζ
2 for any vector ζ in Rd. In

our computations, the positive eigenvalues k(1) ≤ k(2) ≤ · · · ≤ k(d) of K ∈ S+(d, R) will
play an important role. For any vector x ∈ Rd,

k(1)∥x∥2 ≤ xtKx ≤ k(d)∥x∥2.

The largest eigenvalue k(d) is the spectral norm ρ(K1/2) of K1/2, and the smallest eigenvalue
k(1) is related to the spectral norm of K−1/2 by the relation k(1) = (ρ(K−1/2))−1.

1.2. Mod-Gaussian convergence. We now present our main hypothesis on the sequences
of random vectors (Xn)n∈N.

Definition 1.1 (Mod-Gaussian convergence). Let (Xn)n∈N be a sequence of random vectors in
Rd, and K ∈ S+(d, R). We say that the sequence is mod-Gaussian convergent in the Laplace sense
on Cd with parameters tnK, tn → +∞, and limiting function ψ if, locally uniformly on compact
sets of Cd,

E[e⟨z |Xn⟩] exp
(
−tn

ztKz
2

)
= ψn(z) → ψ(z).

Here, ψ(z) is a continuous function of z ∈ Cd, with ψ(0) = 1. We say that the sequence is mod-
Gaussian convergent in the Fourier sense on Rd with the same parameters if the convergence takes
place on Rd, that is to say, if there exists a continuous function θ(ζ) of ζ ∈ Rd such that

E[ei⟨ζ |Xn⟩] exp

(
tn

ζtKζ

2

)
= θn(ζ) → θ(ζ)

locally uniformly on compact sets of Rd.

Remark 1.2. For the mod-Gaussian convergence in the Laplace sense, it might happen that
the convergence only holds on a domain D ⊂ Cd of the form D = Sa,b, where Sa,b is the
multi-strip S(a(1),b(1)) × · · · × S(a(d),b(d)), with

S(a,b) = {z ∈ C | a < Re(z) < b}, a, b ∈ R ⊔ {±∞}.

If so, we shall still speak of mod-Gaussian convergence, but making precise this domain of
convergence.

In the one-dimensional case, the notion of mod-Gaussian convergence was introduced in
[JKN11]; the multi-dimensional definition first appeared in [KN12]. Let us give two impor-
tant examples:

Example 1.3 (Sums of i.i.d. random vectors). Consider again a sequence of i.i.d. random
vectors (Ai)i≥1, which we assume to be centered, with non-degenerate covariance matrix
and with a third moment:

E[A1] = 0 ;
(

cov(A(i)
1 , A(j)

1 )
)

1≤i,j≤d
∈ S+(d, R) ; E[∥A1∥3] < +∞.
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A Taylor expansion of the Fourier transform of A1 shows that, if

Xn =
1

n1/3

n

∑
i=1

Ai,

then (Xn)n∈N is mod-Gaussian convergent in the Fourier sense, with parameters n1/3 K with
K = cov(A1), and limit

θ(ζ) = exp

(
− i

6

d

∑
i,j,k=1

E[A(i)
1 A(j)

1 A(k)
1 ] ζ(i)ζ(j)ζ(k)

)
.

If A1 has a convergent Laplace transform, then one has in fact a mod-Gaussian convergence
in the Laplace sense on Cd.

Example 1.4 (Characteristic polynomials of random unitary matrices). Let Un be a random
matrix in the unitary group U(n), taken according to the Haar measure of this Lie group.
We set

Xn = log det(In − Un) =
n

∑
i=1

log(1 − eiθi),

where eiθ1 , . . . , eiθn are the eigenvalues of Un, all belonging to the unit circle. Notice that on
the open unit disk {z | |z| < 1}, the complex logarithm is given by its Taylor series:

log(1 − z) = −
∞

∑
k=1

zk

k
.

We extend the definition to the unit circle by setting log(1 − eiθ) = limr→1 log(1 − reiθ);
the limit exists and is finite if eiθ ̸= 1. Since the eigenvalues are all different from 1 with
probability 1 on U(n), Xn is correctly defined. The random variables Xn take their values in
C, which we identify with R2: Xn = X(1)

n + iX(2)
n . The Laplace transform of Xn is given by

the Selberg integral

E

[
ez(1)X(1)

n +z(2)X(2)
n

]
=

n

∏
j=1

Γ(j) Γ(j + z(1))

Γ
(

j + z(1)+iz(2)
2

)
Γ
(

j + z(1)−iz(2)
2

)
for Re(z(1)) > −1 and |Im(z(2))| < 1; see [KS00, Formula (71)]. Since the Γ function has no
zero on the complex plane, the right-hand side of this formula is a biholomorphic function
on the multi-strip S(−1,+∞) × C, and therefore, the formula above for the Laplace transform
of Xn actually holds without restriction on the imaginary part of z(2). Let us introduce
Barnes’ G-function

G(z) = (2π)
z
2 exp

(
−z +

z2(1 + γ)

2

) ∞

∏
k=1

(
1 +

z
k

)k
exp

(
z2

2k
− z
)

,

γ being the Euler constant. The function G(z) is entire, and it is the solution of the functional
equation

G(1) = 1 ; G(z + 1) = G(z) Γ(z).
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Then, one can rewrite the Laplace transform of Xn as

E

[
ez(1)X(1)

n +z(2)X(2)
n

]

=
G
(

1 + z(1)+iz(2)
2

)
G
(

1 + z(1)−iz(2)
2

)
G(1 + z(1))

G(n + 1) G(z(1) + n + 1)

G
(

z(1)+iz(2)
2 + n + 1

)
G
(

z(1)−iz(2)
2 + n + 1

)
=

G
(

1 + z(1)+iz(2)
2

)
G
(

1 + z(1)−iz(2)
2

)
G(1 + z(1))

n
(z(1))2+(z(2))2

4 (1 + o(1)),

see the details in [KN12, Section 3] for the asymptotics of the ratio of Barnes’ functions.
Therefore, the sequence of random vectors (Xn)n∈N is mod-Gaussian convergent in the
Laplace sense, on the domain S(−1,+∞) × C, with parameters tn I2 =

log n
2 I2 and limiting

function

ψ(z) =
G
(

1 + z(1)+iz(2)
2

)
G
(

1 + z(1)−iz(2)
2

)
G(1 + z(1))

.

The real part of Xn has been studied extensively in [MN22]; its mod-Gaussian convergence
leads to asymptotic formulæ for P[Re(Xn) ≥ xn] for xn in a large range of values, up to
O(n). The techniques that we shall develop hereafter only deal with the fluctuations of the
random vectors Xn in plane domains of size O(log n), but we shall already see in this setting
phenomena that are specific to the multi-dimensional mod-Gaussian convergence.

Many other examples of mod-Gaussian convergent sequences will be provided in Section
4. In the two previous examples, an adequate renormalisation Yn of Xn admits a limit in
law which is a Gaussian distribution. This is a consequence of the following general simple
statement:

Proposition 1.5 (Central limit theorem). Let (Xn)n∈N be a sequence of random vectors that is
mod-Gaussian convergent in the Fourier sense with parameters tnK. The rescaled random variables

Yn =
Xn√

tn

converge in law towards NRd(0, K).

Proof. The Fourier transform of Yn is

ϕYn(ζ) = ϕXn

(
ζ√
tn

)
= e−

ζtKζ
2 θn

(
ζ√
tn

)
,

and the local uniform convergence of the residue θn ensures that θn(ζ/
√

tn) converges to-
wards θ(0) = 1 for any ζ ∈ Rd. The convergence of the characteristic functions imply the
convergence in law by Lévy’s continuity theorem. □

The purpose of our article is to improve on Proposition 1.5 in the two aforementioned
directions: estimates of the speed of convergence (Section 2) and large deviation results
(Section 3). Let us mention that a third direction, which is opposite to the one of large devi-
ations and concern estimates of probabilities P[Yn ∈ An] with Borel subsets An of size going
to zero, can be pursued in the framework of multi-dimensional mod-Gaussian convergence.
One then obtains local limit theorems: see [KN12; DKN15; BMN19].
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Remark 1.6. Let (Xn)n∈N be a sequence of random vectors that converges mod-Gaussian, for
instance in the Laplace sense on Cn, with parameters tnK and limiting function ψ(z). Then,
if Yn = K−1/2Xn, one has

E
[
e⟨z |Yn⟩

]
= E

[
e⟨K−1/2z |Xn⟩

]
= etn

(K−1/2z)t K (K−1/2z)
2 ψn(K−1/2z)

= etn
∥z∥2

2 ψ(K−1/2z) (1 + o(1)).

So, (Yn)n∈N converges in the mod-Gaussian sense with parameters tn Id and limiting func-
tion ψ(K−1/2z). Thus, every multi-dimensional mod-Gaussian convergence in the sense of
Definition 1.1 can be assumed to have as parameters tn times the identity matrix, (tn)n∈N

being a sequence increasing to +∞. However, this reduction is not necessarily the most
interesting thing to do. Indeed, most of the time, the matrix tnK is given by the first order
asymptotics of the covariance matrix of Xn; and it will be more convenient to deal with the
joint moments of the coordinates of Xn than with those of Yn.

Remark 1.7. In [FMN16; FMN19] which focused on the one-dimensional case, we worked
in a framework which was much more general than mod-Gaussian convergence. Hence, for
any infinitely divisible distribution ϕ on R, one can define mod-ϕ convergence by replacing
in our Definition 1.1 the Lévy exponent −ζ2/2 of the Gaussian law by an arbitrary Lévy
exponent of an infinitely divisible distribution; see [Sat99, Chapter 2] for an exposition of
the Lévy–Khintchine formula. The same thing can be done in dimension d ≥ 2, since the
infinitely divisible distributions have exactly the same classification in dimension 1 and in
higher dimensions [Sat99, Theorem 8.1]. However, if one wants in this setting large devia-
tion estimates, then the techniques that we shall use require the infinitely divisible reference
law to have a convergent Laplace transform on the complex plane; and this happens only
for Gaussian distributions. Similarly, if one wants to have estimates on the speed of conver-
gence, then we shall need sufficiently many moments for the reference law, and again we
shall be restricted to the Gaussian case. This explains why we only focus on mod-Gaussian
convergence when d ≥ 2. Also, we do not know of many interesting examples of multi-
dimensional mod-ϕ convergent sequences with ϕ ̸= NRd(0, K). One interesting example
would be related to the convergence in distribution of the marginal law of a process of
Ornstein–Uhlenbeck type towards a self-decomposable distribution, see [Sat99, Chapter 3,
Section 17].

1.3. The one-dimensional case. Let us briefly recall the results of [FMN16; FMN19] that we
aim to extend to higher dimensions. We start with the large deviation results, see [FMN16,
Theorem 4.2.1 and Proposition 4.4.1]:

Theorem 1.8 (Large deviations in dimension d = 1). Let (Xn)n∈N be a sequence of real-valued
random variables that is mod-Gaussian convergent in the Laplace sense, with domain S(a,b) with
a < 0 < b, parameters (tn)n∈N and limit ψ(z). We set Yn = Xn√

tn
; Yn ⇀ NR(0, 1). For any x > 0,

P[Xn ≥ tnx] = P
[
Yn ≥

√
tnx
]
=

e−
tnx2

2

x
√

2πtn
ψ(x) (1 + o(1)).

The estimate remains true as soon as y =
√

tnx is a O(
√

tn) and grows to infinity. If y = o(
√

tn),
then the correction ψ(x) to the Gaussian tail is asymptotic to 1 and does not appear.

Thus, up to the scale y = o(
√

tn), the probability P[Yn ≥ y] is asymptotically the same
as the Gaussian tail; one says that o(

√
tn) is the normality zone of the sequence (Yn)n∈N.
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When y = O(
√

tn), this is not true anymore and the limiting residue ψ of mod-Gaussian
convergence appears as a correction of the Gaussian tail.

To get estimates of Berry–Esseen type, one only needs a mod-Gaussian convergence in
the Fourier sense, but sometimes with precisions on the speed and zone of convergence of

θn(ζ) = E[eiζXn ] e
tnζ2

2 (2)

towards its limit θ(ζ). Let us start with a result without additional hypotheses [FMN16,
Proposition 4.1.1]:

Theorem 1.9 (General Berry–Esseen estimates in dimension d = 1). Let (Xn)n∈N be a se-
quence of real-valued random variables that is mod-Gaussian convergent in the Fourier sense, with
parameters (tn)n∈N and limit θ(ζ). We set Yn = Xn√

tn
. Then,

dKol(Yn,NR(0, 1)) = sup
y∈R

∣∣∣∣P[Yn ≤ y]− 1√
2π

∫ y

−∞
e−

x2
2 dx

∣∣∣∣ = O
(

1√
tn

)
.

This result is usually not optimal, and one can get better estimates by controlling the size
of θn(ζ) on a zone that grows with n. The precise hypotheses are the following [FMN19,
Theorem 15]:

Theorem 1.10 (Berry–Esseen estimates with a zone of control). Let (Xn)n∈N be a sequence of
real-valued random variables. We suppose that there exists a zone [−K(tn)γ, K(tn)γ], such that the
residue given by Equation (2) satisfies for any ζ in this zone:

|θn(ζ)− 1| ≤ K1|ζ|v exp(K2|ζ|w),
with w ≥ 2, v > 0 and −1

2 < γ ≤ min( v−1
2 , 1

w−2). Then, there is a constant C(γ, K, K1, K2) such
that

dKol(Yn,NR(0, 1)) ≤ C(γ, K, K1, K2)
1

(tn)
1
2+γ

.

In many situations including sums of i.i.d. random variables, one has a zone of control with
v = w = 3 and γ = 1, leading to a Berry–Esseen estimate of size O( 1

(tn)3/2 ).

Our goal will be to give analogues of Theorems 1.8, 1.9 and 1.10 in higher dimensions.
Our hypotheses when d ≥ 2 will be extremely similar to the previous ones, but the results
that we shall obtain are somewhat more subtle, and their proofs will be much more compli-
cated.

1.4. Main results and outline of the article. In Section 2, we focus on the speed of conver-
gence, and we introduce a distance between probability measures on Rd that is akin to the
Kolmogorov distance, and that can be controlled under the assumption of mod-Gaussian
convergence. This distance allows one to compare the distribution of Yn and the Gaussian
limit NRd(0, K) on any Borel measurable convex subset of Rd. In general, we obtain a bound
of order O((tn)−1/2), see Theorem 2.17. However, if the limit ψ of mod-Gaussian conver-
gence has a certain form, and if one knows more about the convergence of the residues
ψn(z) → ψ(z), then one can prove bounds of order o((tn)−1/2), or even O((tn)−3/2) (Theo-
rems 2.20 and 4.8).

In Section 3, we study the large deviations of a mod-Gaussian convergent sequence of
random vectors. In the multi-dimensional setting, the open intervals tn[b,+∞) of Theorem
1.8 are replaced by spherical or ellipsoidal sectors tn(S × [b,+∞)), where S is a part of
the K-sphere {x ∈ Rd | xtK−1x = 1}. If S is a sufficiently regular subset of this sphere
(Jordan measurable), then one obtains in Theorem 3.6 a large deviation principle, which
involves the surface integral of the residue ψ on this subset S. Therefore, the residue ψ
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measures intuitively a loss of symmetry when looking at the fluctuations of a mod-Gaussian
convergent sequence (Xn)n∈N at the scale tn, and when comparing these fluctuations with
the Gaussian fluctuations. The two examples presented in Section 1.2 will show clearly this
phenomenon.

Finally, in Section 4, we study examples and applications of the main theorems of Sections
2-3. A large class of examples relies on the method of cumulants developed in [FMN16, Sec-
tions 5 and 9] and [FMN19, Sections 4-5], and of which we propose a multi-dimensional
generalisation in Section 4.2. The method of cumulants allows one to study the fluctua-
tions of d-dimensional random walks with dependent steps (Section 4.3), and those of the
empirical measures of finite Markov chains (Section 4.4).

Acknowledgement. We are extremely grateful to Valentin Féray for countless discussions
on the subject and we thank him for sharing so generously with us his very helpful insights.

2. ESTIMATES ON THE SPEED OF CONVERGENCE

If µ and ν are two probability measures on Rd, then a general way to measure a distance
between µ and ν consists in fixing a class F of bounded measurable functions, and consid-
ering

dF (µ, ν) = sup
f∈F

|µ( f )− ν( f )| = sup
f∈F

∣∣∣∣∫
Rd

f (x) µ(dx)−
∫

Rd
f (x) ν(dx)

∣∣∣∣ .

In particular, given a family B of Borel subsets of Rd, one can consider the distance associ-
ated to the class of indicator functions F = {1B, B ∈ B}:

dB(µ, ν) = sup
B∈B

|µ(B)− ν(B)|.

In dimension 1, the Kolmogorov distance dKol is defined by this mean with the family B =
{(−∞, s], s ∈ R}. In higher dimension d ≥ 2, the analogous distance

dKol,Rd(µ, ν) = sup
(s(1),...,s(d))∈Rd

∣∣∣∣∣
∫ s(1)

−∞
· · ·

∫ s(d)

−∞
µ(dx)− ν(dx)

∣∣∣∣∣
is not very convenient to deal with: for instance, it says nothing of the differences

µ(Bd
(x,ε))− ν(Bd

(x,ε))

of the measures of Euclidean balls, since these probabilities are not directly accessible from
the d-dimensional cumulative distribution functions. In the setting of mod-Gaussian con-
vergence, a much better distance is given by the class of convex Borel sets. If ν is a probability
measure that is absolutely continuous with respect to the Lebesgue measure and sufficiently
isotropic, then the convex sets define a distance dconvex that is compatible with the conver-
gence in law to ν, see [BR10, Theorems 2.11 and 3.1] and Section 2.1 hereafter. We shall
then prove that, given a mod-Gaussian convergent sequence of random vectors (Xn)n∈N,
the convex distance between Yn = Xn/

√
tn and its limiting distribution NRd(0, K) can be

bounded by a negative power of tn (Section 2.4, Theorems 2.17 and 2.20). The proof of these
results rely on various inequalities relating Fourier transforms and the convex distance to a
Gaussian distribution (Sections 2.2 and 2.3).
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2.1. Convex distance between probability measures. Recall that a subset C ⊂ Rd is called
convex if, for all x, y ∈ C, the whole segment [x, y] = {tx + (1 − t)y , t ∈ [0, 1]} is included
into C. Let µ and ν be probability measures on Rd.

Definition 2.1 (Convex distance). The convex distance between µ and ν by

dconvex(µ, ν) = sup
C convex Borel

subset of Rd

|µ(C)− ν(C)|.

If d = 1, then the convex sets of R are the intervals. Therefore, when d = 1, the convex
distance is a metric on probability measures that is equivalent to the Kolmogorov distance:

dKol(µ, ν) ≤ dconvex(µ, ν) ≤ 2 dKol(µ, ν).

For the reasons stated in the introduction of this section, we consider the convex distance
to be the correct multi-dimensional generalisation of the Kolmogorov distance. This convex
distance controls the convergence in law:

Proposition 2.2 (Convex distance and weak convergence, direct implication). Consider prob-
ability measures (µn)n∈N and ν on Rd, such that dconvex(µn, ν) → 0. Then, µn converges in law to
ν.

Proof. The set of open hypercubes ∏d
i=1(a(i), b(i)) is a π-system H in Rd, and every open set

of Rd is a countable union of such hypercubes. If dconvex(µn, ν) → 0, then for every H ∈ H ,
µn(H) → ν(H) since H is convex. Then, by [Bil99, Theorem 2.2], µn ⇀ ν. □

Though the converse statement is false, it becomes true if ν is a probability measure that
is regular with respect to the class C of Borel convex sets. Let us explain this notion of regularity.
If ε > 0 and C ⊂ Rd, we set

Cε = {x ∈ Rd | d(x, C) ≤ ε}.

If C is a convex set, then Cε is a closed convex set. We also define

C−ε = Rd \ (Rd \ C)ε = {x ∈ Rd | d(x, Rd \ C) > ε};

this is a part of C, and if C is a convex set, then C−ε is an open convex set. The ε-boundary
of a (convex) set is ∂εC = Cε \ C−ε: it is a closed set, which contains for every ε > 0 the
topological boundary ∂C of C (see Figure 1).

ε
ε ∂C

∂εC

C−ε

FIGURE 1. The ε-boundary ∂εC of a convex set C.
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Definition 2.3 (Regular probability measures). A probability measure µ on Rd is said regular
with respect to the class of convex sets if there exists a constant R ≥ 0 such that, for every Borel
convex set C,

µ(∂εC) ≤ Rε.

Example 2.4 (Regular measures in dimension d = 1). In dimension 1, a measure is regular
with respect to the class of convex sets if and only it is absolutely continuous with respect to
the Lebesgue measure, and with bounded density. Indeed, if µ ∈ P(R) and dµ

dx ≤ R
4 , then

for any interval [a, b],

µ(∂ε[a, b]) ≤ µ([a − ε, a + ε]) + µ([b − ε, b + ε]) ≤ 4
R
4

ε = Rε,

so the measure is regular with respect to the class of convex sets. Conversely, suppose that µ
is regular with respect to the class of convex sets, of constant R; and denote Fµ its cumulative
distribution function. Notice then that Fµ is an absolutely continuous function: if ([ai, bi])i∈I
is a finite family of disjoint intervals, then for any ε > 0,

∑
i∈I

|Fµ(bi)− Fµ(ai)| ≤ ∑
i∈I

µ

(
∂

bi−ai+ε
2

{
ai + bi

2

})
≤ R ∑

i∈I

bi − ai + ε

2
,

so making ε go to 0,

∑
i∈I

|Fµ(bi)− Fµ(ai)| ≤
R
2 ∑

i∈I
|bi − ai|.

As a consequence, Fµ is almost everywhere derivable, and

dFµ(x)
dx

= lim
ε→0

Fµ(x + ε)− Fµ(x − ε)

2ε
≤ R

2
,

so µ is absolutely continuous with respect to the Lebesgue measure, with density bounded
by R

2 .

Example 2.5 (Non-regular measures in dimension d ≥ 2). In dimension d ≥ 2, one can con-
struct probability measures that have bounded density with respect to the Lebesgue mea-
sure, but that are not regular with respect to the class of convex sets. Let g be a continuous
non-negative function on R+, such that:

•
∫ ∞

0 g(r) rd−1 dr < +∞.

• g is bounded by some constant M on R+, and there exists a level L > 0 such that
lim supr→∞ g(r) > L.

Hence, we want both g(r) to integrate rd−1 and to reach a fixed level L > 0 an infinite
number of times (on very small intervals). It is easily seen that such functions do exist. Let
µ be the measure on Rd with density g(∥x∥) dx; up to a renormalisation of g, one can assume
µ to be a probability measure. Then, µ has density bounded by M. On the other hand, there
exists a sequence rn → +∞ such that g(rn) ≥ L for every n. Since g is continuous, one can
find for every rn an interval [rn − εn, rn + εn] such that g(r) ≥ L

2 for every r in this interval.
Then,

µ
(

∂εn Bd
(0,rn)

)
= vol(Sd−1)

∫ rn+εn

rn−εn
g(r) rd−1 dr ≥ L vol(Sd−1) (rn)

d−1 εn.

Since (rn)d−1 can be taken as large as wanted, µ is not a regular measure with respect to
convex sets.

The interest of the notion of regularity comes from:
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Proposition 2.6 (Convex distance and weak convergence, reciprocal implication). Let ν be a
probability on Rd that is regular with respect to the class of convex sets. If (µn)n∈N is a sequence of
probability measures with µn ⇀ ν (convergence in law), then dconvex(µn, ν) → 0.

Proof. See [BR10, Theorem 2.11]. Later, we shall see that if ν is regular, and if sufficiently
many derivatives of µ̂n(ζ) converge to those of ν̂(ζ) locally uniformly, then we have indeed
dconvex(µn, ν) → 0. We shall even be able to quantify this; see the remark at the end of
Section 2.3. □

In the sequel, we shall need to know that the Gaussian distributions NRd(m, K) are always
regular with respect to the class of convex sets. This is a consequence of the following:

Lemma 2.7. Consider a probability measure ν(dx) = g(∥x∥) dx, with
∫ ∞

0 rd−1 |g′(r)| dr = c1 <

+∞. Then, for any convex set C ⊂ Rd, and any ε > 0

ν(∂εC) ≤ 2 c1 vol(Sd−1) ε =
4πd/2

Γ(d/2)
c1 ε.

Proof. See [BR10, Theorem 3.1]. □

Corollary 2.8 (Regularity of the Gaussian distributions). If ν is a Gaussian distribution on Rd

with covariance matrix K, then ν is regular with constant R = 2
√
(d + 1) ρ(K−1): for any convex

Borel set C ⊂ Rd and any ε > 0,

ν(∂εC) ≤ 2
√
(d + 1) ρ(K−1) ε.

Proof. If ν is the standard Gaussian distribution on Rd (K = Id), then

c1 =
1

(2π)d/2

∫ ∞

0
rd e−

r2
2 dr =

2(d−1)/2

(2π)d/2

∫ ∞

0
u

d+1
2 −1 e−u du =

1√
2 πd/2

Γ
(

d + 1
2

)
.

Therefore, ν is regular with respect to convex sets, of constant

R ≤ 2
√

2
Γ( d+1

2 )

Γ( d
2 )

≤ 2
√

d + 1.

More generally, suppose that ν = NRd(0, K) is an arbitrary non-degenerated Gaussian dis-
tribution on Rd. If ∥x − y∥ ≤ ε, then

∥K−1/2(x − y)∥ ≤ (k(1))−1/2∥x − y∥ ≤ (k(1))−1/2 ε,

where k(1) ≤ k(2) ≤ · · · ≤ k(d) are the positive eigenvalues of K. It follows that K−1/2(Cε) ⊂
(K−1/2C)ε(k(1))−1/2

, and similarly, K−1/2(C−ε) ⊃ (K−1/2C)−ε(k(1))−1/2
. As a consequence, if

ν = NRd(0, K) and ν̃ = NRd(0, Id), then

ν(∂εC) =
1√

(2π)d det K

(∫
Cε
−
∫

C−ε

) (
e−

xtK−1x
2 dx

)
≤ 1√

(2π)d

(∫
(K−1/2C)ε(k(1))−1/2

−
∫
(K−1/2C)−ε(k(1))−1/2

) (
e−

∥y∥2
2 dy

)
≤ ν̃

(
∂ε(k(1))−1/2

(K−1/2C)
)
≤ 2

√
d + 1 (k(1))−1/2 ε.

Indeed, if C is a convex set, then K−1/2C is also a convex set. □
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2.2. Smoothing techniques. The regularity of the Gaussian distributions enables us to use
smoothing techniques in order to compute dconvex(µ,NR(0, K)). We first introduce an ade-
quate smoothing kernel, which is the multi-dimensional analogue of the kernel of [FMN19,
Lemma 17]:

Lemma 2.9. There exists a kernel ρ on Rd such that:

(1) The kernel is non-negative,
∫

Rd ρ(x) dx = 1, and
∫

Bd
(0,(2d+2)3/2)

ρ(x) dx ≥ c2 with

2c2 − 1 ≥ 1 − 4
9π

.

(2) The kernel ρ(x) integrates (∥x∥1)
d+1:∫

Rd
ρ(x) (∥x∥1)

d+1 dx < +∞.

(3) The Fourier transform ρ̂(ζ) =
∫

Rd ei⟨ζ | x⟩ρ(dx) of ρ is compactly supported on [−1, 1]d.

(4) The Fourier transform of ρ is of class C 2d, and for any multi-index β of weight |β| =

∑d
i=1 β(i) ≤ 2d, ∥∥∥∥∥∂|β|ρ̂(ζ)

∂ζβ

∥∥∥∥∥
∞

≤ 21+ d
2 π− d

2 (2d + 2)|β|+
d
2 .

Proof. We set sinc(x) = sin x
x , sinc2d+2(x) = (sinc( x

2d+2))
2d+2, and finally

ρ(x) = ∏d
i=1 sinc2d+2(x(i))∫

Rd ∏d
i=1 sinc2d+2(x(i)) dx

.

(1) Since | tan x| ≥ |x| on [−π
2 , π

2 ], one has

∫
R
(sinc(x))2d+2 dx ≥

∫ π
2

−π
2

(cos x)2d+2 dx =
√

π
Γ(d + 3

2)

Γ(d + 2)
.

Then, since the Euclidean ball Bd
(0,ε) contains the hypercube Cd

(0, ε√
d
),

∫
Rd\Bd

(0,ε)
∏d

i=1 sinc2d+2(x(i)) dx∫
Rd ∏d

i=1 sinc2d+2(x(i)) dx
≤

∫
Rd\Cd

(0, ε√
d
)

∏d
i=1 sinc2d+2(x(i)) dx∫

Rd ∏d
i=1 sinc2d+2(x(i)) dx

≤ d

∫
R\[− ε√

d
, ε√

d
] sinc2d+2(x) dx∫

R
sinc2d+2(x) dx

≤ 2d Γ(d + 2)√
π Γ(d + 3

2)

∫ +∞

ε√
d (2d+2)

dy
y2d+2

≤ 2d Γ(d + 2)√
π (2d + 1) Γ(d + 3

2)

(√
d (2d + 2)

ε

)2d+1

≤ 2d Γ(d + 2)√
π (2d + 1) Γ(d + 3

2)

(
d

2d + 2

)d+ 1
2
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if ε = (2d + 2)3/2. This last expression takes its maximal value 2
9π for d = 1. There-

fore, ∫
Bd
(0,(2d+2)3/2)

ρ(x) dx ≥ 1 − 2
9π

; 2c2 − 1 ≥ 1 − 4
9π

.

(2) Note that
d

∏
i=1

sinc2d+2(x(i)) ≤ sinc2d+2

(
max
1≤i≤d

|x(i)|
)

≤ (2d + 2)2d+2

max1≤i≤d |x(i)|2d+2
≤ (d(2d + 2))2d+2

(∥x∥1)2d+2 .

Therefore, the kernel indeed integrates (∥x∥1)
d+1.

(3) One has

ρ̂(ζ) = Z
d

∏
i=1

(∫
R

sinc2d+2(x) eixζ(i) dx
)

= Z′
d

∏
i=1

(∫
R
(sinc(x))2d+2 eix ζ(i)

2d+2 dx
)

= Z′
d

∏
i=1

(
ŝinc

)∗(2d+2)
(

ζ(i)

2d + 2

)
,

where Z and Z′ are normalisation constants, and f ∗(2d+2) is the (2d + 2)-th convolu-
tion power of an integrable function f . However, the Fourier transform of the sine
cardinal is ŝinc(ζ) = π 1|ζ|≤1, which is supported on [−1, 1]. Therefore, (ŝinc)∗(2d+2)

is supported on [−(2d + 2), (2d + 2)], and ρ̂ is indeed supported on [−1, 1]d.

(4) If f (x) = (sinc(x))2d+2, then ∂k f̂
∂ζk (ζ) = ik (̂xk f )(ζ), so∥∥∥∥∥∂k f̂

∂ζk (ζ)

∥∥∥∥∥
∞

≤
∫

R

sin2d+2(x)
|x|2d+2−k dx ≤

∫ 1

−1
|x|k dx + 2

∫ ∞

1

1
x2d+2−k dx

≤ 2
(

1
k + 1

+
1

2d + 1 − k

)
≤ 2

2d + 2
2d + 1

for any k ∈ [[0, 2d]]. Since ρ̂(ζ) = ∏d
i=1

f̂ ((2d+2)ζ(i))
f̂ (0)

, it follows that∥∥∥∥∥∂|β|ρ̂(ζ)

∂ζβ

∥∥∥∥∥
∞

≤ (2d + 2)|β|
(

2(2d + 2) Γ(d + 2)√
π (2d + 1) Γ(d + 3

2)

)d

≤ 21+ d
2 π− d

2 (2d + 2)|β|+
d
2

by using Stirling estimates on the last line. □

For ε > 0, we note

ρε(x) =

(
(2d + 2)3/2

ε

)d

ρ

(
(2d + 2)3/2 x

ε

)
.

For every d ≥ 1, the two first points in Lemma 2.9 translate into the following properties for
the smoothing kernel ρε:
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(SK1) ρε(x) ≥ 0 on Rd, and
∫

Rd ρε(x) dx = 1.

(SK2) ρε gives a mass close to 1 to the Euclidean ball Bd
(0,ε):∫

Bd
(0,ε)

ρε(x) dx = c2 >
1
2

.

(SK3) the Fourier transform of ρε is compactly supported on
[
− (2d+2)3/2

ε , (2d+2)3/2

ε

]d
.

The discussion hereafter holds for any kernel with the two properties (SK1) and (SK2). Let f
be a bounded measurable function on Rd. It is well known that, if the oscillations of f are not
too large with respect to a probability measure ν, then one can use smoothing techniques in
order to control

∫
Rd f (x) (µ(dx)− ν(dx)). More precisely, consider the following quantities,

all related to the oscillations of the function f :

M( f , x, ε) = sup{ f (y) | d(x, y) ≤ ε};

m( f , x, ε) = inf{ f (y) | d(x, y) ≤ ε};

ω( f , x, ε) = M( f , x, ε)− m( f , x, ε).

We then denote ft(x) = f (x + t) the translate of f by a vector t ∈ Rd, and

ω( f ) = sup{| f (x)− f (y)|, x, y ∈ Rd};

ω( f , ε) =
∫

Rd
ω( f , x, ε) ν(dx);

ω∗( f , ε) = sup{ω( ft, ε) | t ∈ Rd}.

Lemma 2.10. For any kernel ρε that satisfies the two properties (SK1) and (SK2), one has∣∣∣∣∫
Rd

f (x) (µ(dx)− ν(dx))
∣∣∣∣ ≤ 1

2c2 − 1

(
ω( f )

2
∥(µ − ν) ∗ ρε∥+ ω∗( f , 2ε)

)
,

where ∥(µ − ν) ∗ ρε∥ = ((µ − ν) ∗ ρε)+(Rd) + ((µ − ν) ∗ ρε)−(Rd) is the norm of the signed
measure (µ − ν) ∗ ρε.

Proof. Cf. [BR10, Corollary 11.5]. □

Suppose that f = 1C is the indicator function of a Borel convex set C ⊂ Rd, and that ν is a
probability measure that is regular with constant R. Then, ω( f ) = 1, and ω( f , x, ε) = 1x∈∂εC.
As a consequence,

ω∗( f , 2ε) =
∫

Rd
1x∈∂2εC ν(dx) ≤ 2R ε.

Combining the previous lemma with the estimate of c2 given in Lemma 2.9, we conclude
that:

Proposition 2.11 (Convex distance to a regular measure). Let µ be an arbitrary probability
measure on Rd, and ν a probability measure that is regular with respect to the class of convex sets,
with constant R. One has the following inequality:

dconvex(µ, ν) ≤ 1
1 − 4

9π

(
∥(µ − ν) ∗ ρε∥

2
+ 2R ε

)
.

In particular, if ν a Gaussian distribution with covariance matrix K > 0, then

dconvex(µ, ν) ≤ 1
1 − 4

9π

(
∥(µ − ν) ∗ ρε∥

2
+ 4
√
(d + 1) ρ(K−1) ε

)
.
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2.3. Distance between Fourier transforms. Given two probability measures µ and ν on Rd,
we now explain how to relate the total variation norm ∥(µ − ν) ∗ ρε∥ to certain properties of
the Fourier transforms µ̂(ζ) and ν̂(ζ). In the remainder of this paragraph, we assume that
µ and ν have moments of all order (or at least of all order ≤ d + 1); therefore, µ̂ and ν̂ have
derivatives of all order. We then denote

∆ε(µ̂, ν̂) = max
|β|∈[[0,d+1]]

∫[
− (2d+2)3/2

ε , (2d+2)3/2
ε

]d

∣∣∣∣∣∂|β|(µ̂ − ν̂)

∂ζβ
(ζ)

∣∣∣∣∣ dζ,

the maximum being taken over multi-indices β = (β(1), . . . , β(d)) such that |β| ∈ [[0, d + 1]].
We also abbreviate

Cd
(0,(2d+2)3/2/ε)

=

[
− (2d + 2)3/2

ε
,
(2d + 2)3/2

ε

]d

= Dd
ε .

Proposition 2.12 (Variation norm and distance between Fourier transforms). For any proba-
bility measures µ and ν with moments of all order, if ε ≤ 1√

2d+2
, then

∥(µ − ν) ∗ ρε∥ ≤ 4 (d + 1)
d+1

2 ∆ε(µ̂, ν̂).

Lemma 2.13. Let g : Rd → R be a function such that
∫

Rd |g(x)| (∥x∥1)
d+1 dx < +∞. Then,∫

Rd
|g(x)| dx ≤

√
πd
2

( e
π

)d
max

|β|∈{0,d+1}

∫
Rd

∣∣∣∣∣∂|β| ĝ∂ζβ
(ζ)

∣∣∣∣∣ dζ.

Proof. We follow the proof of [BR10, Lemma 11.6], but we make the constants more explicit.
Let G+ = {x ∈ Rd | g(x) ≥ 0}, and G− = Rd \ G+. For any sequences of signs α ∈ {±1}d,
we denote Qα = {x ∈ Rd | ∀i ∈ [[1, d]] , sgn(x(i)) = α(i)} the corresponding quadrant of Rd,
with by convention sgn(0) = +1. We then write:∫

Rd
|g(x)| dx

= ∑
α∈{±1}d

(∫
Qα∩G+

−
∫

Qα∩G−

)
g(x) (dd+1 + (∥x∥1)

d+1)
1

dd+1 + (∥x∥1)d+1 dx

= ∑
α∈{±1}d

(∫
Qα∩G+

−
∫

Qα∩G−

)(
1

(2π)d

∫
Rd

ĥα(ζ) e−i⟨x | ζ⟩ dζ

)
1

dd+1 + (∥x∥1)d+1 dx,

where

hα(x) =

dd+1 +

(
d

∑
i=1

α(i) x(i)
)d+1

 g(x).

The Fourier transform of hα(x) is:

ĥα(ζ) =

dd+1 + (−i)d+1 ∑
|β|=d+1

(
d + 1

β(1), . . . , β(d)

)
αβ ∂|β|

∂ζβ

 ĝ(ζ).

Therefore, ∣∣∣∣∫
Rd

ĥα(ζ) e−i⟨x | ζ⟩ dζ

∣∣∣∣ ≤ 2 dd+1 max
|β|∈{0,d+1}

∥∥∥∥∥∂|β| ĝ(ζ)
∂ζβ

∥∥∥∥∥
L1

.

It follows that

∥g∥L1 ≤
2 dd+1

(2π)d

(∫
Rd

1
dd+1 + (∥x∥1)d+1 dx

)
max

|β|∈{0,d+1}

∥∥∥∥∥∂|β| ĝ(ζ)
∂ζβ

∥∥∥∥∥
L1

.
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Last we compute
∫

Rd
1

dd+1+(∥x∥1)d+1 dx as follows:

∫
Rd

1
dd+1 + (∥x∥1)d+1 dx =

2d

dd+1

∫
(R+)d

1

1 +
(

x(1)+···+x(d)
d

)d+1 dx

=
2d

d

∫
(R+)d

1
1 + (y(1) + · · ·+ y(d))d+1

dy

=
2d

d!

∫ +∞

t=0

td−1

1 + td+1 dt =
2d π

(d + 1)! sin( π
d+1)

.

We conclude by using Stirling’s approximation for (d + 1)!:

∥g∥L1 ≤
√

πd
2

( e
π

)d
max

|β|∈{0,d+1}

∥∥∥∥∥∂|β| ĝ(ζ)
∂ζβ

∥∥∥∥∥
L1

. □

Proof of Proposition 2.12. Since ρε is a smoothing kernel, the signed measure obtained by the
convolution (µ− ν) ∗ ρε has a (smooth) density g with respect to the Lebesgue measure, and
one can apply to it the previous Lemma:

∥(µ − ν) ∗ ρε∥ = ∥g∥L1 ≤ C(d) max
|β|∈{0,d+1}

∥∥∥∥∥ ∂|β|

∂ζβ
((µ̂ − ν̂) ρ̂ε)

∥∥∥∥∥
L1

.

Indeed, ∫
Rd

|g(x)| (∥x∥1)
d+1 dx

≤
∫

Rd

∫
Rd
(µ + ν)(dy) ρε(x − y) (∥x∥1)

d+1 dx

≤ 2d+1
∫

Rd

∫
Rd
(µ + ν)(dy) ρε(x − y)((∥x − y∥1)

d+1 + (∥y∥1)
d+1) dx

≤ 2d+2
(∫

Rd
(∥x∥1)

d+1 ρε(x) dx
)
+ 2d+1

(∫
Rd
(∥x∥1)

d+1 (µ + ν)(dx)
)

which is finite since µ and ν have moments of all order, and ρε integrates (∥x∥1)
d+1. Now, if

|β| is a fixed multi-index of total weight |β| = d + 1, then∥∥∥∥∥ ∂|β|

∂ζβ
((µ̂ − ν̂) ρ̂ε)

∥∥∥∥∥
L1

≤
β(1)

∑
α(1)=0

· · ·
β(d)

∑
α(d)=0

d

∏
i=1

(
β(i)

α(i)

) ∫
Dd

ε

∣∣∣∣∣∂|β−α|(µ̂ − ν̂)(ζ)

∂ζβ−α

∂|α|ρ̂ε(ζ)

∂ζα

∣∣∣∣∣ dζ

≤
β(1)

∑
α(1)=0

· · ·
β(d)

∑
α(d)=0

d

∏
i=1

(
β(i)

α(i)

)∥∥∥∥∥∂|α|ρ̂ε

∂ζα

∥∥∥∥∥
∞

∆ε(µ̂, ν̂)

≤ 2

(√
4d + 4

π

)d (
1 +

ε√
2d + 2

)d+1

∆ε(µ̂, ν̂)

≤ 2e1/2

(√
4d + 4

π

)d

∆ε(µ̂, ν̂)
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by using the bound on the derivatives of ρ̂ε given by Lemma 2.9. Since the constant before
∆ε(µ̂, ν̂) is always larger than 1, the same estimate holds when |β| = 0, so we get

∥(µ − ν) ∗ ρε∥ ≤ 2e1/2

√
πd
2

(
e
π

√
4d + 4

π

)d

∆ε(µ̂, ν̂)

≤ π2
√

2e

(
2e

π3/2

√
d + 1

)d+1

∆ε(µ̂, ν̂)

≤ 4
(√

d + 1
)d+1

∆ε(µ̂, ν̂),

by simplyfing a bit the constants for the last inequality. □

Corollary 2.14 (Convex distance and distance between Fourier transforms). Let µ be an ar-
bitrary probability measure on Rd, and ν be a probability distribution that is regular with respect to
the class of convex sets, with constant R. We assume that µ and ν have moments of any order smaller
than d + 1. Then,

dconvex(µ, ν) ≤ 2
1 − 4

9π

(
(d + 1)

d+1
2 ∆ε(µ̂, ν̂) + R ε

)
for any ε < 1√

2d+2
.

In particular,

dconvex(µ, NRd(0, K)) ≤ 2
1 − 4

9π

(
(d + 1)

d+1
2 ∆ε

(
µ̂, e−

ζtKζ
2

)
+ 2

√
(d + 1) ρ(K−1) ε

)
.

Remark 2.15. Corollary 2.14 implies the reciprocal of Proposition 2.2 if one assumes that,
in addition to the convergence in law µn ⇀ ν, which is equivalent to the local uniform
convergence µ̂n(ζ) → ν̂(ζ), one also has convergence of the partial derivatives of these
Fourier transforms up to order d + 1. Actually, given a measure ν regular with respect to
convex sets, one does not need this additional assumption to have dconvex(µn, ν) → 0, but
this is required if one wants quantitative estimates.

2.4. Berry–Esseen type estimates. We now apply the preliminary results of the previous
paragraphs to a mod-Gaussian convergent sequence of random variables (Xn)n∈N.

2.4.1. Normal approximation of a mod-Gaussian convergent sequence. We start with the follow-
ing general hypotheses:

(BE1) The sequence of random vectors (Xn)n∈N is mod-Gaussian convergent in the Laplace
sense, on Cd or on a multi-strip S(a,b) such that 0 ∈ ∏d

i=1(a(i), b(i)), with parameters
tnK and limit ψ(z). We denote as before θn(ζ) = ψn(iζ) and θ(ζ) = ψ(iζ) for ζ ∈ Rd.

(BE2) Or, the sequence (Xn)n∈N is mod-Gaussian convergent in a strong Fourier sense: the
residue θn and all its partial derivatives up to order d + 1 converge locally uniformly on
R towards θ and all its partial derivatives up to order d + 1.

The hypothesis (BE1) is stronger than (BE2). Indeed, if the holomorphic functions ψn(z)
converge locally uniformly towards ψ(z), then ψ(z) is holomorphic on the domain of con-
vergence, and one has automatically a local uniform convergence of the complex derivatives
up to any order. In particular, by restriction to the domain D = (iR)d, one gets the content of
Hypothesis (BE2), which is itself just a bit stronger than Fourier mod-Gaussian convergence
in the sense of Definition 1.1.
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Until the end of this paragraph, (Xn)n∈N is a fixed mod-Gaussian convergent sequence
that satisfies Hypothesis (BE2). We set

M(B) = M((θn)n∈N, B) = sup
n∈N

max
|α|∈[[0,d+1]]

max
ζ∈Cd

(0,B(2d+2)3/2)

∣∣∣∣∣∂|α|θn(ζ)

∂ζα

∣∣∣∣∣ .

Because θn → θ uniformly on Cd
(0,B(2d+2)3/2)

, as well as their derivatives up to order d + 1,

M(B) is finite. On the other hand, we denote µn the law of Xn/
√

tn, and ν = NRd(0, K).

Lemma 2.16. Under the hypothesis (BE2), assuming also that d ≥ 2 and that det K = 1, one has

∆ 1
B
√

tn
(µ̂n, ν̂) ≤

(
2π

e

) d
2

(d + 1)d+ 11
4 (ρ(K−1))

d
2+1 M(B)√

tn

for any fixed B > 0, and for n large enough.

Before proving this result, let us discuss the assumption that K is normalised:

det K = 1.

First, this assumption can be made without loss of generality, by replacing K by Knorm =

(det K)−1/d K, and tn by (det K)1/d tn. On the other hand, since det K = k(1)k(2) · · · k(d) is
the product of the eigenvalues of det K, if det K = 1, then ρ(K) ≥ 1 and ρ(K−1) ≥ 1. For
K ∈ S+(d, R), set τ(K) = ρ(K−1) ρ(K). This quantity is invariant by the transformations
K 7→ λK, and it is always larger than 1, since

1 ≤ ρ((Knorm)−1) = (det K)1/d ρ(K−1) ≤ ρ(K) ρ(K−1) = τ(K).

Because of this sequence of inequalities, if an upper bound involving ρ(K−1) is proven un-
der the additional assumption det K = 1, then most of the time, an equivalent upper bound
will hold without the assumption det K = 1, replacing ρ(K−1) by τ(K).

Proof of Lemma 2.16. Fix a multi-index β of weight ≤ d + 1, and set ε = 1/(B
√

tn). We
introduce the Hermite polynomials

Hn(x) = (−1)n e
x2
2

dn

dxn

(
e−

x2
2

)
, n ≥ 0.

If α is a multi-index, then

e
∥ζ∥2

2
∂α

∂ζα

(
e−

∥ζ∥2
2

)
= (−1)|α|

d

∏
i=1

Hα(i)(ζ
(i)),

which we abbreviate as (−1)|α|Hα(ζ). In the following, given two multi-indices α and β, we

write α ≤ β if α(i) ≤ β(i) for all i ∈ [[1, d]]. We then set (β
α) = ∏d

i=1 (
β(i)

α(i)
). One has∫

Dd
ε

∣∣∣∣∣∂|β|(µ̂n − ν̂)

∂ζβ
(ζ)

∣∣∣∣∣ dζ

≤
∫

Dd
1/B

√
tn

∣∣∣∣∣∂|β|ν̂(ζ)∂ζβ

∣∣∣∣∣
∣∣∣∣θn

(
ζ√
tn

)
− 1
∣∣∣∣ dζ

+ ∑
0<α≤β

(
1√
tn

)|α| (β

α

) ∫
Dd

1/B
√

tn

∣∣∣∣∣∂|β−α|ν̂

∂ζβ−α
(ζ)

∣∣∣∣∣
∣∣∣∣∣∂|α|θn

∂ζα

(
ζ√
tn

)∣∣∣∣∣ dζ

≤ M(B)√
tn

∫
Rd

∣∣∣∣∣∂|β|ν̂(ζ)∂ζβ

∣∣∣∣∣ ∥ζ∥1 dζ + M(B) ∑
0<α≤β

(
1√
tn

)|α| (β

α

) ∫
Rd

∣∣∣∣∣∂|β−α|ν̂

∂ζβ−α
(ζ)

∣∣∣∣∣ dζ.
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Recall that ν̂(ζ) = e−
ζtKζ

2 . To evaluate the integrals above, we make the change of variables
ξ = K1/2ζ. If M is an invertible matrix in GL(Rd), and ζ = M ξ, then

∂ f
∂ζ(i)

=
d

∑
j=1

Mij
∂ f

∂ξ(j)
.

Therefore, with M = K−1/2,∣∣∣∣∣∂|β|ν̂(ζ)∂ζβ

∣∣∣∣∣ =
∣∣∣∣∣
(

d

∏
i=1

∂β(i)

∂ζβ(i)

)
e−

∥ξ∥2
2

∣∣∣∣∣ ≤ ∑
j11,...,j

1β(1)

...
jd1,...,j

dβ(d)

∣∣∣∣∣∣
 d

∏
i=1

β(i)

∏
k=1

Mijik
∂

∂ξ(jik)

 e−
∥ξ∥2

2

∣∣∣∣∣∣

≤ ∑
j11,...,j

1β(1)

...
jd1,...,j

dβ(d)

 d

∏
i=1

β(i)

∏
k=1

|Mijik |

 |Hα(j)(ξ)| e−
∥ξ∥2

2 ,

where the multi-indices α(j) depend on the choice of the indices j11, . . . , jdβ(d) ∈ [[1, d]], and
are all of total weight |β|. However, for any multi-indices α and β,

∫
Rd

|Hα(ξ)||Hβ(ξ)| e−
∥ξ∥2

2 dξ ≤
√∫

Rd
(Hα(ξ))2 e−

∥ξ∥2
2 dξ

√∫
Rd
(Hβ(ξ))2 e−

∥ξ∥2
2 dξ

≤
√
(2π)d α! β!

where α! = ∏d
i=1(α

(i))! if α is a multi-index of integers. Notice that if α is of total weight |α|,
then α! ≤ |α|!. So,

∫
Rd

∣∣∣∣∣∂|β|ν̂(ζ)∂ζβ

∣∣∣∣∣ ∥ζ∥1 dζ ≤ ∑
k,l

∑
j11,...,j

dβ(d)

|Mkl|

 d

∏
i=1

β(i)

∏
k=1

|Mijik |

 ∫
Rd
|Hα(j)(ξ)| |ξ(l)| e−

∥ξ∥2
2 dξ

≤ d

(
max

i∈[[1,d]]

d

∑
j=1

|Mij|
)1+|β| √

(2π)d |β|!

Moreover,

max
i∈[[1,d]]

d

∑
j=1

|Mij| = max
∥v∥∞≤1

∥Mv∥∞ ≤ max
∥v∥2≤

√
d
∥Mv∥2 =

√
d ρ(K−1/2).

Thus,

∫
Rd

∣∣∣∣∣∂|β|ν̂(ζ)∂ζβ

∣∣∣∣∣ ∥ζ∥1 dζ ≤ d
3+|β|

2

(
ρ(K−1)

) 1+|β|
2
√
(2π)d |β|!,

∫
Rd

∣∣∣∣∣∂|β−α|ν̂

∂ζβ−α
(ζ)

∣∣∣∣∣ dζ ≤
(

d ρ(K−1)
) |β−α|

2
√
(2π)d |β − α|! .
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We conclude that∫
Dd

ε

∣∣∣∣∣∂|β|(µ̂n − ν̂)

∂ζβ
(ζ)

∣∣∣∣∣ dζ

≤
√
(2π)d |β|!

(
d ρ(K−1)

)|β|
2 M(B)

d
3
2 ρ(K− 1

2 )√
tn

+

(
1 +

1√
tn d ρ(K−1)

)|β|

− 1


≤n→∞

√
(2π)d |β|!

(
d ρ(K−1)

)|β|
2 M(B)

(
d

3
2 ρ(K− 1

2 )√
tn

+
|β|+ 1√

tn d ρ(K−1)

)

≤n→∞

√
(2π)d (d + 1)!

(
d ρ(K−1)

)d+2
2 M(B)

d + d+2
d√

tn

where the symbol ≤n→∞ means that the inequality holds for n large enough. The inequality
follows by using Stirling’s estimate

(d + 1)! ≤
√

2π
(d + 1)d+ 3

2

ed ,

and by simplifying a bit the constants. □

Theorem 2.17 (General Berry–Esseen estimates). Let (Xn)n∈N be a sequence of random variables
that satisfies the hypothesis (BE2). We denote µn the law of Xn√

tn
and ν = NRd(0, K). One has

dconvex(µn, ν) = O
(

1√
tn

)
.

If d ≥ 2, one can take for constant in the O(·)

2 ρ(K−1/2)

1 − 4
9π

((
2π

e

) d
2

(d + 1)
3d
2 + 13

4 (τ(K))
d
2+1 M(B) + 2

√
(d + 1) τ(K)

1
B

)
for any B > 0.

Proof. Suppose first that det K = 1. Then, combining the previous Lemma 2.16 with Corol-
lary 2.14, and setting ε = 1

B
√

tn
, one obtains

dconvex(µn, ν)

≤ 2
1 − 4

9π

((
2π

e

) d
2

(d + 1)
3d
2 + 13

4 (ρ(K−1))
d
2+1 M(B) + 2

√
(d + 1) ρ(K−1)

1
B

)
1√
tn

for any B > 0.

If det K ̸= 1, then√
tn (det K)1/d dconvex

(
Xn√

tn
, NRd(0, K))

)
=
√

tn (det K)1/d dconvex

(
Xn√

tn (det K)1/d
, NRd(0, Knorm))

)

≤ 2
1 − 4

9π

((
2π

e

) d
2

(d + 1)
3d
2 + 13

4 (τ(K))
d
2+1 M(B) + 2

√
(d + 1) τ(K)

1
B

)

≤ 2
1 − 4

9π

((
2π

e

) d
2

(d + 1)
3d
2 + 13

4 (τ(K))
d
2+1 M(B) + 2

√
(d + 1) τ(K)

1
B

)
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for any B > 0, by using the inequality ρ((Knorm)−1) ≤ τ(K) previously mentioned. Finally,
(det K)1/d ≥ 1

ρ(K−1)
. □

2.4.2. Modification of the normal approximation. In [FMN16], the one-dimensional equivalent
of Theorem 2.17 was an important tool in the proof of the large deviation results (Theorem
1.8). We shall use in Section 3 the same ideas, but we shall then need a slightly better Berry–
Esseen bound o((tn)−1/2), instead of O((tn)−1/2). Under the general hypothesis (BE2), it
is possible to write such an upper bound, but then one needs to replace ν = NRd(0, K)
by a signed measure νn, which is a small modification of the Gaussian distribution ν. This
paragraph is devoted to the construction of the measures νn, and to the proof of the upper
bound dconvex(µn, νn) = o((tn)−1/2). Given a function f of ζ ∈ Rd, we denote

(∇ f )(ζ) =
(

∂ f (ζ)
∂ζ(1)

, . . . ,
∂ f (ζ)
∂ζ(d)

)
.

Given a sequence (Xn)n∈N that satisfies Hypothesis (BE2), notice that

∂θn

∂ζ(i)
(0) =

∂

∂ζ(i)

(
E
[
ei⟨ζ |Xn⟩

]
e

ζtKζ
2

)
|ζ=0

= i E
[
X(i)

n

]
is a purely imaginary number. Therefore, the gradient vector ∇θ(0) belongs to (iR)d. We
set

dνn

dx
=

1√
(2π)d det K

e−
xtK−1x

2

(
1 − i

xt K−1∇θ(0)√
tn

)
.

This is the density of a signed measure of total mass 1 and with Fourier transform∫
Rd

ei⟨ζ | x⟩ νn(dx) = e−
ζtKζ

2

(
1 +

ζt ∇θ(0)√
tn

)
.

Lemma 2.18. The modified Gaussian distribution νn is regular with respect to the class of Borel
convex sets, with constant

R ≤n→∞ 2
√
(d + 1) ρ(K−1).

Proof. Suppose first that K = Id. The density of νn is then bounded in absolute value by

(2π)−
d
2 e−

∥x∥2
2

(
1 +

∥x∥ ∥∇θ(0)∥√
tn

)
,

which satisfies the hypotheses of Lemma 2.7:∫ ∞

r=0
|g′(r)| rd−1 dr ≤ 1

(2π)d/2

∫ ∞

0
e−

r2
2

(
r +

(r2 + 1) ∥∇θ(0)∥√
tn

)
rd−1 dr

=
1√

2 πd/2
Γ
(

d + 1
2

)
+ O

(
1√
tn

)
.

Hence, νn is regular with constant

R = 2
√

2
Γ( d+1

2 )

Γ( d
2 )

+ O
(

1√
tn

)
,

which is smaller than 2
√

d + 1 for tn large enough. The general case is then obtained by the
same techniques of change of variables as in the proof of Lemma 2.7. □
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Lemma 2.19. Under the hypothesis (BE2), assuming also det K = 1, one has

∆ 1
B
√

tn
(µ̂n, ν̂n) ≤ C1(d, ρ(K−1))

∥∇θn(0)−∇θ(0)∥∞√
tn

+ C2(d, ρ(K−1))
M(B)

tn

for any B > 0, where C1(d, ρ(K−1)) and C2(d, ρ(K−1)) are some constants that depend only on d
and on the spectral radius ρ(K−1).

Proof. As in Lemma 2.16, we fix a multi-index β of total weight smaller than d + 1, and we
set ε = 1/(B

√
tn). We have

µ̂n(ζ)− ν̂n(ζ) = e−
ζtKζ

2

(
θn

(
ζ√
tn

)
− 1 − ζt ∇θ(0)√

tn

)
= ν̂(ζ) δn

(
ζ√
tn

)
.

In the expansion of

∂|β|(µ̂n − ν̂n)

∂ζβ
= ∑

0≤α≤β

(
1√
tn

)|α| (β

α

)(
∂|β−α|ν̂

∂ζβ−α
(ζ)

) (
∂|α|δn

∂ζα

(
ζ√
tn

))
,

we separate the multi-indices α in three categories:

(0) If α = 0, then∫
Dd

ε

∣∣∣∣∣∂|β|ν̂∂ζβ
(ζ)

∣∣∣∣∣
∣∣∣∣δn

(
ζ√
tn

)∣∣∣∣ dζ

≤
∫

Dd
1/B

√
tn

∣∣∣∣∣∂|β|ν̂∂ζβ
(ζ)

∣∣∣∣∣
(∣∣∣∣∣ζt(∇θn(0)−∇θ(0))√

tn

∣∣∣∣∣+ M(B) (∥ζ∥1)
2

2tn

)
dζ

≤ ∥∇θn(0)−∇θ(0)∥∞√
tn

∫
Rd

∣∣∣∣∣∂|β|ν̂∂ζβ
(ζ)

∣∣∣∣∣ ∥ζ∥1 dζ +
d M(B)

2tn

∫
Rd

∣∣∣∣∣∂|β|ν̂∂ζβ
(ζ)

∣∣∣∣∣ (∥ζ∥2)
2 dζ

by using a Taylor–Lagrange expansion of order 2 on the second line. The first integral
has been bounded in the proof of Lemma 2.16 by

d
d+4

2

(
ρ(K−1)

) d+2
2
√
(2π)d (d + 1)! .

On the other hand, setting M = K−1/2 and ζ = Mξ, the second integral is smaller
than

ρ(K−1)∑
l

∑
j11,...,j

dβ(d)

 d

∏
i=1

β(i)

∏
k=1

|Mijik |

 ∫
Rd

|Hα(j)(ξ)| |ξ(l)|2 e−
∥ξ∥2

2 dξ

≤ d ρ(K−1) ∑
j11,...,j

dβ(d)

 d

∏
i=1

β(i)

∏
k=1

|Mijik |

 √
(2π)d (d + 1)!

≤ d
d+3

2

(
ρ(K−1)

) d+3
2
√
(2π)d (d + 1)! .

So, the term with multi-index α = 0 gives a contribution smaller than(
∥∇θn(0)−∇θ(0)∥∞√

tn
+

√
d ρ(K−1) M(B)

2tn

)
d

d+4
2

(
ρ(K−1)

) d+2
2
√
(2π)d (d + 1)! .
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(1) If |α| = 1, then α = (0, . . . , 0, 1i, 0, . . . , 0) for some i ∈ [[1, d]]. The derivative of δn is
then ∣∣∣∣∂δn(ζ)

∂ζα

∣∣∣∣ = ∣∣∣∣∂θn(ζ)

∂ζ(i)
− ∂θ(0)

∂ζ(i)

∣∣∣∣ ≤ ∥∇θn(0)−∇θ(0)∥∞ + M(B) ∥ζ∥1

if ζ ∈ Cd
(0,B(2d+2)3/2)

. Therefore, the term with multi-index α = (0, . . . , 1i, . . . , 0) gives
a contribution to the sum smaller than

β(i)
√

tn

∫
Rd

∣∣∣∣∣∂|β−α|ν̂(ζ)

∂ζβ−α

∣∣∣∣∣
(
∥∇θn(0)−∇θ(0)∥∞ +

M(B) ∥ζ∥1√
tn

)
dζ

≤ β(i)

(
∥∇θn(0)−∇θ(0)∥∞√

tn
+

√
d3 ρ(K−1) M(B)

tn

)
(dρ(K−1))

d
2

√
(2π)d d!

(2) Finally, if |α| ≥ 2, then the derivative with multi-index α of δn is the same as the
derivative of θn, so one can use the same bounds as in Lemma 2.16. Thus, the term
with multi-index α gives a contribution smaller than

M(B)
(

β

α

) (
1√

tn d ρ(K−1)

)|α|

(d ρ(K−1))
d+1

2

√
2π |β − α|!.

The claim follows by summing over the three kind of multi-indices α. □

Theorem 2.20 (Convex distance to the modified normal approximation). Let (Xn)n∈N be a
sequence of random variables that satisfies Hypothesis (BE2). We denote µn the law of Xn√

tn
, and νn

the modified Gaussian distribution whose Fourier transform is

ν̂n(ζ) = e−
ζtKζ

2

(
1 +

ζt∇θ(0)√
tn

)
.

One has

dconvex(µn, νn) = o
(

1√
tn

)
.

Proof. One can assume without loss of generality that det K = 1. Fix η > 0, and take B = 1
η ,

and ε = 1
B
√

tn
= η√

tn
. By Corollary 2.14 and Lemma 2.18,

dconvex(µn, νn) ≤n→∞
2

1 − 4
9π

(
(d + 1)

d+1
2 ∆ 1

B
√

tn
(µ̂n, ν̂n) + 2

√
(d + 1) ρ(K−1)

η√
tn

)
.

By hypothesis, ∇(θn − θ) converges locally uniformly to 0. Therefore, in the estimate of
∆ 1

B
√

tn
(µ̂n, ν̂n) given by Lemma 2.19:

• The term that is proportional to ∥∇θn(0)−∇θ(0)∥∞√
tn

gets smaller than η√
tn

for tn large
enough.

• This is also trivially true for the term proportional to M(B)
tn

, since B is fixed.

Thus, there is a constant C3(d, ρ(K−1)) such that, for n large enough,

dconvex(µn, νn) ≤ C3(d, ρ(K−1))
η√
tn

.

Since this is true for any η > 0, the result is proven. □
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Remark 2.21. There is an important precision that one can make to the statement of Theorem
2.20: if εn =

√
tn dconvex(µn, νn), then the speed of convergence of (εn)n∈N to 0 only depends

on d, on ρ(K−1) and on the speed of convergence to 0 of ∥∇(θn − θ)(0)∥∞. By this, we mean
that if ((µ(i)

n , ν
(i)
n )n∈N)i∈I are families of sequences of distributions on Rd that all satisfy the

hypotheses above, and with a uniform bound on ρ((K(i))−1) and on ∥∇(θ
(i)
n − θ(i))(0)∥∞,

then the corresponding sequences (ε(i)n )i∈I converge uniformly to 0:

lim
n→∞

(
sup
i∈I

ε
(i)
n

)
= 0.

We shall use this precision during the proof of Theorem 3.6.

If ∇θ(0) = 0, then Theorem 2.20 ensures that the distance computed in Theorem 1.9 is
a o(1/

√
tn) instead of a O(1/

√
tn). In this situation, one can develop a theory of zones of

control, which is analogous to the hypotheses of Theorem 1.10 and, and which gives upper
bounds

dconvex(µn,NRd(0, K)) = O
(
(tn)

− 1
2−γ
)

.

As the main examples that we have in mind for this theory all rely on the method of cumu-
lants, we postpone the exposition of these better estimates to Section 4.

3. LARGE DEVIATION RESULTS

In this section, we fix a sequence (Xn)n∈N of random vectors in Rd that is mod-Gaussian
convergent in the Laplace sense on a multi-strip Sa,b, with 0 ∈ ∏d

i=1(a(i), b(i)). As before,
(tnK)n∈N is the sequence of parameters, and the limiting function is denoted by ψ. We also
suppose that ψ does not vanish on the real part of the multi-strip Sa,b; this hypothesis will
be useful in certain arguments of exponential change of measure. We are interested in the
asymptotics of the probabilities

P[Xn ∈ tnB],
where B = [b,+∞) × S, and S is some measurable part of the (d − 1)-dimensional K-
ellipsoid Sd−1(K) = K−1/2(Sd−1) = {x ∈ Rd | xtKx ≤ 1}. For instance, when d = 2,
assuming to simplify that K = I2, we want to be able to deal with angular sectors

B = {z = reiθ ∈ C | r ≥ b, θ ∈ (θ1, θ2)}.

This problem is the multi-dimensional generalisation of the discussion of [FMN16, Section
4] and of Theorem 1.8. In Subsection 3.1, we study a toy model in order to make a correct
conjecture for the asymptotics of P[Xn ∈ tnB]. In Subsection 3.2, we use Theorem 2.20 and a
method of tilting of measures in order to obtain the precise asymptotics of the probabilities
of certain cones. Finally, in Subsection 3.3, we detail the approximation of spherical sectors
B = [b,+∞)× S by unions of cones, thereby getting the asymptotic formula conjectured in
Subsection 3.1 (Theorem 3.6). Examples will be examined in Section 4.

3.1. Sum of a Gaussian noise and an independent random variable. In order to make a
correct conjecture, we consider the trivial example of mod-Gaussian convergence

Xn =
√

tn G + Y,

where G is a random vector with law NRd(0, Id), and Y is a bounded random vector inde-
pendent from G. If E[e⟨z |Y⟩] = ψ(z), then ψ(z) is well-defined over Cd since Y is bounded,
and

ψn(z) = E
[
e⟨z |Xn⟩

]
e−

tn∥z∥2
2 = ψ(z).



26 P.-L. MÉLIOT AND A. NIKEGHBALI

Therefore, (Xn)n∈N is mod-Gaussian convergent on Cd with parameters tn Id and limit ψ(z).
To simplify a bit, we also assume that Y has a density ν(y) dy with respect to the Lebesgue
measure. Then, a Borel set B being fixed, we have

P[Xn ∈ tnB] =
1

(2π)
d
2

∫
x∈Rd

∫
y∈Rd

e−
∥x∥2

2 1(√tnx+y∈ tnB) ν(y) dx dy

=

(
tn

2π

) d
2 ∫

u∈Rd

∫
y∈Rd

e−
tn ∥u∥2

2 1(u+(tn)−1y∈ B) ν(y) du dy

=

(
tn

2π

) d
2 ∫

b∈B
e−

tn ∥b∥2
2 db

(∫
y∈Rd

e⟨b |y⟩ e−
∥y∥2
2tn ν(y) dy

)
.

By Lebesgue’s dominated convergence theorem, the term in parentheses converges to the
integral

∫
Rd e⟨b |y⟩ ν(y) dy = ψ(b). This convergence is locally uniform in the parameter b.

Consequently, on any bounded subset of Rd, one can write∫
y∈Rd

e⟨b |y⟩ e−
∥y∥2
2tn ν(y) dy = ψ(b) (1 + o(1))

with a uniform o(1). We now suppose that B = [b,+∞) × S, where b > 0 and S is a
measurable part of the sphere Sd−1. We split B in two parts

B<b+ε = [b, b + ε)× S ; B≥b+ε = [b + ε,+∞)× S,

where ε is a small parameter to be chosen later. We denote I<b+ε and I≥b+ε the correspond-
ing parts of the integral form of P[Xn ∈ tnB] computed above. For the integral I<b+ε, recall
that for any non-negative measurable function f over Rd, one can make the polar change of
coordinates ∫

Rd
f (x) dx =

∫ ∞

r=0

(∫
Sd−1

f (rs) µSd−1(ds)
)

rd−1 dr,

where µSd−1 is the unique SO(d)-invariant measure on the sphere with total mass 2 πd/2

Γ(d/2) .
Therefore,

(1 + o(1)) I<b+ε =

(
tn

2π

)d
2 ∫

b∈B<b+ε

e−
tn ∥b∥2

2 ψ(b) db

=

(
tn

2π

)d
2 ∫ b+ε

r=b

(∫
S

ψ(rs) µSd−1(ds)
)

rd−1 e−
tnr2

2 dr.

In the formula above, the multiplicative factor (1 + o(1)) corresponds to the replacement
of the integral

∫
y∈Rd e⟨b |y⟩ e−∥y∥2/2tn ν(y) dy by ψ(b). Since ψ is a continuous function, one

can write uniformly on the sphere ψ(rs) = ψ(bs) (1 + o(1)) for any r ∈ [b, b + ε) if ε = o(1).
So,

(1 + o(1)) I<b+ε =

(
tn

2π

)d
2
(∫ b+ε

r=b
rd−1 e−

tnr2
2 dr

)(∫
S

ψ(bs) µSd−1(ds)
)

=

(
tn

2π

)d
2 bd−2

tn

(
e−

tnb2
2 − e−

tn(b+ε)2
2

)(∫
S

ψ(bs) µSd−1(ds)
)

=

(
tn

2π

)d
2 bd−2

tn
e−

tnb2
2

(
1 − e−

tnε2
2 −tnbε

)(∫
S

ψ(bs) µSd−1(ds)
)

.
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Consider now the integral I≥b+ε. Since B≥b+ε ⊂ [b + ε,+∞) × Sd−1 and ∥Y∥ is bounded
almost surely by some constant C, we have

I≥b+ε ≤
(

tn

2π

)d
2 ∫

∥b∥≥b+ε
e−

tn∥b∥2
2 eC∥b∥ db

≤ 2
Γ( d

2 )

(
tn

2

)d
2 ∫ ∞

b+ε
wd−1 e−

tnr2
2 eCr dr

≤ 2 e
C2
2 tn

Γ( d
2 )

(
tn

2

)d
2 ∫ ∞

b+ε− C
tn

(
x +

C
tn

)d−1

e−
tnx2

2 dx

≤ 2 e
C2
2 tn

Γ( d
2 )

(
tn

2

)d
2
(

1 +
C

tnb

)d−1 ∫ ∞

b+ε− C
tn

xd−1 e−
tnx2

2 dx

≤ 1
Γ( d

2 )

(
tn

2

)d
2−1(

1 +
C

tnb

)d−1 (
1 − d − 2

tnb2

)−1

e−
tn(b+ε)2

2 eC(b+ε) (b + ε)d−2

assuming C
tn
≤ ε, and using integration by parts at the end to estimate the Gaussian integral.

For tn large enough, we have tnb ≥ C and tnb2 ≥ 2(d − 2), which leads to

I≥b+ε ≤ M(d) (tn)
d
2−1 e−

tn(b+ε)2
2 eC(b+ε) (b + ε)d−2,

where M(d) is a certain constant that depends only on d. We take ε = (tn)−1/3. For n large
enough, we have indeed C

tn
≤ ε, and from the previous estimates:

I≥b+ε ≤ M(d) (tn)
d
2

bd−2

tn
eCb e−

tnb2
2 e−

(tn)1/3
2 ;

(1 + o(1)) I<b+ε =

(
tn

2π

)d
2 bd−2

tn
e−

tnb2
2

(∫
S

ψ(bs) µSd−1(ds)
)

.

Therefore, assuming that S has a non-zero surface measure in Sd−1, I≥b+ε is negligible in
comparison to the other integral I<b+ε, and we obtain the asymptotic formula

P[Xn ∈ tnB] ≃
(

tn

2π

)d
2 bd−2

tn
e−

tnb2
2

(∫
S

ψ(bs) µSd−1(ds)
)

.

It is convenient to rewrite the spherical integral as an integral over the sphere of radius b,
which we denote Sd−1(b). We also denote µsurface the Lebesgue surface measure on it, which
has total mass

µsurface(S
d−1(b)) =

2 π
d
2 bd−1

Γ( d
2 )

.

Then, the previous formula rewrites as

P[Xn ∈ tnB] ≃
(

tn

2π

)d
2 1

tnb
e−

tnb2
2

(∫
Sb

ψ(s) µsurface(ds)
)

,

where Sb = S × b = {bs, s ∈ S} is the base of the spherical sector B = S × [b,+∞) under
consideration. Our goal will then be to show that this asymptotic formula actually holds in
the general setting of multi-dimensional mod-Gaussian convergence.
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3.2. Asymptotics of the probabilities of cones. Until further notice, we assume that K =
Id; the general case will be treated by using the arguments of the remark at the end of
Subsection 1.2. In this paragraph, we shall compute the asymptotics of the probabilities
P[Xn ∈ tnC], where

C = [1,+∞)× D = {rd, r ≥ 1 and d ∈ D}

and D is a convex domain of an hyperplane H that does not contain the origin 0 of Rd; see
Figure 2.

H

D

C

0

FIGURE 2. Cone C based on a convex domain D of an hyperplane H.

We denote h the orthogonal projection of the origin 0 on the affine hyperplane H, and we
assume that it is contained in the hypercube ∏d

i=1(a(i), b(i)), where Sa,b is the multi-strip of
mod-Gaussian convergence of the sequence (Xn)n∈N. If ρn is the law of Xn, we denote ρ̃n
the new probability measure

ρ̃n(dx) =
e⟨h | x⟩

E[e⟨h |Xn⟩]
ρn(dx).

If X̃n follows the law ρ̃n, then the new sequence (X̃n − tnh)n∈N is again mod-Gaussian con-
vergent in the Laplace sense on the multi-strip Sa−h,b−h:

E
[
e⟨z | X̃n⟩

]
=

E[e⟨z+h |Xn⟩]

E[e⟨h |Xn⟩]
= e

tn∥z∥2
2 etn⟨z |h⟩ ψn(z + h)

ψn(h)
;

e−
tn∥z∥2

2 E
[
e⟨z | X̃n−tnh⟩

]
=

ψn(z + h)
ψn(h)

→n→∞
ψ(z + h)

ψ(h)
.

Then,

P[Xn ∈ tnC] =
∫

Rd
1(x∈tnC) ρn(dx) = E

[
e⟨h |Xn⟩

] ∫
Rd

1(x∈tnC) e−⟨h | x⟩ ρ̃n(dx)

= e−
tn∥h∥2

2 ψn(h)
∫

Rd
1(y∈√tnC0)

e−
√

tn⟨h |y⟩ µn(dy)
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where µn denotes the law of (X̃n − tnh)/
√

tn, and C0 = C − h = {y ∈ Rd | y + h ∈ C}. To
compute the integral I, notice that if D0 = D − h, then every element of D0 is orthogonal to
h, and on the other hand,

C0 = {y = sh + (s + 1)d | s ∈ R+ and d ∈ D0}.

We set C(0,s) = {y = th + (t + 1)d | t ∈ [0, s] and d ∈ D0}; by definition, C0 = C(0,+∞). On
the other hand,

I =
∫ ∞

s=0

d(µn(
√

tn C(0,s)))

ds
e−tns∥h∥2

ds

= tn∥h∥2
∫ ∞

s=0
µn(

√
tn C(0,s)) e−tns∥h∥2

ds

by using on the first line the identity e−
√

tn⟨h |y⟩ = e−tns∥h∥2
if y =

√
tn(sh + (s + 1)d), and

on the second line an integration by parts. We can now introduce the modified Gaussian
measure

νn(dx) =
1

(2π)
d
2

e−
∥x∥2

2

(
1 +

⟨∇ψ(h) | x⟩
ψ(h)

√
tn

)
dx.

By Theorem 2.20, for every Borel convex subset of Rd, µn(C) = νn(C) + o( 1√
tn
), with a o(·)

that is uniform over the class of all Borel convex subsets. Therefore,

I =
∫ ∞

s=0
νn(

√
tn C(0,s)) tn∥h∥2 e−tns∥h∥2

ds + o
(

1√
tn

)
with a o(·) that does not depend on the cone C. Denote J the last integral; we have

J

(tn)
d
2 ∥h∥

=
∫

t≥0
d∈D0

(t + 1)d−1

(2π)
d
2

(
1 +

⟨∇ψ(h) | th + (t + 1)d⟩
ψ(h)

)
e
−tn

(
(t+ t2

2 )(∥h∥2+∥d∥2)+ ∥d∥2
2

)
dt dd.

We apply the Laplace method to∫ ∞

t=0

(t + 1)d−1

(2π)
d
2

(
1 +

⟨∇ψ(h) | th + (t + 1)d⟩
ψ(h)

)
e
−tn

(
(t+ t2

2 )(∥h∥2+∥d∥2)+ ∥d∥2
2

)
dt

=
1

(2π)
d
2

(
1 +

⟨∇ψ(h) | d⟩
ψ(h)

+ O
(

1
tn

))
e−

tn∥d∥2
2

tn(∥h∥2 + ∥d∥2)
,

see [Zor04, §19.2]. In this approximation, it is easily seen that if D0 is a bounded domain
and if h also stays bounded, then the constant in the O(·) of the remainder can be taken
uniformly. We conclude:

Proposition 3.1 (Asymptotics of the probabilities of cones). Consider a mod-Gaussian conver-
gent sequence (Xn)n∈N with parameters tn Id. We fix a bound M > 0, and we suppose that:

• The vector h belongs to ∏d
i=1(a(i), b(i)), and∥h∥ ≤ M,

• The domain D0 is a convex part of h⊥ such that sup{∥d∥ ∈ D0} ≤ M.

If C is the cone based on the domain D = D0 + h, then

(2π)
d
2 e

tn∥h∥2
2

1
ψn(h)

P[Xn ∈ tnC]

= (tn)
d
2−1

∫
d∈D0

(
1 +

⟨∇ψ(h) | d⟩
ψ(h)

+ O
(

1
tn

))
∥h∥ e−

tn∥d∥2
2

∥h∥2 + ∥d∥2 dd + o
(

1√
tn

)
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with constants in the O( 1
tn
) and the o( 1√

tn
) that only depend on the bound M (and on the sequence

(Xn)n∈N).

Proof. The only non-trivial fact that remains to be proven after the previous discussion is that
the o(1/

√
tn) can be taken uniformly if h and D0 stay bounded by M. This is a consequence

of the remark following Theorem 2.20. □

3.3. Approximation of spherical sectors by unions of cones. We still assume until further
notice that K = Id. Recall that our final goal is to compute the asymptotics of the prob-
abilities P[Xn ∈ tnB], where B is a spherical sector, that is to say that it can be written as
B = [b,+∞) × S where S is some measurable part of the sphere Sd−1. After Proposition
3.1, a natural method consists in approximating the spherical sector B by a disjoint union
of cones with small bases D0 and vectors h placed on the sphere of radius b; see Figure 3.
This is only possible if S is a sufficiently regular subset of Sd−1. We develop hereafter an
ad hoc notion of regularity, which is akin to Jordan mesurability in Rd, but with respect to the
sphere. We were not able to find an adequate reference for the notion of Jordan mesurability
on manifolds; for the Euclidean case, we refer to [Tao11, Section 1.1.2] and [Spi65, Chapter
3].

b

B

approximation of B

FIGURE 3. Approximation of a spherical sector B = [b + ∞)× S by a disjoint
union of cones.

Let E be the hypercube [−1, 1]d. If A ⊂ ∂E is a rectangular part on one of the face of ∂E,
we call hypercubic facet associated to A on the sphere of radius b the set of vectors

Ab = {v ∈ Rd | ∥v∥ = b and v is colinear to a vector in A},

see Figure 4 for an example in dimension d = 3.

The notion of hypercubic facet allows one to transform the rectangular partitions of the
boundary ∂E of the hypercube into partitions of the sphere of radius b. Since rectangles can
be used to define Jordan mesurability on Rd and thereby on ∂E, by projection, we are led to
the analogous notion for subsets of the sphere:
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Sd−1(b)

Ab

FIGURE 4. An hypercubic facet on a 2-dimensional sphere.

Definition 3.2 (Measurability by hypercubic facets). Let S be a measurable part of Sd−1(b). One
says that S is measurable by hypercubic facets if, for every ε > 0, there exists two subsets T1 and T2
of the sphere such that:

(1) T1 and T2 are finite unions of hypercubic facets on Sd−1(b);

(2) T1 ⊂ S ⊂ T2;

(3) µsurface(T2 \ T1) ≤ ε.

Proposition 3.3 (Topological criterion for measurability). A subset S of the sphere of radius
b > 0 is mesurable by hypercubic facets if and only if its topological boundary ∂S has zero Lebesgue
measure: µsurface(∂S) = 0.

Proof. The map ψ which projects the hypercube ∂E onto the sphere Sd−1(b) is an homeomor-
phism which sends sets of Lebesgue measure zero to sets of Lebesgue surface measure zero,
and conversely. On the other hand, S ⊂ Sd−1(b) is measurable by hypercubic facets if and
only if ψ−1(S) is a subset of ∂E measurable by rectangles, that is to say Jordan measurable
in the usual sense. However, it is well known that a bounded set of Rd is Jordan measurable
if and only if its boundary has Lebesgue measure equal to zero; see [Spi65, p. 56]. So, S
is measurable by hypercubic facets if and only if ∂(ψ−1(S)) = ψ−1(∂S) has zero Lebesgue
measure, and by the remark at the beginning of the proof, this is equivalent to the fact that
∂S has zero Lebesgue surface measure. □

Let us now relate the notion of mesurability by hypercubic facets to the problem of ap-
proximation of spherical sectors by unions of cones. To begin with, notice that if Sb is an
hypercubic facet on Sd−1(b), then the corresponding spherical sector is naturally approxi-
mated by two cones with convex bases. Indeed, the boundary of the hypercubic facet Sb
is the convex domain in the sense of geodesics of Sd−1 that is delimited by 2d−1 points
v1, . . . , v2d−1 , which are the projections of the corners of the rectangle A included in ∂E that
corresponds to Sb = Ab. Let h be the barycenter of these 2d−1 points (in the Euclidean
sense); it is easily seen by recurrence on the dimension that ∥h∥ ≤ b, the inequality being
strict as soon as the hypercubic facet is non-degenerate (i.e. with positive surface measure).
For every positive real number r > 0, we can consider the domain D(r) that is defined as
the part of the affine hyperplane

H(r) =
{

r
h

∥h∥ + d, d ∈ h⊥
}
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which is the convex hull of the 2d−1 points of

H(r) ∩

2d−1⋃
i=1

R+vi

 .

For r small enough, the cone C(r) based on the domain D(r) contains Sb and therefore the
whole spherical sector Sb × [1,+∞). We call negative approximation of the spherical sector
B = Sb × [1,+∞) the cone C(r) based on the domain D(r), with r ∈ (0, b] maximal such
that

Sb × [1,+∞) ⊂ C(r).

We then denote C(r) = C−(B) this negative approximation; it satisfies B ⊂ C−(B), and
in some sense it is the smallest possible cone with this property. On the other hand, note
that the domain D(b) lies on the outside of the sphere Sd−1(b), because it is a part of an
hyperplane tangent to the sphere. Therefore, the spherical sector B = Sb × [1,+∞) contains
the cone C(b), which we call the positive approximation of the spherical sector, and denote
C(b) = C+(B). Thus, we have

C+(B) ⊂ B ⊂ C−(B).

We refer to Figure 5 for drawings in dimension d = 2 that clarify the discussion above
(in dimension d = 2, hypercubic facets are simply arcs of circles). The terminology nega-
tive/positive recalls that the cone C−(B) is based on a domain D(r) with r ≤ b (beware that
the negative approximation is the largest cone).

b

h
v1

v2 B C−(B)

v1

v2
C+(B)

v1

v2

FIGURE 5. Negative and positive approximations of a spherical sector based
on an hypercubic facet.

Consider an hypercubic facet Sb, with C−(B) and C+(B) negative and positive approxima-
tions of the spherical sector B = Sb × [1,+∞). We say that the pair (C−(B), C+(B)) is an
approximation of level ε > 0 of B if

min{∥v∥, v ∈ D−(B)} ≥ b − ε;

max{∥v∥, v ∈ D+(B)} ≤ b + ε,

where D−(B) and D+(B) are the two convex bases on which the cones C−(B) and C+(B)
are based. The radius b being fixed, if the diameter (for instance in the geodesic sense) of
an hypercubic facet Sb is smaller than ε, then the corresponding pair of approximations is of
level O(ε2), where the constants in the O(·) depend only on b and the dimension d.

We are now ready to deal with approximations of general spherical sectors (not necessar-
ily based on hypercubic facets). Let S be a part of Sd−1 that is measurable by hypercubic
facets, and B = S × [b,+∞). A negative approximation of the spherical sector B is given by:
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(1) a finite union T2 of hypercubic facets A(1)
b , . . . , A(m)

b of Sd−1(b), such that

T2 =
m⋃

i=1

A(i)
b ⊃ Sb;

(2) and a radius b− ∈ (0, b), such that for every i ∈ [[1, m]],

b− ≤ r(i).

Here, r(i) is the radius such that C(i)(r(i)) = C−(B(i)); B(i) (respectively, (C(i)(r))r∈R+)
is the spherical sector (resp., the decreasing family of cones) based on the hypercubic
facet A(i)

b .

Combining the two hypotheses, we see that if ((A(1)
b , . . . , A(m)

b ), b−) is a negative approxi-
mation of the spherical sector B, then one has

B = S × [b,+∞) ⊂
m⋃

i=1

(
A(i)

b × [1,+∞)
)
⊂

m⋃
i=1

C−(B(i)) ⊂
m⋃

i=1

C(i)(b−).

On the other hand, given a negative approximation, we can assume without loss of gen-
erality that the interiors of the hypercubic facets A(i)

b are all disjoint. Similarly, a positive
approximation of a general spherical sector B = S × [b, ∞) with S measurable by hypercu-
bic facets is given by a finite union T1 of hypercubic facets A(1)

b , . . . , A(l)
b of Sd−1(b), such

that

T1 =
l⋃

i=1

A(i)
b ⊂ Sb.

Then,
l⋃

i=1

C+(B(i)) =
l⋃

i=1

C(i)(b) ⊂
l⋃

i=1

(
A(i)

b × [1,+∞)
)
⊂ S × [b,+∞) = B.

For instance, Figure 3 represents a positive approximation of a spherical sector B.

Proposition 3.4 (Existence of negative and positive approximations). Fix η > 0. For every
part S ⊂ Sd−1 that is measurable by hypercubic facets, and for every ε > 0 small enough (this con-
dition depending on S and η), there exists a positive approximation T1 and a negative approximation
(T2, b−) of the spherical sector B = S × [b,+∞), with:

(1) µsurface(T2 \ T1) ≤ η;

(2) the interiors of the hypercubic facets in T1 (respectively, in T2) are disjoint;

(3) the number of hypercubic facets in T1 and T2 is a O( 1
εd−1 );

(4) these hypercubic facets are all of diameter smaller than O(ε), and b − b− = O(ε2), where the
constants in the O(·)’s only depend on b and d.

Proof. Fix η > 0. In the definition of Jordan mesurability of a part of the hypercube ∂E,
we can take approximations of sets by unions of cells that have disjoint interiors, and are all
taken from a regular grid traced on ∂E. However, the notion of measurability by hypercubic
facets (Definition 3.2) derives from the notion of Jordan mesurability by the projection ψ :
∂E → Sd−1(b). Consequently, if S ⊂ Sd−1(b) is measurable by hypercubic facets, then for
every η > 0, there exists a pair (T1, T2) of unions of hypercubic facets such that T1 ⊂ Sb ⊂ T2
and µsurface(T2 \ T1) ≤ η, and moreover, one can assume that the hypercubic facets in T1 and
T2 have disjoint interiors, and that they all come from the projection on Sd−1(b) of a regular
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grid on ∂E. Now, given a regular grid on ∂E, one can split every cell of the grid in 2d−1

subcells with half the size of the original cell. Thus, given ε > 0 smaller than the size of
the cells of the original grid, one can assume without loss of generality that the hypercubic
facets of T1 and T2 all come from a regular grid on ∂E of mesh smaller than ε. The number of
cells in such a grid is O( 1

εd−1 ), so T1 and T2 have less than O( 1
εd−1 ) hypercubic facets. Finally,

each hypercubic facet Ab of T1 or T2 has diameter smaller than O(ε), and then, the pair of
approximations (C−(B), C+(B)) of the spherical sector based on such an hypercubic facet
has level O(ε2) by a previous remark, so in particular one can choose b− ≥ b − O(ε2). □

We can finally prove our large deviation results. We start with the case when K = Id:

Proposition 3.5 (Large deviations in the isotropic case K = Id). Let (Xn)n∈N be a sequence of
random vectors in Rd, that converges mod-Gaussian in the Laplace sense on the multi-strip Sa,b,
with parameters tn Id and limit ψ. We assume that Sd−1(b) ⊂ ∏d

i=1(a(i), b(i)), and we consider a
Borel subset S ⊂ Sd−1 that is measurable by hypercubic facets, and of non-zero surface measure.
Then, if B is the spherical sector S × [b,+∞), we have

P[Xn ∈ tnB] =
(

tn

2π

)d
2 1

tnb
e−

tnb2
2

(∫
Sb

ψ(s) µsurface(ds)
)

(1 + o(1)),

where Sb = {bs, s ∈ S}.

Proof. Fix η > 0. For every cone C based on a domain D bounded by M > 0, Proposition
3.1 enables us to write

(2π)
d
2 e

tn∥h∥2
2 P[Xn ∈ tnC]

= ψn(h)

(tn)
d
2−1

∫
d∈D0

(
1 +

⟨∇ψ(h) | d⟩
ψ(h)

+ O
(

1
tn

))
∥h∥ e−

tn∥d∥2
2

∥h∥2 + ∥d∥2 dd + o
(

1√
tn

) ,

where h is the projection of the origin 0 on the affine hyperplane containing D, and where
the o( 1√

tn
) writes more precisely as

δn(D)√
tn

with |δn(D)| ≤ δn, (δn)n∈N being a positive sequence that converges to 0, and that depends
only on the choice of the bound M. In the following, we fix a positive sequence (εn)n∈N

such that

lim
n→∞

εn
√

tn = 0 ; lim
n→∞

εn
√

tn

(δn)
1

d−1
= +∞.

For n large enough, ε = εn is small enough and one can choose corresponding positive and
negative approximations T1 and (T2, b−) of the spherical sector B, as in Proposition 3.4. We
have obviously P[Xn ∈ tnT1] ≤ P[Xn ∈ tnB] ≤ P[Xn ∈ tnT2], and on the other hand, we can
evaluate the probabilities related to T1 and T2 by using the estimates on cones. We write

T1 =
l⋃

i=1

A(i)
b ; T2 =

m⋃
j=1

Ã(j)
b ,

where the A(i)
b ’s (resp., the Ã(j)

b ’s) are hypercubic facets of Sd−1(b) with disjoint interiors.
We denote D(i) the convex domain on which is based the cone C(i)(b) corresponding to
the hypercubic facet A(i)

b , and D̃(j) the convex domain on which is based the cone C̃(j)(b−)

corresponding to the hypercubic facet Ã(j)
b . We also denote hi (resp., h̃j) the orthogonal

projection of 0 on the affine hyperplane that contains D(i) (respectively, D̃(j)). Notice that
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∥hi∥ = b, whereas ∥h̃j∥ = b−. Moreover, the vectors in the domains D(i)
0 = D(i) − hi and

D̃(j)
0 = D̃(j) − h̃j have norm bounded by O(ε). By the discussion at the beginning of the

proof,

(2π)
d
2 e

tnb2
2 P[Xn ∈ tnT1]

=
l

∑
i=1

(2π)
d
2 e

tnb2
2 P[Xn ∈ tnC(i)(b)]

=
l

∑
i=1

ψn(hi)

(tn)
d
2−1

∫
d∈D(i)

0

(
1 +

⟨∇ψ(hi) | d⟩
ψ(hi)

+ O
(

1
tn

))
b e−

tn∥d∥2
2

b2 + ∥d∥2 dd +
δn(D(i))√

tn


=

l

∑
i=1

ψn(hi)

b

(
(tn)

d
2−1

∫
d∈D(i)

0

(
1 + O(ε) + O

(
1
tn

))
1 + O(tnε2)

1 + O(ε2)
dd
)

+
l

∑
i=1

ψn(hi)
δn(D(i))√

tn

where the O(·)’s on the last line are uniform with respect to the index l. The second part on
the last line is smaller than a constant times

1
(εn)d−1

δn√
tn

=
(tn)

d
2−1(

εn
√

tn

(δn)
1

d−1

)d−1 = o
(
(tn)

d
2−1
)

by the hypotheses made on (εn)n∈N. On the other hand, the first part is

l

∑
i=1

ψn(hi) (tn)
d
2

tnb

(∫
d∈D(i)

0

(1 + o(1)) dd
)

=
(tn)

d
2

tnb

(∫
T1

ψn(s) µsurface(ds)
)
+ o
(
(tn)

d
2−1
)

.

Similarly, for the upper approximation T2, we get

(2π)
d
2 e

tn(b−)2

2 P[Xn ∈ tnT1] =
(tn)

d
2

tnb−

(∫
T2

ψn(s) µsurface(ds)
)
+ o
(
(tn)

d
2−1
)

.

Since b − b− = O(ε2) = o( 1
tn
), and since ψn converges locally uniformly towards ψ, we

conclude that ∫
T1

ψ(s) µsurface(ds) + o(1) ≤
(

2π

tn

)d
2

tnb e
tnb2

2 P[Xn ∈ tnB]

≤
∫

T2

ψ(s) µsurface(ds) + o(1).

As T1 ⊂ Sb ⊂ T2 and µsurface(T2 \ T1) ≤ η can be taken as small as wanted, we obtain finally(
2π

tn

)d
2

tnb e
tnb2

2 P[Xn ∈ tnB] =
∫

Sb

ψ(s) µsurface(ds) + o(1),

which ends the proof of the estimate of large deviations. □
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Theorem 3.6 (Large deviations). Let (Xn)n∈N be a sequence of random vectors that is mod-
Gaussian convergent in the Laplace sense, with parameters tnK and limit ψ(z). We consider an
ellipsoidal sector B = S × [b,+∞), where S is a Borel subset of K1/2(Sd−1) that is the image by
K1/2 of a subset of Sd−1 that is measurable by hypercubic facets, and with non-zero surface measure.
Then,

P[Xn ∈ tnB] =
(

tn

2π

)d
2 1

tnb
e−

tnb2
2

(∫
(K−1/2(S))b

ψ(K−1/2s) µsurface(ds)
)

(1 + o(1)).

Proof. Consider Yn = K−1/2Xn; it is mod-Gaussian convergent in the Laplace sense, with
parameters tn Id and limit ψ(K−1/2z). By Proposition 3.5, if

K−1/2(B) = B′ = S′ × [b,+∞)

with S′ = K−1/2(S) ⊂ Sd−1, then

P[Yn ∈ tnB′] =

(
tn

2π

)d
2 1

tnb
e−

tnb2
2

(∫
(S′)b

ψ(K−1/2s) µsurface(ds)
)

(1 + o(1)).

Finally, P[Yn ∈ tnB′] = P[K−1/2Xn ∈ tnK−1/2(B)] = P[Xn ∈ tnB]. □

Remark 3.7. The case d = 1 of the asymptotic formula of Theorem 3.6 allows one to recover
Theorem 1.8 if one agrees that the surface measure on the zero-dimensional sphere S0 =
{+1,−1} is the counting measure.

4. EXAMPLES OF MULTI-DIMENSIONAL CONVERGENT SEQUENCES

In this section, we give applications of the theory developed in Sections 2 and 3.

4.1. First examples. We start by looking at the two examples of multi-dimensional mod-
Gaussian convergence proposed in the introductory Section 1.2.

Example 4.1 (Sums of i.i.d. random vectors). Let A be a random variable in Rd with entire
Laplace transform E[e⟨z |A⟩], and (An)n∈N be a sequence of independent copies of A. We
assume that A is centered and that cov(A) = Id; up to a linear change of coordinates and
a possible reduction of the dimension, these assumptions do not restrict the generality. The
rescaled sum

Xn =
Sn

n1/3 =
1

n1/3

n

∑
k=1

Ak

is mod-Gaussian convergent in the Laplace sense on Cd, with parameters n1/3 Id and limit

ψ(z) = exp

(
1
6

d

∑
i,j,k=1

E[A(i)A(j)A(k)] z(i)z(j)z(k)
)

.

By Theorem 3.6, for any spherical sector B = S × [b,+∞) with S part of Sd−1 measurable by
hypercubic facets,

P[Sn ∈ n2/3B]

≃ n
d−2

6 e−
n1/3b2

2

(2π)
d
2 b

(∫
Sb

exp

(
1
6

d

∑
i,j,k=1

E[A(i)A(j)A(k)] x(i)x(j)x(k)
)

µsurface(dx)

)
.
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Hence, up to the scale n2/3, the sum Sn of i.i.d. vectors is described by the Gaussian approx-
imation, and at the scale n2/3, this normal approximation is corrected by the exponential
exp(1

6 ∑d
i,j,k=1 E[A(i)A(j)A(k)] x(i)x(j)x(k)).

If A is symmetric in law (A and −A have the same law), then all the third moments
E[A(i)A(j)A(k)] vanish, and one has to look at another renormalisation of the sum Sn. Hence,
for sums of independent symmetric random variables, the new rescaled sum

Yn =
Sn

n1/4 =
1

n1/4

n

∑
k=1

Ak

is mod-Gaussian convergent in the Laplace sense, with parameters n1/2 Id and limit

ψ(z) = exp

(
1

24

d

∑
i,j,k,l=1

κ(A(i), A(j), A(k), A(l)) z(i)z(j)z(k)z(l)
)

,

where

κ(A(i), A(j), A(k), A(l)) = E[A(i)A(j)A(k)A(l)]− E[A(i)A(j)]E[A(k)A(l)]

− E[A(i)A(k)]E[A(j)A(l)]− E[A(i)A(l)]E[A(j)A(k)].

The quantities κ(A(i), A(j), A(k), A(l)) are the joint cumulants of order 4 of the coordinates of
A; we shall detail this theory in Section 4.2. In this setting, by Theorem 3.6, for any spherical
sector B = S × [b,+∞),

P[Sn ∈ n3/4B]

≃ n
d−2

4 e−
n1/2b2

2

(2π)
d
2 b

(∫
Sb

exp

(
1

24

d

∑
i,j,k,l=1

κ(A(i), A(j), A(k), A(l)) x(i)x(j)x(k)x(l)
)

µsurface(dx)

)
.

A simple consequence of these multi-dimensional results is the loss of symmetry of the
random walks on Zd conditioned to be far away from the origin; this loss of symmetry has
also been brought out in dimension 2 in [Ben19]. Thus, consider the simple 2-dimensional
random walk Sn = ∑n

k=1 Ak, where Ak = (±1, 0) or (0,±1) with probability 1
4 for each

direction. The non-zero fourth cumulants of A are

κ((Re A)⊗4) = κ((Im A)⊗4) = κ((Re A)⊗2, (Im A)⊗2) = −1
4

,

so one has mod-Gaussian convergence of n−1/4 Sn with parameters n1/2

2 I2 and limiting func-
tion

ψ(z) = exp

(
− (z(1))4 + (z(2))4 + 6(z(1)z(2))2

96

)
.

Therefore, for every cylindric sector C(r, θ1, θ2) = {Reiθ ∈ C | R ≥ r, θ ∈ (θ1, θ2)}, Theorem
3.6 gives the estimate:

P
[
Sn ∈ n3/4 C(r, θ1, θ2)

]
= e−n1/2 r2

(∫ θ2

θ1

ψ(2reiθ)
dθ

2π

)
(1 + o(1)).

This leads to the following limiting result: if Sn = Rn eiθn with θn ∈ [0, 2π), then

lim
n→∞

P
[
θn ∈ (θ1, θ2)

∣∣ Rn ≥ rn3/4
]
=

∫ θ2
θ1

ψ(2reiθ) dθ∫ 2π
0 ψ(2reiθ) dθ

=
∫ θ2

θ1

F(r, θ) dθ

with F(r, θ) =
exp

(
− r4 (sin 2θ)2

6

)
∫ 2π

0 exp
(
− r4 (sin 2θ)2

6

)
dθ

drawn in Figure 6.
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FIGURE 6. The function F(r, θ) measuring the loss of symmetry of the 2-
dimensional random walk Sn conditioned to have large radius ∥Sn∥ ≥ rn3/4

(using Mathematica®).

This function gets concentrated around the two axes of R2 when r → ∞, whence a loss of
symmetry in comparison to the behavior of the 2-dimensional Brownian motion (the scaling
limit of the random walk). In dimension d ≥ 3, one obtains the similar result

lim
n→∞

P

[
Sn

∥Sn∥
∈ S

∣∣∣∣ ∥Sn∥ ≥ rn3/4
]
= K(r)

∫
S

exp

(
− r4

12 d ∑
1≤i<j≤d

(x(i)x(j))2

)
µ(dx)

for any set S ⊂ Sd−1 that is measurable by hypercubic facets. The conditional probability is
therefore concentrated around the axes of Rd.

On the other hand, Theorem 2.17 shows that if Sn = ∑n
k=1 Ak and A is only assumed to

be centered, non-degenerate (cov(A) ∈ S+(d, R)) and with a third moment, then

dconvex

(
Sn

n1/2 , NRd(0, cov(A))

)
= O

(
1

n1/6

)
.

This is not optimal, and we shall see in the next section that with the same hypotheses, one
can prove a bound O( 1

n1/2 ) on the convex distance.

Example 4.2 (Characteristic polynomials of random unitary matrices). Let Un be a random
unitary matrix in U(n) taken according to the Haar measure. We saw in Section 1.2 that the
sequence (Xn = log det(In − Un))n∈N is mod-Gaussian convergent on the strip S(−1,+∞) ×
C, with parameters log n

2 I2 and limit

ψ(z) =
G
(

1 + z(1)+iz(2)
2

)
G
(

1 + z(1)−iz(2)
2

)
G(1 + z(1))

.

Therefore, for any r < 1 and any circular sector C(r, θ1, θ2),

P

[
Xn ∈ log n

2
C(r, θ1, θ2)

]
= n− r2

4

(∫ θ2

θ=θ1

G
(
1 + r

2eiθ) G
(
1 + r

2e−iθ)
G(1 + r cos θ)

dθ

2π

)
(1 + o(1)).

The function H(r, θ) =
G(1+ r

2 eiθ) G(1+ r
2 e−iθ)

G(1+r cos θ)
takes higher values for θ close to π, hence a loss

of symmetry of Xn at scale log n.
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0 π 2π
0

1

2

FIGURE 7. The function H(r, θ) when r = 0.7.

On the other hand, the gradient of ψ at 0 is equal to 0, so by Theorem 2.20, we have

dconvex

(√
2

log n
Xn , NR2(0, I2)

)
= o

(
1√

log n

)
.

A more precise analysis shows that this convex distance is actually a O((log n)−3/2); see
the arguments of the next paragraph, and [MN22, Section 3] for the analogous result in
dimension 1 with the real part of the log-characteristic polynomial.

4.2. The method of cumulants. In dimension d = 1, assuming that the Laplace transform
E[ezXn ] is convergent on a disk around z = 0, it is possible to reformulate the mod-Gaussian
convergence of (Xn)n∈N in terms of the behavior of the coefficients of the power series

log E[ezXn ] =
∞

∑
r=1

κ(r)(Xn)

r!
zr,

called the cumulants of (Xn)n∈N. We refer to [FMN16, Chapters 5 and 9] and [FMN19,
Section 4] for developments around this notion. Now, there is a notion of joint cumulants
(cf. [LS59]) that allows one to generalise this method of cumulants, and to give a numerical
criterion of mod-Gaussian convergence in arbitrary dimension d ≥ 1.

Definition 4.3 (Joint cumulant). Given random variables Y1, . . . , Yr with convergent generating
series E[ez1Y1+···+zrYr ], their joint cumulant is

κ(Y1, . . . , Yr) =
∂r

∂z1 · · · ∂zr

∣∣∣∣
z1=···=zr=0

log
(

E[ez1Y1+···+zrYr ]
)

.

The joint cumulant is an homogeneous polynomial of degree r in the joint moments of the
variables Y1, . . . , Yr. More precisely, if Qr is the set of set partitions of [[1, r]], then

κ(Y1, . . . , Yr) = ∑
π∈Qr

µ(π)

ℓ(π)

∏
j=1

E

∏
i∈πj

Yj

 ,

where µ(π) = (−1)ℓ−1 (ℓ− 1)! if π = π1 ⊔ π2 ⊔ · · · ⊔ πℓ is a set partition with ℓ parts. For
instance, κ(X, Y) = E[XY]− E[X]E[Y] is the covariance, and

κ(X, Y, Z) = E[XYZ]− E[XY]E[Z]− E[XZ]E[Y]− E[YZ]E[Z] + 2 E[X]E[Y]E[Z].

Let us recall the main properties of the joint cumulants, which follow readily from their
definition:
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Proposition 4.4 (Properties of joint cumulants). Let Y1, . . . , Yr be random variables with a con-
vergent Laplace transform.

(1) The joint cumulants are multilinear and invariant by permutation of the random variables.

(2) If the variables Y1, . . . , Yr can be separated into two blocks of independent random variables,
then κ(Y1, . . . , Yr) = 0.

(3) For any random variable Y, the classical r-th cumulant κ(r)(Y) is equal to the joint cumulant
κ(Y, . . . , Y) (with r occurrences of Y).

(4) For any random vector X in Rd, assuming that the Laplace transform E[e⟨z |X⟩] is conver-
gent, one has the expansion

log E[e⟨z |X⟩] = ∑
r≥1

1
r!

κ(r)(z(1)X(1) + · · ·+ z(d)X(d))

= ∑
r≥1

∑
(i1,...,ir)∈[[1,d]]r

κ(X(i1), . . . , X(ir))

r!
z(i1)z(i2) · · · z(ir).

Let (Sn)n∈N be a sequence of random vectors in Rd, and K ∈ S+(d, R). The following
definition is a multi-dimensional analogue of [FMN19, Definition 28]:

Definition 4.5 (Method of cumulants). One says that (Sn)n∈N satisfies the hypotheses of the
multi-dimensional method of cumulants with covariance matrix K, index v ≥ 3 and positive param-
eters (Dn, Nn, A) if, for any choice of coordinates:

(MC1) The random vectors Sn are centered: E[Sn] = 0.

(MC2) The covariance matrix of Sn is given by

κ(S(i)
n , S(j)

n ) = NnDn Kij

(
1 + o

((
Dn

Nn

)1− 2
v
))

with limn→∞
Dn
Nn

= 0.

(MC3) For any r ≥ 3, ∣∣∣κ(S(i1)
n , S(i2)

n , . . . , S(ir)
n )

∣∣∣ ≤ Nn (2Dn)
r−1 Ar rr−2.

(MC4) For any r ∈ [[3, v − 1]], κ(S(i1)
n , S(i2)

n , . . . , S(ir)
n ) = 0.

(MC5) There exist limits

Li1,i2,...,iv = lim
n→∞

κ(S(i1)
n , S(i2)

n , . . . , S(iv)
n )

Nn (Dn)v−1 .

Remark 4.6. The one-dimensional version of Definition 4.5 was given in [FMN16, Section
5.1] and [FMN19, Section 4.1]. The main difference is that we do not ask the covariance
matrix of Sn

NnDn
to be exactly equal to K. Indeed, though the coefficients of cov(Sn) will have

the same order of magnitude NnDn in our examples, in general we shall not be able to write
cov(Sn) = NnDn K with K constant matrix.

In the last two paragraphs 4.3 and 4.4, we shall see that many random models yield ran-
dom vectors that satisfy the hypotheses of Definition 4.5, and in particular the bound on
cumulants (MC3). The purpose of this section is to give the theoretical consequences of the
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multi-dimensional method of cumulants. We start with the mod-Gaussian convergence and
the implied large deviation results:

Theorem 4.7 (Method of cumulants and mod-Gaussian convergence). Let (Sn)n∈N be a se-
quence of random vectors that satisfies the hypotheses of the multi-dimensional method of cumulants.
We set

Xn =
1

(Nn)1/v (Dn)1−1/v Sn ; Yn =
1

(NnDn)1/2 Sn.

(1) The sequence (Xn)n∈N is mod-Gaussian convergent in the Laplace sense, with parameters
(Nn

Dn
)1− 2

v K and limit

ψ(z) = exp

(
1
v!

d

∑
i1,...,iv=1

Li1,...,iv z(i1)z(i2) · · · z(iv)
)

.

(2) Therefore, we have the convergence in law Yn ⇀ NRd(0, K).

(3) Consider an ellipsoidal sector B = S × [b,+∞), where S is a subset of K1/2(Sd−1) that is
measurable by hypercubic facets, and with non-zero surface measure. Then,

P[Yn ∈ unB] =
(un)d−2

(2π)
d
2 b

e−
(unb)2

2

(∫
(K−1/2(S))b

ψ(K−1/2s) µsurface(ds)
)

(1 + o(1))

with un =
√

tn =
(

Nn
Dn

)1
2−

1
v .

Proof. The mod-Gaussian convergence follows readily from the hypotheses in Definition
4.5, and from the fourth item of Proposition 4.4, which relates the joint cumulants of the
coordinates of Sn to the Taylor expansion of the log-Laplace transform of Sn. Indeed,

log E[e⟨z |Xn⟩] = ∑
r≥1

d

∑
i1,...,ir=1

κ(S(i1)
n , . . . , S(ir)

n )

r! Nn(Dn)r−1

(
Dn

Nn

)r
v−1

z(i1)z(i2) · · · z(ir)

=
tn

2

d

∑
i,j=1

cov(S(i)
n , S(j)

n )

NnDn
z(i)z(j) +

1
v!

d

∑
i1,...,iv=1

κ(S(i1)
n , . . . , S(iv)

n )

Nn(Dn)v−1 z(i1) · · · z(iv)

+ remainder

with a remainder smaller than

∑
r≥v+1

d

∑
i1,...,ir=1

|κ(S(i1)
n , . . . , S(ir)

n )|
r! Nn(Dn)r−1

(
Dn

Nn

)r
v−1

|z(i1)z(i2) · · · z(ir)|

≤ Nn

Dn
∑

r≥v+1

2r−1 Ar rr−2

r!

((
Dn

Nn

)1
v
∥z∥1

)r

.

The power series is convergent and a O((Dn/Nn)
1+ 1

v (∥z∥1)
v+1); hence, the remainder goes

to 0. Now, the term with covariances is equivalent to tn
ztKz

2 by Hypothesis (MC2), and the
term of order v is equivalent to

1
v!

d

∑
i1,...,iv=1

Li1,...,iv z(i1) · · · z(iv)

by Hypothesis (MC5). This ends the proof of the mod-Gaussian convergence, and the two
other points are then immediate consequences of Proposition 1.5 and Theorem 3.6. □
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We now focus on the speed of convergence of Yn to NRd(0, K). By Theorems 2.17 and
2.20, under the assumptions (MC1)-(MC5),

dconvex (Yn , NRd(0, K)) = o

((
Dn

Nn

)1
2−

1
v
)

,

because ∇ψ(0) = 0. Under a slightly stronger hypothesis, one can show a better bound:

Theorem 4.8 (Method of cumulants and speed of convergence). Let (Sn)n∈N be a sequence of
random vectors that satisfies (MC1),

(MC2’) The covariance matrix of Sn is given by

κ(S(i)
n , S(j)

n ) = NnDn Kij

(
1 + O

((
Dn

Nn

) 1
2
))

.

and (MC3). There exists a constant C = C(d, K, A, B) that depends only on d, K, the constant A of
(MC3) and the constant B in the O(·) of (MC2’), such that for n large enough,

dconvex(Yn , NRd(0, K)) ≤ C

√
Dn

Nn
.

The strategy of proof of Theorem 4.8 is the following:

• We first deal with the fact that Kn = cov(Sn)/(NnDn) is not exactly equal to K, by
computing the convex distance between two Gaussian distributions (see Lemma 4.9
below).

• Then, we prove a bound on ∆ε(µ̂n,NRd(0, Kn)) with ε = O(
√

Dn/Nn) (Lemma 4.10),
by using the bounds on cumulants and the fast decay of e−ζtKnζ/2.

Lemma 4.9. Let K1 and K2 be two positive-definite symmetric matrices; ν1 = NRd(0, K1) and
ν2 = NRd(0, K2). If K1 is fixed, then for any K2 such that K2 − K1 is sufficiently small, one has

∆ε(ν̂1, ν̂2) ≤ 8
√
(2π)d(d + 1)!

(max(1, dρ(K−1
1 )))

d+3
2

√
det K1

ρ(K2 − K1)

for any ε > 0.

Proof. Since (K1)
−1/2K2(K1)

−1/2 is a positive-definite symmetric matrix, there exists posi-
tive eigenvalues λ(1), . . . , λ(d) and an orthogonal matrix R ∈ SO(Rd), such that

Rt(K1)
−1/2K2(K1)

−1/2R = D2 = diag(λ(1), . . . , λ(d)).

Set M = (K1)
−1/2R. If β is a multi-index of total weight |β| ≤ d + 1, then∫

Dd
ε

∣∣∣∣∣∂|β|(ν̂1 − ν̂2)(ζ)

∂ζβ

∣∣∣∣∣ dζ

≤
∫

Rd

∣∣∣∣∣∣
d

∏
i=1

(
d

∑
j=1

Mij
∂

∂ξ(j)

)β(i) (
e−

ζtK1ζ
2 − e−

ζtK2ζ
2

)∣∣∣∣∣∣ dζ

≤ 1√
det K1

(
max

i∈[[1,d]]

d

∑
j=1

|Mij|
)|β|

max
|α|=|β|

∫
Rd

∣∣∣∣∣ ∂|α|∂ξα

(
e−

∥ξ∥2
2 − e−

∥Dξ∥2
2

)∣∣∣∣∣ dξ.
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We evaluate separately each term. Since R is an orthogonal matrix and (K1)
−1/2 is a sym-

metric matrix,

max
i∈[[1,d]]

d

∑
j=1

|Mij| = max
∥v∥∞≤1

∥Mv∥∞

≤ max
∥v∥2≤

√
d
∥Mv∥2 = max

∥v∥2≤
√

d
∥(K1)

−1/2 v∥2 ≤
√

d ρ(K−1
1 ).

On the other hand,

Iα =
∫

Rd

∣∣∣∣∣ ∂|α|∂ξα

(
e−

∥ξ∥2
2 − e−

∥Dξ∥2
2

)∣∣∣∣∣ dξ

=
∫

Rd

∣∣∣∣∣
(

d

∏
i=1

Hα(i)(ξ
(i)) e−

(ξ(i))2
2

)
−
(

d

∏
i=1

(λ(i))
α(i)

2 Hα(i)((λ
(i))

1
2 ξ(i)) e−

λ(i)(ξ(i))2
2

)∣∣∣∣∣ dξ.

The multi-index α = (α(1), . . . , α(d)) being fixed, we can assume without loss of generality
that the eigenvalues (λ(i))i∈[[1,d]] are ordered as follows:

(0) For i ∈ [[1, d0]], α(i) = 0. Moreover, λ(1) ≤ λ(2) ≤ · · · ≤ λ(d0), and we denote
e0 ∈ [[0, d0]] the largest index such that λ(e0) ≤ 1.

(1) For i ∈ [[d0 + 1, d1]], α(i) = 1.

(2) For i ∈ [[d1 + 1, d]], α(i) ≥ 2. Moreover, λ(d1+1) ≤ λ(d1+2) ≤ · · · ≤ λ(d), and we denote
e2 ∈ [[d1, d]] the largest index such that λ(e2) ≤ 1.

In the following, we shall use several times the inequality∫
R
|Hα(ξ) Hβ(ξ)| e−

ξ2
2 dξ ≤

√
2π α! β!,

and evaluate the terms of the sum in the right-hand side of

Iα ≤
d

∑
j=1

∫
Rd

∣∣∣∣∣j−1

∏
i=1

(λ(i))
α(i)

2 Hα(i)((λ
(i))

1
2 ξ(i)) e−

λ(i)(ξ(i))2
2

d

∏
i=j+1

Hα(i)(ξ
(i)) e−

(ξ(i))2
2

∣∣∣∣∣
× ∆(ξ(j), λ(j), α(j)) dξ

≤
d

∑
j=1

(
∏
i ̸=j

√
2π(α(i))!

)(
∏
i<j

(λ(i))
α(i)−1

2

) ∫
R

∆(ξ(j), λ(j), α(j)) dξ(j),

where ∆(ξ(j), λ(j), α(j)) =

∣∣∣∣Hα(j)(ξ(j)) e−
(ξ(j))2

2 − (λ(j))
α(j)

2 Hα(j)((λ(j))
1
2 ξ(j)) e−

λ(j)(ξ(j))2
2

∣∣∣∣.
We abbreviate (λ(j))

α(j)−1
2 = ρ(j).

(0) Terms with j ∈ [[1, d0]]. We then have
∫

R
∆(ξ(j), λ(j), 0) dξ(j) =

√
2π |ρ(j) − 1|, so, if

Iα,0 is the part of the sum bounding Iα with indices j ∈ [[1, d0]], then

Iα,0 =

(
d

∏
i=1

√
2π(α(i))!

)(
e0

∑
j=1

(
ρ(j) − 1

)
∏
i<j

ρ(i) +
d0

∑
j=e0+1

(
1 − ρ(j)

)
∏
i<j

ρ(i)

)

=
√
(2π)d α!

(
2 ρ(1)ρ(2) · · · ρ(e0) − ρ(1)ρ(2) · · · ρ(d0) − 1

)
.



44 P.-L. MÉLIOT AND A. NIKEGHBALI

(1) Terms with j ∈ [[d0 + 1, d1]]. Notice that ∏i<j ρ(i) = ρ(1)ρ(2) · · · ρ(d0) for all these
indices. On the other hand,∫

R
∆(ξ(j), λ(j), 1) dξ(j) = 4 e

− log λ(j)

λ(j)−1

∣∣∣(λ(j))−1 − 1
∣∣∣ ≤ 4 |(λ(j))−1 − 1|.

Therefore, if Iα,1 is the part of the sum bounding Iα with indices j ∈ [[d0 + 1, d1]], then

Iα,1 ≤
√
(2π)d α!

(
4√
2π

ρ(1)ρ(2) · · · ρ(d0)

) d1

∑
j=d0+1

∣∣∣(λ(j))−1 − 1
∣∣∣ .

(2) Terms with j ∈ [[d1 + 1, d]]. Denote fξ,α(λ) = λ
α
2 Hα(λ

1
2 ξ) e−

λξ2
2 ; by using the relations

H′
n(x) = nHn−1(x) = x Hn(x)− Hn+1(x), one computes its derivative

f ′ξ,α(λ) =
λ

α−2
2

2

(
(α − x2) Hα(x) + α x Hα−1(x)

)
e−

x2
2

=
λ

α−2
2

2
((α − 1) Hα(x)− H2(x) Hα(x) + α H1(x) Hα−1(x)) e−

x2
2 ,

with x = λ
1
2 ξ. As a consequence, assuming for instance λ(j) ≥ 1, one obtains∫

R
|∆(ξ(j), λ(j), α(j))| dξ(j)

≤ 1
2

∫ λ(j)

1
λ

α(j)−3
2

∫
R

(
(α(j)−1) |H

α(j) (x)|+|H2(x) H
α(j) (x)|

+α(j) |H1(x) H
α(j)−1

(x)|

)
e−

x2
2 dx dλ

≤ 1
2

√
2π(α(j))!

(
(α(j) − 1) +

√
2 +

√
α(j)
) ∫ λ(j)

1
λ

α(j)−3
2 dλ

≤
(

1 + 2
√

2
) √

2π(α(j))!
∣∣∣∣(λ(j))

α(j)−1
2 − 1

∣∣∣∣ .

The same bound holds when λ(j) ≤ 1. Therefore, if Iα,2 is the part of the sum bound-
ing Iα with indices j ∈ [[d1 + 1, d]], then

Iα,2 ≤
√
(2π)d α! (1 + 2

√
2)
(

ρ(1)ρ(2) · · · ρ(d0) + ρ(1)ρ(2) · · · ρ(d) − 2 ρ(1)ρ(2) · · · ρ(e2)
)

.

To conclude, suppose that {λ(1), . . . , λ(d)} ⊂ [λ− = 1 − ρ, λ+ = 1 + ρ]. Then,

Iα,0

∏d
i=1

√
2π(αi)!

≤ (λ−)
−d/2 (2 − (λ+)

−d/2 − (λ−)
d/2) ≤ρ→0 dρ

Iα,1

∏d
i=1

√
2π(αi)!

≤ 4d√
2π

(λ−)
−d/2 max(1 − λ−1

+ , λ−1
− − 1) ≤ρ→0

4√
2π

dρ

Iα,2

∏d
i=1

√
2π(αi)!

≤ (1 + 2
√

2) (λ−)
−d/2((λ+)

d − (λ−)
d) ≤ρ→0 (2 + 4

√
2) dρ.

Hence, if the spectral radius ρ((K1)
−1/2K2(K1)

−1/2 − Id) = ρ is small enough, then

Iα ≤
√
(2π)d α! 8d ρ((K1)

−1/2K2(K1)
−1/2 − Id).

The inequality follows by noticing that
√

α! ≤
√
(d + 1)! if |α| ≤ d + 1. □
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Lemma 4.10. Fix a sequence of random vectors (Sn)n∈N as in Theorem 4.8, and denote µn the law
of Yn = Sn/(

√
NnDn), and ν = NRd(0, K). There exist positive constants C1(d, K, A, B) and

C2(d, K, A, B) such that, if n is large enough, then(
ε ≥ C1(d, K, A, B)

√
Dn

Nn

)
⇒

(
∆ε(µ̂n, ν̂) ≤ C2(d, K, A, B)

√
Dn

Nn

)
.

Proof. Let Kn = cov(Sn)/(NnDn), and νn = NRd(0, Kn). By Lemma 4.9, for n large enough,

∆ε(ν̂n, ν̂) ≤ C2,ν(d, K, A, B)

√
Dn

Nn
,

because ρ(Kn − K) = O(
√

Dn/Nn) by Hypothesis (MC2’). Therefore, it suffices to find an
upper bound for ∆ε(µ̂n, ν̂n). We set M = (Kn)−1/2, and ζ = Mξ. We have

µ̂n(ζ)− ν̂n(ζ)

= e−
1
2 ∑d

i,j=1(Kn)ij ζ(i)ζ(j)

(
exp

(
∑
r≥3

1
r!

d

∑
i1,...,ir=1

(ir) κ(S(i1)
n , . . . , S(ir)

n )

(NnDn)
r
2

ζ(i1) · · · ζ(ir)

)
− 1

)

= e−
∥ξ∥2

2

(
exp

(
∑
r≥3

1
r!

(
Nn

Dn

)1− r
2 d

∑
j1,...,jr=1

δ(S(j1)
n , . . . , S(jr)

n ) ξ(j1) · · · ξ(jr)

)
− 1

)
= f (ξ),

where δ(S(j1)
n , . . . , S(jr)

n ) = ir ∑d
i1,...,ir=1 Mi1 j1 · · · Mir jr

κ(S
(i1)
n ,...,S(ir)

n )
Nn (Dn)r−1 . We can then write

∆ε(µ̂n, ν̂n) = max
|β|∈[[0,d+1]]

∫
Dd

ε

∣∣∣∣∣∂|β|(µ̂n − ν̂n)(ζ)

∂ζβ

∣∣∣∣∣ dζ

≤ max
|α|∈[[0,d+1]]

(
max

i∈[[1,d]]

d

∑
j=1

|Mij|
)|α| ∫

M−1(Dd
ε )

∣∣∣∣∣∂|α| f (ξ)
∂ξα

∣∣∣∣∣ dξ

≤ max
|α|∈[[0,d+1]]

(
dρ((Kn)

−1)
) |α|

2
∫

M−1(Dd
ε )

∣∣∣∣∣∂|α| f (ξ)
∂ξα

∣∣∣∣∣ dξ.

Until the end of the proof, the multi-index α is fixed, and we need to compute bounds on
the derivatives of f (ξ). We have∣∣∣∣∣∂|α| f (ξ)

∂ξα

∣∣∣∣∣ ≤ ∑
γ≤α

(
α

γ

)
|Hα−γ(ξ)| e−

∥ξ∥2
2

∣∣∣∣∣∂|γ|g(ξ)∂ξγ

∣∣∣∣∣ ,

where

g(ξ) = exp

(
∑
r≥3

1
r!

(
Nn

Dn

)1− r
2 d

∑
j1,...,jr=1

δ(S(j1)
n , . . . , S(jr)

n ) ξ(j1) · · · ξ(jr)

)
− 1.

Suppose first that γ = 0. Then, |g(ξ)| ≤ |h(ξ)| exp |h(ξ)|, where

|h(ξ)| ≤
∞

∑
r=3

2r−1rr−2

r!

(
Nn

Dn

)1− r
2 d

∑
i1,...,ir=1

Ar
∣∣∣ζ(i1) · · · ζ(ir)

∣∣∣
≤ Nn

4e3Dn

∞

∑
r=3

(
2Ae∥ζ∥1

√
Dn

Nn

)r

≤ 2A3

√
Dn

Nn

(∥ζ∥1)
3

1 − 2Ae∥ζ∥1

√
Dn
Nn

.
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Suppose that

ε ≥ ε1 = 2Ae (2d)(2d + 2)3/2

√
Dn

Nn
.

Then, for any ξ ∈ M−1(Dd
ε ),

2Ae∥ζ∥1

√
Dn

Nn
≤ 2d Ae ∥ζ∥∞

√
Dn

Nn
≤ Ae(2d)(2d + 2)3/2

ε

√
Dn

Nn
≤ 1

2
;

|X| ≤ 4A3

√
Dn

Nn
(∥ζ∥1)

3 ≤ (C∥ξ∥3)

2

√
Dn

Nn
,

where C = 2A
√

dρ(K−1). More generally, denote ∗ any quantity with modulus smaller
than eC. Notice that

|δ(S(j1)
n , . . . , S(jr)

n )| = ∥δ∥∞ ≤ ∥δ∥2 ≤ ρ(M⊗r)

∥∥∥∥∥κ(S(i1)
n , . . . , S(ir)

n )

Nn (Dn)r−1

∥∥∥∥∥
2

≤ 1
2r2

(
2A
√

dρ(K−1) r
)r

,

so each coefficient δ(S(j1)
n , . . . , S(jr)

n ) is equal to 1
2r2 (

∗r
e )

r. Therefore, for γ > 0, ∂|γ|g(ξ)
∂ξγ =

∂|γ|(exp h(ξ))
∂ξγ , with

h(ξ) =
Nn

2Dn

∞

∑
r=3

rr−2

er r!

d

∑
j1,...,jr=1

(∗)r ξ(j1) · · · ξ(jr)

(Nn/Dn)r/2 ;

|h(ξ)| ≤ (C∥ξ∥1)
3

4

√
Dn

Nn

1

1 − eC∥ξ∥1

√
Dn
Nn

.

Here and in the sequel, we assume that eC∥ξ∥1
√

Dn/Nn < 1; we shall give in a moment a
sufficient condition for this inequality. By the multi-dimensional version of Faà di Bruno’s
formula,

∂c(exp h(ξ))
∂ξ(i1) · · · ∂ξ(ic)

=

 ∑
π∈P(c)

ℓ(π)

∏
j=1

∂|πj|h(ξ)
∏k∈πj

∂ξ(ik)

 exp(h(ξ)),

where P(c) is the set of set partitions π = π1 ⊔ π2 ⊔ · · · ⊔ πℓ of [[1, c]]. In this formula,
writing r↓p = r(r − 1) · · · (r − p + 1),

∂ph(ξ)
∏k∈πj

∂ξ(ik)
=

Nn

2Dn

∞

∑
r=max(3,p)

rr−2

er r!

d

∑
j1,...,jr−p=1

(∗)r r↓p

(Nn/Dn)r/2 ξ(j1) · · · ξ(jr−p);∣∣∣∣∣ ∂ph(ξ)
∏k∈πj

∂ξ(ik)

∣∣∣∣∣ ≤ Nn

4e3Dn

∞

∑
r=max(3,p)

(eC)r (∥ξ∥1)
r−p r↓p

(Nn/Dn)r/2

≤ (eC)max(3,p) (max(3, p))! (∥ξ∥1)
max(3−p,0)

4e3 (Nn/Dn)
max(3,p)

2 −1
(

1 − eC∥ξ∥1

√
Dn
Nn

)p+1 ,

where for the last inequality one has to treat separately the cases p ≥ 3 and p = 1 or 2.
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Suppose that ζ ∈ Cd
(0,(2d+2)3/2/ε)

= Dd
ε . Then,

∥ξ∥1 ≤
√

d ∥ξ∥2 ≤
√

dρ(K) ∥ζ∥2 ≤ d
√

ρ(K) ∥ζ∥∞ ≤ (2d)(2d + 2)3/2
√

ρ(K)
2ε

;

eC∥ξ∥1
√

Dn/Nn ≤ ε1

ε

√
d ρ(K)ρ(K−1) =

ε1

ε

√
d τ(K).

Set

ε2 = 2
√

d τ(K) ε1 = 16Ae
√

2(d(d + 1))3 τ(K)

√
Dn

Nn
.

Then, if ε ≥ ε2 (this condition is stronger than ε ≥ ε1) and ζ ∈ Dd
ε , we have for any p ≥ 1:∣∣∣∣∣ ∂ph(ξ)

∏k∈πj
∂ξ(ik)

∣∣∣∣∣ ≤ (eC)max(3,p) 2p+1 (max(3, p))! (∥ξ∥1)
max(3−p,0)

4e3 (Nn/Dn)
max(3,p)

2 −1
.

As a consequence,

Jα =
∫

M−1(Dd
ε )

∣∣∣∣∣∂|α| f (ξ)
∂ξα

∣∣∣∣∣ dξ ≤ ∑
γ≤α

∑
π∈P(|γ|)

∫
M−1(Dd

ε )
e−

∥ξ∥2
2 + (C∥ξ∥)3

2

√
Dn
Nn

Pγ,α,π(ξ)

(Nn/Dn)e(π)
dξ,

where each Pγ,α,π(ξ) is a quantity that is bounded by a polynomial in ∥ξ∥1, and with

e(π) =
ℓ(π)

∑
i=1

(
max(3, |πi|)

2
− 1
)

.

Note that if ∥ξ∥
√

Dn
Nn

is small enough, then

−∥ξ∥2

2
+

(C∥ξ∥)3

2

√
Dn

Nn
≤ −∥ξ∥2

4
.

Therefore, one can find a positive constant C1(d, K, A, B) ≥ ε2
√

Nn/Dn such that, if ε ≥
C1(d, K, A, B)

√
Dn/Nn, then

Jα ≤ ∑
γ≤α

∑
π∈P(|γ|)

1
(Nn/Dn)e(π)

∫
Rd

e−
∥ξ∥2

4 Pγ,α,π(ξ) dξ.

All the integrals appearing in the right-hand side of this inequality are convergent, and the
main contribution to the sum is provided by set partitions such that e(π) = 1

2 is minimal.
This only happens when ℓ(π) = 1 and |γ| ≤ 3. Therefore, keeping only these terms, we
obtain

Jα ≤ ∑
γ≤α
|γ|≤3

(
α

γ

) ∫
Rd

e−
∥ξ∥2

2 |Hα−γ(ξ)|
∂|γ|h(ξ)

∂ξγ g(ξ) dξ + O
(

Dn

Nn

)
,

≤ ∑
γ≤α
|γ|≤3

(
α

γ

) ∫
Rd

e−
∥ξ∥2

4 |Hα−γ(ξ)|
∂|γ|h(ξ)

∂ξγ dξ + O
(

Dn

Nn

)

where the constant in the O only depends on d, K, A, B. Using the previous estimates on the
derivatives of h(ξ), we conclude that

Jα = O


√

Dn

Nn
∑

γ≤α
|γ|≤3

(
α

γ

) ∫
Rd

e−
∥ξ∥2

4 |Hα−γ(ξ)| (∥ξ∥1)
3−|γ| dξ

+ O
(

Dn

Nn

)
.
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Therefore, there exists a positive constant C2,µ(d, K, A, B) such that, if ε ≥ C1(d, K, A, B),
then

∆ε(µ̂n, ν̂n) ≤ C2,µ(d, K, A, B)

√
Dn

Nn
.

This ends the proof of the lemma, taking C2 = C2,µ + C2,ν. □

Proof of Theorem 4.8. We apply Corollary 2.14 to the inequality of Lemma 4.10, with ε =

C1(d, K, A, B)
√

Dn/Nn and the regularity constant R = 2
√
(d + 1)ρ(K−1). □

4.3. Sparse dependency graphs. A large set of applications of Theorems 4.7 and 4.8 is pro-
vided by the theory of dependency graphs, which has already been used successfully in di-
mension d = 1 in [FMN16; FMN19].

Definition 4.11 (Dependency graph). Let (Av)v∈V
Rd be a family of random vectors in Rd. A

simple undirected graph GRd = (VRd , ERd) is called a dependency graph for this family if, for any
disjoint subsets V1 and V2 of VRd , if there is no edge e = (v1, v2) in ERd that connects v1 ∈ V1 and
v2 ∈ V2, then (Av)v∈V1 and (Av)v∈V2 are independent families of random vectors of Rd.

The parameters of a dependency graph GRd are:

(1) its size N = card VRd .

(2) its maximal degree D: every vertex v ∈ VRd has at most D − 1 neighbors w such that
{v, w} ∈ ERd .

In the sequel, we always put an index Rd on the dependency graph of a family of d-
dimensional random vectors. The reason for this is the following. Fix a family (Av)v∈V

Rd

of random vectors in Rd, a dependency graph GRd = (VRd , ERd) for this family, and denote
W = VRd × [[1, d]]. To any pair w = (v, i) ∈ W, we associate the real random variable

Aw = A(i)
v .

We then endow the vertices of W with the following structure of graph G = (W, E):

(v1, i1) ∼G (v2, i2) ⇐⇒ (v1 = v2 and i1 ̸= i2) or (v1 ∼G
Rd v2).

It is then easily seen that (Aw)w∈W is a family of real random variables with dependency
graph G = (W, E). Moreover, if N and D are the parameters of GRd , then dN and dD are
the parameters of G.

Theorem 4.12 (Upper bound on cumulants). Let

S = ∑
v∈V

Rd

Av

be a sum of random vectors in Rd, such that GRd = (VRd , ERd) is a dependency graph for the
family (Av)v∈V

Rd . We also suppose that ∥Av∥∞ ≤ A for any v ∈ VRd . For any choice of indices
i1, . . . , ir ∈ [[1, d]],

|κ(S(i1), . . . , S(ir))| ≤ N (2D)r−1 Ar rr−2,

where N and D are the parameters of the graph GRd .
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Proof. Let G = (W, E) be the dependency graph on one-dimensional random variables A(i)
v

that is obtained from GRd by the aforementioned construction. By [FMN16, Equation 9.9],
for any choice of vertices v1, . . . , vr,∣∣∣κ(A(i1)

v1 , . . . , A(ir)
vr )

∣∣∣ ≤ 2r−1 Ar STH,

where H = G[(v1, i1), . . . , (vr, ir)] is the (multi)graph induced by G on the set of vertices
{(vj, ij) | j ∈ [[1, r]]} (see [FMN16, Section 9.3.2]), and STH is the number of spanning trees
of H (hence, 0 if H is not connected). Therefore, if we extend by multilinearity the joint
cumulant of the coordinates of the sum S, then we obtain∣∣∣κ(S(i1), . . . , S(ir))

∣∣∣ ≤ ∑
v1,...,vr∈V

Rd

∣∣∣κ(A(i1)
v1 , . . . , A(ir)

vr )
∣∣∣

≤ 2r−1Ar ∑
v1,...,vr∈V

Rd

STG[(v1,i1),...,(vr,ir)].

We now use an argument similar to the one of [FMN16, Lemma 9.3.5]. Consider a pair
(T, (v1, . . . , vr)) such that v1, . . . , vr ∈ VRd , and T is a spanning tree on [[1, r]] included in the
induced subgraph G[(v1, i1), . . . , (vr, ir)]. By Cayley’s formula for the number of spanning
trees on r vertices, there are rr−2 possible choices for T. Then, to choose (v1, . . . , vr) such
that T ⊂ G[(v1, i1), . . . , (vr, ir)], we proceed as follows. There are N possible choices for the
vector v1. Then, for each j such that 1 ∼ j in T, there are at most D possible choices for
vj, such that either (v1, i1) = (vj, ij), or (v1, i1) ∼G (vj, ij). Indeed, one can only choose vj
among the vertices vj with v1 ∼G

Rd vj, plus v1. We pursue this reasoning with the neighbors
of the neighbors j of 1 in T, performing a breadth-first search of T. We conclude that T being
fixed, the number of compatible choices for v1, . . . , vr is smaller than N Dr−1. This ends the
proof of the theorem. □

By combining Theorems 4.7, 4.8 and 4.12, we obtain the following general result on sums
of random vectors with sparse dependency graphs:

Theorem 4.13 (Sums of random vectors with sparse dependency graphs). Consider a se-
quence of sums (Sn = ∑Nn

i=1 Ai,n)n∈N of centered random vectors in Rd. We endow each family
(Ai,n)i∈[[1,Nn]] with a dependency graph of parameters Nn and Dn, and we make the following as-
sumptions:

(1) All the random vectors Ai,n are bounded by A in norm ∥ · ∥∞.

(2) The sequences of parameters (Nn)n∈N and (Dn)n∈N satisfy

lim
n→∞

Nn = +∞ ; lim
n→∞

Dn

Nn
= 0.

(3) There exists a matrix K ∈ S+(d, R), and a family of real numbers (Li,j,k)1≤i,j,k≤d, such that

cov(Sn)

NnDn
= K + Jn with ρ(Jn) ≤ B

√
Dn

Nn
.

The sums Sn satisfy:

• Central limit theorem: if Yn = Sn√
NnDn

, then Yn ⇀ NRd(0, K).

• Speed of convergence: there exists a constant C(d, K, A, B) such that

dconvex(Yn , NRd(0, K)) ≤ C(d, K, A, B)

√
Dn

Nn
.
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If one adds the assumptions (MC4) and (MC5) on Sn, then one also gets large deviation estimates as
in Theorem 4.7.

We conclude this section by examining three examples:

Example 4.14 (Random walks with dependent steps, d = 2). One can construct an example
in dimension d = 2 with almost arbitrary parameters Nn → +∞ and Dn = o(Nn). If
λ is a positive parameter, denote L(λ) the law of the Brownian motion on the unit circle
S1 = {z ∈ C | |z| = 1}, taken at time t = λ. This law is given by the density

ρλ(θ) =
1√
2πλ

∑
k∈Z

e−
(θ−2kπ)2

2λ

for θ ∈ (−π, π). Thus, if X = eiθ follows the law L(λ), then

P[θ ∈ (a, b)] =
1√
2πλ

∑
k∈Z

∫ b

a
e
(θ−2kπ)2

2λ dθ

for any a, b such that −π < a < b < π. The density of the angle θ can be rewritten in Fourier
series:

ρλ(θ) dθ =

(
∑
l∈Z

e−
λl2

2 eilθ

)
dθ

2π
.

The family of laws (L(λ))λ∈R+ is a semigroup of probability measures on the multiplicative
semigroup S1. Thus, if U1, . . . , UD follow the same law L( λ

D ) and are independent, then the
product U1U2 · · ·UD follows the law L(λ).

Consider a family of independent random variables (Ui)i∈[[1,Nn]], all following the same
law L( λ

Dn
). For i ∈ [[1, Nn]], we denote Xi = UiUi+1 · · ·Ui+Dn−1, where the Ui’s are labelled

cyclically, that is to say that UNn+k = Uk. Two variables Xi and Xj are independent unless
they share some common factor Uk, which happens if and only if the distance between i
and j in Z/NnZ is smaller than Dn. Thus, (Xi)i∈[[1,Nn]] is a family of dependent random
variables in R2 ⊃ S1, with a dependency graph of parameters Nn and 2Dn − 1. By the
previous remark, each Xi follows the law L(λ); in particular,

E[Xi] =
∫ π

−π
eiθ ρλ(θ) dθ = ∑

l∈Z

e−
λl2

2

∫ π

−π
ei(l+1)θ dθ

2π
= e−

λ
2 .

On the other hand, if Xi and Xj are two variables with d(i, j) = D < Dn in Z/NnZ, then
one can compute the covariance matrix of these two vectors of R2:

E[Re(Xi)Re(Xj)] =
E[XiXj + XiXj + XiXj + XiXj]

4
=

e−
D

Dn λ + e−(2− D
Dn )λ

2
;

E[Im(Xi) Im(Xj)] =
E[−XiXj + XiXj + XiXj − XiXj]

4
=

e−
D

Dn λ − e−(2− D
Dn )λ

2
;

E[Re(Xi) Im(Xj)] = E[Im(Xi)Re(Xj)] = 0.

So,

cov(Re(Xi), Re(Xj)) =
e−

D
Dn λ + e−(2− D

Dn )λ − 2e−λ

2
;

cov(Im(Xi), Im(Xj)) =
e−

D
Dn λ − e−(2− D

Dn )λ

2
;

cov(Re(Xi), Im(Xj)) = cov(Im(Xi), Re(Xj)) = 0.
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As a consequence, if Sn = ∑Nn
i=1 Xi, then

cov(Sn)

(2Dn − 1) Nn
=

1
2(2Dn − 1)

Dn−1

∑
D=−(Dn−1)

(
e
− |D|

Dn
λ
+e

−(2− |D|
Dn

)λ−2e−λ 0

0 e
− |D|

Dn
λ−e

−(2− |D|
Dn

)λ

)

=
1

2Dn − 1

(
1−e−λ

1−e−λ/Dn
+e−2λ eλ−1

eλ/Dn−1
−1−(2Dn−1) e−λ 0

0 1−e−λ

1−e−λ/Dn
−e−2λ eλ−1

eλ/Dn−1

)

= K + O
(

1
Dn

)
with K =

1
2λ

(
1 − 2λe−λ − e−2λ 0

0 (1 − e−λ)2

)
.

Therefore, one can apply Theorem 4.13 if Dn = o(Nn) and (Nn)1/3 = O(Dn). In this situa-

tion, Yn = Sn−Nn e−
λ
2√

(2Dn−1) Nn
converges in law towards NR2(0, K), with

dconvex(Yn, NR2(0, K)) = O

(√
Dn

Nn

)
.

We have drawn on Figure 8 a random walk with steps Xi, with λ = 1, Nn = 1000 and
Dn = 40 or Dn = 1. The deviation of the whole sum Sn from its mean 1000 e−1/2 ≃ 600
follows approximatively a (non-standard) Gaussian law of size O(

√
Dn Nn) = O(200).

100 200 300 400 500 600

100

200

FIGURE 8. Random walks associated to a sum of dependent random vectors
in R2 (thick blue line, Nn = 1000 and Dn = 40), and to a sum of independent
random vectors (thin red line, Nn = 1000 and Dn = 1).

Example 4.15 (Random walks with dependent steps, d ≥ 2). Let us describe a generalization
of the previous example with an arbitrary dimension d ≥ 2. Denote pSO(d),t(g) the density
with respect to the Haar measure of a Brownian motion traced on the special orthogonal
group G = SO(d), taken at time t > 0. It can be shown that, if Ĝ is a set of representatives
of the isomorphism classes of finite-dimensional irreducible representations of G, and if χλ

and dλ denote respectively the normalised character and the dimension of an irreducible
representation λ ∈ Ĝ, then there exists positive rational coefficients cλ such that

pSO(d),t(g) = ∑
λ∈Ĝ

e−
cλt
2 (dλ)2 χλ(g).

We refer to [Mél14, Section 2] for precisions on Brownian motions on compact Lie groups
and their symmetric quotients. The coefficients cλ can be computed by associating to each
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class of isomorphism λ ∈ Ĝ the highest weight of the underlying representation, which
sits in a part of the lattice of characters T̂ of a maximal connected torus T in SO(d). Then,
cλ = ⟨λ | λ + 2ρ⟩, where 2ρ is the sum of all positive roots of G, and ⟨· | ·⟩ is an appropriate
scalar product on T̂ ⊗Z R.

We denote LSO(d)(t) the law on SO(d) with density pSO(d),t(·), and we consider a family
(ui)i∈[[1,Nn]] of independent random variables with values in SO(d), all following the same
law LSO(d)(

λ
Dn

). We then set gi = uiui+1 · · · ui+Dn−1, where as in the previous example, the
ui’s are labelled cyclically. Each random variable gi follows the same law LSO(d)(λ), and
gi and gj are independent if and only if i and j are at distance larger than Dn in Z/NnZ.
We finally set Xi = gi(ed), where ed = (0, . . . , 0, 1) ∈ Rd. Each Xi follows the same law
LSd−1(λ), which is the law of a Brownian motion on the sphere Sd−1 starting from the vector
ed and taken at time t = λ. The density of this law with respect to the Haar measure on the
sphere Sd−1 is given by the following formula:

pSd−1,t(x) = ∑
λ∈ĜK

e−
cλt
2 dλ ϕλ(x).

Here, ĜK is the subset of Ĝ that consists in spherical representations, that is to say, irre-
ducible representations of G = SO(d) that admits a (normalised) K = SO(d − 1)-invariant
vector eλ. On the other hand, ϕλ(x) =

〈
ρλ(g) (eλ)

∣∣ eλ
〉
, where g ∈ G is any element such

that g(ed) = x; ρλ is the defining morphism of the spherical representation λ; and ⟨· | ·⟩
is a G-invariant scalar product on the representation space, with

〈
eλ
∣∣ eλ

〉
= 1. Standard

arguments of harmonic analysis on the real spheres (see [AH10; VV09]) ensure that there is
a labeling of the spherical representations in ĜK by the set of natural integers N. Indeed,
in terms of highest weights, ĜK = Nω0, where ω0 is the highest weight associated to the
geometric representation of SO(d) on Cd. Then, ckω0 = k2 + (d − 2)k, dkω0 = 2k+d−2

k+d−2 (
k+d−2

d−2 )
by Weyl’s formula for dimensions of irreducible representations, and

ϕkω0(x) = Pd−1,k(x(d)),

where (Pd−1,k(t))k∈N is the set of Legendre polynomials associated to the sphere Sd−1: they
are the orthogonal polynomials with respect to the weight

Γ( d
2 )

Γ(1
2) Γ( d−1

2 )
(1 − t2)

d−3
2 1t∈[−1,1] dt,

normalised by the condition Pd−1,k(1) = 1. So,

pSd−1,t(x) =
∞

∑
k=0

e−
(k2+(d−2)k)t

2
2k + d − 2
k + d − 2

(
k + d − 2

d − 2

)
Pd−1,k(x(d)).

The expectation of a variable Xi following the law LSd−1(λ) is
∞

∑
k=0

e−
(k2+(d−2)k)t

2 dkω0

∫
Sd−1

x ϕkω0(x)Haar(dx).

For every coordinate i ∈ [[1, d]], x(i) is a coefficient of the geometric representation of SO(d).
Since coefficients of distinct irreducible representations of SO(d) are orthogonal by Schur’s
lemma, the scalar product of x(i) with the spherical function ϕkω0 is thus equal to 0, unless
k = 1. Then, ϕω0(x) = x(d), and

dω0

∫
Sd−1

x x(d) Haar(dx) = ed.
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Hence, E[Xi] = e−
(d−1)λ

2 ed. Let us now compute the covariance matrix between two vari-
ables Xi and Xj. We fix two coordinates k and l in [[1, d]], and consider E[X(k)

i X(l)
j ]. Since Xi

and Xj are independent if i and j are at distance larger than Dn in Z/NnZ, we can exclude
this case and assume d(i, j) = D < Dn. Then, with pSO(d),t = pt,

E
[

X(k)
i X(l)

j

]
=
∫

G3
p D

Dn λ( f ) p Dn−D
Dn λ

(g) p D
Dn λ(h) ⟨( f g)(ed) | ek⟩ ⟨(gh)(ed) | el⟩ df dg dh

=
∫

G3
p D

Dn λ( f ) p Dn−D
Dn λ

(g) p D
Dn λ(h)

〈
g(ed)

∣∣∣ f−1(ek)
〉 〈

h(ed)
∣∣∣ g−1(el)

〉
df dg dh

= e−
(d−1)D

Dn λ
∫

G
p Dn−D

Dn λ
(g) ⟨g(ed) | ek⟩ ⟨g(ed) | el⟩ dg

by using on the second line the invariance of the scalar product under G = SO(d), and on
the third line the computation of the expectation of the law LSd−1(t). The remaining integral
is the expectation of the product of matrix coefficients gdkgdl under the law LSO(d)(

Dn−D
Dn

λ)
of the Brownian motion on the group. This computation is performed in [Mél14, Section 4]
(beware that the normalisation of time in this article differs by a factor d). Hence, at time t,
one has

E[(gdd)
2] =

1
d
+

(
1 − 1

d

)
e−dt;

E[(gdk)
2] =

1
d

(
1 − e−dt

)
∀k ̸= d;

E[gdkgdl] = 0 ∀k ̸= l.

Therefore,

cov(X(d)
i , X(d)

j ) =
e−

(d−1)D
Dn λ + (d − 1)e−(d− D

Dn )λ − de−(d−1)λ

d
;

cov(X(k)
i , X(k)

j ) =
e−

(d−1)D
Dn λ − e−(d− D

Dn )λ

d
∀k ̸= d;

cov(X(k)
i , X(l)

j ) = 0 ∀k ̸= l.

These formulæ generalize indeed what has been obtained when d = 2. Then, setting Sn =

∑Nn
i=1 Xi, we obtain:

cov(Sn)

(2Dn − 1) Nn
= K + O

(
1

Dn

)
,

where K is the diagonal matrix with

Kdd =
1 + d(d − 2 − (d − 1)λ) e−(d−1)λ − (d − 1)2 e−dλ

d(d − 1)λ
;

Kkk =
1 − de−(d−1)λ + (d − 1)e−dλ

d(d − 1)λ
∀k ̸= d.

One can apply Theorem 4.13 to the sum Sn = ∑Nn
i=1 Xi if Dn = o(Nn) and (Nn)1/3 = O(Dn);

then,

Yn =
Sn − Nn e−

(d−1)λ
2 ed√

(2Dn − 1) Nn
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converges in law towards NRd(0, K), with

dconvex(Yn, NRd(0, K)) = O

(√
Dn

Nn

)
.

We have drawn in Figure 9 the projection of the two first coordinates of the random walk
associated to the steps Xi when d = 3, in the case of dependent and independent random
vectors. As in the previous example, these two random walks do not share the same aspect
and fluctuations.

50−50−100

50

−50

FIGURE 9. Projection of the two first coordinates of random walks associated
to a sum of dependent random vectors in R3 (thick blue line, Nn = 1000 and
Dn = 40), and to a sum of independent random vectors (thin red line, Nn =
1000 and Dn = 1).

Example 4.16 (Subgraph counts in random Erdös–Rényi graphs). Let us examine an example
where the theory of sparse dependency graphs applies to a sum of random vectors, but
where the limiting law of the rescaled sum is a degenerate Gaussian distribution. We fix a
parameter p ∈ (0, 1), and we consider the random Erdös–Rényi graph Gn = G(n, p), which is
the random subgraph of the complete graph on n vertices, such that the family of random
variables (

1{i,j} is an edge of the graph

)
1≤i<j≤n

is a family of independent Bernoulli random variables with same parameter p. We have
drawn in Figure 10 such a random graph with parameters n = 30 and p = 0.15. In [FMN16,
Section 10], it has been shown that if H is a fixed graph (motive), then the number of such
motives H appearing in Gn converges after renormalisation in the mod-Gaussian sense;
see also [FMN20] for a generalisation of this result to graph subcounts in graphon models.
Theorem 4.12 will enable us to deal with several motives at once, and to understand the
fluctuations of a random vector of subgraph counts.

We start by recalling the theory of subgraph counts in random graphs. If G is a (undi-
rected, simple) graph, we denote VG and EG its sets of vertices and of edges. If H and G are
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FIGURE 10. Random Erdös-Rényi graph with n = 30 vertices and parameter
p = 0.15.

two graphs, the number of embeddings of H in G, denoted I(H, G), is the number of injective
maps i : VH → VG such that, if {v1, v2} ∈ EH, then {i(v1), i(v2)} ∈ EG. Fix a graph H with
vertex set [[1, k]]. An embedding of H into a graph Gn with vertex set [[1, n]] corresponds a
choice of an arrangement A = (a1, . . . , ak) of k distinct elements of [[1, n]]. Given such an
arrangement A, we set

XA(H, G) =

{
1 if the map j 7→ aj yields an embedding of H into G,
0 otherwise.

With the graph of Figure 10, X(3,1,23)(K3, G) = 1, whereas X(13,25,28)(K3, G) = 0. The number
of embeddings of H into G is given by the sum

I(H, G) = ∑
A∈A(n,k)

XA(H, G),

where A(n, k) is the set of all arrangements of size k in [[1, n]].

Suppose now that G = Gn is a random Erdös-Rényi graph of parameters n and p. Then,
assuming k ≤ n, for every arrangement A ∈ A(n, k), XA(H, Gn) is a random Bernoulli
variable of expectation

E[XA(H, Gn)] = ph, with h = card EH.

Indeed, one can write each XA(H, Gn) as the product

XA(H, Gn) = ∏
{i,j}∈EH

1{ai,aj}∈EGn
,

and by assumption on the random Erdös-Rényi graph, the random variables 1{ai,aj}∈EGn
are

independent Bernoulli random variables of parameter p. The same decomposition shows
that, if A and B are two arrangements that do not share at least 2 different points a and
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b, then XA(H, Gn) and XB(H, Gn) can be written as products of variables falling into two
independent families; therefore, they are independent. As a consequence, a dependency
graph for the sum I(H, Gn) is the graph:

• whose vertices are the arrangements A ∈ A(n, k);

• with an edge between A and B if and only if card(A ∩ B) ≥ 2.

The parameters of this dependency graph are the following. The number of arrangements
in A(n, k) is Nn = n↓k = n(n − 1)(n − 2) · · · (n − k + 1) = nk (1+O( 1

n )). On the other hand,
if an arrangement A is fixed, then there are less than(

k
2

)2

2 (n − 2)(n − 3) · · · (n − k + 1)

arrangements B that share at least two points with A. So, one can take for parameter

Dn = 2
(

k
2

)2

(n − 2)(n − 3) · · · (n − k + 1) =
k2(k − 1)2

2
nk−2

(
1 + O

(
1
n

))
.

Fix now several graphs H(1), H(2), . . . , H(d). Notice that when dealing with the random vec-
tor I(H, Gn) = (I(H(1), Gn), I(H(2), Gn), . . . , I(H(d), Gn)), one can always assume without
loss of generality that k = card VH(1) = card VH(2) = · · · = card VH(d) . Indeed, suppose
that VH has cardinality j ≤ k, and denote H+k the graph obtained from H by adding k − j
disconnected vertices. Then, for n ≥ k,

I(H+k, Gn) = (n − j) · · · (n − k + 1) I(H, Gn),

so the study of the fluctuations of I(H, Gn) is equivalent to the study of the fluctuations of
I(H+k, Gn). Setting XA(H, Gn) = (XA(H(1), Gn), . . . , XA(H(d), Gn)), one can then write the
random vector I(H, Gn) as a sum of random vectors:

I(H, Gn) = ∑
A∈A(n,k)

XA(H, Gn).

Moreover, the random vectors XA(H, Gn) take their values in [0, 1]d, and they have the
same dependency graph as described before. Consequently, the conclusions of Theorem
4.12 hold:∣∣∣κ(I(H(i1), Gn), I(H(i2), Gn), . . . , I(H(ir), Gn))

∣∣∣ ≤ rr−2 k4(r−1) nk+(r−1)(k−2)

for any choice of indices i1, . . . , ir, since Nn ≤ nk and Dn ≤ k4

2 nk−2. Unfortunately, one can-
not apply Theorem 4.13 to the recentred sum Sn = I(H, Gn)− E[I(H, Gn)], as the limiting
covariance matrix of Sn

nk−1 is a degenerate non-negative symmetric matrix. Indeed, given two
arrangements A and B, one has

cov(XA(H(1), Gn), XB(H(2), Gn))

= E

 ∏
{i,j}∈E

H(1)

1{ai,aj}∈EGn ∏
{i,j}∈E

H(2)

1{bi,bj}∈EGn

− ph1+h2 ,

where h1 and h2 are the numbers of edges of H(1) and H(2). If A and B do not share at least
two points, one obtains 0 as explained before. Suppose now that A and B share exactly two
points: there are indices { f , g} and {i, j} such that a f = bi and ag = bj, and all the other a’s
are different from the other b’s.
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(1) If moreover { f , g} and {i, j} are edges respectively of H(1) and H(2), then the expec-
tation of the product of Bernoulli variables is equal to ph1+h2−1, since 1{a f ,ag}∈EGn

=

1{bi,bj}∈EGn
. Thus,

cov(XA(H(1), Gn), XB(H(2), Gn)) = ph1+h2−1 − ph1+h2

if A ∩ B = {a f , ag} = {bi, bj} has cardinality equal to two, and if this intersection
comes from an edge of H(1) and an edge of H(2).

(2) On the other hand, if the intersection of cardinality two A ∩ B does not come from
edges of H(1) and H(2), then the covariance is again equal to 0.

The number of pair of arrangements (A, B) that fulfills the first hypothesis is equal to
2h1h2n↓2k−2. Thus, the pairs of arrangements (A, B) with an intersection of cardinality 2
yield a contribution

2(p−1 − 1) h1ph1 h2ph2 n2k−2
(

1 + O
(

1
n

))

to cov(I(H(1), Gn), I(H(2), Gn)). The other pairs of arrangements have an intersection of
cardinality larger than 3, hence, they yield a contribution which is a O(n2k−3). We conclude
that

cov(I(H(i), Gn), I(H(j), Gn)) = 2(p−1 − 1) hi phi hj phj n2k−2
(

1 + O
(

1
n

))
;

cov
(

Sn

nk−1

)
= 2(p−1 − 1)wwt + O

(
1
n

)
,

where w = (h1ph1 , . . . , hd phd). Thus, the limiting covariance is always a rank one symmetric
matrix, and one cannot apply Theorem 4.13. These one-dimensional fluctuations are not
very surprising: each fluctuation of a random number of embeddings I(H(i), Gn) is driven
at first order by the fluctuations of the number of edges in Gn, and truly multi-dimensional
fluctuations only occur at higher order. In this setting, one can obtain an estimate of the
speed of the convergence by projecting the random variable Sn to the vector line on which
the Gaussian distribution with covariance matrix wwt is supported. Denote S(w)

n = wtSn
wtw ,

and consider the L2-norm of Sn − S(w)
n w:

E

[∥∥∥Sn − S(w)
n w

∥∥∥2
]
= E

[
∥Sn∥2 − (wtSn)2

∥w∥2

]
=

d

∑
i=1

E[(S(i)
n )2]− 1

∥w∥2

d

∑
i=1

d

∑
j=1

w(i)w(j) E[S(i)
n S(j)

n ] = O(n2k−3)

by using the estimate E[S(i)
n S(j)

n ] = 2(p−1 − 1)w(i)w(j) n2k−2 + O(n2k−3). Therefore,

E

∥∥∥∥∥Sn − S(w)
n w

nk−1

∥∥∥∥∥
2
 = O

(
1
n

)
,
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so in particular Sn−S(w)
n w

nk−1 converges in probability to 0. Then, the projection S(w)
n can be

shown to converge in the one-dimensional mod-Gaussian sense:

log E

[
e

z S(w)
n

nk−1

]
= log E

[
e

⟨zw | Sn⟩
nk−1 ⟨w | w⟩

]

= ∑
r≥2

zr

∥w∥2r r! n(k−1)r

d

∑
i1,...,ir=1

w(i1) · · ·w(ir) κ(S(i1)
n , . . . , S(ir)

n )

= z2(p−1 − 1) + O
(
|z|2
n

)
+ ∑

r≥3

zr

∥w∥2r r! n(k−1)r

d

∑
i1,...,ir=1

w(i1) · · ·w(ir) κ(S(i1)
n , . . . , S(ir)

n ).

Using the bounds on joint cumulants previously described, we can write the following up-
per bound on the remainder of the series R(z):

|w(i1) · · ·w(ir) κ(S(i1)
n , . . . , S(ir)

n )| ≤ |w(i1) · · ·w(ir)| rr−2 k4(r−1) nk+(r−1)(k−2);
d

∑
i1,...,ir=1

|w(i1) · · ·w(ir) κ(S(i1)
n , . . . , S(ir)

n )| ≤ (∥w∥1)
r rr−2 k4(r−1) nk+(r−1)(k−2);

|R(z)| ≤ n2

k4 ∑
r≥3

rr−2

r!

(
|z| ∥w∥1 k4

n ∥w∥2

)r

,

and the last term is a O(|z|3/n) on a zone z ∈ [−Dn, Dn] with D > 0 fixed (depending
only on k and on ∥w∥). Therefore, if µn is the law of S(w)

n /(nk−1
√

2(p−1 − 1)) and ν is the
standard one-dimensional Gaussian distribution, then

µ̂n(ζ)− ν̂(ζ) = e−
ζ2
2

(
exp

(
O
(
|ζ|2 + |ζ|3

n

))
− 1
)

for |ζ| ≤ Dn and a certain constant D > 0. The arguments of [FMN19, Section 2], which
give estimates of the speed of convergence in the special case d = 1, ensure then that

dKol

(
S(w)

n

nk−1
√

2(p−1 − 1)
, NR(0, 1)

)
= O

(
1
n

)
.

Thus, if Yn = (Y(1)
n , . . . , Y(d)

n ) with Y(i)
n = I(H(i),Gn)−n↓k phi√

2(p−1−1) nk−1
, and if Y(w)

n = ⟨Yn |w⟩
⟨w |w⟩ then:

(1) As n goes to infinity, the difference between Yn and its projection Y(w)
n w converges

in probability to 0, and more precisely,

E[∥Yn − Y(w)
n w∥2] = O

(
1
n

)
.

(2) As n goes to infinity, the random variable Y(w)
n converges in law towards a standard

Gaussian distribution, and more precisely,

dKol(Y
(w)
n , NR(0, 1)) = O

(
1
n

)
.

Thus, when the limiting covariance is not a positive-definite matrix, one can usually still ap-
ply the theory of mod-Gaussian convergence to some projection of the random vectors, and
on the other hand control the difference between the projections and the original random
vectors.
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4.4. Empirical measures of Markov chains. The interest of Definition 4.5 is that one can use
it with sums of random vectors Sn = ∑Nn

i=1 Ai,n even when there is no sparse dependency
graph of parameters Nn and Dn for the random vectors Ai,n of the sums. In [FMN19, Section
5], it was proven that the bounds on cumulants corresponding to Hypothesis (MC3) are also
true for:

• certain observables of models from statisticial mechanics;

• the linear functionals of finite ergodic Markov chains.

In this section, we explain how to use the theory of [FMN19, Sections 5.4 and 5.5] to study
the fluctuations of the empirical measure of a finite ergodic Markov chain (instead of a lin-
ear form of this empirical measure). We fix a state space X = [[1, d]], and we consider a
transition matrix P on X, which is assumed ergodic (irreducible and aperiodic), with invari-
ant probability measure π = (π(1), π(2), . . . , π(d)). Thus, πP = π, and if (Xn)n∈N is a
Markov chain on X with transition matrix P and initial distribution P[X0 = i] = π(i), then
P[Xn = i] = π(i) for any n ∈ N. We are interested in the empirical measure of (Xn)n∈N,
which is the random vector in Rd

πn =
1
n

(
n

∑
t=1

δXt

)
.

The ergodic theorem ensures that πn → π almost surely. Set Sn = n(πn − π). We define a
constant

θP =
√

max{|z| | z ̸= 1, z eigenvalue of PD−1PtD},

where D = diag(π). This constant θP is strictly smaller than 1, and when P is reversible it
is just the module of the second largest eigenvalue of P. It has been proven [FMN19] that∣∣∣κ(1Xt1=i1 , . . . , 1Xtr=ir)

∣∣∣ ≤ 2r−1 ∑
T∈ST([[1,r]])

w(T),

where the weight of a spanning tree on r vertices is the products of the weights w(i, j) =

(θP)
|tj−ti| of its edges (i, j) ∈ ET. As a consequence, for any r ≥ 2 and any choice of indices

i1, . . . , ir,∣∣∣κ(S(i1)
n , . . . , S(ir)

n )
∣∣∣ ≤ 2r−1 ∑

T∈ST([[1,r]])

n

∑
t1,...,tr=1

∏
(i,j)∈ET

(θP)
|tj−ti| ≤ n rr−2

(
2

1 + θP

1 − θP

)r−1

,

see [FMN19, Theorem 55]. Therefore, Hypothesis (MC3) is satisfied with Nn = n, Dn = 1+θP
1−θP

and A = 1. Let us then check the other hypotheses of Definition 4.5:

(1) By construction, E[Sn] = 0 (here and in the sequel we assume that (Xn)n∈N is sta-
tionary, hence has initial distribution π).

(2) We compute

cov(S(i)
n , S(j)

n ) =
n

∑
a,b=1

P[Xa = i and Xb = j]− P[Xa = i]P[Xb = j]

= n δi,j π(i)(1 − π(i)) + 2
n−1

∑
k=1

(n − k)π(i)(Pk(i, j)− π(j)).

The limit of cov(S(i)
n ,S(j)

n )
n is

Ki,j = π(i)(δi,j − π(j)) + 2π(i)
∞

∑
k=1

Rk(i, j),
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where R = P − P∞; P∞(i, j) = π(j); and R is a matrix with all its eigenvalues strictly
smaller than 1. Notice that K has at most rank (d − 1): indeed, ∑d

i=1 Ki,j = 0, this
being a consequence of

d

∑
i=1

S(i)
n = 0 almost surely.

Therefore, we shall consider the random vectors Sn as elements of the (d − 1)-dim-
ensional space

H =

{
x ∈ Rd ∣∣ d

∑
i=1

x(i) = 0

}
,

and the covariance matrix as a symmetric operator on this space. By the discussion
of [FMN19, Proposition 59], if the Markov chain is reversible, then K has indeed rank
(d − 1) and we shall be able to describe precisely the fluctuations of (Sn)n∈N in H.

Notice that the difference between cov(Sn)
n and K is a O( 1

n ); therefore, Condition
(MC2’) is satisfied.

(3) Finally, Hypotheses (MC4) and (MC5) are discussed at the very end of [FMN19], and
they are satisfied with v = 3.

We conclude:

Theorem 4.17 (Empirical measures of reversible Markov chains). Let (Xn)n∈N be an ergodic
and reversible Markov chain on a finite state space X = [[1, d]]. We denote π the stationary measure
and πn the empirical measure; their difference is a random vector in the hyperplane H. If

Xn =
πn − π

n1/3 ; Yn =
πn − π√

n
,

and

Ki,j = π(i)(δi,j − π(j)) + 2π(i)
∞

∑
k=1

(Pk(i, j)− π(j)),

then:

(1) The sequence (Xn)n∈N is mod-Gaussian convergent on H, with parameters n1/3K and limit

ψ(z) = exp

(
1
6

d

∑
i,j,k=1

(
∑

a,b∈Z

κ(1X0 = i, 1Xa = j, 1Xb = k)

)
z(i)z(j)z(k)

)
.

(2) We have a convergence in law Yn ⇀ NH(0, K), with a convex distance between the two
distributions on H that is a O( 1√

n ). The constant in the O(·) only depends on d and on the
constant θP previously introduced.
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