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Research statement
This document presents my research activities and the corresponding publications; it mostly focuses on
my works since my nomination as an assistant professor at University Paris-Sud Orsay (September
2013). It also includes a detailed research program. Further details can be found on my webpage:
http: // www. imo. universite-paris-saclay. fr/ ~meliot/ .

My researches consist in studying random objects stemming from various areas of mathemat-
ics (random matrices, random graphs, arithmetic functions of random integers, combinatorial
objects, etc.) by using tools from harmonic analysis. Here, harmonic analysis can be understood
in two ways: the classical Fourier analysis on the real line (Fourier transform of distributions
of numerical random variables), and the representation theory of finite, compact or Lie groups
(non-commutative Fourier transform of functions on a group). This document is split in two
sections which explain these two aspects of my works. Each section details the corresponding
publications and future research projects.

1. Asymptotic behavior of random variables and mod-φ convergence

1.1. Ratios of Fourier and Laplace transforms. A first half of my research work consist in
developing general techniques which enable the study of the asymptotic behavior of random
variables. Let (Xn)n∈N be a sequence of real-valued random variables. If there exists a renor-
malisation (Xn/sn)n∈N which satisfies a central limit theorem, then most of the time one can
make this result more precise by giving a sequence of parameters (tn)n∈N growing to +∞ and a
continuous function ψ : C→ C such that

E[ezXn ] e−
tnz2

2 →n→∞ ψ(z) locally uniformly on the complex plane.
In other words, Xn equals a Gaussian random variable with large variance tn, plus a residue
which is asymptotically encoded in the Laplace or Fourier sense by the function ψ. We then
say that (Xn)n∈N converges in the mod-Gaussian sense with parameters (tn)n∈N and limiting
functionψ. The theory ofmod-Gaussian convergence has been developed during the last decade,
with the following double objective:

• To identify the probabilistic consequences of amod-Gaussian convergence: precisions on
the central limit theorem for Xn/

√
tn, large deviation principles, speed of convergence

estimates, local limit theorems, concentration inequalities.
• To find large classes of random variables which converge in the mod-Gaussian sense (in
general this requires much more work than the proof of the central limit theorem).

Thus, the convergence of ratios of Laplace transforms provides a unified approach to all the
possible kinds of asymptotic results for the distributions of a sequence of random variables
(§1.2). Besides, one can give quite general sufficient conditions which imply this convergence of
the ratios (§1.3). Let us notice that a generalisation of this method is possible with, instead of the
normal law, a reference law φ which is an arbitrary infinitely divisible distribution: this is the
theory of mod-φ convergence (in particular, with a Lévy–Khintchine exponent ez − 1 instead
of z2, one obtains the mod-Poisson convergence).
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1.2. Probabilistic consequences and main examples. In (A6), it is shown that the mod-φ con-
vergence implies sharp large or moderate deviation principles (by sharp wemean with an asymp-
totic equivalent of the probability of deviation, instead of its logarithm). In (A5) and (A4), these
results are completed by estimates of the speed of convergence in the central limit theorem, and
by local limit theorems for mod-Gaussian or mod-stable sequences of random variables. The
case of discrete random variables which converge in the mod-Poisson case is detailed in (A3): in
this setting, one obtains estimates of the total variation distance, and techniques in order to im-
prove the speed of convergence of these approximation schemes. Finally, in a restricted case of
mod-Gaussian convergence (the case of the method of cumulants, see §1.3), the previous results
have been completed by concentration inequalities in (A2).

Let us list the main applications of these theoretical results (for each example, the new es-
timates which have been found with our methods are indicated by the corresponding article,
according to the paragraph above):

• number of cycles or rises in a random permutation (A3)-(A6); more generally, statis-
tics of random combinatorial objects whose generating series have logarithmic-algebraic
singularities (A3);
• number of prime divisors of a random integer; more generally, arithmetic function
whose L-function satisfies the Selberg–Delange hypotheses (A3)-(A6);
• characteristic polynomials of large randommatrices chosen in compact Lie groups (A4)-
(A6);
• magnetisation of the Isingmodel: (A7) for the dimension 1 and the related critical Curie–
Weiss model, and (A5) for the dimension d ≥ 2;
• number of points of a determinantal point process with locally square-integrable kernel
(A4)-(A5)-(A6);
• motives in a random graph or permutation (A2)-(A5)-(A6);
• polynomial observable of a random integer partition chosen according to a central spec-
tral measure, or of a model of random metric measure space (A1)-(A2)-(A5)-(A6).

1.3. Techniques of analysis and the method of cumulants. For each object previously listed,
we had to perfect some already existing techniques that give the asymptotics of Fourier or
Laplace transform; or, we developed new techniques. Let us give a (non-complete) list of these
techniques, and their respective scopes.

• Selberg–Delange method (A3)-(A6). It enables to transfer the analytic properties of L-
functions of arithmetic functions to Tauberian theorems satisfied by the Laplace trans-
forms of these arithmetic functions evaluated on a random integer n ∈ [[1, N ]].
• Singularity analysis (A3)-(A6). this is the analogue of the previous method when the ran-
dom integer is replaced by a random combinatorial object, and the L-function is replaced
by the generating series of the statistics under study.
• Selberg integrals and Toeplitz determinants (A4)-(A6). An exact formula for a matrix in-
tegral, possibly involving a Toeplitz or Fredholm determinant, can be analysed in order
to understand the asymptotic behavior of some observables of random matrices (char-
acteristic polynomial, number of eigenvalues in a domain of the complex plane).

Another important method in order to establish a mod-Gaussian convergence and its probabilis-
tic consequences is the study of the cumulants

κ(r)(Xn) = [zr]
(
logE[ezXn ]

)
of the sequence of random variables. These quantities have many interesting combinatorial
properties, and in some cases they fit much better than the moments for the asymptotic study.
The reason is that, given an asymptotically normal sequence (Yn)n∈N, in many cases one has not
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only
κ(r)(Yn)→ 0 ∀r ≥ 3

but in fact κ(r)(Yn) = O((εn)r−2) with εn → 0. In other words, the higher-order cumulants van-
ish faster than the first cumulants. This property leads to speed of convergence estimates, large
deviation principles or concentration inequalities. In (A5)-(A6), some fundamental inequalities
for the control of cumulants have been establishedwhen the randommodel admits a dependency
graph or a weighted dependency graph. These techniques led in (A2) to the construction of large
families of random models whose observables are jointly and generically mod-Gaussian conver-
gent. These families of random models have been called mod-Gaussian moduli spaces, and an
important question in this framework is the identification of the singular models in these fami-
lies. In (A1), it has been proved that the approximation of a complete metric measure space by a
random discrete model is singular (with non-Gaussian fluctuations which are much smaller than
generically) if and only if the metric measure space approximated is a compact homogeneous
space. There is a similar conjecture for the singular graphon models, see the next paragraph.

1.4. Research projects. We now detail some research projects connected to the theory of mod-
Gaussian convergence; they are listed by decreasing advancement.

• Singular graphon models. The article (A2) proves in particular the mod-Gaussian conver-
gence of the subgraph counts in a random graph associated to a graphon ω; the fluctua-
tions of the densities of subgraphs are generically of order n−1/2. In (A6), the same result
has been established for Erdős–Rényi random graphs, but with fluctuations of order n−1.
We conjecture that the only graphons which give smaller fluctuations of order n−1 are
the constant graphons corresponding to the Erdős–Rényi random graphs. Recently, I
have shown that every singular graphon satisfy a central limit theorem analogous to the
one for constant graphons; the proof relies on hidden equations satisfied by the cumu-
lants of any singular model in a mod-Gaussian moduli space (see the preprint (A0)). This
advance reduces the conjecture on singular graphs to a problem of random perturbation
of the spectrum of a linear operator.
• Large deviations of matrix models. In (A6), we used the mod-Gaussian convergence of
the logarithms log(det(IN −MN)) of the characteristic polynomials of randommatrices
chosen in classical compact groups in order to obtain moderate deviation estimates for
their fluctuations of order O(logN). Very recently, we have discovered that the same
method can be perfected to obtain the sharp large deviations, up to orderO(N). Besides,
a comparison theorem enables one to extend the results to the case of the circular β
ensembles, the case β = 2 being the only one known so far for the large deviations. As the
random variables under study are here complex-valued, we also expect to observe some
non-trivial multi-dimensional phenomena when computing the deviation probabilities.
• Speed of convergence of the circular β ensembles. In the same framework of the CβE en-
sembles, a very famous result due to Johansson ensures that if β = 2, then the traces
of powers Tr((MN)k) converge for k ≥ 1, N → ∞ towards independent complex
Gaussian variables, with a speed of convergence for the Kolmogorov distance which
is super-exponentia and of order O(exp(−cN logN)). If β 6= 2, it is conjectured that
the speed of convergence for the analogue central limit theorem (recently established by
Jiang–Matsumoto) is much smaller. Some exact computations on the cumulants of these
random variables, by using either the Jack polynomials or the underlying penta-diagonal
matrix models, lead one to believe that the order of magnitude ot the speed of conver-
gence for β 6= 2 is O(N−1). The adaptation of the method of cumulants in this setting
is an important problem: it would enable a better understanding of the central limit
theorems without renormalisation, which occur frequently in random matrix theory.
• Method of cumulants for the mixing dynamical systems. In (A5), it has been shown thanks
to the method of cumulants that the linear functionals of Markov chains satisfy central
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limit theorems with Berry–Esseen type estimates. The proof relies on a combinatorial
argument and the use of weighted dependency graphs; and on the Perron–Frobenius
theorem for the location of the largest eigenvalues of the transition matrix of a Markov
chain. One can adapt the proof to the case of a quasi-compact Markov operator in infi-
nite dimension (in particular, one can study with these tools the Brownian motions on
compact Lie groups). More generally, the argument should generalise to mixing dynam-
ical systems whose linear functionals have Fourier transforms with a Nagaev–Guivarc’h
representation involving a quasi-compact operator. An important example is provided
by products of random matrices and by the Furstenberg–Kesten central limit theorem.
In this setting, the method of cumulants would allow one to prove results without using
the perturbation theory of operators (this is often the delicate point of the proofs). We
should also obtain new concentration inequalities for these dynamical systems.

(A0) A central limit theorem for singular graphons. Submitted, 2021.
https://www.math.u-psud.fr/~meliot/files/singular_final.pdf

(A1) Fluctuations of the Gromov–Hausdorff sample model, with Jacques De Catelan. To appear
in Electronic Journal of Probability, 2021.
https://www.math.u-psud.fr/~meliot/files/samplemodel.pdf.

(A2) Graphons, permutons and the Thoma simplex: three mod-Gaussian moduli spaces, with
Valentin Féray and Ashkan Nikeghbali. Proc. London Math. Soc., 121(4):876-926,
2020.

(A3) Mod-φ convergence: Approximation of discrete measures and harmonic analysis on the torus,
with Reda Chhaibi, Freddy Delbaen and Ashkan Nikeghbali. Ann. Inst. Fourier,
70(3):1115-1197, 2020.

(A4) Local limit theorems andmod-φ convergence, withMartina dal Borgo andAshkanNikegh-
bali. Latin American Journal of Probability and Mathematical Statistics, 16(1):817-853,
2019.

(A5) Mod-φ convergence, II: Estimates on the speed of convergence, with Valentin Féray and
Ashkan Nikeghbali. Séminaire de Probabilités L, 405-478, LNM 2252, Springer-Verlag,
2019.

(A6) Mod-φ convergence: Normality Zones and Precise Deviations, with Valentin Féray and
Ashkan Nikeghbali. Springer Briefs in Probability and Mathematical Statistics, 152+xii
p., Springer-Verlag, 2016.

(A7) Mod-Gaussian convergence and its applications for models of statistical mechanics, with
Ashkan Nikeghbali. In Memoriam Marc Yor – Séminaire de Probabilités XLVII, 369-
425, LNM 2137, Springer-Verlag, 2015.

2. Random objects chosen in a group, an homogeneous space or a dual of a group

2.1. Probability and duality in groups. The second half of my research work consists in using
the linear representations of groups in order to study random objects connected to these alge-
braic structures, in particular when the size of the group or of the object goes to infinity. The
general method is as follows. LetG be a (finite, or compact, or reductive Lie) group, and denote
G∗ the set of its irreducible representations λ = (V λ, ρλ : G→ GL(V λ)).

• Suppose given a G-valued random variable X , or a random object drawn on G and con-
structed from such random variables: for instance, a random walk (Xt)t≥0 drawn on G,
or a graph which connects random vertices X1, . . . , Xn chosen in G. Then, the random
matrices ρλ(X) and the random character values chλ(X) = tr ρλ(X)with λ running over
G∗ provide a family of matrix- or numerical observables, and these observables enable

https://www.math.u-psud.fr/~meliot/files/singular_final.pdf
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computations on the distribution of the variableX or of the random object constructed
from X . The method can be adapted to the case where X takes its values in a quotient
G/H (homogeneous space): we then need to replace G∗ by the set of spherical repre-
sentations of the pair (G,H), and the characters chλ by the zonal spherical functions
zonλ.
• In a dual way, let us consider a random variable Λ with values in G∗. The irreducible
representations of the classical groups are labeled by sequences of integers, and numer-
ous classes of random objects correspond to natural distributions on these sequences,
and therefore on the irreducible representations of a group (we then speak of a spectral
measure on the representations). In order to study Λ, we can as previously consider
the random matrices ρΛ(g) or the random character values chΛ(g), but this time with g
running over G. These observables determine the law of the variable Λ, and they enable
computations on this distribution.

The second part is classically involved in the solution ofUlam’s problem of the longest increasing
subsequence in a random permutation. Certain central limit theorems related to these problems,
to the so-called Plancherel measures and to other spectral measures on integer partitions were
the subject of my Ph.D. thesis, see (B4)-(B5)-(B6)-(B7)-(B8). Let us mention two recent works
on this topic. The monography (B2) explains the combinatorics of the representations of the
symmetric groups, and their use in the study of random partition models; it contains notably
some new central limit theorems for the so-called central measures on integer partitions (see also
(B5)). The proof of these algebraic central limit theorems uses the cumulant method explained
in the first section of this document, and in fact, these exotic examples were one of the starting
point of the theory of mod-Gaussian convergence. In particular, the Thoma simplex which
labels the extremal characters of the groupS(∞) and the central measures on integer partitions
is a mod-Gaussian moduli space (A2), with a subset of singular models in bijection with Z and
with the so-called Schur–Weyl measures. Some extensions of these results are one of our projects
detailed in §2.4.

2.2. Speed of convergence of random processes drawn on graphs. A classical application of
the first half of the general method described above is the estimation of the speed of convergence
of the law of a randomwalk (Xt)t≥0 on a finite or compactG; this has been made popular by the
works of Diaconis in the 1980’s. Indeed, the Parseval formula for compact groups yields an upper
bound on the total variation distance between the law µt ofXt, and the Haar measure µ∞ of the
group. This upper bound is a series whose terms are labeled by the irreducibles representations
of G (or the spherical representations of the pair (G,H) in the case of a G-invariant random
walk on a quotient G/H ). Often, the main term of this series also provides a lower bound in
short time. In particular, a cut-off phenomenon frequently occurs, with a total variation distance
which stays close to 1 for a long time, and then decreases abruptly to 0. The article (B3) proves
this cut-off phenomenon for every Brownian motion on a compact symmetric space, with a
cut-off time t = c logN if the space has rank N ; this solves a conjecture of Saloff–Coste.

2.3. Large random geometric graphs. More recently, similar techniques have been used in
order to study the spectrum of large random geometric graphs drawn on compact symmetric
spaces. Let S be such a space (for instance, S = SU(3) or S = S3), and L be a fixed level. The
random geometric graph with N points and level L is the graph Γgeom(N,L) whose vertices are
N independent random points X1, . . . , XN chosen uniformly on S, and whose edges connect
the vertices Xi and Xj if d(Xi, Xj) ≤ L, d being the geodesic distance on S. When N goes to
infinity, the spectrum e1(N,L) ≥ · · · ≥ eN(N,L) of the adjacency matrix of Γgeom(N,L) has
remarkable asymptotic properties, that are explained in (B1). To simplify, let us assume that
S = G is a compact simply connected Lie group.
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1. If N → ∞ and L is fixed, the largest eigenvalues converge almost surely after scaling
towards the eigenvalues of an integral Hilbert–Schmidt operator. These limiting eigen-
values can be made entirely explicit by using Bessel functions on the space of weights of
the Lie algebra of the group G.

2. If N → ∞ and L = LN = O(N−1/dimG), the random graph Γgeom(N,LN) converges
in the local sense of Benjamini–Schramm, and this implies that the spectral measure
µN = N−1

∑N
i=1 δei(N,LN ) converges in probability towards a deterministic measure µ,

which is determined by its moments.
The results for the second regime (Poissonian regime) are related to a general conjecture on cer-
tain functionals of the irreducible representations of the compact groupG. Besides, the limiting
measure µ does not really depend on the group G: it only depends on its dimension and on
the parameter ` = limN→∞ LN N

1/ dimG. This limiting measure is the spectral measure of an
infinite Poisson geometric graph in RdimG; it seems to be connected to important problems in
continuous percolation.

2.4. Research projects. As in the first section, we now explain four research projects connected
to the techniques of harmonic analysis explained above; again, they are listed by decreasing order
of advancement.

• Spectral measure of a Poisson geometric graph. In (B1), we constructed the spectral mea-
sures µ(d, `) of the large Poisson geometric graphs, but we did not givemuch information
on these probability distributions, beyond the fact that they only depend on the dimen-
sion d of the group and on the scaled connection level `. A in-depth study of these laws
µ(d, `) show that: they are never compactly supported; they always have an atomic part;
they seem to also have an absolutely continuous part with respect to the Lebesgue mea-
sure when ` > `c, `c being some critical parameter. This phase transition is related to
the phase transition of the continuous percolation on Rd: an absolutely continuous part
in µ(d, `) appears when the parameter ` exceeds the critical threshold of the Poisson–
Boolean percolation model in Rd. We conjecture the following:
(1) For every parameter `, the measure µ(d, `) has exponential decay.
(2) The spectral measures µ(d, `) vary continuously with the parameter ` (in particular,

in the neighborhood of `c).
The second item is very important, because it would be a result of continuity in perco-
lation theory. For d ≥ 3, it is unknown whether the percolation probability p∞(d, `) is
continuous at the critical parameter `c. Thus, the study of the limiting measures of the
random geometric graphs on compact spaces opens the way to spectral methods in the
theory of continuous percolation. The fact that such methods have not yet been devel-
oped is related to the fact that we are considering the spectra of infinite random graphs;
this theory is very recent.
• Stability of the cut-off phenomenon with respect to the generator of a Brownian motion. In
(B3), the cut-off phenomenon for the convergence to stationarity is proved for stan-
dard G-invariant Brownian motions on compact Lie groups G and compact symmet-
ric spaces G/K. However, the convergence towards the Haar measure holds for much
more general random processes: for instance, for every G-invariant Lévy process on G
whose continuous part admits an infinitesimal generator which is hypoelliptic (a par-
tial Laplace–Beltrami operator

∑e≤dimG
i=1 ∂i ⊗ ∂i with G-invariant vector fields (∂i)1≤i≤e

which span the Lie algebra of G). One can then wonder under which conditions the
convergence towards stationarity still exhibit a cut-off, and at which time. For instance,
if G = SU(N), d = N2 − 1 and the standard Laplace–Beltrami operator

∑d
i=1Xi ⊗Xi

is replaced by a hypoelliptic operator
∑e<d

i=1 Xi ⊗ Xi, does the corresponding diffusion
still exhibit a cut-off? The representation theory of G should provide us with an upper
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bound on the distance to stationarity, but the manipulation of this series seems much
more complicated than in the elliptic case.
• Speed of convergence for non-Euclidean central limit theorems. The papers (A3)-(A5) of the
previous section give general conditions on the Fourier transforms of real-valued random
variables in order to measure the distance of their laws to a reference distribution. Simi-
larly, in a framework of non-commutative harmonic analysis, the Diaconis–Shashahani
upper bound (used in (B3)) controls the total variation distance to the Haar measure
of a compact homogeneous space. More generally, one can try to use tools from har-
monic analysis in order to measure distances between probability distributions in other
geometric settings, for instance for random variables with values in a non-compact sym-
metric space. A starting point for this general question is the central limit theorem for
convolutions of measures on a non-compact space G/K, for instance the Poincaré half-
plane H = SL(2)/SO(2). The computation of the speed of convergence of this central
limit theorem is an interesting problem, whose solution should involve the well-known
harmonic analysis of SL(2). In this theory, there is a non-discrete part in the Parseval
and Fourier inversion formula; this is one of the main differences with the compact case
considered in the previous paragraph.
• Mod-Gaussian moduli spaces stemmming from asymptotic representation theory. As ex-
plained in the first paragraph of this section, the Thoma simplex is an important ex-
ample of compact topological space which labels the extremal characters of an infinite
group (the symmetric group S(∞)), and such that the random finite approximations
of these characters exhibit mod-Gaussian fluctuations. There are other examples of such
classifying spaces in the representation theory of infinite groups; in particular, Borodin
and Bufetov have proved a central limit theorem which is the analogue of the previous
one, but for the extremal characters of the infinite unitary group U(∞); this is related
to the Gaussian free field in dimension 2. It would be interesting to understand these
results by using the method of cumulants from §1.3; and to extend them to other classi-
fying spaces, in particular the quantum analogue of the previous example corresponding
to the characters of Uq(∞), and which has in particular been studied by Gorin. An-
other important question which links the representation theory and the theory of mod-
Gaussian convergence is the study of the fluctuations of a singular point of the Thoma
simplex, namely, the one corresponding to the Plancherel measures. The fluctuations of
the Plancherel model of random partitions are again asymptotically normal, but with
covariances which are much smaller than for a generic point of the Thoma simplex, and
no large deviation estimate known to this day. The mod-Gaussian convergence of these
models is conjectured, in connection with combinatorial questions of enumeration of
surfaces and of factorisations in symmetric groups. Let us notice that some recent works
of Moll replace these geometric objects by combinatorial objects whose enumeration is
simpler (ribbon paths); this might open the way to a solution of this conjecture.

(B1) Asymptotic representation theory and the spectrum of a random geometric graph on a compact
Lie group. Electronic Journal of Probability, 24(43):1-85, 2019.

(B2) Representation Theory of Symmetric Groups. Discrete Mathematics and Applications, 666
+xvi p., CRC Press, 2017.

(B3) The cut-off phenomenon for Brownianmotions on compact symmetric spaces, Potential Anal-
ysis, 40(4):427-509, 2014.

(B4) Partial isomorphisms over finite fields, Journal of Algebraic Combinatorics, 40(1):83-136,
2014.
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(B5) Fluctuations of central measures on partitions, Proceedings of the 24th International Con-
ference on Formal Power Series and Algebraic Combinatorics (Nagoya, Japan), p. 387-
398, 2012.

(B6) Asymptotics of q-Plancherel measures, with Valentin Féray. Probability Theory and Re-
lated Fields, 152(3-4):589-624, 2012.

(B7) Kerov’s central limit theorem for Schur–Weyl and Gelfand measures, Proceedings of the
23rd International Conference on Formal Power Series and Algebraic Combinatorics
(Reykjavík, Iceland), p. 669-680, 2011.

(B8) Products of Geck–Rouquier conjugacy classes and the algebra of composed permutations, Pro-
ceedings of the 22nd International Conference on Formal Power Series and Algebraic
Combinatorics (San Francisco, USA), p. 789-800, 2010.
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