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When lookingatasum S, = ZL A; of centered i.i.d. random variables,
the fluctuations are universally predicted by the central limit theorem
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This is not the whole story:
» large deviations (Cramér, 1938): log (P[Sn > nx]) ~ —n I(x).
» speed of convergence (Berry, 1941; Esseen, 1945):
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» local limit theorem (Gnedenko, 1948; Stone, 1965): if A, is non-
lattice distributed and Var(A;) =1, then

VN P[Sy € (VIx, VX + h)] ~ Eh.



Many other sequences of random variables are asymptotically normal:
functionals of Markov chains, martingales, etc.

Idea: there is a renormalisation theory of random variables that al-
lows one to go beyond the central limit theorem, and to prove in one
time the CLT and the other limiting results.

Definition (Mod-Gaussian convergence)

A sequence of real random variables (X;)nen IS mod-Gaussian with
parameters t, — +oo and limit ¢(2) if, locally uniformly on a domain
D cC,

Ele?] o= = yn(2) = ¥(2)
with ¢ continuous on D and #(0) = 1.

For a sum of ii.d. Sy, one looks at X, = 3%; t, = n'/?>Var(4;) and
¥(2) = exp(FA1Z).



Example: let X, = Re(logdet(l, — My)), with M, ~ Haar(U(n)). One
has the mod-Gaussian convergence
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= Barnes' function.
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Later: Markov chains, random graphs, random permutations, etc.

Remark: one can replace the exponent % of the Gaussian distribution
by the exponent n(z) of any infinitely divisible distribution.

Objectives:
1. Explain the consequences of mod-Gaussian convergence.

2. Describe general conditions which ensure the mod-Gaussian con-
vergence.

3. Prove the mod-Gaussian convergence of a large class of models
of random graphs.



Mod-Gaussian convergence and
bounds on cumulants



Method of cumulants

If Xis a random variable with convergent Laplace transform, its cumu-

lants are: .
KO(X) = — (log E[e”])
d ' z=0
So, log E[e”] = 372, ({;!(X) Z'. The first cumulants are
RO =EK 5 P = EX - (EX])? = Var(X)

O (X) = EPC] — 3EX?] E[X] + 2 (E[X])°.

The Gaussian distribution A'(m,o?) is characterized by x((X) = m,
kA(X) = o2, KZ3(X) = 0.

Idea: characterize similarly the mod-Gaussian convergence of a se-
quence (Xn)nen-



Definition (Method of cumulants)

A sequence of random variables (Sy)nen Satisfies the hypotheses of
the method of cumulants with parameters (Dp, Ny, A) if:

(MC1) One has Ny — +o0 and ¢ — 0.

(MC2) The first cumulants satisfy
kO(Sp) = 0;
H(z)(sn) = (O'n)anDn?
K3 (Sp) = Ly Np(Dy)?

(MC3) All the cumulants satisfy

1K (Sp)| < Np (2D,) " F2 A



Mod-Gaussian convergence and its consequences

If (Sn)new satisfies the hypotheses MC1-MC3, then

Sn

Xn= —r——
g (Nn)1/3(Dn)2/3

is mod-Gaussian convergent, with t, = (o)? (g’—

)1/3 and ¥(z) = exp (%)

Consequences:

1. Central limit theorem: if Y, = \/\/5“7(5) then Y, — N(0,1).

2. Speed of convergence:

3\’ /D,
dxol(Yn, N(0,1)) < (0n> \/Nir,

This inequality relies on the general estimate
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3. Normality zone and moderate deviations: if y <« (D—”) then

P[Yn > y] = PIN(0,7) > y] (1 + 0o(1))
If1<y< (’g—;)w, then

PlYy >3- = exp(g; ﬁ) (1-+o(1)

This estimate relies on the Berry—-Esseen inequality and an argu-
ment of change of measure

4. Local limit theorem: for any exponent e € (0
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Thus, Y, is normal between the two scales (D—”)
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Joint cumulants and dependency
graphs



Dependency graphs

Let S = >, Ay be a sum of random variables, and G = (V,E) a de-
pendency graph for (A,)vev: if Vo and V; are two disjoint subsets of V
without edge e = {vy,v,} between v; € V; and v, € Vs, then (A))vev,
and (Ay)vev, are independent.

5 /7
3 6

(A1,A2, 000 ,A5) 1 (A6,A7), but one has also (A1,A2,A3) 1 As.

Example:

Parameters of the graph: D = maxyecy(degv + 1),
N = card(V),
A = maXVe\/ HAV”OO



Theorem (Bound on cumulants; Féray-M.-Nikeghbali, 2013)
If Sis a sum of random variables with a dependency graph of param-
eters (D, N,A), then for any r > 1,

|KO(S)] < N(2D) 2 A",

Corollary: if S, = SV A, with the A; ,’s bounded by A and a sparse
dependency graph of maximal degree D, < N,, then MC3 is satisfied.

The proof of the bound relies on the notion of joint cumulant:
r
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Properties of joint cumulants

1. For any random variable X, x()(X) = x(X, X, ...,X) (r occurrences).
2. Thejoint cumulants are multilinear and invariant by permutation.

3. If {A1, Ay, ... A} can be split in two independent families, then
k({A1,...,A}) = 0.

ConsiderasumS =} ., A, with a dependency graph G of parameters
(D, N, A).
H(r)(s) = Z H(AVMAVN e 7AVr)

V1,V2,.05Vr

and the sum can be restricted to families {vq,v,, ..., v} such that the
induced multigraph H = G[vy, va, ..., V] is connected. Actually,

|6(Av, Avyy - -5 A < ATTTSTY,

where STy is the number of spanning trees of H.



Sketch of proof of the bound

1. In the expansion of k(As,...,A;), many set partitions yield the
same moment M, = Hg) E[Tjex Al SO

(A1, ... A ZM (Z;m)>

7r~>H7r

> u(m)|-

Ty’

(A, LAY AT

/

™

2. The functional Fy/ = >, . p(m) depends only on the con-
traction H/n' of H along 7/, and one can show that is up to a sign
the bivariate Tutte polynomial

|FH/7T/| = TH/7!‘/(17O) < TH/7T’(171) = STH/ﬂ'/-
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3. Apair (n/,T € STy,/) can be associated to a bicolored spanning
tree of H, hence

> STyym < 2" ST.
The bound on the cumulant of the sum S follows by noticing that:

» given avertex vy and a Cayley tree T, the number of lists (va, ..., V)
such that T is contained in H = G[vy, ..., V,] is smaller than D",

» the number of pairs (v, € V, T Cayley tree) is Nr'=2.

The proof leads to the notion of weighted dependency graph.



Weighted dependency graphs

Definition (Weighted dependency graph; Féray, 2016)
AsumS =3’ ., A admits a weighted dependency graph G = (V, E) of
parameters (wt : E — Ry, A) if, for any family {vy, va, ..., v/},

(A, Ary LA SAT Y ( 11 wt(v,,vj)).
vr] (V,',V,‘)

edge of T

The same proof gives:
|k(S)| < N(2D) " r—2 A

with N = card(V) and D = 3 (1 + maxvew (3, Wt(v, W))).



Sums of weakly dependent random variables

Let S, = Y.I", A; , be a sum of random variables, with |A;,| < A as.
and a dependency graph of maximal degree D,. We suppose that

D ~ Var(Sy) 5
Ny NoDy

Then, S, — E[Sy] satisfies the hypotheses of the method of cumulants,
and all its consequences. Moreover, one has the concentration in-
equality:

2
P[ISh — E[Sh]| > ] <2exp | — < )
) p( 9 (X, E[IA])Dn A

52
S Zexp —W .
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Functionals of ergodic Markov chains

Let (X»)nen be a reversible ergodic Markov chain on a finite state space
X of size M, and f: X — R. We set Sp(f) = >, f(X;), and we denote =
the stationary distribution, P the transition matrix, and

0p = max{|z| |z # 1, z eigenvalue of P}.

The sequence (Sn(f))nen has a weighted dependency graph and sat-
isfies the hypotheses of the method of cumulants, with parameters
Dn = 51y Nn = 1, and A = 2|fl| o VM.
Remarks:

1. If f = 1x=q, then one can take A = 2.

2. One can remove the hypothesis of reversibility if

i Yar(:()
n

n—oo

= Var,(f) + 2 i covr(f(Xo), f(X;)) # 0.

i=1



Magnetisation of the Ising model

Consider the Ising model on A ¢ 79 which is the probability measure
on spin configurations o € {+1}" proportional to exp(—#4 (o)), with

Hg’h(a) =-f Z gioj—h ZO’,‘.
injEN ien
If h # 0 or B < B(d), then the Ising model has a unique limiting

probability measure Mgfjh on 7¢.

Let (An)nen be a growing sequence of boxes, and M, = Z,GM o; be
the magnetization. Underugfh, (Mp—E[Mp])nen has a weighted depen-
dency graph and satisfies the hypotheses of the method of cumulants
if

» h £ 0 (non-zero ambient magnetic field);
» h=0and 3 < Bi(d) < B(d) (very high temperature).
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Subgraph counts in graphon
models




Subgraph counts and subgraph densities

If G = (Vg, Eg) is a finite graph, one says that F = (Vr, Ef) is a subgraph
of G if there isa map v : VF — Vs such that

ve = {x,y} € Er, {¢(x),v(V)} € E6.

Density of F in G: t(F, 6) = ISl = & = &

Objective: establish the mod-Gaussian convergence of t(F,Gy) for
some models (Gp)nen Of random graphs.



Graph functions and graphons

A graph function is a measurable function g : [0,1]> — [0,1] that is
symmetric: g(x,y) = g(y,x) almost everywhere. If Fis a graph on Rk
vertices and g is a graph function, the density of Fin g is

t(F,g) / ( H g(xi, x; ) dx,dx; - - - dXp.
[0,1]%

{i,j}€EF

Let .7 be the set of graph functions, and ¥ = %/ ~ its quotient by
the relation:

g ~h <= Jo Lebesgue isomorphism of [0, 1], with h(x,y) = g(o(x), a(y)).

Definition (Graphon; Lovasz-Szegedy, 2006)

A graphon is an element v = [g] of the quotient space 4. Endowed
with the topology of convergence of all the observables t(F,-), ¢ is a
compact metrisable space.



From graphons to random graphs

To any graphon v = [g], one can associate a random graph Gn(y) on n
vertices:

1. One chooses n independent uniform variables X, ..., X, in [0, 1].
2. One connects i to j in Gu(v) according to a Bernoulli variable of
parameter g(X;, X;), independently for each pair {i,}.

Conversely, to any graph G on n vertices, one can associate a graph
function g:

19



Convergence of graphon models

Theorem (Lovasz-Szegedy, 2006)

If v is the graphon associated to a graph G, then t(F, G) = t(F,~) for
any finite graph F. If v,(v) is the random graphon associated to the
random graph G,(7), then E[t(F, v»(v))] = t(F,~) and

() —=p -

We introduce the algebra & of finite graphs F, endowed with the de-
gree deg F = card(Vr) and with the product F; x F, = F1UF,. One evalu-
ates an observable f € &' by linear extension of the rule F(v) = t(F,v).
The convergence of graphon models amounts to:

Vyed, ¥fe o, flwm(v) —r f(7)

20



Dependency graphs for densities of subgraphs

Let v be a graphon, F a finite graph on k vertices, N, , = n* and

Sn(F,7) = n*t(F, Ga(7))

= Z 1w is a morphism from Fto G,(y) — Z Aw.
P:[1,R]—=[1,n] vk

Given independent uniform random variables (X;)1<i<n and (Ui j )1<i<j<n,

one can write :

Ay = H 1Uw(l),m(,)SQ(XL&(,),XX;;(/))'
{i<j}ekr

If v» and ¢ have disjoint images, then A, and A4 are independent.
Therefore, forany n € N, v € ¢, f € O, Sa(f,~) is @ sum of random
variables with a dependency graph of parameters

Dn,l? = K? nkiw; Nn,k = nk; A= Hf”@e

21



Asymptotics of the first cumulants

The computation of the limits o%(f,v) and L(f, ) involves the opera-
tion of junction of graphs. If Fand G are finite graphs of size k, a € V¢
and b € Vs, we denote (F xx G)(a,b) the graph on 2k — 1 vertices
obtained by identifying a € Vg with b € ;.

2/
2 2 .
1 23 (1@ = 2=23
3 3 L
3

n"jgo cov(Sn(F1r;2Wk)7,15n(Fzﬁ)) _ Z t((Fy = F2)(a, b),7)—t(F1, v) t(F2, 7)-

1<a,b<k
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Mod-Gaussian convergence of the graphon models

Theorem (Féray-M.-Nikeghbali, 2016)
Fixy € 4, f € O, and define

1

wa(F,6) = > (FxG)(a,b) —F-G;
1<a,b<k
ng(F,G,H):% > (FeaGeaH)(a,b,c)+2F-G-H— (FxG)(a,b) H

1sabesk _(Gxa H)(b,c) - F— (Fa H)(a,c) - G

1
r > > (FxGxH)(a,bic,d)+F-G-H
z/3z1sabredsk _(FpqG)(a,b) - H — (G H)(c,d) - F.
If k2(f, /) () # O, then Sy (f, v) satisfies MC1-MC3 with parameters D, , =

R2 nk=1, Npg = nkand A = Ifll6,. Moreover,

o* = ra(f,N)(7)
L= HB(fvfaf)(V)'

23



Numbers of triangles

So, any subgraph count of a random graph G,(v) stemming from any
graphon v € ¢4 is generically mod-Gaussian convergent.

Example: If K3 = 4 and H = N then the density of triangles
t(K3, Gp(7y)) satisfies the central limit theorem:

t(Ks3, G —t(K
n:\/ﬁ ( 3y H(P)/)) ( 377) —\N(O,1),
3V/t(H,7) — t(Ks, 7)?
assuming that the denominator is positive. Furthermore, one has

81
dKol l’hN 5 = 3
Un MO < G Z o ive

for n large enough; the concentration inequality

2
P {0k, 6o(2)) ~ K1) 2 el <2 e (=5 )

as well as a moderate deviation result and a local limit theorem.
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Mod-Gaussian moduli spaces

We consider a compact metrisable space .#, where convergence is
controled by a graded algebra of observables &.

Ms
MVé'm XM, «—mod-Gaussian fluctuations
(in the sense of observables)

M

Informal definition: each parameter m € .# generates its own ran-
dom perturbations (M,(m)),en, and for any observable f € &, the se-
quence (f(Mn(m)))nen is mod-Gaussian convergent after appropriate
renormalisation, assuming k(f, f)(m) # 0.

25



One can prove that:
» the space of probability measures on a compact space;
» the space of permutons;

» the Thoma simplex

are mod-Gaussian moduli spaces for the following observables and
random variables:

» polynomial functionals of empirical measures of random sequences;
» counts of motives in random permutations;

» random characters values associated to random integer parti-
tions.

Informal conjecture: if one approximates a continous object by a ran-

dom discrete one, the observables of the model usually have mod-
Gaussian fluctuations (example: the Gromov-Hausdorff-Prohorov space).
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The end
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