RANDOM COMPRESSION OF AN INTEGER PARTITION
PIERRE-LOIC MELIOT

AssTRACT. The objective of this note is to explain how to compute the asymptotics of a random
integer partition obtained by compression of a large integer partition. The procedure of random
compression is related to the operation of restriction of an irreducible representation of G(N) to
a smaller symmetric group, and the method of observables yields the limit shape of the random
compressed partition.
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1. THE MODEL OF RANDOM COMPRESSION

In this first section, we present the combinatorial model of random compression of an integer
partition, and we detail the link with the representation theory of the symmetric groups.

1.1. Integer partitions and standard tableaux. Given a positive integer N, recall that an integer
partition of size N is a sequence A = (A\; > Ay > --- > \;) of positive integers which is non-
increasing and such that [A| = 32/ A = N. We shall denote ¢ = £()) the length of a partition,
which is its number of non-zero parts. A partition is usually represented by its Young diagram,
which is the array of boxes with A; boxes on the first row, Ay boxes on the second row, ezc.; see
Figure 1 for an example. We shall denote 2)(N) the set of integer partitions with size N, and

Ficure 1. The Young diagram of the integer partition A = (10,6,5,5,3,1) with
size |A| = 30.

Y = UnenD(N). A standard tablean with shape A € 2(N) is a numbering of the cells of its
Young diagram by positive integers in [1, N], in such a way that the rows and columns of the
tableau are strictly increasing; see for instance Figure 2. The set of standard tableaux with shape

11
1017|124
6 112(18(25|30
419 (15|23 |28
3
1

1612027
1311419212226 |29

FIGURE 2. A standard Young tableau with shape (10,6, 5,5,3, 1).

A will be denoted ST(\), and there is a combinatorial formula for the number of Young tableaux
with shape A:

n!

rdST(\) = =———
card ST() [Toex (D)
where the product in the denominator runs over the cells of the Young diagram of A, and h(0O) is
the hook-length of the cell O, which is the number of cells of the hook based at 0 and connecting it
horizontally and vertically to the top-right border of the Young diagram; see Figure 3. For a proof
of the hook-length formula, see for instance [GNW79]. Notice on the other hand that card ST(\)
is the number of sequences () 7 A1 A X@ A ... A AN = X)) where for each i the notation
A A AGHD means that the integer partition A1) with size 7 + 1 is obtained from A®) by adding
one cell at the edge of this partition. Indeed, such a sequence clearly determines uniquely a standard
tableau with shape .
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FiGURrE 3. Hook-length of a cell in a Young diagram: here, h(0) =1+ 2+ 3 = 6.

1.2. Random compression and Poisson random compression. Given a standard tableau 7" with
size N and k < N, we denote T the subtableau of T which consists in the cells labeled by the
integers in [1, k], and A%®) the shape of this integer partition, which has size k. For instance, if T is
the standard tableau from Figure 2, then A*3) = (4,3,2,2,1,1).

Definition 1.1 (Random compression). Fix an integer partition X € (N, and a real parameter

€ (0, 1). The random compression with parameter t of X is the random integer partition RC(\) with
size k = |tN | which is obtained by choosing a random standard tablean T uniformly in ST(\), and
by looking at the shape \*) of the subtablean T™*),

In the next paragraph, we shall give a representation-theoretic interpretation of this procedure.
For a reason which will be given in Subsection 3.3, it is also interesting to introduce a version of
the random compression where the size k is itself random.

Definition 1.2 (Poisson random compression). In the same setting as before, the Poisson random
compression with parameter t of \ is the random integer partition PRC(\) obtained by the following
procedure:

e One chooses as before T randomly and uniformly in ST(N).

e One picks at random N independent uniformly distributed points x1, ..., xn in (0,1), and
one denotes k the number of x;’s which are smaller than t. Obviously, k follows a binomial
distribution B(N, ).

e Finally, one takes as before PRC;(\) = A\¥) = shape(T™).

It is expected that the Poisson version of the random compression yields determinantal point pro-
cesses; see Theorem 3.6 for a result in this direction.

1.3. Link with the representation theory of symmetric groups. Denote G(N) the symmetric
group of order N, which has cardinality N!. The isomorphism classes of the irreducible (linear,
complex) representations of G(V) are in bijection with the integer partitions of size N, and they
can be labeled in such a way that dim V* = card ST(\); see [M¢l17, Chapters 2 and 3] for a detailed
account of this representation theory and of the combinatorics of tableaux that is related to it. In
particular, one has the identity

Ni= )" (cardST()))*,
AEY(N)
which comes from the isomorphism of algebras

C&(N) ~e €D End(V?),
)

AEY(N
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itself a standard fact from the representation theory of finite groups (see [Mél17, Theorem 1.14]).
In the sequel, we shall simply write dim X for the dimension of V*; the uniform measure on ST()\)
gives a weight L~ to each standard tableau with shape ), and dim X is given by the hook-length
formula. The identity dim A = card ST()) can be made much more precise: there exists a linear
basis (er)rest(y) of the irreducible representation V* of G(N) such that, for any k£ < N and any
standard tableau 7, the subspace C&(k)(ez) C V* is an irreducible representation of &(k) with
type A*) = shape(T™). This is the so-called Gelfand-Tsetlin basis of V*, see [Mél17, Chapter 8].
A linear basis of C&(k)(er) is given by:

C&(k)(er) = & Cély.

T with the same entries
k+1,...,N as the tableau T'

This leads to the following:

Proposition 1.3 (Distribution of a random compression). Let A be an integer partition with size
N, t € (0,1) be a real parameter. With k = [tN |, we expand V> as a direct sum of irreducible

C&(k)-modules:
V= mvr,
BCA
neY(k)
where the m), are integer multiplicities. The notation i C X means that the Young diagram of j is
included in the Young diagram of \.

(1) The multiplicity m;), is the number of skew standard tableanx of shape X \ p1, A \ p1 being the
skew partition with size N — k whose Young diagram consists in the cells of the diagram X\ that
do not belong to the diagram of .

(2) The spectral measure

m) dim

Pyl — T AH
)

is the distribution of the random compression RCy(\).

Proof. We have just explained that any skew standard tableau of size N — k and with outer shape
A corresponds to an irreducible C&(k)-submodule of V*. Those that give a component with type
o have inner shape 1, whence the first item of proposition. Now, the spectral measure of the
restriction from &(n) to &(k) corresponds to the following procedure: pick at random an element
T € ST(A), and consider the isomorphism class of CS(k)(er). By the previous discussion, this
isomorphism class is shape(T™®)), so by definition we obtain the random variable RC; (). O

The previous proposition is a particular case of a general construction: given a representation
V of &(N), its decomposition in irreducible components V' = @B, cy(n) 7 V* yields the spectral
measure

my dim A
Py [\ = 2 CA
V[ ] dim V )
which is an interesting way for choosing at random an integer partition A € (N). The random

compression is the case where V' = Resggw\, 1y (V*). Let us look at some important other examples,

in relation to the procedure of random compression.

Example 1.4 (Plancherel measure). The Plancherel measures PLy are the spectral measures of the
regular representations C& (V) of the symmetric groups. They are given by
(dim \)?

PL[A =
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for A € Y(N). They have a property of stability with respect to random compression: for any N
and t,

Indeed, given £k < N, p € 9(k) and A € Y(N), by Frobenius’ reciprocity, the multiplicity m;, of

VH# in Resggk (V*) is equal to the multiplicity of V* in Ind (k) N (Vi) Therefore,

N!
E mﬁ dim A = dim (Ind (V“)) =7 dim p.
HCA
A€Y(N)

As a consequence, with & = [t N ], we obtain

Z my, dim g1 (dim \)?  (dim p)?

((RCy).PLy) [u] = EF N

= PLy[p].

pnCA
AEY(N)

With an algebraic point of view, the stability property is related to the fact that Resg (CS(N))
is a multiple of the representation C&(k):

M esh).

RengkN))(CG(N)) ~iso
Example 1.5 (Schur-Weyl measure). The Schur-Weyl measures SW s are the spectral measures of
the permutation representation of &(V) on the space of tensors (C*)®N. The Schur-Weyl duality
(see [Mél17, Section 2.5]) ensures that the commutant of the action of §(V) is the algebra spanned
by the diagonal action of the general linear group GL(M, C), and yields the decomposition in
GL(M,C) x &(N)-bimodules
= P Urecv

AEY(N)

()N
where U* is the irreducible representation of GL(M, C) with highest weight \. Again, the Schur-
Weyl measures have a property of stability with respect to random compression:

(RCy)« SWr,ny = SWay en)-

Indeed, we clearly have the algebraic identity

Res6 ") (((CM)®N) ~igo MR (CM)®F

2. OBSERVABLES OF YOUNG DIAGRAMS

Our objective is to understand the behavior of a random compressed partition RC;(\) when
A = Ay has size N and grows in such a way that the rows and columns of X are balanced: there are
O(v/'N) non-empty rows and O(v/N) non-empty columns in Ay. In Subsection 2.1, we explain
the adequate point of view in order to deal with such partitions, and we introduce the notion of
the transition measure p) of an integer partition A. Then, in Subsection 2.2, we introduce the free
cumulants of a Young diagram, which play an essential role in the discussion of the asymptotics.
We shall see in Section 3 that the random compression RC; () of a large balanced integer partition
has with high probability its transition measure close to the ¢-free compression of the transition
measure of \.
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2.1. Young curves and transition measures. Given an integer partition A with size IV, the Russian
convention for drawing it consists in taking the Young diagram of A and rotating it by 45 degrees,
and then look at it as a part of the xy-plane, the origin corresponding to the first cell of the Young
diagram, and the cells being drawn as squares with area 2. One also adds the half-lines y = £z, and
one looks at the upper boundary of this figure (in red on Figure 4). This curve wy : R — R, is
affine by parts, with slopes 1, and we have w,(s) = |s| for s large enough.

W)

~12°-100 -8 =6 -4 -2 0 2 4 6 8 10 12
FiGure 4. The Young curve w) associated to integer partition A = (10,6, 5,5,3,1).

wx(s)=s|
2 5

We call wy, the Young curve of the partition . It is also convenient to consider o, (s) =
which is a compactly supported positive continuous function. We have

/}RU,\(S)ds N

The curves w)y and o, are particularly useful in order to deal with growing sequences of Young
diagrams and limit shapes thereof. The functions wy belong to the space % of continuous functions
w : Ry — R which are equal to |s] for |s| large enough, and which are Lipschitz with constant 1.
For u > 0, this space is stable by a renormalisation

w(yu-)
w() = :
Vau
which multiplies the areas [, ““.7*l ds by a factor L. On the other hand, if w € %, then one can
define its transition measure as follows. We first introduce the generating function of w:

Go(z) = % exp (— /R Zfsi ds> ,
wi(s

where as before o(s) = <%=, The function G,, is well defined and holomorphic on the upper

—|s|
2
half-plane C, and it has the following properties:

(1) Forany z € C, G, (z) € C_ (negative imaginary part).
(2) We have lim,_, iy G, (iy) = 1.

General results from the theory of complex functions ensure then that G, is the Cauchy transform
of a probability measure: there exists a unique probability measure 1, on R such that

Gulz) = / Puo(ds)

R Z—S




RANDOM COMPRESSION OF AN INTEGER PARTITION 7

Conversely, any compactly supported probability measure y,, corresponds in this way to a Young
curve in %, and the convergence of all the moments of a sequence of compactly supported prob-
ability measures iy — N0 1 implies the uniform convergence wy — N 00 w over R of the
corresponding Young curves; see [Mél17, Section 7.4]. In the sequel, if A\ € Y(N), we denote
Hx = [, . In this particular case, the transition measure is discrete and supported by integers.
More precisely, consider the spectral measure of Indgg)ﬂ)(V’\). The Pieri rules for induction of

irreducible representations of symmetric groups yield:
S(N+1) rp/Ay A
Indg vy (V) = @V,
AA
where the sum runs over integer partitions which are obtained from A by adding exactly one cell
to the Young diagram. Therefore,
dim A
(N+1)dim\

Pragirmom A =
Let us associate to each possible integer partition A the abscissa x5 of the corner at which the cell
A\ X is added (by drawing the Young diagram with the Russian convention). Then, one can show
that

dim A
[y = Z —rT
£ (N+1) dimx
This is the origin of the terminology of transition measure: p, drives the random process of adding
randomly cells to a Young diagram A.

Example 2.1 (Large random partitions under the Plancherel measure). The Logan-Shepp-Kerov-
Vershik curve [1.S77; KV77] is the Young curve Q € % defined by:

{% (s arcsin($) + V4 —s?) if |s| <2,

U =175 if s > 2.

It is related to the Plancherel measures of the symmetric groups by the following law of large
numbers: if Ay is a random partition chosen under the Plancherel measure PLy;, and if

w (S) _ w/\N(\/NS)
N \/N y

then wy converges in probability towards 2 as IV goes to infinity; see Figure 5 for an illustration
of this result.

FIGURE 5. A random integer partition of size N = 400 under the Plancherel mea-
sure; the limit shape (in blue) is the Logan-Shepp-Kerov-Vershik curve.
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2

The LSKV curve is deeply connected to the Wigner semicircle 1aw fisemicirete (dS) = 1j5<2 —V‘;S ds,
which is its transition measure:

GQ(Z) =

/Lsemu:lrcle )

z+\/7 / z—s

2.2. Free cumulants of a Young diagram. Given a compactly supported probability measure
on R, its Cauchy transform G,,(z) is equivalent to < for z € C, and |z| — +oc, and it can be
expanded in a series of powers of 1:

Gul2) = >
k=0

where My, (1) = [, s* p(ds) is the k-th moment of y. The map z — G, (z) maps bijectively a
nelghborhood of oo in the complex plane to a neighborhood of 0, and it can be locally inverted by

a map
1 oo

w) = . + Z Ry (p) wh!
k=1

so that K,(G,(z)) = z for |z| large enough. The coeflicients (Ry(u))x>1 are called the free cu-
mulants of the measure u. For the link between these quantities and free probability theory, see
for instance [INSO6] and [Mél17, Section 9.1]. The free cumulants are related to the moments
(M (11))k>1 by the combinatorics of non-crossing partitions. Consider the set (k) of non-crossing
partitions of size k: they are the set partitions 7 of [1, k] such that one cannot find two distinct
parts m; and 7; and elements a,c € m;and b,d € m; witha <b<c<d. Ur=mUmU- - Uy,

we denote M, (1) =[], Mz, (1) and Ry ( ) =11, R|m|( ). Then, for any k£ > 1,
= ) R
TeN(k)

and this relation can be inverted by using the Mobius function of the lattice of non-crossing parti-
tions.

The free cumulants of a partition ) are defined by using the transition measure p,:
Ry (A) = Ri(pn).

We can of course extend the definition to Young curves w € %. The free cumulants are extremely
powerful observables in order to prove that a family of random partitions (Ax)yen chosen under
a family of spectral measures of representations (Py)nen admits a limit shape after rescaling the
Young curves by a factor v/N. This technique is due to Biane [Bia98; Bia01], who proved a deep
connection between the analytic properties of the Young curve wy (via its transition measure and
its free cumulants), and the algebraic properties of the irreducible representation V* of G(N). On
the analytic side, note that if sc, is the scaling of Young curves which multiplies the areas by a
factor %, then

B (eulo))(5) 1 JELIAE
Gscu(w)<z> - > exp < /R Y _ s ds | = P €xp . \/az — ds | = \/ﬂGw(\/aZ>7
SO fhse, (w)(B) = tw(y/u B) for any Borel subset B C R. As a consequence, for any k > 1,

_k
Mk(/’LSC7L(W)) =u" 2 Mi(po);

_k
Rk(,uscu(w)) =u 2 Rk‘(uw)

Therefore, if one has a sequence (\y)yen of random integer partitions such that

Vk>1, N7% Ry(Ay) —p Ri(w)
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for some Young curve w, then the scaled Young diagrams sc 5 (w», ) converge in probability to-
wards the limit shape w. Now, the free cumulants of large integer partitions are asymptotically
equivalent to the renormalised character values, as a consequence of the following important result
(see [Bia98, Theorem 1.3], [I002, Section 10] and [Mél17, Theorem 9.20]):

Theorem 2.2 (Biane, Ivanov-Olshanski). For A € 9(N) and k > 1, we define

Lk treMew) - >
s = N s SN =E
0 if N < k.

where NVF = N(N —1) - -- (N —k+1), ¢, isa k-cycle and ¢ is the defining morphism of the irreducible
representation V> of S(N). This renormalised character value can be expanded as a polynomial in the
free cumulants of \. Moreover, if we define a gradation deg Ry, = k, then

Xk = Rpy1 + polynomial in Ry, Rs, . . ., Ry, of degree smaller than k.

As a consequence, the criterion of convergence after scaling for a sequence (Ay)yen of random
integer partitions becomes:

Vk>1, N7 S(\y) —p Ripi(w).

A method of moments can be used in order to prove this convergence in probability of the scaled
character values. Actually, in many cases, one can even prove Gaussian fluctuations for the scaled
character values; see in particular [1002; Sni06a; Snid6b]. Notice that when Ay is chosen according
to a spectral measure Py, the expectation of Xy (Ay) is given by:

tr o"v (¢
Z myN tr ¢ (cx) = Nik—d(ibm ‘</Nk)

Thus, its computation is immediate if one knows the characters of the representations Viy. For the
computation of the higher moments (in particular the second one), one can use a similar technique
with observables in the algebra spanned by the functions Y; see [Mél17, Chapter 7] for a detailed
presentation of this algebra, whose construction is due to Kerov and Olshanski [KO9%4].

Example 2.3 (Logan-Shepp-Kerov-Vershik law of large numbers). With this technology, the proof
of the law of large numbers for Plancherel measures is almost immediate. Indeed, if Ay ~ PLy,
then E[ X (An)] = N 1x=1, so we have the convergence of the expectations

ki1 1 ifk=1
N7 2 E|Xk(AN)] 2 Nooo ; ’
S
By looking at the second moments, one can prove that the convergence of the expectations is
also a convergence in probability. Therefore, the scaled random diagrams sc /5 (Ay) converge in
probability towards the unique Young curve 2 whose free cumulants are:

1 ifk=2,
0 otherwise.

Ry, (Q2) = {

This is the LSKV curve, since Gq(z) and Ko(w) = < + w.

_ 2
T 2 4V22—4
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3. ASYMPTOTICS OF THE RANDOM COMPRESSED PARTITIONS

In the sequel, we fix a sequence (Ax)yen of integer partitions which can be random and which

have roughly size N (for instance, we can assume that % converges in probability to 1). We say

that (An)ven has limit shape w € % if we have the convergence in probability

sc/y(Way) —p w,

the topology on % being as before the topology of uniform convergence. By the previous discus-
sion, this is equivalent to the convergence in probability of the scaled random free cumulants, or
of the scaled character values. The limit shape satisfies Ry(w) = [ M ds = 1. We fix such a
limit shape, and we are interested in the behavior of RC;(Ay), and in the existence of a limit shape
w; for it.

3.1. Free compression of a probability measure and the law of large numbers. Given a com-
pactly supported probability measure p on R, its R-transform is the function R, (w) = K, (w) —
L =30 Re(p) wF; its coefficients are the free cumulants of 1. The free compression of p with
parameter ¢ € (0, 1) is the unique (compactly supported) probability measure m; () such that:

Rm(u) (w) = R#(tw).

Equivalently, Ry (m:(11)) = 57 Ry.(u) for any k > 1. The t-free compression of a Young curve w
is the Young curve 7;(w) such that pir, ) = m(11). This modifies the area R,(-) by a factor ¢, so if
w 1s normalised to have area 1, then 7;(w) has area t.

Theorem 3.1 (Biane). Let (An) ven be a sequence of random partitions which bas a limit shape w € %'
Foranyt € (0,1), (RCy(AN))nen has limit shape 7, (w):

SC\/N(WRCt()\N)) —p T (W).

The same result holds for the Poisson random compression:
SC\/N<wPRCt(/\N)) — P Wt(w).

The proof of the theorem is almost trivial from the previous discussion if instead of the conver-

gence in probability N~2 Ry (Ay) — Rj,(w), we assume a stronger convergence in joint moments
(this hypothesis is natural in the setting of random partitions stemming from spectral measures
of representations). Indeed, let us extend the definition of the renormalised character values by
allowing products of disjoint cycles: for A € 9(N) and p € Y(k), we set

tr ¢*(cp)
Z,(A) = N i
o) dim A\
where ¢, is a permutation with cycle type p, and the falling factorial vanishes if N < k. Given a
parameter ¢ such that [tN] > k, we can assume that ¢, € &([tN]), and then,

E[5,RGON)] = 3 Bl = A RC(N) = o] (e8] )

dim v
AEY(N)
veY([tN])
tr ¢*(c,)
_ 1k _ p
(END D7 Pl = A~

AEY(N)
=t" (1+O(N")) E[X,(An)].

Here, we have assumed that Ay is exactly of size N, but this is not really important. Now, X, =
Hfg R,.+1 + remainder, where the remainder is a polynomial of degree smaller than p+ ¢(p) — 1
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in the free cumulants. As a consequence, for any family (k1,. .., k) of positive integers, we have

¢
E =E [[[#" Ri.(\w)

i=1

y4
[ Br(RC:(A))

=1

(1 + O(N—%)> .

By assumption, the right-hand side is asymptotic as N goes to infinity to NZi=1 ¥ [T, Ri, (m(w));
this ends the proof.

Example 3.2 (Large random partitions under Schur-Weyl measures). For ¢ € R*, let us introduce
the Marcenko-Pastur distribution

fivp ¢ (ds) Qi(_l(i;cc))Q Lscle—2,c42) ds if ¢ € 10,1},
MP,c = /i—(s—c)2 .

ﬁ 136[072,c+2} ds + (1 - cig) 5_%((18) lf c>1.
Notice that if ¢ = 0, then one recovers the Wigner semicircle distribution. We refer to [Mél17,
Figure 13.4] for a representation of the densities of the Marcenko-Pastur distributions. The Cauchy
transforms of these probability measures are:

2

G z) =
) = s

9

and the inverses of these functions are

1 w J—

K w) = — + = —+ ) FZpkL

MMP,C( ) w 1— cw w Z
k=2

Therefore, Ry, (timp.c) = 872 1359, and the Marcenko-Pastur distributions behave well with respect

to free compression:

k
2

k—2
=12 T sy = <\/l_f C) Li>o = Ri(pap vie);

(mu(asire)) (VEB) = iygp i o(B).

for any Borel subset B C R. Consider now a random integer partition Ay under the Schur-Weyl
measure SW, .1 /5 y- For any integer partition p, one computes

lpl+2(p)
2 )

>€(p)|p| ~ o~

E[S,(\)] = N9 ([ V]

s0 Ry (scyx(way)) —p =2 for any k. Hence, Ay has a limit shape ., which is the Young curve
with transition measure pyp .. An explicit formula for Q. is given in [Bia01], see also [Mel17,
Figure 13.3]. In this framework, the stability of the Marcenko-Pastur distributions with respect to
free compression is the asymptotic counterpart of the stability of the Schur-Weyl measures with
respect to random compression. More generally, given any sequence of random integer partitions
such that

sc\/ﬁ(w,\N) — Q.
we have

SC\/W(WRCt(AN)) - Q\/fc
for any parameter ¢ € (0, 1).
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3.2. Random point process associated to a random partition. The result of the previous para-
graph has a global nature, since it concerns limit shapes of random integer partitions. Indeed, when
looking at the scaled shape of a partition Ay of size N, we forget everything that might happen
in a region of the boundary w, of size o(v/N). This makes one wonder whether it is also pos-
sible to obtain some Jocal information on the random partitions RC;(\y), either in the bulk of
the limit shape or at the edge. By local we mean in a region of size o(v/N), or even O(1). The
right way to think about this is to introduce the descent coordinates of a partition, and to study the
corresponding random point processes. Set Z' = Z + 1, and for A € 9), let us define

o1
M)\:{)\i—l+§},

which is an infinite configuration of points in Z' with the property that
card(Z' \ M,) = card(Z, N M,) < +oc.
The configuration M, is called the set of descent coordinates of the partition A, because it is obtained

by looking at the Young diagram of A drawn with the Russian convention, and by projecting on
the z-axis the middles of the decreasing segments of the boundary wy; see Figure 6 for an example.

FiGUure 6. The configuration M, C Z' associated to the integer partition A = (10, 6,5, 5,3, 1).

If )\ is random, then we can introduce the correlation functions
p(X) =PLX C M)|]
for X (finite) subset of Z'. In certain situations, these correlation functions happen to be given by
determinants: there exists a (Hermitian) kernel K : (Z')? — C such that
p(X) = det(K (2, y))z yex

for any X finite subset of Z'. We then say that M, is a determinantal point process with kernel K;
in the sequel, we identify the configuration M) with the discrete measure 3, J.. In the setting
of random partitions, the following result ensures that a large class of models of random partitions
yield determinantal point processes; see [OkoO1; Oko02].

Theorem 3.3 (Okounkov). Let X andY be two specialisations of the algebra of symmetric functions
Sym which are non-negative on the basis of Schur functions. The Schur measure on ) with parameters
X andY is given by

Pxy[A] = exp <— i M) sx(X) sa(Y).
K=1
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If X is chosen randomly according to Px vy, then M) is determinantal, and its kernel is given by the
following generating series:

\/% J)(yy(Z)

z—w Jyy(w)’

%X,Y(zaw) = Z K(ZE,y) Zx w—y =

z,yeZ’

where

Tey(2) = exp ( pk(kX) ko Zpkg{?/) Zk) _

k=1 1

The formula for #x y(z,w) provides a representation of the kernel K(z,y) as a double contour

integral:
1 1 Jxy(z) dzdw
K(2,y) = —— ’
(z.9) (2im)? j{ﬁbw z—w Jxy(w) 2w’

and the asymptotics of the kernel in the case where x = xn, vy = yny, X = Xy and Y = Yy can
usually be obtained by saddle point analysis.

Example 3.4 (Local asymptotics of the Plancherel measures). Consider the Poissonised Plancherel
measure PLggy = Y %_, St PLy, where 6 is a positive real number. The exponential specialisa-

tion E of the algebra Sym is defined by
n(E)=1 :  pex2(E)=0.
The Frobenius-Schur change of basis formula between Schur functions and power sums shows then

that i
1m
S)\(E) = W

for any integer partition \. It follows that PLyy can be identified as the Schur measure with
parameters X =Y = VO E. In this case,

Jxy(z) =exp (\/5 (z — z’l)> = Z Jn(2V0) 2"

is the generating series of the Bessel functions .J,(2v/6), n € Z. We therefore have:
1 1 1 1
Koy (7, y) = 53 ﬁ —— exp (\/5(2 —z —w+ w_1)> 2z wY 2 dz dw.
{} (2im)? S op g 2 = w

This expression can be used in order to recover the Logan-Shepp-Kerov-Vershik law of large
numbers, and to determine the local asymptotics of the random partitions under the Poissonised
Plancherel measures. First, as 6 goes to infinity, we have the following limiting result when

ﬁ—>506(—2,2) ; £—>50€(—2,2) ; Tog—Yp=x—y € L.

Vo Vo

The kernel Kygy (g, yo) converges then towards the discrete sine kernel:

sine sin ¢ xr—y

where ¢y = arccos(%); see [BOOO00, Theorem 3] and [Oko02, Section 3]. Therefore, the discrete
determinantal point process
M (0y,50(B € Z') = My pr,, (|50V0] + B)

converges towards a translation-invariant determinantal point process on Z'. An analogue re-
sult of convergence of determinantal point processes can be established at the edge of the region

bl

(—2v/6,2+/0), after an adequate renormalisation: one obtains the Airy determinantal point pro-
cess, see [BOOO0O, Theorem 4]. On the other hand, the local convergence of the point process of
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the descent coordinates allows one to recover the Logan-Shepp-Kerov-Vershik law of large num-
bers. Indeed by taking xg = ys, one sees that the density of descending segments around syv/6
tends to 22 = L arccos (). Therefore, the limiting derivative of sc_z(wy) at s = sg € (—2,2) is

2 S 2 . s
1 — — arccos (—) = — arcsin (—) .
T 2 T 2

This is precisely the derivative at s of the LSKV curve .

Example 3.5 (Local asymptotics of the Schur-Weyl measures). Consider similarly the Poissonised
Schur-Weyl measure
> e 9N
SWQ{Q} = Z N' SWLC 1fJ N>

N=0

where ¢ € R* is a fixed parameter. In the following, we denote |¢™'V0]| = (cy)"'V/8; as 6 goes to
infinity, ¢y converges to ¢. For A € Y(N), we have

SW(Cg)*lx/g,NP\} _ dim A S)\(l(ce)il\/g) _ 3)\<E) 3)\(1(50)71\/5>
N N ((eo)tVO)N ((co)" WOV

where 1M denotes the alphabet (11, 15, ...,15,0,0,...). Therefore,
SWe gy [N = e sy (VO E) 5x((co) ) V7)

is the Schur measure with parameters X = V0 E and Y = (¢y)(©)™"V?. The associated function
Jx.y isgiven by Jx y (2) = exp(vVO(z+(cg)~" log(1—cyz1))). Note that we recover the Plancherel
case by making ¢y go to 0. As before, we obtain a double contour integral:

K. {9}@ y)
1 1 —T=g Y3
exp z + — log R —w — — log R =Y kdw.
2
17T |z|>|w|>co Co z Co w Z—Ww

In the sequel, we drop the index 6 from ¢, in order to simplify the notations. Consider parameters
T, Ys € Z such that

ﬁ—>soe(c—2,c+2) ; £—>30€(c—2,c+2) ; Tg—Yp=x—Yy € L.

Vo Vo
We have

K. 101 (20, yg) = T }'{f{ exp(\/_F( f) \/_F( \/5)) dz dw,

where F(z,t) = z + ¢ 'log(1 — cz‘l) — t log z. The two critical poins of F'(+, sg) are

; . to — ¢
2 = ¢+ et wrchgbozaurccos<02 )

By deforming the paths of integration exactly as in [ Oko02, Section 3.2] and picking up the residues,
one obtains:

1 1
11m K. {9}(900, ye) 2 f;hc%wo L eteito pr—y+1 dz,

where the path of integration ~ if the arc of circle with center ¢, radius 1 and connecting the two
critical points. We can deform this path and take instead the arc of circle with center 0 and radius
1 + csp; the integral is then easy to compute, hence,

K0y (T, Yp) —r0-s00 KV (2,
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where )y = arccos(5772=). By the same arguments as for the Plancherel measure, we see that the

limiting derivative of sc_z(wy) at s € (¢ —2,¢+2) is

2 . c+s

= arcsin | ——— |,

T 2v/1+cs
which is the derivative of §2.; hence, one recovers the law of large numbers (at least in the interval
(c—2,c+2)).

3.3. Random point process associated to a random tableau. If X is an integer partition and
T € ST()), then by looking at the associated sequence of integer partitions () = A ~ X1~
—o AW = )), one obtains a family of non-intersecting paths which connects the "empty"
configuration My = Z'_ to the configuration of descents M,. Each insertion of a cell corresponds
to a move of one of the paths to the right; see Figure 7.

o0 0000 ° 30e
28
25
24 )3
17, e
15 16
BN
12
ELS
(%
_. 8
6 *To
—. 5
_4.3 ,
e ®

12 10 -8 -6 -4 -2°0 2 4 6 & 10 12

Ficure 7. The set of non-intersecting paths associated to the standard tableau from
Figure 2; it is encoded by the configuration of points M7 (in blue).

We encode this set of intersecting paths by the set My C (Z' x Z) of the coordinates of the
right moves; the first coordinates is the location of the right move, whereas the second coordinate
is its time. For a tableau of size N, we obtain a finite configuration of N points. We can extend the
definition to increasing sequences of partitions

D=2 AN AN S AN = )
where the times t; < t5 < .-+ < ty are in Ry; the configuration Mr is then a finite subset of
Z' x R,. In this setting, if t € Ry, we denote \y = Aiand T, = (\° 7 -+ 7 Al), where
t; <t < tiy1. The Poisson standard tablean with shape ) is obtained by picking N independent

points in [0, 1], by reordering them so as to obtain the sequence of times t; < --- < ty, and by
choosing the random tableau T" uniformly in ST(\). We then denote 7 = PST()). By definition,

shape((PST(N));) = PRCy())

for any parameter ¢ € (0,1). The following result ensures that if T is a Poisson standard tableau,
then My is determinantal on Z' x (0, 1) (see [GR17, Theorem 1.5]):
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Theorem 3.6 (Gorin-Rahman). Fix A\ € ), and denote Mr the point process on Z' x [0, 1] associated
to T = PST(N). It is determinantal with kernel

(ty —ty)" !
B0, (v 82)) = Lamyic ==

H( (F(y+z+%)> . .

z — 1) (1 —¢t)%
fj{ Ay +2) I( +1)1 ( 2)% ( 1) dz dw,
(2im)? Hy(x—1—-w )(F(x—w—§)>z+w+y—3:+1

(—w)

where H), is the Frobenius generating series of the diagram X\ [M¢l17, p. 343, defined by
) i 1 u
HA(U):H e 2 - = HteM@
i=1u_/\i+l_§ HteMAu

and the double contour integral runs over two paths v, and ~,, which are drawn in Figure 8. Here, the
reference measure is the tensor product of the counting measure on Z' by the Lebesgue measure on [0, 1].

Ficure 8. The contours of integration for the kernel K, (they enclose only the
integers in [0,z + \] — 2] and in [0, \; — £ — y], and they do not cross).

Remark 3.7. The generating function H), is related to the generating function G by:

1 H)\(Z - l)

Gaz) = - 222,

z H)\(Z + 2)
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