Ising model - Exam 1

You may use your handwritten and printed notes. No book is allowed.
9:00-12:00

Exercise 1 (from the lectures): transfer matrix and magnetization
Consider the Ising model on $\{-n, \ldots, n\} \subset \mathbb{N}$, with $\beta>0, h=0, J \equiv 1$, and + boundary conditions. Quickly define the transfer matrix and express $\left\langle\sigma_{0}\right\rangle_{\beta, 0, n}^{+}$in terms of this transfer matrix (you're not expected to compute this further with eigenvalues...)

Exercise 2: positive magnetization for positive magnetic field

We consider the infinite-volume Ising measure μ^{+}on \mathbb{Z}^{d} for $d \geq 1$, at inverse temperature $\beta>0$ and magnetic field $h>0$. Show that $m^{+}(\beta, h)>0$.

Hint: on a finite domain $\Lambda \Subset \mathbb{Z}^{d}$, define a measure ν with the magnetic field h only affecting 0 . Show that $\mu_{\Lambda, \beta, 0}^{+} \leq_{s t} \nu \leq_{s t} \mu_{\Lambda, \beta, h}^{+}$and compute $\nu\left(\sigma_{0}\right)$.

Exercise 3: Ising model on the regular tree

Let $p \geq 2$ and $n \geq 1$, we consider the p-regular tree cut at height n, that is, the connected acyclic graph containing a vertex 0 such that every vertex v with $d(0, v) \leq n$ has degree p, and the ones at distance n have degree 1 ; see the figure below for the example of $p=3, n=4$. We consider p as fixed, and we denote this graph by T_{n}.

The vertices of T_{n} are denoted V_{n} and its edges E_{n}. Moreover, the set of leaves (vertices of degree 1) is denoted by ∂V_{n}; note that it is included in V_{n}. For $\beta>0$, we consider the probability measure $\mu_{\beta, n}^{+}$on $\Omega_{n}^{+}:=\left\{\sigma \in\{-1,+1\}^{V_{n}} \mid \forall x \in \partial V_{n}, \sigma_{x}=+1\right\}$, given by

$$
\forall \sigma \in \Omega_{n}^{+}, \mu_{\beta, n}^{+}(\sigma)=\frac{1}{Z_{\beta, n}^{+}} \exp \left(\beta \sum_{\{x, y\} \in E_{n}} \sigma_{x} \sigma_{y}\right),
$$

with

$$
Z_{\beta, n}^{+}=\sum_{\sigma \in \Omega_{n}^{+}} \exp \left(\beta \sum_{\{x, y\} \in E_{n}} \sigma_{x} \sigma_{y}\right) .
$$

The expectation relative to $\mu_{\beta, n}^{+}$is denoted $\langle\cdot\rangle_{\beta, n}^{+}$.

1. (Lecture question) Show that $\left\langle\sigma_{0}\right\rangle_{\beta, n}^{+}$is monotonic in n and in β. You may use the Griffith inequalities freely.
2. Deduce the fact that $\left\langle\sigma_{0}\right\rangle_{\beta}^{+}:=\lim _{n \rightarrow \infty}\left\langle\sigma_{0}\right\rangle_{\beta, n}^{+}$is well-defined, and define the critical temperature β_{c}.
3. Show that

$$
\left\langle\sigma_{0}\right\rangle_{\beta, n}^{+} \leq p(p-1)^{n-1} \tanh (\beta)^{n}
$$

and deduce a bound on β_{c}.
4. In this question, we drop the β in notations for simplicity.
(a) Write

$$
Z_{n}^{+}=\sum_{\sigma_{0} \in\{-1,+1\}}\left(Y_{n-1}\left(\sigma_{0}\right)\right)^{p}
$$

where $Y_{n-1}\left(\sigma_{0}\right)$ is a sum depending on σ_{0} that you shall write explicitly.
(b) Show that the sequence defined for $n \in \mathbb{N}$ by $x_{n}:=\frac{Y_{n}(-1)}{Y_{n}(+1)}$ satisfies the recursion relation $x_{n}=F\left(x_{n-1}\right)$, where

$$
F(x)=\frac{1+e^{2 \beta} x^{p-1}}{e^{2 \beta}+x^{p-1}}
$$

(c) Show that $\left\langle\sigma_{0}\right\rangle_{\beta}^{+}=0$ iff $\lim _{n \rightarrow \infty} x_{n}=1$.
(d) Find the value of β_{c}.
5. (Bonus, to try only if you are bored) Show that as $\beta \rightarrow \beta_{c}$ with $\beta>\beta_{c}$,

$$
\left\langle\sigma_{0}\right\rangle_{\beta}^{+} \sim C\left(\beta-\beta_{c}\right)^{b}
$$

for a certain constant C and a critical exponent b, and compute them. Compare with critical exponents you know.

Exercise 4: Curie-Weiss magnetization with Stein's method

Recall that in the Curie-Weiss model, we consider the Ising model on the complete graph K_{n}, whose vertices are denoted $\{0, \ldots, n-1\}$, and for $\beta>0$ we define the measure $\mu_{\beta, n}$ by

$$
\forall \sigma \in \Omega=\{ \pm 1\}^{\{0, \ldots, n-1\}}, \mu_{\beta, n}(\sigma)=\frac{1}{Z_{\beta, n}} \exp \left(\frac{\beta}{n} \sum_{i, j} \sigma_{i} \sigma_{j}\right)
$$

where the sum is over all $(i, j) \in\{0, \ldots, n-1\}^{2}$, possibly equal. We want to establish the behaviour of the magnetization $M_{n}:=\frac{1}{n} \sum_{i=0}^{n-1} \sigma_{i}$, by proving the "spontaneous magnetization" theorem of the course, without using large deviation estimates.

We consider a probability measure P on $\Omega \times \Omega$ obtained as follows: σ is sampled with distribution $\mu_{\beta, n}$, and σ^{\prime} is obtained by doing one step of the Glauber dynamics from σ (that is, by chosing one vertex uniformly at random and flipping it with the conditional probability defined in the lectures).

1. Write down $P\left(\sigma, \sigma^{\prime}\right)$ explicitly (you may only write it for $\sigma \neq \sigma^{\prime}$), and check that it is exchangeable: $P\left(\sigma, \sigma^{\prime}\right)=P\left(\sigma^{\prime}, \sigma\right)$.

For $\left(\sigma, \sigma^{\prime}\right) \in \Omega^{2}$, let $F\left(\sigma, \sigma^{\prime}\right)=\sum_{i=0}^{n-1} \sigma_{i}-\sigma_{i}^{\prime}$, and denoting $E[\cdot]$ the expectation for P, let $f(\sigma)=E\left[F\left(\sigma, \sigma^{\prime}\right) \mid \sigma\right]$.
2. Show that

$$
f(\sigma)=\frac{1}{n} \sum_{i=0}^{n-1}\left(\sigma_{i}-\tanh \left(\frac{2 \beta}{n} \sum_{j \neq i} \sigma_{j}\right)\right)
$$

and deduce that P-alomst surely on $\left(\sigma, \sigma^{\prime}\right)$,

$$
\left|f(\sigma)-f\left(\sigma^{\prime}\right)\right| \leq \frac{2+4 \beta}{n} .
$$

3. Let g be a function on Ω, show that

$$
E[f(\sigma) g(\sigma)]=\frac{1}{2} E\left[F\left(\sigma, \sigma^{\prime}\right)\left(g(\sigma)-g\left(\sigma^{\prime}\right)\right)\right] .
$$

4. Deduce that $f \rightarrow 0$ in probability for $\mu_{\beta, n}$, that is,

$$
\forall \epsilon>0, \mu_{\beta, n}(|f|>\epsilon) \rightarrow_{n \rightarrow \infty} 0
$$

5. Show that $\mu_{\beta, n}$-almost surely,

$$
\left|f(\sigma)-\left(M_{n}-\tanh \left(2 \beta M_{n}\right)\right)\right| \leq \frac{4 \beta}{n}
$$

6. Conclude by proving the statement of the spontaneous magnetization theorem for the Curie-Weiss model.

Exercice 5 (*look at this only if you've tried all the rest*): duality of the eight-vertex model

Let G be a finite, connected, planar graph where every vertex has degree 4 . Let V, E, F be its set of vetices, edges and faces respectively. We can color faces of G in black and white in a bipartite way (that is, adjacent faces always having different colors), see an example below.

Let $\Omega=\{-1,+1\}^{E}$, and let $\Omega_{e}=\left\{\omega \in \Omega \mid \forall v \in V, \quad \sum_{e \sim v} \omega_{e} \in\{-4,0,4\}\right\}$, where the sum is over the four edges adjacent to v. We identify $\omega \in \Omega_{e}$ with the set of edges where it is +1 , see the examples below.

Let $a, b, c, d \in \mathbb{R}$. For $\omega \in \Omega_{e}$ and $v \in V$, let $w_{v}(\omega)$ be a local weight equal to either a, b, c or d depending on the local configuration of ω on the four edges around v, according to the following rule (ω is shown in thick lines):

Let $Z(a, b, c, d)=\sum_{\omega \in \Omega_{e}} \prod_{v \in V} w_{v}(\omega)$.
Example: a graph G with a configuration $\omega \in \Omega_{e}$ (in thick lines).

In that case, identifying V with $\{1, \ldots, 6\}$, we have $w_{1}(\omega)=d, w_{2}(\omega)=b, w_{3}(\omega)=c, \ldots$ The total weight of ω is $a b c^{2} d^{2}$.

1. Getting inspiration from the High Temperature Expansion, show that

$$
Z(a, b, c, d)=Z\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right)
$$

where

$$
\left(\begin{array}{l}
a^{\prime} \\
b^{\prime} \\
c^{\prime} \\
d^{\prime}
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cccc}
1 & -1 & 1 & -1 \\
-1 & 1 & 1 & -1 \\
1 & 1 & 1 & 1 \\
-1 & -1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right) .
$$

2. Are there other transformations of (a, b, c, d) that leave Z invariant?
3. What does this model have to do with the Ising model?
