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2 Introduction

Plan de la thèse
Dans cette thèse, nous étudions plusieurs problèmes de mécanique statistique, liés à l’exis-
tence de modèles intégrables, ou exactement solubles. En introduction, dans la Section 1 (en
français), nous proposons un bilan historique des grandes idées de la mécanique statistique,
en insistant particulièrement sur les différentes notions d’intégrabilité. Le reste de cette thèse
est rédigé en anglais ; dans la Section 2, nous définissons les modèles qui interviennent par la
suite : modèle d’Ising, modèle de dimères, modèles “vertex” et modèles de boucles, ainsi que
les transformations classiques permettant de passer de l’un à l’autre. Dans la Section 3 nous
discutons en détail l’une des acceptions les plus fréquentes de la notion d’intégrabilité : l’exis-
tence de transformations triangle-étoile ou équations de Yang-Baxter, et leurs nombreuses
applications. Les résultats obtenus au cours de cette thèse sont résumés en détail dans la
Section 4, et démontrés dans les chapitres suivants. Ceux-ci sont organisés comme suit :

• Dans le Chapitre I, nous étudions la transformation triangle-étoile du modèle d’Ising,
sous la forme d’une équation d’évolution polynomiale proposée par Kashaev [Kas96].
Nous montrons que cette évolution est encodée par un modèle de boucles appelées
boucles C(1)

2 , ce qui résout un problème ouvert de Kenyon et Pemantle [KP16]. Nous
donnons plusieurs propriétés statistiques de ce modèle de boucles, comme son énergie
libre ou l’existence de formes limites, qui délimitent les phases du modèle.
Le contenu de ce chapitre est tiré de [1], publié dans Journal of Combinatorial Theory
series A.

• Dans le Chapitre II, nous étudions le modèle des huit sommets ou eight-vertex model
pour un régime particulier appelé régime des fermions libres. Nous exprimons de nou-
velles symétries du modèles, qui permettent de le reformuler en termes de dimères sur
un graphe biparti, dont l’étude rigoureuse est très avancée. Nous donnons de nouvelles
solutions aux équations de Yang-Baxter pour ce modèle, puis nous exprimons des me-
sures de Gibbs et des corrélations exactes, ainsi que des propriétés de couplage et de
courbes spectrales.
Le contenu de ce chapitre est tiré de la prépublication [2], soumis.

• Dans le Chapitre III, nous proposons de réinterpréter la transformation triangle-étoile
de certains modèles comme des théorèmes d’incidence en géométrie discrète, via des
plongements canoniques de graphes. Les modèles couverts par cette théorie incluent
à l’heure actuelle les réseaux de résistance et le modèle d’Ising, et nous proposons de
possibles généralisations géométriques.
Le contenu de ce chapitre est un travail en cours, en commun avec Sanjay Ramassamy
et Paul Thévenin.

• Le Chapitre IV concerne un problème de théorie des nombres, sans rapport avec la
mécanique statistique : il s’agit d’étudier les partitions du graphe divisoriel en un
nombre minimal de chaînes. Nous montrons que de telles partitions peuvent contenir
de très longues chaînes d’ordre N1−o(1).
Le contenu de ce chapitre est un travail en commun avec Éric Saias [3], à paraître dans
Acta Arithmetica.



3

Outline of this thesis
In this thesis, we study several problems in statistical mechanics, related to the existence of
integrable or exactly solvable models. In the introduction, in Section 1 (in French) we give a
historical overview of the main historical ideas of statistical mechanics, with an emphasis on
the different notions of integrability. The rest of this thesis is written in English; in Section 2,
we define the models that appear later: the Ising model, the dimer model, vertex models
and loop models, as well as some classical transformations between them. In Section 3
we discuss one of the most frequent meaning of integrability: the existence of star-triangle
transformations or Yang-Baxter equations, and their numerous applications. The results
obtained in this thesis are then summed up in detail in Section 4, and proved in the following
chapters. These are organised as follows:

• In Chapter I, we study the star-triangle transformation of the Ising model, stated as
a polynomial evolution equation by Kashaev [Kas96]. We show that this evolution is
encoded by a loop model known as the C(1)

2 loop model, thus solving an open problem
of Kenyon and Pemantle [KP16]. We give several statistical properties of this loop
model, such as its free energy or the existence of limit shapes, that separate the phases
of the model.
The content of this chapter is taken from [1], published in Journal of Combinatorial
Theory series A.

• In Chapter II, we study the eight-vertex model in a particular regime known as free
fermions. We express new symmetries of the model, that let us reformulate it into
dimers on a bipartite graph, a model whose rigorous study is extremely advanced. We
give new solutions to the Yang-Baxter equations, and we express Gibbs measures and
exact correlations, as well as some coupling properties and spectral curves of the model.
The content of this chapter is taken from the preprint [2], submitted.

• In Chapter III, we give interpretations of star-triangle transformations of some models
as incidence theorems in discrete geometry, via canonical embeddings of graphs. The
models that fall into this theory include resistor networks and the Ising model, and we
suggest possible geometric generalisations.
The content of this chapter is a joint work in progress with Sanjay Ramassamy and
Paul Thévenin.

• Chapter IV concerns a problem of number theory, unrelated to statistical mechanics:
we study the partitions of the divisor graph into a minimal number of paths. We show
that such partitions can contain very long paths, of order N1−o(1).
The content of this chapter is a joint work with Éric Saias [3], to be published in Acta
Arithmetica.



4 Introduction

1 Bref historique
Dresser un historique sérieux de la mécanique statistique, de ses problématiques et de ses
méthodes, est un objectif impossible et hors de propos dans cette thèse. Je me propose de
donner ici un simple point de vue, très partiel, sur les grandes idées qui ont motivé les
objets présentés par la suite. On trouvera plus d’informations dans les sources d’inspiration
principales de cette partie, les livres de référence [McC10, DFMS97, BBT03, Bax82].

1.1 Mécanique statistique à l’équilibre
L’objectif général de la mécanique statistique est la description de systèmes complexes, c’est-
à-dire possédant un grand nombre de degrés de liberté. On peut penser à un système physique
composé de nombreuses particules libres : l’air dans la pièce, l’eau dans une casserole, un
aimant, etc. Du côté microscopique, on sait décrire avec précision les propriétés des com-
posants élémentaires, par exemple avec les lois de la physique des particules. À l’inverse, à
grande échelle, le système est décrit par un champ d’étude tout autre, la thermodynamique.
Il se trouve que ces deux descriptions présentent des phénomènes radicalement différents,
voire incompatibles. Cette discordance entre monde microscopique et monde macroscopique
est illustrée de manière célèbre par le paradoxe de l’irréversibilité : bien que les particules élé-
mentaires obéissent à des équations réversibles dans le temps, les phénomènes qu’on observe
à grande échelle sont généralement irréversibles.

James Maxwell
(1831 - 1879)

En 1877, en se basant notamment sur des travaux de Maxwell, Boltzmann propose un
moyen d’étudier cette question [Bol68]. Lorsque le système est trop complexe, son état mi-
croscopique nous est inaccessible. Toutefois, Boltzmann formule les postulats suivants1 :

• En l’absence d’information sur l’état précis d’un système isolé, on postule qu’il se trouve
dans un état aléatoire, choisi uniformément parmi les états accessibles.

• Pour un système isolé, les états accessibles sont ceux qui ont la même énergie que le
système initial. Autrement dit, l’énergie totale est la seule quantité conservée au cours
du temps.

Autrement dit, on va distinguer un micro-état, qui est un état possible du système parmi
tous les états accessibles, et un macro-état, qui est une variable aléatoire à valeurs dans
l’ensemble des micro-états.

Ludwig
Boltzmann

(1844 - 1906)

À partir de ces hypothèses, Boltzmann considère un système non plus isolé, mais mis en
contact avec un thermostat qui fixe sa température T . Le système et le thermostat peuvent
échanger de l’énergie, donc l’énergie du système n’est plus fixée. À partir des postulats
précédents appliqués à l’ensemble du système et du thermostat, Boltzmann montre que la
probabilité de trouver le système dans un état microscopique σ vaut

P(σ) = 1
Z

e−βE(σ), (1)

où E(σ) est l’énergie du système, et β = 1
kBT

avec kB ' 1, 38× 10−23JK−1 la constante de
Boltzmann. Le coefficient de renormalisation Z, qui fait en sorte que (1) soit effectivement

1La question de la pertinence de ces postulats fait l’objet de pans entiers de recherche, autant en mathé-
matiques qu’en physique, depuis leur formulation, et nous ne nous y pencherons pas ici. On peut consulter
par exemple [Spo91] pour plus d’informations.
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une mesure de probabilité, est appelé fonction de partition. Dans le cas où l’ensemble des
états accessibles σ est dénombrable et où la somme est finie, elle s’exprime comme

Z =
∑
σ

e−βE(σ).

Ce macro-état est connu sous le nom de mesure de Boltzmann.
Willard Gibbs
(1839 - 1903)

La fonction de partition n’est pas seulement une constante de renormalisation. Vue
comme fonction des paramètres du système (par exemple la température β ou les forces
d’interaction entre particules), elle contient beaucoup d’information. À titre d’exemple, sup-
posons que l’on veuille connaître l’énergie moyenne du système. Celle-ci s’exprime comme

E[E] =
∑
σ

E(σ) 1
Z

e−βE(σ)

= − 1
Z
∂Z
∂β

= −∂(lnZ)
∂β

.

On voit que la connaissance de Z comme fonction “explicite”, “simple” ou “factorisée” des
paramètres du système permet de calculer des quantités physiques.

On peut considérer l’article de Boltzmann comme l’acte de naissance de la mécanique
statistique. La portée de cette idée, initialement réservée à la théorie cinétique des gaz, a
été étendue à de nombreux systèmes notamment avec les travaux de Gibbs [Gib02], qui
propose une formulation générale de la mesure de Boltzmann. Plus tard, ces concepts ont
été appliqués à la physique quantique, avec les travaux notamment de Von Neumann et
Landau dans les années 1920. Elle est aujourd’hui un des piliers de la physique moderne et
trouve des applications jusqu’à la sociologie ou l’économie.

Figure 1: Une simulation du modèle d’Ising sur une portion du réseau carré avec conditions
au bord + (rouge) en bas et − (bleu) en haut, pour diverses températures.
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Exemple: Le modèle d’Ising

Pour illustrer la mesure de Boltzmann, faisons un saut dans le temps et considérons un
des modèles les plus classiques de la mécanique statistique, le modèle d’Ising. Introduit
par Lenz et Ising dans les années 1920 [Len20, Isi25], il modélise un métal dont les
atomes sont placés sur un réseau. On suppose pour simplifier que chaque atome est
représenté par un aimant ou spin qui peut pointer vers le Nord (spin +) ou vers le Sud
(spin −). Les aimants interagissent de sorte à pointer plutôt dans la même direction ;
on parle de ferromagnétisme.
On va modéliser cette situation en prenant un graphe fini G , composé de sommets V
reliés par des arêtes E , et un micro état σ est une fonction de V vers {−1,+1}. On
simplifie encore le problème en supposant que les spins n’interagissent qu’entre plus
proches voisins. On définit donc l’énergie de σ par

E(σ) = −
∑

e={x,y}∈E

Jeσxσy

où les (Je)e∈E sont des constantes positive appelées constantes de couplage. L’idée est
que l’énergie du système est d’autant plus faible que les spins voisins sont alignés. La
mesure de Boltzmann est donc

P(σ) = 1
Z

eβ
∑

Jeσxσy = 1
Z
∏
e

eβJeσxσy

et la fonction de partition vaut

Z =
∑
σ

∏
e

eβJeσxσy .

Un exemple de quantité d’intérêt, ou observable, est la corrélation spin-spin sur une
arête e = {x, y}. Celle-ci s’obtient également en calculant des dérivées partielles de la
fonction de partition :

E[σxσy] = 1
β

∂ (lnZ)
∂Je

Ernst Ising
(1900 - 1998)

1.2 Comportements critiques

Une des motivations essentielles de la mécanique statistique est la compréhension des tran-
sitions de phase. Ce sont des changements brusques du comportement macroscopique du
système à une température donnée : passage d’un état solide à un état liquide, d’un liquide
à un gaz, ou encore magnétisation spontanée d’un matériau ferromagnétique en dessous de
sa température de Curie. Lorsque le système atteint cette température, on parle de compor-
tement critique.

En mécanique statistique, le fait que le système soit dans un état critique s’interprète de
la façon suivante. Habituellement, dans un système de particules en interaction, on trouve
des longueurs typiques, comme la longueur de corrélation ξ. Si deux particules se trouvent
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Figure 2: Le modèle de Schelling [Sch71], qui décrit des phénomènes de ségrégation - ici entre
des populations bleues et rouges, simulé par Frank McCown - est un modèle de mécanique
statistique2.

en position x et y, on s’attend à ce que la corrélation entre leurs états se comporte comme

〈σxσy〉 ∼ exp
(
−|x− y|

ξ

)
. (2)

C’est le cas dans la plupart des systèmes, comme on peut le voir avec la taille des “bulles”
dans les simulations de droite et de gauche de la Fig. 1. Mais dans la figure centrale, obtenue
pour une température critique βc (telle que βcJ = 1

2 log(1 +
√

2)), on trouve des bulles de
toutes tailles ; cela n’arrive qu’à la température critique. Il n’y a donc pas de longueur typique
de corrélation, ou bien elle devrait être infinie. En réalité, les corrélations à longue portée
n’ont plus un comportement exponentiel comme (2), mais en loi de puissance.

On dira donc, informellement, que dans un système critique, la longueur de corrélation
ξ devient infinie.

1.3 Intégrabilité...

Pour étudier des phénomènes impliquant un grand nombre de particules élémentaires, une
stratégie est donc de concevoir un modèle dont on pense qu’il possède les caractéristiques
essentielles du système étudié, lui associer une certaine fonction d’énergie et donc une mesure
de Boltzmann, et tenter d’estimer son comportement typique3. En pratique, ce dernier but
est généralement impossible, c’est pourquoi on doit souvent simplifier le modèle. Mais pour
un petit nombre de modèles dits intégrables, des calculs exacts peuvent être menés. Pour
mieux cerner la notion d’intégrabilité, il est utile de revenir sur le sens que lui ont donné les
physicien·ne·s et les mathématicien·ne·s en mécanique classique et en physique quantique.

2L’expérimentation ludique de ce modèle sur https://ncase.me/polygons/ est instructive et donne une
bonne idée du genre de phénomène qu’on rencontre en mécanique statistique, notamment les transitions de
phase.

3Par exemple en calculant “explicitement” sa fonction de partition et en prenant les dérivées partielles
appropriées.

https://ncase.me/polygons/
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a) ...en mécanique classique (intégrabilité au sens de Liouville)

La mécanique hamiltonienne est un formalisme général pour la mécanique classique. L’état
d’un système est décrit par un ensemble de variables instantanées ou coordonnées généralisées
q(t) = (qi(t))i=1...N , et des impulsions généralisées p(t) = (pi(t))i=1...N . Elles sont choisies
de manière à ce que pour une certaine fonction H(q,p) appelée hamiltonien, qui généralise
l’énergie du système4, les équations du mouvement s’écrivent

dqi
dt = ∂H

∂pi
,

dpi
dt = −∂H

∂qi
.

Plus généralement, pour toute fonction f(q,p) de l’état du système,

df
dt = {f,H} (3)

où {·, ·} est le crochet de Poisson :

{A,B} =
N∑
i=1

[
∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi

]
.

Joseph Liouville
(1809 - 1882)

L’équation (3) indique que si {f,H} = 0, alors f ne varie pas au cours du temps. On parle
de constante du mouvement. Un exemple de constante du mouvement est le hamiltonien H
lui-même : c’est la conservation de l’énergie.

Un système est dit intégrable au sens de Liouville s’il existe N constantes du mouvement
indépendantes f1 = H, f2, . . . , fN telles que pour tous i, j, {fi, fj} = 0 (on dit qu’elles com-
mutent au sens de Poisson). Dans ce cas, le théorème de Liouville affirme que la trajectoire
du système est complètement caractérisée par les valeurs de ces N constantes. Plus précisé-
ment, il donne un changement de variable tel que l’équation d’évolution est conjuguée à un
produit de translations sur un tore. Nous renvoyons à [BBT03] pour davantage de précisions.

b) ...en mécanique quantique

Dans le cas de la physique quantique, l’état du système est représenté par un élément d’un
espace de Hilbert, et le hamiltonien est remplacé par un opérateur auto-adjoint agissant sur
cet espace. Le crochet de Poisson est alors remplacé par le commutateur de deux opérateurs,
[A,B] = AB − BA. L’analogue des constantes du mouvement (fi) est alors un système
complet d’observables qui commutent.

Bruria Kaufman
(1918 - 2010) c) ...au sens des matrices de transfert

L’apparition du terme “intégrabilité” en mécanique statistique est liée à l’utilisation des
matrices de transfert. Pour comprendre de quoi il s’agit, reprenons l’exemple du modèle
d’Ising, et de sa solution pour le réseau carré Z2 par Kaufman et Onsager au cours des
années 1940 [Ons44, Kau49, KO49].

Lars Onsager
(1903 - 1976)

4Ici le hamiltonien ne dépend pas du temps, on parle de système autonome.
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T :

σ1 σ2 σL

σ′1 σ′2 σ′L

. . .

Jh Jh

Jv Jv

Figure 3: Matrice de transfert du modèle d’Ising sur le réseau carré

Exemple: Matrices de transfert du modèle d’Ising

Considérons le modèle d’Ising sur un tore discret Z/LZ× Z/NZ, avec des constantes
Jh sur les arêtes horizontales et Jv sur les arêtes verticales. Pour deux lignes de spins
σ = (σ1, . . . , σL) ∈ {−1,+1}L et σ′ = (σ′1, . . . , σ′L) ∈ {−1,+1}L, on note Tσ,σ′ la
contribution de la ligne σ et des interactions entre les lignes σ,σ′ :

Tσ,σ′ = exp
(
β

L∑
i=1

Jhσiσi+1 + Jvσiσ
′
i

)

avec la convention σL+1 = σ1. Alors on peut exprimer la fonction de partition en
séparant les contributions de chaque ligne, ce qui donne

Z(L,N) =
∑

σ(1),...,σ(N)∈{−1,+1}L
Tσ(1),σ(2) . . . Tσ(N−1),σ(N)Tσ(N),σ(1) .

En interprétant T comme une matrice 2L par 2L, cela donne

Z(L,N) = Tr(TN ).

Par conséquent, l’étude des propriétés spectrales de la matrice de transfert T peut
donner le comportement de la fonction de partition Z(L,N) pour N grand. Si λ1 est
la plus grande valeur propre de T , si elle est unique,

lim
N→∞

1
N

logZ(L,N) = λ1.

Plus généralement, si les constantes de couplage Jh et Jv dépendent d’un paramètre
complexe u, on note T (u) la matrice de transfert correspondante.

Lorsqu’un modèle admet des matrices de transfert indexées par un paramètre u, on dit
qu’il est intégrable si les matrices de transfert pour différents paramètres u, v commutent :

T (u)T (v) = T (v)T (u). (4)

Dans ce cas, si les matrices sont diagonalisables, elles le sont dans une base commune, et on
Hans Bethe
(1906 - 2005)

peut rechercher leurs valeurs propres pour adapter le raisonnement fait dans l’encadré pré-
cédent. Une méthode puissante pour deviner la forme des vecteurs propres a été développée
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par Bethe en 1931 [Bet31] et porte désormais le nom d’Ansatz de Bethe.
En réalité, cette notion d’intégrabilité n’est pas si différente de celle de Liouville. En effet,

si on suppose que T (u) peut se développer en série, par exemple pour u voisin de 0 :

T (u) =
∑
k

Tku
k

alors (4) donne
∀k, l, [Tk, Tl] = 0

qui rappelle l’équation satisfaite par les constantes du mouvement.

d) ...au sens d’une solution exacte

En mécanique statistique, la notion d’intégrabilité est en général inspirée par les définitions
que nous venons de voir, mais est parfois utilisée de manière plus floue. On dira qu’un système
est intégrable s’il possède “suffisamment de symétries” pour être caractérisé totalement par
ces symétries. On parle aussi de modèles exactement solubles lorsque les quantités d’intérêt,
comme la fonction de partition, peuvent s’exprimer explicitement sous une forme analytique ;
c’est notamment le sens que lui donne Baxter dans [Bax82].

Rodney Baxter
(1940 - )

Ce caractère intégrable d’un modèle est communément lié à l’existence de structures algé-
briques sous-jacentes, bien qu’il n’existe pas de théorie unifiant tous les cas où de telles struc-
tures apparaissent ; on en verra des exemples avec le modèle de dimères au paragraphe 2.2
ou dans la reformulation du modèle à huit sommets au chapitre II.A.

D’un point de vue algorithmique, il signifie aussi que le calcul de la fonction de partition
peut s’effectuer en temps polynomial, alors que l’algorithme naïf qui consiste à énumérer
toutes les configurations est exponentiel en la taille du système.

e) ...au sens de Yang-Baxter

R2

R
1 R

3 ←→

R
′
3

R′2

R ′
1

R′1 = R2R3
R1+R2+R3

R′2 = R1R3
R1+R2+R3

R′3 = R1R2
R1+R2+R3

Figure 4: Transformation “triangle-étoile” pour les réseaux de résistance (Kennelly, 1899
[Ken99]).

Le sens qui sera utilisé dans cette thèse est l’existence de transformations triangle-étoile,
ou équations de Yang-Baxter, pour le modèle. Nous reviendrons en détail dans le paragraphe
3 sur les différentes interprétations de ces transformations, mais mentionnons déjà qu’elles
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fournissent une condition suffisante à la commutation des matrices de transfert. Pour cette
raison, l’existence de solutions aux équations de Yang-Baxter est souvent confondue avec
l’intégrabilité d’un modèle, mais là aussi, aucune théorie générale n’établit ce fait.

Yang Chen-Ning
(1922 - )

Il est également troublant que pour de nombreux modèles, les régimes correspondant à
des solutions aux équations de Yang-Baxter sont exactement ceux pour lesquels une notion
d’holomorphie discrète existe pour les observables du système.

f) ...dans d’autres domaines

Il existe encore d’autres définitions de l’intégrabilité dans différents domaines des mathéma-
tiques et de la physique. Citons pêle-mêle l’existence d’une paire de Lax (issu de [Lax68],
expliqué par exemple au chapitre 2.4 de [BBT03]), la méthode de la transformation de
diffusion inverse (“inverse scattering transform”) dans les équations aux dérivées partielles
[GGKM67, GGKM74] et sa version quantique par Faddeev et toute “l’école de Leningrad”
[Fad95], ou la formulation de problèmes de Riemann-Hilbert en probabilités et en matrices
aléatoires (voir par exemple le chapitre 5 de [BDS16]).

Face à cette diversité de points de vue il n’est pas toujours simple de cerner ce que l’on
entend quand on dit qu’un système est intégrable, et cette notion n’est certainement pas
fixée : elle dépend de la machinerie technique dont on dispose. Ainsi la liste des “systèmes
intégrables” s’allonge avec le temps. Comme dit dans un entretien entre McKean et Flaschka
rapporté par Deift [Dei19], que je traduis5 :

Comme ça tu veux savoir ce qu’est un système intégrable ? Eh bien je vais te le
dire ! Tu ne pensais pas que je pourrais le résoudre. Mais je peux !

Remarque. Pour conclure cet aperçu des idées liées à l’intégrabilité, on peut tout de même
objecter que les modèles intégrables semblent être en contradiction avec l’un des postulats
de Boltzmann : ils possèdent un nombre maximal de quantités préservées, là où Boltzmann
faisait l’hypothèse que seule l’énergie se conserve. Pour citer McCoy [McC10], que je traduis5 :

Si le chaos est une hypothèse nécessaire à l’utilisation de la mécanique statis-
tique à l’équilibre, pourquoi pouvons-nous fonder des intuitions sur des modèles
intégrables, totalement dépourvus de chaos ?

Une réponse possible réside dans l’idée d’universalité.

1.4 Universalité

Leo Kadanoff
(1937 - 2015)

L’idée d’universalité semble avoir été introduite sous sa forme moderne par Kadanoff dans
les années 1960. Elle désigne le fait que les comportements “à grande échelle” d’un système
ne dépendent pas des détails du système (comme la forme précise des interactions ou le choix
d’un réseau sur lequel les particules se placent), mais de quelques caractéristiques essentielles,
comme la dimension ou les groupes d’invariance des configurations.

La première manifestation de ce phénomène est l’existence d’exposants critiques univer-
sels. Lorsqu’un système à une température inverse β approche son point critique βc, certaines

5Merci à Paul Galvan pour son aide !
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observables a(β) deviennent infinies (ou nulles), en suivant typiquement un comportement
du type

a(β) ∼ C(β − βc)α.

La constante C (ainsi que d’éventuelles corrections polynomiales) dépend des détails du
système, mais l’exposant α est très robuste aux modifications du modèle. Le calcul de ces
exposants critiques et l’émergence de classes d’universalité est un des objets d’étude essentiels
de la mécanique statistique depuis les années 1960. Une technique de calcul puissante, mais en
général non rigoureuse, est l’utilisation de groupes de renormalisation, dont le développement
a culminé avec les travaux de Wilson au cours des années 1970.

Kenneth Wilson
(1936 - 2013)

Exemple: Un exposant critique du modèle d’Ising

On a déjà mentionné la longueur de corrélation ξ d’un système non-critique ; celle-ci
dépend de la température β, et devient infinie pour une température critique βc. Plus
précisément, pour le modèle d’Ising, au voisinage de βc on peut montrer (voir [Bax82],
chapitre 7)

ξ(β) ∼ (β − βc)−1.

On dit que ν = 1 est l’exposant critique de longueur de corrélation dans la classe
d’universalité du modèle d’Ising. On verra ce même exposant apparaître dans le modèle
à huit sommets (voir la Section 4.2), ce qui peut s’interpréter par le fait que l’espace
de ses configurations a le même groupe d’invariance Z/2Z que le modèle d’Ising.

Pour la mécanique statistique en dimension 2, les objets limites universels constituent
des sujets d’étude d’une grande importance, et rassemblent des communautés de mathéma-
ticien·ne·s et de physicien·ne·s. On peut citer les courbes SLE (Schramm-Loewner evolution)
étudiées notamment par Lawler, Schramm, Smirnov, Werner [Sch00, LSW04, Wer04, Smi10]
le champ libre gaussien ou GFF, et la gravité quantique de Liouville, avec les travaux de
Duplantier, Miller, Sheffield, Rhodes, Vargas, [She07, DS11, RV14, DRSV14, MS16], etc. La
compréhension de ces limites d’échelle permet, entre autres, de deviner d’un seul coup les
comportements critiques de tous les modèles dans leur classe d’universalité.
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2 A few classical models

We introduce the models studied in this thesis. To make this exposition simpler, we define
them only on finite graphs. However, extensions to infinite graphs typically exist, and are
obtained by constructing Gibbs measures as appropriate limits.

Let G be a finite graph, that is a finite set of vertices V linked by non-oriented edges E .
We suppose that G is either a planar graph or a toric graph, that is, it can be embedded on
a sphere (resp. the torus) with non-intersecting edges, such that the connected components
of the complement of this embedding, or faces, are homeomorphic to disks. We suppose that
such a proper embedding is fixed, and we denote by F the set of faces.

Starting from G , we can define a few objects via simple constructions. These objects
will carry the statistical mechanics models that we define thereafter. Examples are shown
in Figure 5.

• The dual graph G ∗ has vertices V ∗ = F , and its edges E ∗ are in bijection with E : for
every edge e ∈ E , let f, g ∈ F be the faces adjacent to e (which might be equal), then
we define its dual edge e∗ as joining f and g in G ∗.
In contrast to the dual graph, G is often called the primal graph.

• The diamond graph G � has vertices V � = V ∪F and edges E � that link every face
f ∈ F to the vertices v on the boundary of f (once for every time v is met in a
clockwise trajectory around the boundary of f).
This gives a quadrangulation, meaning that the faces of G � have degree 4. In fact
Tutte proved that this procedure gives a bijection between 2-colored quadrangulation
and graphs G [Tut63a], considered up to homomorphism (i.e. as maps).

• The medial graph Gm is the dual of G �. It is therefore a 4-regular graph: all its vertices
have degree 4. Its vertices V m are in bijection with E .

• A train-track associated to G is a path that crosses the faces of G � in such a way that
it always exits a face by the edge opposite to the one it entered from. It is therefore
completely determined by one edge of G � that it crosses.
We denote by TT (G ) the set of all train-tracks associated to G .
Since we embed G on a closed surface, all train-tracks are closed loops; if we do the
same for a graph with a boundary, they will be either paths joining two boundary
edges of Gm, or internal loops.

2.1 Ising model

The Ising model might be the most studied model in statistical mechanics. It is a quintessen-
tial spin model: the degrees of freedom or spins live on the vertices of a graph, and they
interact on the edges.

To give a brief overview, after its introduction by Lenz [Len20] and its solution in di-
mension 1 by Ising [Isi25], the existence of a phase transition in dimension 2 was shown by
Peierls [Pei36]. An analytic expression was then found by Kaufman and Onsager [Ons44,
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Figure 5: Top left: the primal graph G . Top right: its dual graph G ∗ (dashed). Middle
left: its diamond graph G � (green). Middle right: its medial graph Gm (blue). Bottom: a
train-track (red).

Kau49, KO49]. The behaviour of the model on the square lattice attracted a lot of at-
tention, with important discoveries such as the exact formulas for correlation by Yang,
Wu and McCoy, see [MW14]. Methods based on conformal field theory appeared in the
1960s and until the 1980s, with notable contributions of the “Russian school” of Kadanoff,
Belavin, Polyakov, Zamolodchikov [BPZ84], etc; see the introduction of [DFMS97]. Alterna-
tive approaches, using correspondence with dimers on decorated graph, were developed by
Kasteleyn and Fisher in the 1960s [Kas63, Fis61]. Recent techniques from the mathematics
community use tools of analytic geometry, such as the breakthroughs of Smirnov and coau-
thors [Smi01, SW01, Smi10, CS12], who proved conformal invariance for specific lattices and
linked interfaces of the Ising model to SLE curves.

A spin configuration σ is an element of {−1,+1}V . Let us equip G with positive coupling
constants (Je)e∈E on the edges. The associated Boltzmann distribution of the Ising model
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consists in taking σ in {−1,+1}V distributed as6

PIsing(σ) = 1
ZIsing(G , J) exp

 ∑
e={uv}∈E

Jeσuσv

 (5)

with the partition function

ZIsing(G , J) =
∑

σ∈{−1,1}V
exp

 ∑
e={uv}∈E

Jeσuσv

 .

+

+

+
+

+−
−

−
− −

Figure 6: A spin configuration on G .

2.2 Dimer model
This model was initially introduced in 1937 by Fowler and Rushbrooke [FR37] to model
the adsorption of diatomic molecules on a regular surface. It has found many other inter-
pretations since, such as double bonds position in fullerenes or, in mathematics, as tiling
problems; see for instance [RHHB98, Ken09].

A dimer configuration on G , also called a perfect matching, is a subset m ⊂ E such that
every vertex of G belongs to exactly one edge of m. We denote by M(G ) the set of dimer
configurations on G .

Let ν = (νe)e∈E be a set of positive real weights on the edges. Then the Boltzmann
weight of a dimer configuration is defined as, for every m ∈M(G ):

wdim(m) =
∏
e∈m

νe.

We similarly define the partition function for dimers:

Zdim (G , ν) =
∑

m∈M(G )
wdim(m).

Thus the Boltzmann probability onM(G ) is Pdim(m) = wdim(m)
Zdim(G ,ν) .

6Contrary to the historical introduction, we do not write the inverse temperature β; we suppose that it is
included into J .
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Figure 7: A dimer configuration on G .

a) On a finite planar graph

An exact solution of the dimer model on planar graphs was discovered by Kasteleyn [Kas61,
Kas67], Temperley and Fisher [TF61]. An orientation of G is a choice of direction for every
edge e ∈ E . An orientation is said to be admissible if every face is clockwise-odd, that is, it
has an odd number of co-oriented edges if we travel its boundary clockwise.

If G has an admissible orientation, we define its Kasteleyn matrix as the |V | × |V | skew-
symmetric matrix K such that

∀u, v ∈ V , Ku,v =


0 if {u, v} /∈ E ,

ν(e) if eu v
,

−ν(e) if eu v
.

As K is skew-symmetric, it admits a Pfaffian, which is a combinatorial quantity that can
be defined in the following way. We suppose that |V | is even (otherwise, there is no dimer
configuration), and we write V = {v1, . . . , v2n}. Then,

Pf(K) = 1
2nn!

∑
σ∈S2n

sgn(σ)
n∏
i=1

Kvσ(2i−1),vσ(2i) .

For a skew-symmetric matrix, the Pfaffian satisfies Cayley’s identity:

Pf(K)2 = det(K)

which makes it easily computable.

Theorem 1 ([Kas61, Kas67, TF61]). For any finite planar graph G , there exists an admis-
sible orientation. Moreover, its Kasteleyn matrix satisfies

Zdim(G , ν) = |Pf(K)| .

One can also compute correlations of the model by using the Kasteleyn matrices, as noted
by Kenyon [Ken97].
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Theorem 2 ([Ken97]). Let e1 = {u1, v1}, . . . , en = {un, vn} be edges of the graph G . Then
the probability that they are all present in M is

Pdim ({e1, . . . , en} ∈M) = ±
(

n∏
i=1

Kui,vi

)
Pf
(
K−1
{u1,v1,...,un,vn}

)
,

where K−1
{u1,v1,...,un,vn} is the sub-matrix of K−1 restricted to rows and columns in {u1, v1, . . . , un, vn}.

The sign ±1 can also be explicitly computed.

A remarkable property of the dimer model on planar graphs is its sensitivity to bound-
ary conditions, and the occurrence of limit shapes. To illustrate this, we represent dimer
configurations on pieces of Z2 as colored tilings by dominoes, using an underlying bipartite
coloration of Z2 and the transformation of Figure 8. In Figure 9 we show a random dimer
configuration taken uniformly, for subgraphs of Z2 that both discretize a large square, one
being a standard N by N square and the other being tilted by π/2 and then discretized7,
giving a graph known as the Aztec diamond. It is evident that they have extremely different
behaviours. For the Aztec diamond, the existence of a limiting curve between two phases of
the model, or arctic circle, was first shown by Jockusch, Propp and Shor [JPS98], and can be
established using the variational principle approach of Cohn, Keynon and Propp [CKP01],
and other methods such as orthogonal polynomials and Airy processes [Joh05, BCJ18] or the
octahedron recurrence [Spe07, DFSG14]. We use tools inspired by this last method to prove
limit shape results for a loop model in Section I.4.5.

−→ −→

−→ −→

Figure 8: Transformation of edges occupied by dimers into dominoes, using an underlying
bipartite coloring of Z2. More generally, the dimer model on G can be transformed into a
tiling of G ∗.

Those exact results illustrate the integrable nature of the dimer model. They can be
extended to graphs embedded on higher genus surfaces [Kas61, Kas63, DMS+96, GL99,
Tes00, CR07, CR08], by taking linear combinations of Pfaffians of appropriately modified
Kasteleyn matrices. In the next section, we review some results of Kenyon, Okounkov and
Sheffield [KOS06] that apply when G is embedded on a torus, which is important to study
infinite periodic graphs.

b) On a bipartite bi-periodic graph

In this paragraph, we assume that G is an infinite graph embedded in the plane, and is
Z2-periodic: it is invariant under translations by the two vectors of the canonical basis of

7More precisely it is the set of (i, j) such that |i|+ |j| ≤ N .
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Figure 9: A domino tiling taken uniformly at random on a square (left) and on the Aztec
diamond (right). Simulations by Antoine Doeraene.

R2. Also assume that its weights (νe)e∈E are Z2-periodic. Then for any n ∈ N∗, define
Gn = G /nZ2 as a graph embedded in the torus, that inherits the weights νn.

An important question is to compute the free energy, or growth rate of the partition
function:

f = − lim
n→∞

1
n2 logZ(Gn, νn).

This can be done by introducing the characteristic polynomial of the dimer model. Con-
sider the toric graph G1, and fix two cycles γx, γy that wind once horizontally (resp. vertically)
on the torus. Then for any z, w ∈ C, for every entry Ku,v of the Kasteleyn matrix of G1,
multiply it by z (resp. z−1) if the edge {u, v} crosses γx from left to right (resp. right to
left), and similarly for w and γy.

When G is a periodic bipartite graph, we can chose G1 to also be bipartite. If we
decompose its edges V1 into two proper sets of black and white vertices, B1 and W1, then
the Kasteleyn matrix takes the form

K(z, w) =
W1 B1( )0 K(z, w) W1

−tKk(z−1, w−1) 0 B1
.

Define the characteristic polynomial as the (Laurent) polynomial

P (z, w) = det (K(z, w)) . (6)

By taking the limit of Boltzmann probabilities on Gn, Cohn, Kenyon, Propp, Okounkov
and Sheffield show that these objects encode the statistical properties of the model on the
infinite graph G . In the following theorem, an explicit construction of an ergodic Gibbs
measure for the infinite graph is given; this a translation-invariant measure on the whole
infinite graph, that satisfies the DLR (Dobrushin [DF68], Lanford, Ruelle [LR69]) conditions,
and ergodicity means that translation-invariant events have probability 0 or 1.

https://sites.uclouvain.be/aztecdiamond/
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Theorem 3 ([CKP01, KOS06]). Let G be a bipartite bi-periodic planar graph, such that
P (z, w) has a finite number of zeros on the torus T2 = {(z, w) | |z| = |w| = 1}.

There exists an ergodic Gibbs measure µ on M(G ), such that for every subset of edges
{e1, . . . , ek} ⊂ E with ei = {bi, wi}, the probability of occurrence of these edges is

µ(e1, . . . , ek ∈ m) =
(

k∏
i=1

Kwi,bi

)
det

(
K−1
bi,wj

)
1≤i,j≤k

where K−1 is an inverse of the operator K on the whole graph G , given for every b, w ∈ V1
and (x, y) ∈ Z2 by

K−1
b,w+(x,y) = 1

(2iπ)2

∫
T2

[
t ComK(z, w)

]
b,w

P (z, w) zxwy
dz
z

dw
w
.

The free energy of the model is

f = −1
(2iπ)2

∫
T2

log |P (z, w)|dz
z

dw
w
.

The seminal work [KO06, KOS06] goes well further and also establishes:

• a classification of ergodic Gibbs measures, that form a two-parameter family;

• a correspondence between dimers’ spectral curves {(z, w) ∈ C2 | P (z, w) = 0} and
objects of algebraic geometry known as Harnack curves.

The extension of these results to non-bipartite graphs is one of the biggest open problems
in the field.

2.3 Vertex models
Those are, generally, models where degrees of freedom are carried by edges, and interactions
happen on the vertices. The most famous one is probably the six-vertex, or 6V model. It
was introduced by Pauling [Pau35] in 1935 to model the arrangement of water molecules in
ice.

a) Classical case: six-vertex and eight-vertex models on Z2

Each water molecule is made of a big oxygen atom, and two smaller hydrogen atoms. Imagine
that the oxygen atoms are arranged on a regular, planar quadrangulation, say Z2. Each
oxygen atom has two neighbouring hydrogen atoms, and every edge of the graph has to
contain exactly one hydrogen atom, giving a configuration like the one shown in Figure 10.
There are six possible configurations at every site, hence the name six-vertex model.

This model is nicely represented by an orientation of the graph, where arrows point
towards the hydrogen atom. By the condition on ice, every vertex has to have 2 incoming
(and 2 outgoing) edges.

Exact solutions of the 6V-model on the square lattice have been found by Lieb [Lie67]
and Sutherland [Sut67]; see also Chapter 8 of [Bax82]. The model has played an important
role in the formulation of the general theory of lattice statistical mechanics throughout the



20 Introduction

Figure 10: Left: an arrangement of water molecules on the square lattice, with oxygen
atoms in red and hydrogen atoms in white. Right: the corresponding orientation of edges,
or 6V-configuration.

20th century, with the definition of transfer matrices, Yang-Baxter equations, Bethe Ansatz,
etc.

Before defining the Boltzmann measure properly, we extend configurations to the more
general 8V-model, by letting the orientation contain defects: “sinks” and “sources”, that is,
vertices with 4 incoming (resp. outgoing) edges. This was done first by Fan, Wu [FW69]
and Sutherland [Sut70]. There are several reasons to extend the 6V-model to get such a
8V-model: it gives a richer phase diagram, with more complete and physically coherent
behaviours, as we explain later; it lets us rephrase many spin models (such as interacting
Ising models) with the spin-vertex correspondence, see Section 2.5 a); it is, generally, more
symmetric.

a b c d

Figure 11: Local configurations of the 8V-model on Z2, and their type a, b, c, d shown above.

Consider a finite portion of Z2, and let τ be an orientation of its edges, such that every
vertex has an even number of incoming edges. Every vertex has to be of one of the eight
types shown in Figure 11. Fix four numbers a, b, c, d ∈ R+, not all of them being zero, and
define the Boltzmann weight of τ as

w8V (τ) = aNabNbcNcdNd

where Ni is the number of configurations of type i in τ .
In this paragraph, we discuss the d = 0 case, i.e. 6V-model, or square ice. By taking

the limit of the 6V-model with periodic boundary conditions (i.e. on (Z/NZ)2 and letting
N →∞), it has been argued by physicists that the limiting distribution of the model should
depend on a/c, b/c with the phase diagram shown in Figure 12; we again refer to [Bax82].
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The frozen phases8 of type a, b, c are such that the configuration on the infinite graph Z2

contains only vertices of type a (resp. b, c) (there are only two such frozen configurations);
they are characterized by the fact that one of the weights a, b, c is greater than the sum of
the other two. The disordered phase make all the vertex types appear with positive density.
However, it is also argued that in the disordered phase, correlations of distant edges should
decay as a power law and not as an exponential (2).

a/c

b/c

0 1

1

frozen
type c

frozen
type b

frozen
type a

disordered

a/c

b/c

0 1

1

frozen
type c

frozen
type b

frozen
type a

disordered

Figure 12: Phase diagram of the 6V-model (left) and 8V-model (right, with 0 < d < c). The
free-fermion line a2 + b2 = c2 + d2 is indicated in dashed red.

This last behavior is peculiar in statistical mechanics, as correlations are supposed to
typically happen at a characteristic scale (the ξ in (2)), which naturally implies an exponen-
tial decay, except for very special critical points. This shows that the 6V-model is in some
sense too rigid, and motivates the consideration of the case d > 0. However, the six-vertex
model itself has many interesting integrable features; we refer to the lecture notes [Res10].

When d > 0, if we consider d as a fixed parameter the phase diagram is given in the right
of Figure 12. It still contains frozen phases (characterized by the fact that one of the weights
a, b, c, d is bigger than the sum of the three others), and a disordered phase. However, in
that case, correlations should typically have exponential decay. In Chapter II, we give partial
results towards this, by considering the 8V-model in the free-fermion regime a2+b2 = c2+d2,
with the help of the dimer model. It is to be noted that quantities of interest, such as the
free energy, should be analytic throughout the disordered phase, so that the free-fermion
regime should be enough to guess the whole behaviour of disordered 8V-models.

b) Generalisation

In the hope of understanding the 8V-model more intrinsically, we generalise the previous
definitions in two ways: we define the 8V-model on a generic 4-regular graph, and we let the
local weights a, b, c, d depend on the site.

8They are generally called (anti)-ferroelectric phases.
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Figure 13: The medial graph Gm, with its faces corresponding to vertices of G shaded in
gray, equipped with an 8V-configuration shown as an orientation of edges (left), or as a
subset of edges (right).

On the medial graph Gm (see Figure 5), faces are in bijection with the initial vertices
and faces V ∪F . This corresponds to a bipartite coloring of the faces. Thus, if we have
an orientation of the edges Em, we can transform it into a subset of edges by keeping, say,
the edges that have an element of F on their left. An example is shown in Figure 13.
Orientations that satisfy the 8V-rule are transformed into subsets of edges that are even at
every vertex in V m, and vice-versa. We will use this “subgraph” representation.

Thus we define an eight-vertex configuration on Gm as a subset of edges τ such that
every vertex of V m has even degree in τ . Every vertex v ∈ V m is equipped with 4 positive
weights Av, Bv, Cv, Dv. The local weight9 of τ at v is defined as the value among these 4
that corresponds to the local configuration of τ at v, as in Figure 14; we denote it by wv(τ).
The total weight of τ is

w8V(τ) =
∏

v∈V m

wv(τ).

v

Av Bv Cv Dv

Figure 14: The eight possible local 8V-configuration at a vertex v ∈ V m, with the corre-
sponding local weights shown below.

Let X = (Av, Bv, Cv, Dv)v∈V m be the complete set of weights. The partition function of
the 8V-model is

Z8V(Gm, X) =
∑
τ

w8V(τ).

9Notice that this assignation of weights to configuration is only well-defined because of the bipartite
coloring of the faces of Gm. To be able to distinguish between complementary configuration, we would need
to break another symmetry, for instance by fixing directions of the train-tracks. This would give so-called
rapidities that define the model’s weights.
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Where the sum is over 8V-configurations. By following the successive transformations, we
see that the 6V-model sub-case is obtained by setting D = 0.

The free energy of the 8V-model has been computed on Z2 and a few other lattices, see
for instance [Bax82]. But many properties, such as the behaviour of correlations in generic
cases, still need rigorous investigation.

2.4 Loop models
In this class of models, the configurations are sets of closed loops on a graph, with some
local interactions, and global factors depending on the number of loops. In this exposition,
I will present the loops as going through the edges of the diamond graph G � and winding
inside its quadrangular faces F � (see Figure 5), but other cases exist such as the loops on
hexagonal lattices.

Figure 15: A loop configuration ω on G �. Here N(ω) = 4.

Thus in a loop configuration ω, every face of G � has to be of one of the “plaquette” types
shown in Figure 16, with the condition that adjacent faces have to agree on their boundary.
Just like for vertex models, every local configuration at f ∈ F � is assigned a weight wf (ω).
We also fix a positive parameter n called fugacity. Let Nω be the total number of loops in
ω. Then its weight, and the partition function, are given by

wloop(ω) = nNω
∏
f∈F�

wf (ω),

Zloop =
∑
ω

wloop(ω).

Many interesting models exist in this class, and the terminology referring to them may
vary. The generic model we just described is often called the (dilute) O(n) loop model, a
name that comes from a spin model where spins take values on an n-dimensional sphere,
that admits a combinatorial expansion into loops [DMNS81]. When only fully packed con-
figurations are allowed, i.e. the right-most plaquettes of Figure 16, it is sometimes called a
Temperley-Lieb (TL) loop model. In some variants, loops can exist in different flavours or
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Figure 16: Possible configurations of a loop models, or “plaquettes”, around a face f ∈ F �.

colors. We will see such an example with the C(1)
2 loop model, due to Warnaar and Nienhuis

[WN93], in Chapter I where we show that is has a combinatorial link with the Ising model.
More generally, loop models are often used as convenient tools to find strong relations

between known models, such as the coupling of Random Cluster models and 6V-models by
Baxter, Kelland and Wu [BKW76]. They are also closely related to the graphical expansion
of quantum spin chains; see for instance [AN94].

2.5 Transformations of models
This section is devoted to the problem of transforming a model into another. As we saw
before, some models can be deeply understood, both analytically and geometrically, such
as the bipartite dimer model. So when we are faced with a new model, it is tempting
to transform it into, say, bipartite dimers. The game of finding relations between models
constitutes a connection of statistical mechanics with combinatorics, and sometimes other
fields like algebra and discrete geometry.

Let us show a few examples, and try to give a general picture of available techniques.
First we relate the Ising model of Section 2.1 and the eight-vertex model of Section 2.3.

a) Ising and vertex models

There is a transformation from a pair of Ising models to an 8V-model, called the spin-vertex
correspondence. Its complete form seems to be due to Wu [Wu71], Kadanoff and Wegner
[KW71].

Suppose that G is a planar graph, i.e. it has been drawn on the sphere. Consider two
independent Ising models, one on G with weights J and one on G ∗ with weights J ′. Given
two spin configurations, σ on V and σ′ on F , draw the edges of Gm that separate a + spin
from a − spin. This gives a subset of edges that has even degree at every vertex of V m, that
is, an 8V-configuration τ .

This transformation from (σ, σ′) to τ is two-to-one, because flipping the spins of both σ
and σ′ would result in the same τ . Moreover, the image measure on τ can be expressed as
an 8V-Boltzmann measure, simply by looking at the form of local weights and translating
from the spin weights to vertex weights. Every primal edge e ∈ E corresponds to a vertex
of the medial graph, denoted ve ∈ V m. If we define the 8V-weights as

Ave = exp
(
Je − J ′e∗

)
,

Bve = exp
(
−Je + J ′e∗

)
,

Cve = exp
(
Je + J ′e∗

)
,

Dve = exp
(
−Je − J ′e∗

)
,

(7)

then we have:
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Figure 17: A spin configuration on G ∪ G ∗ and its image as an 8V-configuration on the
medial graph Gm.

Proposition 4 ([Wu71, KW71]). For the 8V-weights X on Gm defined in (7),

ZIsing(G , J) ZIsing(G ∗, J ′) = 2Z8V(Gm, X).

Conversely, any 8V-model on Gm such that at every vertex AB = CD can be expressed
as two independent Ising models. When this condition is not satisfied, it corresponds to two
coupled Ising models, as for example the Ashkin-Teller model [AT43].

b) Vertex models and dimers

We may want to transform vertex models on Gm from Section 2.3 into the dimer of Sec-
tion 2.2, to use the strong integrability structures available there. Optimally, we would
like to get dimers on a bipartite graph. An idea that dates back to the 1960s and 1970s
[Kas63, Fis66, FW69, WL75] is to replace every vertex v of Gm with a small decoration. This
technique is also named holographic reduction in the computer science literature [Val04].

h

1

1

1

1

Av

Av

Bv Bv

e1

e2

e4

e3

Figure 18: Left: a simple decoration h, due to Wu and Lin [WL75], with its dimer weights
νv. Right: the corresponding decorated graph G h (sometimes also denoted GQ.
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Let h be a finite embedded graph, with four external edges or legs, denoted in direct cyclic
order by e1, e2, e3, e4. For every v ∈ V m, let νv be weights on the edges of h, with the weights
of the legs ei set to be 1. For a fixed 8V-model on Gm with weightsX = (Av, Bv, Cv, Dv)v∈V m ,
we say that (h, (νv)v∈V m) is a dimer-to-vertex decoration if

1. all dimer configurations on h use an even number of the 4 external edges;

2. for any even subset I ⊂ {1, 2, 3, 4}, let ZI be the sub-partition function of dimer
configurations on h that contain the leg ei iff i ∈ I:

ZI = ZIdim(h, νv) :=
∑

m s.t. ∀i,ei∈m⇔i∈I
wdim(m).

Then it is equal to the weight among Av, Bv, Cv, Dv that corresponds to the local
8V-configuration that uses the edges (ei)i∈I , that is

Z14 = Z23 =Av,
Z12 = Z34 =Bv,
Z1234 = Z∅ =Cv,
Z13 = Z24 =Dv.

We denote by G h the decorated graph obtained by replacing every vertex v of Gm with a
copy10 of h, with the weights νv. We also denote the complete set of weights on G h by ν.

Example 5. The graph of Figure 18 is a dimer-to-vertex decoration for a 6V-model such
that A2

v + B2
v = 1 = Cv. This is illustrated in Figure 19. The condition Cv = 1 on the

6V-model can be relaxed by multiplying all the local weights at a face by a same constant,
which does not affect the ratio of Boltzmann weights, but one should still have A2

v+B2
v = C2

v .

Lemma 6. If (h, (νv)v∈V m) is a dimer-to-vertex decoration for the 8V-weights X on Gm,
then

Z8V (Gm, X) = Zdim(G h, ν).

Proof. For any dimer configuration m on G h, by Condition 1, the set of legs covered by m
is an 8V-configuration τ . We denote this as m 7→ τ . By Condition 2 and the fact that legs
have weight 1, for any 8V-configuration τ ,

w8V(τ) =
∑

m s.t. m 7→τ
wdim(m)

and the equality of partition functions follows.

Proposition 7. For any planar decoration h and any set of weights νv,

Z14Z23 + Z12Z34 = Z1234Z∅ + Z13Z24. (8)
10More precisely, this can be done by first fixing a cyclic order of the 4 medial edges around v and identifying

these edges with e1, e2, e3, e4.
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Z14 = Av 7→ Av

Z23 = Av 7→ Av

Z12 = Bv 7→ Bv

Z34 = Bv 7→ Bv

Z1234 = 1 7→ Cv = 1

Z∅ = A2
v +B2

v

= 1
7→ Cv = 1

Z13 = Z24 = 0 Dv = 0

Figure 19: Local transformation of a dimer model into a 6V-configuration, for all possible
dimers on the decorated graph of Figure 18, and the corresponding local weights for the two
models.

Proof. The term Z14Z23 can be represented as a sum over couples of dimer configurations,
one containing the legs e1, e4 and the other containing e2, e3. Let us call the first ones the
black dimers, and the second ones the white dimers. If we start from the black dimer on e1
and follow successively the white and black dimers, we get a path that has to end on another
leg. Because of the planarity condition, it cannot be e3, otherwise the other path would have
no way to go from e2 to e4. Thus the first path has to end either at e2 and have even length
(because of the alternating color of dimers), or end at e4 and have odd length. The situation
is summed up in the left-most two diagrams of Figure 20; “e” stands for even and “o” for
odd.

Figure 20: Double-dimer paths inside h

All the other cases can be decomposed similarly, as we do in Figure 20. There is a
bijection between the left-hand side and the right-hand side, obtained by flipping the color
of dimers in the path containing e3.
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As a result of this Proposition, we can only hope to use dimers on decorated graphs when
the 8V-model satisfies (implicitly, at every v ∈ V m)

A2 +B2 = C2 +D2.

This is known as the free-fermion regime of the 8V-model. This terminology comes from
the fact that the Pfaffians arising in dimers (see Section 2.2) can be written as integrals of
anti-commuting variables (see for instance [DFMS97], chapter 2.B), and those variables are
interpreted physically as non-interacting fermions. Conversely, at least when ∀v ∈ V m, Cv 6=
0, any free-fermion 8V-model can be represented as a dimer model, using the decoration of
Figure 21 [FW69].

Equation (8) can also be seen as a Plücker relation, which is a relation satisfied by generic
minors of matrices. The existence of this necessary condition is actually a consequence of
the determinantal (or Pfaffian) structure of dimers.

(Av −Dv)/Cv

(Av −Dv)/Cv

Bv/Cv Bv/Cv
Cv

√
Dv

√
Dv

√
Dv

√
Dv

1

1

1

1

Figure 21: A decoration due to Fan and Wu [FW69]. This is a dimer-to-vertex decoration
for any free-fermion 8V-model under the condition ∀v ∈ V m, Cv 6= 0.

Proposition 8. For any bipartite decoration h and any set of weights νv, one of the 4
products in (8) has to be zero.

Proof. Suppose that we have fixed a bipartite coloring of h into black and white vertices.
Consider the case where the internal endpoints of e1 and e3 are black, and the internal
endpoints of e2 and e4 are white. We interpret again the term Z13Z24 as a sum over couples
of dimer configurations, one being black and the other being white. By following the dimers’
alternating path starting from e1 and looking at the alternation of vertices and dimers colors,
it is easy to see that this path cannot exit the graph h by any leg. Hence the sum is empty
and this term is null.

? ?? ?? ??

Figure 22: Proof of impossibility of certain double-dimer combinations for a bipartite h.

All the other cases can be treated similarly. A graphical representation of the proofs is
given in Figure 22.
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This result basically reduces the scope of planar bipartite dimers to free-fermion 6V-
models, that is models for which D = 0 and

A2 +B2 = C2.

For instance, in that case, the decoration of Figure 21 reduces into the bipartite one of
Figure 18 after a proper reparametrization.

The result of Proposition 8 is an obstacle to the rigorous study of the 8V-model even in the
free-fermion regime, since we cannot use the theory of bipartite dimers to get, say, explicit
Gibbs measures on infinite graphs from Theorem 3. In Chapter II we develop a solution
to this issue, with an indirect method to find bipartite dimers and use the technology of
[BdTR18].

c) Generic principles

In an attempt to sum up the kind of techniques that are used to relate models, we can
distinguish four kinds (that are actually included into one another):

1. Bijections. The most simple case is when there is a bijection from the configuration
space of model A, denoted Ω(A), to that of model B, denoted Ω(B).
For instance, if we fix the spin of a vertex to always be +1, then the spin-vertex
correspondence of Proposition 4 is a bijection.

2. Surjective (many-to-one) mappings. If there is a surjective map f : Ω(A)→ Ω(B),
such that the Boltzmann weights of the models, wA and wB, are such that

∀ωB ∈ Ω(B), wB(ωB) =
∑

ωA∈f−1{ωB}
wA(ωA)

then the partition functions are equal. This is the case in the dimer-to-vertex corre-
spondence of Lemma 6.

3. Random mappings, or couplings. When we can get the Boltzmann probability of
model B as the image of that of model A by a function, that might use some extra
randomness, it defines a strong coupling of the two models. For instance, the Edwards-
Sokal coupling relates the random cluster and Potts models [ES88]. In some sense, this
plays the role of a “many-to-many” mapping.

4. Combinatorial identities. Sometimes, the correspondence of two partition functions
is shown by purely combinatorial means and does not seem to carry any information
about how the models can be coupled. This is a priori the case for the duality relations
of the Ising model [KW41] and of the 8V-model [Wu69] (although in these cases in-
terpretations can be given by extending the configuration space and considering order
and disorder variables [KC71]).

Those classes are more and more generic, but give less and less information about the actual
behaviour of the models. In the worst-case scenario, we only know that the partition func-
tions are equal. In that case, it is often an interesting question to try to know how strongly
the two models can be coupled.

The panorama of relations between models is fascinating and constantly evolving. In the
convoluted map of Figure 23, I try to sum up some of the relations I encountered.
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3 Six points of view on star-triangle transformations

We now turn our attention to a common feature of integrability, which is the existence of a
star-triangle transformation. If the graph G contains a triangle, we can get a new graph G ′

by removing the edges of this triangle, adding a vertex at the center, and linking it to the
vertices of the previous triangle. Thus we get a vertex of degree 3, or a star. This is also
known as a Y-∆ move ; of course the converse transformation (triangle-star, or ∆-Y ) can
also be performed. On the diamond graph G �, this induces a “cube flip”, and on train-tracks,
it performs a crossing, that is analogous to the Reidemeister move of type III [Rei27, AB26].

G G ′e′1

e2

e3e1
e′2

e′3

Figure 24: The star-triangle move and its effect on G , on G �, and on TT (G ).

As we will see, this is a powerful topological move. The next idea is to find models for
which the partition function is unchanged when we perform a star-triangle move: this is
called a Z-invariant regime. Such regimes have been found for a number of models, such
as the Ising model [Ons44, Wan45], 6-vertex and 8-vertex models [Bax78, Bax82], spanning
trees and spanning forests [Ken19], percolation [GM13] and FK-percolation [DCLM18], chiral
Potts model [BPAY88], etc.

3.1 Simplifying graphs

The first appearance of star-triangle transformation is in the context of resistor networks,
with the work of Kennelly [Ken99], see Figure 4. This transformation is such that the
equivalent resistance between any two points of the graph (excluding the center vertex of the
star) is left unchanged. Other simplifications of the graph have the same property, provided
that we correctly update the resistance on the edges; they are represented in Figure 25. The
most famous ones are the simplification of two resistors directly in series or in parallel.

All these transformation are enough to compute equivalent resistances whenever the
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Figure 25: Simplifications of a graph G (with its train-tracks displayed): suppression of a
vertex of degree 1, suppression of a loop, reduction in series and in parallel.

network is planar; this is due to Epifanov [Epi66].

Theorem 9 ([Epi66]). Let G be a planar graph, with two distinguished vertices on the
boundary, u and v. Using the star-triangle move and the simplifications of Figure 25, it is
possible to transform G into a graph with just one edge between u and v.

This is not such a surprise. Consider the set of train-tracks of the graph. Then the
star-triangle move lets us take one train-track and make it cross an intersection of two
train-tracks: we can essentially take one train-track and move it freely around the graph.
With some care and with the help of the simplifications of Figure 25, this makes the task
of reducing the graph to a single edge more or less equivalent to that of untangling a messy
pool of cables.

Later, Feo and Provan published an algorithm of complexity O(|V |2) that achieves this
simplification [FP93] . This can be related to a “computational” point of view on integra-
bility: for any Z-invariant model, on a finite planar graph, the partition function can be
computed in a complexity which is polynomial in the size of the graph.

3.2 Coupling relations; locality

The star-triangle transformation is often phrased as a coupling relation. We will consider
the examples of the Ising and the 8V-models. This is the analogous statement to the fact
that in the resistor network, equivalent resistances do not change.

a) Star-triangle for the Ising model

Suppose that the graph G is equipped with an Ising model (see Section 2.1), with coupling
constants J = (Je)e∈E . We want to find weights J ′ on G ′, equal to J everywhere except
on the edges involved in the star-triangle move, such that the Ising models on G and G ′

can be coupled in the strongest possible way. More precisely, we want to define a random
variable (σ, σ′) on {−1,+1}V ×{−1,+1}V ′ , with the marginals distributed as the Boltzmann
measure (5) on (G , J), resp. (G ′, J ′), and such that almost surely σv = σ′v for every v ∈ V
(i.e. for all vertices except the center of the star).
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If we condition on the spins on the boundary of the star-triangle, the conditional proba-
bilities are proportional to local Boltzmann weights. Thus by listing all boundary conditions
(up to symmetry), the desired coupling exists iff the following quantities are proportional,
with the same constant of proportionality. We denote for simplicity Ji = Jei and J ′i = J ′e′i

.

+

+
+ exp (J1 + J2 + J3) ∝ exp (J ′1 + J ′2 + J ′3) + exp (−J ′1 − J ′2 − J ′3) +

+
+?

+

+
− exp (J1 − J2 − J3) ∝ exp (−J ′1 + J ′2 + J ′3) + exp (J ′1 − J ′2 − J ′3) +

+
−?

+

−

+ exp (−J1 + J2 − J3) ∝ exp (J ′1 − J ′2 + J ′3) + exp (−J ′1 + J ′2 − J ′3) +

−

+?

−

+
+ exp (−J1 − J2 + J3) ∝ exp (J ′1 + J ′2 − J ′3) + exp (−J ′1 − J ′2 + J ′3) −

+
+?

We call these the coupling relations for the Ising model. These equations can be solved,
in the sense that one can express the J ′i in terms of the Ji, or the converse. Thus the
transformation can be made as a triangle-to-star or as a star-to-triangle move, while keeping
the Ising model “constant”. The exact formulas can be found in different forms in several
references [Bax82, KP16, BdTR18]. We will cite a solution, due to Baxter [Bax82] and
reparametrized by Boutillier, de Tilière and Raschel [BdTR18], that expresses the coupling
constants in terms of Jacobi elliptic functions.

Let k be an elliptic modulus, that is a complex number with k2 ∈ (−∞, 1]. The Jacobi
elliptic functions sn(·|k), cn(·|k) are generalisations of the trigonometric functions sin and
cos; the special trigonometric case corresponds to k = 0. See [Law89] for an introduction
and useful properties of these functions. We also use the complete elliptic integral of the
first kind K(k), that plays the role of the quarter-period of elliptic functions (for k = 0, it is
equal to π

2 ):

K(k) =
∫ π

2

0

dθ√
1− k2 sin2 θ

.

Proposition 10 ([Bax82, BdTR18]). Let J1, J2, J3 be three positive numbers. Then there
exists a unique elliptic modulus k such that for all i ∈ {1, 2, 3},

Ji = 1
2 log

(1 + sn (τi | k)
cn (τi | k)

)
, (9)

and the parameters τi satisfy τ1 + τ2 + τ3 = K(k).
Then the solution of the coupling relations for the Ising model is

J ′i = 1
2 log

(1 + sn (K(k)− τi | k)
cn (K(k)− τi | k)

)
.

Notice that the new coupling constants are simply obtained by changing τi into K(k)−τi.
We will see a geometric interpretation of these expressions in Section 3.6.
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b) Star-triangle for 8V-models

For the eight-vertex model defined in Section 2.3b), the line of reasoning is exactly the same:
we want to couple the models on Gm and (G ′)m, such that they agree everywhere except
on the medial edges that have been modified during the star-triangle move. The coupling
relations on the 8V-weights (Ai, Bi, Ci, Di)i∈{1,2,3} and (A′i, B′i, C ′i, D′i)i∈{1,2,3} can still be
written by conditioning on boundary conditions. They can be found in [Bax82], and also in
Section II.5.

An important difference with the Ising case is that the coupling equations for the 8V-
model cannot be solved for generic values of (Ai, Bi, Ci, Di)i∈{1,2,3}, and we have to assume
that they take a certain form to perform the transformation; see again [Bax82] for more
details. We state the result as an elliptic parametrization, adapted from Baxter’s expression.
Since the Boltzmann measure is unchanged when we multiply all the 8V weights at a site by
the same constant, the solution can be written in homogeneous coordinates.

Proposition 11 ([Bax82]). Suppose that there exists an elliptic modulus k and a real number
λ such that for all i ∈ {1, 2, 3}, in homogeneous coordinates,

[Ai : Bi : Ci : Di] = [ sn (λτi|k) :
sn (λ (K(k)− τi) |k) :
sn (K(k)λ|k) :
k sn (λτi|k) sn (λ (K(k)− τi) |k) sn (K(k)λ|k)],

(10)

and such that τ1 + τ2 + τ3 = K(k). Then the solution of the 8V-model coupling relations are

[A′i : B′i : C ′i : D′i] = [ sn (λ (K(k)− τi) |k) :
sn (λτi|k) :
sn (K(k)λ|k) :
k sn (λτi|k) sn (λ (K(k)− τi) |k) sn (K(k)λ|k)].

c) Locality

It has been argued by Baxter in [Bax78] that when a model is Z-invariant, i.e. when we
can perform a star-triangle coupling wherever we want, it should also be local. The idea is
again that we can move train-tracks freely around the graph, without changing the statistical
properties such as two-point correlations (provided that we do not cross one of the points
while moving the train-tracks). We present this in the context of vertex models, but it should
hold for any Z-invariant model.

Suppose that each train-track (see Figure 5) or rapidity t ∈ TT (G ) carries a parameter
θt, and that the 8V-weights at the intersection of two train-tracks t, t′ are a function of
(θt, θt′). For a well chosen function [Bax78], the 8V-coupling relations of Proposition 11 are
automatically satisfied. This is known as a Z-invariant regime. Then for any medial edges
e, e′ ∈ Em, we can chose a path on the medial graph that goes from e to e′, crossing rapidities
with parameters θ1, . . . , θp. Baxter argues that if τ is distributed as the Boltzmann measure
of the 8V-model, the correlations can be written as

〈1e∈τ1e′∈τ 〉 = g(θ1, . . . , θp)
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where g is some universal function, symmetric in the parameters. Similar formulas should
also exist for correlations involving more edges. This property is surprising, since correlations
should depend on the geometry of the whole graph. Here it depends only on a path (any
path) between the two edges.

e
e′

θ1

θ2
θ3

θp

Figure 26: Two medial edges e and e′, with the diamond graph G � in green. A path linking
e and e′ is represented in bold green. It crosses train-track, or rapidities, with parameters
θ1, . . . , θp.

The justification that Baxter gives is unfortunately non-rigorous in general: it involves
creating train-tracks “at infinity” and bringing them around the path using star-triangle
transform. If the path has been isolated from the rest of the graph with sufficiently many
rapidities, the correlations should no longer depend on the rest of the graph.

However, it is a strong indication, and explicit expressions of this function g have indeed
been found for the Z-invariant Green function [Ken02] and massive Green function [BdTR17],
for the correlations of some Z-invariant bipartite dimers [Ken02, dT18], for the Ising model
at criticality [BdT11] and away from criticality [BdTR18]. In Section II.5.3 we find such a
function g for Z-invariant free-fermion 8V-models.

3.3 Commutation of transfer matrices

Perhaps the most common use of star-triangle relations is to provide a sufficient condition
for the commutation of transfer matrices. Again we take the example of the 8V-model, but
more details and models can be found in [McC10]. It is customary and more convenient to
present these proofs graphically.

We represent the set of local 8V-weights at a medial vertex by a single lowercase letter.
The existence of star-triangle coupling means that for any local weights u and v, there exists
local weights w such that we have the first diagram of Figure 27.
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Another useful property is the existence of inversion relations. This means that for any
local weights w, there exists a choice of local weights w′ such that the second diagram of
Figure 27 holds. Then the commutation of transfer matrices is hopefully illustrated by the
graphical proof of Figure 28.

w

v

u

u

v
w

=

w =w′ w′ =w

.

Figure 27: Diagrammatic representation of star-triangle and inversion relations.
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v v v v v
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=
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=

. . .

Figure 28: Proof of commutation of transfer matrices.
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3.4 Operator form of Yang-Baxter equations
Although we present them as a coupling condition that encapsulates several equations, the
star-triangle relations can also be stated as single relation on matrices, constructed on a
tensor product. We present this formalism for vertex models, and we refer to [PAY06] for a
more complete panorama.

It will be more convenient for this exposition to define the local weights in a slightly
different way compared to Section 2.3. First we orient every train-track t ∈ TT (G ) and we
equip it with a parameter qt. At every medial vertex, two oriented train tracks t, t′ intersect;
we can assume that they are as in the configuration of Figure 29. The values of i, j, k, l are
equal to 1 when the corresponding medial edge is occupied, and 0 otherwise. Then the local
8V-weight is set to be a function of the parameters qt, qt′ and of the four occupation values,
denoted wk,li,j (qt, qt′).

t

t′

i

j k

l

Figure 29: Two oriented train-tracks or rapidities crossing.

t

t′
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n

t′′

i ĵ

k̂ t

t′

î
j

k

l

m

n

t′′

i

ĵ

k̂

=

Figure 30: A star-triangle move on the oriented train-tracks t, t′, t′′.

Recall that the coupling relations amount to requiring that for any boundary conditions,
the sum of local Boltzmann weights are proportional. Then, in the configuration of Figure 30,
this is equivalent to saying that for any i, j, k, î, ĵ, k̂,∑

l,m,n

wl,ni,j (qt, qt′)wî,ml,k (qt, qt′′)wĵ,k̂n,m (qt′ , qt′′)

∝
∑
l,m,n

wn,mj,k (qt′ , qt′′)wl,k̂i,m (qt, qt′′)wî,ĵl,n (qt, qt′) ,
(11)

with the same constant of proportionality.
This can be interpreted as an operator product. First define R(t, t′) as the 4× 4 matrix

with rows (resp. columns) identified with the possible values of (i, j) (resp. (k, l)), so that
its entries are the wk,li,j (qt, qt′). We can consider these matrices as elements of End(V ⊗ V ),
where V is a vector space of dimension 2. Then for any u, v ∈ {1, 2, 3} with u < v, we define
Ri,j(t, t′) as the element of End(V ⊗ V ⊗ V ) (or 8 × 8 matrix) that acts as R(t, t′) on the
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components u, v of the tensor product, and as the identity on the other one. For instance,
the matrix R1,2(t, t′) has rows indexed by the values of (i1, j1, k1) and columns by (i2, j2, k2),
and the corresponding matrix element is

wi2,j2i1,j1
(qt, qt′)δk1,k2 .

Then the whole set of coupling relations (11) is equivalent to

R1,2(t, t′)R1,3(t, t′′)R2,3(t′, t′′) ∝ R2,3(t′, t′′)R1,3(t, t′′)R1,2(t, t′).

This is often called the (quantum11) Yang-Baxter equation. The abstract construction
and classification of solutions to this equation has motivated the construction of important
objects related to Lie algebras, such as quantum groups, independently by Drinfeld [Dri88]
and Jimbo [JM94]. Other approaches can be taken to the classification of their solutions,
such as the consistency approach [ABS03, ABS04], differential approaches [Vie18], methods
based on algebraic geometry [Kri81], on Lie algebra [Baz85], etc.

3.5 Polynomial relations and spatial recurrence

In some cases, there is another way to sum up all the coupling relations into a single, polyno-
mial one, via a well-chosen change of variables. This idea seems to be due to Kashaev [Kas96].
The polynomial relations we obtained can be considered as evolution equations, and have
attracted interest in cluster algebra [FZ02b, GK13, KP16, Yam18, Lea19], combinatorics
[Spe07, CS04, KP16], [1] and limit shapes phenomena [DFSG14, PS05, KP16, Geo17], [1].

u

v

x yRe

Figure 31: An edge e carrying a resistor, adjacent to vertices x, y and faces u, v.

Example 12 (Resistor networks and Hirota equation). Consider the star-triangle equations
for resistor networks (or equivalently, for the discrete Laplacian or for random walks, see
e.g. [Ken12]) of Figure 4. Suppose that there is a set of positive variables on the vertices
and faces of G , denoted (fx)x∈V ∪F , such that for every edge e ∈ E , there is a resistor whose
value is given, in the notation of Figure 31, by

Re = fufv
fxfy

.

Then the star-triangle relations of the resistor network are equivalent to the f variables
satisfying, in the notation of Figure 32 [Kas96],

f ′0 = f1f4 + f2f5 + f3f6
f0

. (12)
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f0

f1

f2

f3

f4

f5

f6
←→

f ′0

f1

f2

f3

f4

f5

f6

Figure 32: The star-triangle move on the f variables.

Equation (12) is known, in discrete integrable systems, as the discrete Hirota equation
[Hir77], and was also named the cube recurrence by Propp [Pro01]. This last terminology
comes from the fact that we can imagine the eight values of the f parameters as being
embedded on the vertices of a cube, so that (12) lets us define the value at a given vertex in
terms of the seven other. We can go a step further and start with a large subset of Z3 for
which the values of f are fixed, that will play the role of initial condition. Then by building
cubes and using (12), we can define f on further vertices of Z3. Thus we have transformed
(12) into a spatial recurrence.

Let us give a more formal setting. We say that a function f from Z3 to C∗ satisfies the
cube recurrence if, for every (i, j, k) ∈ Z3,

fi,j,kfi+1,j+1,k+1 = fi+1,j,kfi,j+1,k+1 + fi,j+1,kfi+1,j,k+1 + fi,j,k+1fi+1,j+1,k.

For a vertex (i, j, k) ∈ Z3, we define its cone as

Ci,j,k = {(i′, j′, k′) ∈ Z3 | i′ ≤ i, j′ ≤ j, k′ ≤ k}.

We say that a subset L ⊂ Z3 is monotone if ∀(i, j, k) ∈ L, Ci,j,k ⊂ L. We fix such a monotone
subset. Then its surface boundary I, defined by

I = {(i, j, k) ∈ L | (i+ 1, j + 1, k + 1) /∈ L},

can play the role of an initial condition for the cube recurrence. If z ∈ Z3 is such that Cz∩Lc
is finite, and if f satisfies the cube recurrence, then fz is a function of the (fy)y∈I , and even
of the (fy)y∈I∩Cz . It is clear that this is a rational function. But Fomin and Zelevinsky
proved that it is, unexpectedly, a Laurent polynomial [FZ02b], i.e. a polynomial in the fy
and the f−1

y ; they actually prove this for the much wider class of cluster algebras.
A Laurent polynomial is an object that strongly resembles a partition function. In the

case of the cube recurrence, it is a sum of weights that are products of the initial variables
(fy)y∈I∩Cz ; this might be interpreted as the total weight of some configuration, and we would
like these configurations to be in bijection with the different terms of the Laurent polynomial.

11In contrast, the classical Yang-Baxter equation is the equation obtained when R is a first-order pertur-
bation of the identity; see [PAY06].
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z

Figure 33: A monotone set L intersected with the cone Cz, with the vertices of I in blue. In
that case, we have set L = {(i, j, k) | i+j+k ≤ 0}, so I = {(i, j, k) | i+j+k = 0,−1 or −2},
and z = (1, 1, 1).

Such an interpretation was found by Carroll and Speyer [CS04], with the introduction of cube
groves.

A cube grove on I ∩ Cz is choice of one diagonal for each unit square at the surface of
I ∩ Cz, such that the resulting graph is a spanning forest of the vertices (i.e. it has no loop
and touches every vertex), with every tree of the forest connected to the boundary, and with
an extra condition on the boundary vertices connection that can hopefully be guessed from
Figure 34. If g is a grove, and y ∈ I∩Cz, we denote by degg(y) the degree of y in the forest g.
Then the weight of g is defined as

w(g) =
∏
y

f
degg(y)−2
y .

Figure 34: A cube grove on I ∩ Cz.
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Theorem 13 ([CS04]). With the previous notation,

fz =
∑
g

w(g)

where the sum is over cube groves on I ∩Cz. Moreover, there is a one-to-one correspondence
between such cube groves and monomials of fz, seen as a Laurent polynomial in the formal
variables (fy)y∈I∩Cz .

This is not the only occurrence of combinatorial objects in the iteration of a statistical
mechanics transformation. Speyer proved a similar results for the octahedron recurrence
(that can be seen as an expression of the urban renewal move for dimers) and dimer con-
figurations on certain graphs [Spe07]. Kenyon and Pemantle found an analogous relation
between double-dimer configurations and the hexahedron recurrence [KP16], while investi-
gating a recurrence due to Kashaev [Kas96], which we introduce now.

Example 14 (Ising star-triangle and Kashaev’s relation). Suppose that there is a set of
positive variables on the vertices and faces of G , denoted (gx)x∈V ∪F , and equip every edge
e ∈ E with an Ising coupling constant Je defined, in the notation of Figure 31, by

sinh2(2Je) = gxgy
gugv

.

Then, in the notation of Figure 32, the Ising model satisfies the star-triangle relations of
Section 3.2a) iff g satisfies

2(a2 + b2 + c2 + d2)− (a+ b+ c+ d)2 − 4(s+ t) (13)

where

a = g0g
′
0, b = g1g4, c = g3g6, d = g5g2,

s = g0g2g4g6, t = g′0g1g3g5.

Equation (13) is known in tensor algebra as Cayley’s 2×2×2 hyperdeterminant [Cay61],
but for our purposes we will call it Kashaev’s relation. It can also be embedded on the
vertices of a cube, and the value at one point be defined in terms of the others, with some
care since we have to take the root of a polynomial of degree 2. By always taking the + root,
we ensure that the values of g stay positive. Thus we also have a spatial recurrence: we say
that g : Z3 → C∗ satisfies Kashaev’s (positive) recurrence if at every vertex (i, j, k) ∈ Z3, by
denoting gabc = gi+a,j+b,k+c, we have

g111 = A+ 2
√
D

g2
000

where

A = 2g100g010g001 + g000(g100g011 + g010g101 + g001g110)
D = (g000g011 + g010g001)(g000g101 + g100g001)(g000g110 + g100g010).

The solution of this recurrence also has a Laurentness property, with a connection to
cluster algebra [KP16].
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Theorem 15 ([KP16]). If g satisfies Kashaev’s positive recurrence, for any monotone L ⊂
Z3 with surface boundary I, and any z such that Cz ∩Lc is finite, gz is a Laurent polynomial
in the variables (gy)y∈I∩Cz , and

(√
gxgy + gugv

)
x,y,u,v∈I∩Cz where x, u, y, v are the boundary

of a unit square.

In fact Kenyon and Pemantle obtained this result by showing that gz is the partition
function of a double-dimer model on a decorated graph, but the configurations are not in
bijection with monomials of gz. Such an identification was made later [1] by defining C(1)

2
loop configurations on I ∩ Cz. For exact definitions of the configurations and weights, see
Section 4.1 and Chapter I; let us just say now that it gives a theorem analogous to Theorem 13
in the case of Kashaev’s recurrence.

Figure 35: A loop configuration on I ∩ Cz.

3.6 Geometric embeddings and incidence theorems
All the interpretations given so far used the embedding of G as a map, i.e. up to homo-
morphism, or combinatorial interpretations on a regular lattice. In other words, they were
rather topological. The last point of view that we mention is a geometric one: it deals with
an actual realisation of G as an embedded graph.

a) Isoradial embeddings

Suppose that G is embedded in the plane in such a way that each of its internal faces can
be inscribed in a circle of radius 1, and the center of this circle is inside the face. Such a
graph is called isoradial [Mer01, Ken02]; it is equivalent to the fact that the internal faces
of G � are rhombi with edge-length 1. We say that G � is a lozenge graph. Each edge e ∈ E
corresponds to a rhombus, and we denote by θe ∈

(
0, π2

)
the half-angle of this rhombus at

the primal vertices, see Figure 36.
The class of isoradial graphs is preserved by star-triangle moves, as illustrated in the sim-

ple geometric property of Figure 36. Moreover, the action of this geometric transformation on
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π
2 − θ1

π
2 − θ2

π
2 − θ3

θ1

θ2
θ3

Figure 36: Star-triangle move on an isoradial graph G (with its vertices in black and its
edges dashed, and the dual vertices in white), and its action on the lozenge graph G �. The
angles satisfy θ1 + θ2 + θ3 = π

2 .

the θ variables is very similar to the transformation of τ variables in Propositions 10 and 11.
Indeed, if we fix an elliptic modulus k, and if for every edge we define τe = 2K(k)

π θe and
we fix the coupling constants of the Ising model (resp. 8V-model) accordingly using (9)
(resp. (10)), then the weights after a star-triangle move are exactly what we would have
designed for the graph G ′. In other words, this parametrization yields the coupling equations
automatically.

This is known as a Z-invariant regime on isoradial graphs, and it has been defined for a
large number of models [Ken02, BdT10, BdT11, BdT12, GM13, CGS16, DCLM18, BdTR17,
BdTR18, dT18, Ken19], [2], etc. In fact it might be true that every solution of the star-
triangle relations can be geometrically interpreted on isoradial graphs by a proper geometric
parametrization, although this still requires investigation for some integrable models such as
the chiral Potts model.

Isoradial embeddings are an important class of graph on which integrable models can
be defined, but not all graphs are isoradial (see [KS05] for a characterization in terms of
train-tracks). To study the integrability of a model on a generic graph, one can hope to find
canonical embeddings that work for any graph, and are stable by star-triangle moves. We
now present such embeddings, again for resistor networks and for the Ising model.

b) Harmonic embeddings

When G is a planar graph equipped with a resistor network, every edge e ∈ E carries a
resistance Re > 0. We define the conductance as ce = 1

Re
, and the discrete Laplacian as the

operator ∆ on functions f : V → C as

∀v ∈ V , ∆f(v) =
∑

e={u,v}∈E

ce (f(u)− f(v)) .

A harmonic embedding of G is an injective function f : V → C such that ∆f = 0, and such
that f defines an embedding (i.e. edges do not intersect when each vertex v is sent to f(v)).
Under weak hypothesis and boundary conditions, the existence of a harmonic embedding
was proved by Tutte [Tut63b].

Recently, Kenyon, Lam, Ramassamy and Russkikh [KLRR18] noted that we can also
embed G ∗ naturally. By harmonicity of the embedding, it is possible to define f on F so
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that for every edge e = {u, v} ∈ E , let x, y ∈ F be the adjacent faces, with x to the right
and y to the left of the oriented edge −→uv, then

f(y)− f(x) = ice(f(v)− f(u)).

This gives an embedding of G and G ∗, such that the diamond graph G � is made of orthodiago-
nal quadrilaterals, meaning that their diagonals are orthogonal. Moreover, the conductances
of the model have a geometric interpretation (as a ratio of diagonals).

This class of graph is also stable by star-triangle transformation, and the new conduc-
tances satisfy the transformation of resistor networks of Figure 4 [KLRR18]. The result of
planar geometry that encodes this transformation is known as Steiner’s theorem, see Fig-
ure 37: if we start with three orthodiagonal quadrilaterals APCB′, CPBA′, BPAC ′, then
there is a new point P ′ such that C ′P ′B′A, B′P ′A′C, A′P ′C ′B are orthodiagonal quadrilat-
erals. This is exactly the effect of the star-triangle move on the diamond graph.

A

B

C

P

A′

B′

C ′

A

B

C

A′

B′

C ′

P ′

Figure 37: Steiner’s theorem: the perpendicular to (AB) through C ′, the perpendicular to
(BC) through A′ and the perpendicular to (AC) through B′ (solid lines) are concurrent
iff the perpendicular to (A′B′) through C, the perpendicular to (B′C ′) through A and the
perpendicular to (A′C ′) through B (dashed lines) are concurrent.

A
C ′

B
P

C
A′

B′

A
C ′

B

C
A′

B′

P ′

Figure 38: Star-triangle transformation on the diamond graph in the case of s-embeddings.
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c) s-embeddings

Regarding the Ising model, Chelkak [Che17] introduced a canonical embedding of G and
G ∗, when the graph is equipped with coupling constants (Je)e∈E , called s-embedding. This
embedding is such that every face of the diamond graph is a tangential quadrilateral, meaning
that its sides are all tangent to a circle within the quadrilateral. The incidence theorem
of geometry that encodes the star-triangle transformation on this class of embeddings is
investigated in Chapter III; see Figure 38.
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4 Extended abstracts of presented works

4.1 Kashaev’s recurrence

Chapter I is devoted to the study of Kashaev’s recurrence [1], already mentioned in Sec-
tion 3.5. The first result is the solution to an open problem of Kenyon and Pemantle [KP16],
summarized below in Theorem 16.

A taut loop configuration on I ∩ Cz is a fully packed loop model configuration, where the
loops can be either red or blue, loops of the same color cannot intersect, and loops on the
three “flat” sides of Cz have to be blue and internally connected as in the schematic view of
Figure 39, see also Figure 35. This kind of two-color loop configurations appeared in work
by physicists [WN93, JK04, IC09], without the boundary conditions defined here. We name
them C

(1)
2 loops, following the terminology of [WN93].

z

I

Figure 39: Rule of connections of the infinite loops in a taut loop configuration on I ∩ Cz.

In such a configuration ω, there are 10 local possible configurations at a face f , which
are shown in Figure 40. Let wf (ω) be the corresponding weight, shown at the right of the
corresponding configuration, which is a function of the g variables at the vertices of f . The
total weight of ω is defined as

w(ω) = 2Nω
∏
f∈F

wf (ω)
∏

x∈I∩Cz
g−2
x

where Nω is the number of finite loops in ω. Notice that the configuration ω is infinite, as it
continues on the faces of Cz, far enough from z, but the boundary conditions are such that
this extension to the faces of Cz is unique. The product of variables g−2

x compensates the
local weights of this extension, so that w(ω) is a finite expression in the g variables.

The partition function is then

Zloop(g, I, z) =
∑
ω

w(ω),
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x y

u

v

f

wf (ω) = gxgy

wf (ω) = gugv

wf (ω) = √gxgy
√
gugv + gxgy

wf (ω) = √gugv
√
gugv + gxgy

wf (ω) = √gugvgxgy

Figure 40: The 10 local configurations at a face f and their weight.

where the sum is over taut loop configurations on I ∩ Cz.
We can now state the main result:

Theorem 16 ([1]). With the previous notation,

gz = Zloop(g, I, z).

Moreover, there is a one-to-one correspondence between taut loop configurations and mono-
mials of gz.

Idea of proof of Theorem 16. The proof goes by induction on the number of unit cubes in
Cz \ L (or “holes” in the pile of cubes). If there is a hole, it is possible to add a unit cube to
L, thus getting a new lattice L′, with surface boundary I ′ obtained by “pushing” the hole
into a new cube. We want to prove that when g satisfies Kashaev’s positive recurrence,

Zloop(g, I, z) = Zloop(g, I ′, z). (14)

If this is true, then by adding successive cubes, we will eventually reach a lattice that contains
Cz, i.e. where there is no hole; see Figure 41. In this case, the boundary conditions are such
that there is a unique taut loop configuration, and its weight is gz. All in all, we initially
have the quantity Zloop(g, I, z) and we show by adding successive cubes that in the end, it
is equal to gz.

To prove (14), we proceed as in the coupling equations for the star-triangle transforma-
tion: we condition on boundary conditions (colors and connections of loops) and show that
the sums of local weights are equal. These coupling equations are schematically represented
in Figure 42. They are satisfied iff g satisfies Kashaev’s positive recurrence on the vertices
of the added cube.

Finally, we show that the configurations are in bijection with the monomials of gz, i.e.
that two different configurations have different weights (as formal expressions in the g vari-
ables). This is done by an explicit reconstruction algorithm, that takes a weight and returns
the configuration. The idea is to discover new faces successively: we already know the con-
figuration far away from z, so the “unknown region” is finite. We can also show that if
the unknown region contains a vertex of degree 2 on its boundary, then we can discover the
configuration on one new face. By geometric means, we prove the following (see Lemma I.20):
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Figure 41: Taut loop configuration when the lattice contains Cz.

Figure 42: Coupling equations for loop configurations when we add a cube.

Lemma 17. Any non-empty graph whose faces are non-degenerate rhombi has at least three
vertices of degree 2 on its outer boundary.

This allows one to guarantee that the algorithm finishes.

From there, we prove some limit shapes results. Suppose that the lattice is L = {(i, j, k) |
i + j + k ≤ 0}. Chose three numbers a, b, c > 0 and fix the initial conditions g on I to be
periodic, as in Figure 43. Then sample a random taut loop configuration, proportionally to
its weight, on I ∩ Cz, for a “large” z = (i, j, k). When |z| = i + j + k becomes large, the
behaviour of the model changes at boundaries that become deterministic when rescaled by
|z|, called limit shapes, see Figure 44. In this case the limit shapes are algebraic curves of
degree 8 than can be computed explicitly, and there are three different behaviors or phases:
solid (the three “corners”), liquid (the “annulus”) and gas (the central “facet”).

Let us give a loose statement of the characterization of the limit shape that we prove;
see Section I.4.5 for precise results. For any z ∈ N3, we define an observable ρz that is the
expectation of a local random variable depending on the loops around the point (0, 0, 0)
(which belongs to I); see (I.17) for its exact meaning. If we fix (u, v, w) ∈ (0, 1)3 such
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Figure 43: Periodic initial conditions.

Figure 44: Left: a random taut loop configuration when |z| is large. Right: the algebraic
limit shape, represented in the plane x+ y + z = −1, with the three expected phases of the
model.

that u + v + w = 1 and set z to be (bkuc, bkvc, bkwc), with k → ∞, then the observable
ρz will probe the asymptotic behaviour of the model around the point corresponding to
(−u,−v,−w) in the right-hand side of Figure 44.

Theorem 18 ([1]). Let (u, v, w) ∈ (0, 1)3 be such that u + v + w = 1, and set z =
(bkuc, bkvc, bkwc). As k →∞, ρz has the following asymptotic behaviour:

• If (−u,−v,−w) is in the frozen region of Figure 44, then ρz tends to 0 exponentially
fast in k.

• If (−u,−v,−w) is in the liquid region of Figure 44, then ρz tends to 0 as a power of
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k.

• If (−u,−v,−w) is in the gaseous region of Figure 44, then ρz tends to 1
3 .

Together with some heuristics on the possible behaviour of the random variable whose
expectation is ρz, this result on a single observable is enough to guess the actual behaviour of
the loops in the three phases. For instance, notice that in the loop configuration of Figure 44,
the interface between the solid and liquid phases corresponds to the first occurrence of red
loops, and the interface between liquid and gas phases corresponds to the position of the
“center-most” infinite blue loops.

Idea of proof of Theorem 18. The idea follows the technique of [DFSG14] and uses the results
of analytic combinatorics stated in the reference [PW13]; the proof itself is very similar to
that of [KP16].

If we let the value of z vary, we now know that Zloop(g, I, z) satisfy Kashaev’s relation.
By taking the logarithmic derivative of this relation with respect to the value of one initial
condition (say g0,0,0), this gives a linear relation among the

ρz = g0,0,0
∂ (lnZloop(g, I, z))

∂g0,0,0
.

As for several examples mentioned before, this logarithmic derivative of the partition function
has a probabilistic meaning, as the expectation of a local random variable related to the loops
around the point (0, 0, 0). Since the variables ρz satisfy a linear relation, we can show that
their generating function (in z) is algebraic:

F (x, y, z) :=
∑
i,j,k

ρ(i,j,k)x
iyjzk = P (x, y, z)

H(x, y, z) ,

for some polynomials in three variables P,H.
From there, analyzing the singularities of H and using the powerful theory of analytic

combinatorics developed in [PW13] allows us to deduce the behavior of ρz for |z| large.

Theorem 16 is combinatorial in nature. However, recall that Kashaev’s originates from
the study of the Ising model. Hence we might be able to find an interpretation in statistical
mechanics: the loop model introduced here might have some natural relation with an Ising
model, even on generic graphs G that do not come from a cubic lattice. We present such a
relation now.

Let G be a finite graph embedded on the sphere, with Ising coupling constants J (see
Section 2.1). We consider C(1)

2 loop configurations on G �, where the local weights are given
in the following way: for every “diamond” face f ∈ F �, in the notation of Figure 40, suppose
that x, y ∈ V are the primal vertices and u, v ∈ F are the dual vertices. Let e = {x, y} ∈ E .
Then, in the order of Figure 40, the local weights at f are set to be a2

e, b
2
e, ae, be, aebe, where

ae = tanh 2Je and be = (cosh 2Je)−1. Let Zloop(G �, J) denote the corresponding partition
function.

Theorem 19 ([1]).

(ZIsing(G , J))4 =

2|V |
∏
e∈E

cosh 2Je

2

Zloop(G �, J).
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Idea of proof. The proof uses a relation between the Ising model and a 6V-model, that
was written explicitly in [Dub11a] and uses argument of [Nie84, WL75]; see also [BdT14].
Consider the 6V-model on Gm, where for every e ∈ E the local weights at the corresponding
medial vertex are given, in the notation of Figure 14 and identifying the medial vertex with
e, by Ae = ae, Be = be, Ce = 1 and of course De = 0. Note that a2

e + b2e = 1 = c2
e so this

model is actually free-fermionic. Then we have [Dub11a]

(ZIsing(G , J))2 = C Z6V(Gm, J),

for an explicit constant C. Hence it is sufficient to prove that for this 6V-model, (Z6V(Gm, J))2 =
Zloop(G �, J). This is done by a series of mapping, which is summed up in Figure 45.

First, given a loop configuration ω, we can orient every loop to get an oriented loop
configuration −→ω . If we define the weight of −→ω by

w(−→ω ) =
∏
f∈F

wf (ω)

(notice that there is no factor 2Nω), then there is a weight-preserving (many-to-one) mapping
from oriented loop configurations to loop configurations, simply obtained by forgetting the
orientation.

On the other hand, starting from an oriented loop configuration, one can forget the
connection information and simply look at the orientation and color of every medial edge.
This gives what we call a C(1)

2 vertex configuration. See the left of Figure 46.

Figure 45: Left: an example of a C(1)
2 vertex configuration on a piece of Z2. Right: the

corresponding couple of 6V-configurations.

Finally, we show that there is a weight-preserving bijection between C(1)
2 vertex configu-

rations and couples of 6V-configurations (seen here as orientations of the medial edges). Let
τ be a C(1)

2 vertex-configuration, then the first 6V-configuration is obtained by forgetting
the colors of τ , and the second is obtained by reverting every blue arrow and then forgetting
the colors. It is easy to check that this is a bijection.

All in all, we get all the transformations shown in Figure 46, which proves the equality
of partition functions, as well as some more precise information about the statistics of loops
in terms of interfaces of the Ising models.

Ising4 6V2 C
(1)
2 vertex oriented loops loops

Figure 46: The series of transformation, from Ising to loops.
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In Chapter I and in [1], the previous transformations are stated in a slightly different
way: we use a dimer model instead of the 6V-ones, and instead of using orientations on the
loops we put two different kinds of markers. This is done to make the transformation to
the double-dimers of [KP16] more transparent. However, it is completely equivalent to the
previous idea of proof.

4.2 The free-fermion 8V-model

Chapter II is devoted to the study of the eight-vertex model [2]. We will use the the content
of Sections 2.3 and 2.5. Recall that we want to give rigorous results on the 8V-model, defined
on the dual of a bipartite quadrangulation Q; to do so, we suggest transforming it into a
dimer model (see 2.2). This is possible only for a free-fermion regime for which at every
face of the quadrangulation f ∈ F , A2

f +B2
f = C2

f +D2
f . Such a regime is included into the

disordered phase of the expected phase diagram of Figure 12 and, by analyticity, should give
an idea of the model in the whole disordered phase. However, the dimer model we obtain
cannot be bipartite, except in degenerate cases (for which ∀f ∈ F , AfBfCfDf = 0, such as
the free-fermion 6V-model of Example 5).

In Chapter II we describe a procedure that avoids this issue. Namely, we show:

Theorem 20 ([2]). Let Q be a quadrangulation of the sphere, and let (Af , Bf , Cf , Df )f∈F
be non-degenerate, free-fermion 8V-weights on the faces of Q. Then there exists two sets of
free-fermion 6V-weights, (A(1)

f , B
(1)
f , C

(1)
f , 0)f∈F and (A(2)

f , B
(2)
f , C

(2)
f , 0)f∈F , such that

Z8V (Q, (A,B,C,D))2 = Z6V
(
Q, (A(1), B(1), C(1))

)
Z6V

(
Q, (A(2), B(2), C(2))

)
.

This relation gives a link between generic free-fermion 8V-models and bipartite dimers.
It is stated at the level of partition functions, but more precise objects can be related:

• Kasteleyn matrices: The (non-bipartite) Kasteleyn matrix K of dimers for the 8V-
model, and the (bipartite) Kasteleyn matrices K1,K2 of dimers for the 6V models are
related via a simple local permutation matrix T :

Theorem 21 ([2]).

K−1 = 1
2
(
K−1

1 +K−1
2 + T (K−1

1 −K−1
2 )

)
.

This implies that the correlations of the 8V-model can be expressed in terms of the
two 6V-ones. Thus we can get explicit correlations, and an explicit Gibbs measure in
the appropriate limit.

• Characteristic polynomials: In the case of a toric quadrangulation, consider the char-
acteristic polynomials (see (6)) P of dimers for the 8V-model, and P1, P2, of dimers
for the 6V-model. Then we have

Theorem 22 ([2]).
P (z, w) = P1(z, w)P2(z, w).
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This is quite surprising: the characteristic polynomial of a natural non-bipartite dimer
model is in fact reducible. Algebraically, this implies that the zero locus of P in C2 is
the union of two Harnack curves.

• Couplings: Some statistical information can be kept between the models. Let τ, τ ′
bet two 8V-configurations, seen as subset of edges, then we denote their XOR (or
symmetric difference) by τ ⊕ τ ′.

Theorem 23 ([2]). In the notation of Theorem 20, consider τ, τ ′ distributed as the
Boltzmann 8V-measure (A,B,C,D), and τ1, τ2 distributed as the Boltzmann 6V-measures
(A(1), B(1), C(1)), (A(2), B(2), C(2)) respectively, all of them being independent. Then
τ ⊕ τ ′ and τ1 ⊕ τ2 are equal in distribution.

This is proved using the formalism of order-disorder variables for the 8V-model [KC71,
Dub11a]. These objects generalise usual probabilistic correlations, and can be tracked
throughout the proof of Theorem 20 of which we give a sketch below. To go back to the
probabilistic statement of Theorem 23, we use techniques of discrete Fourier theory;
see Section II.A for more details.

Example 24 (Classical case). Let us show in an example how the transformation from free-
fermion 8V to free-fermion 6V can be computed in practice. Consider the case of the “clas-
sical” 8V-model from Section 2.3a), defined on Z2 (represented with vertical and horizontal
edges) according to four constant weights a, b, c, d. Suppose that we are in the free-fermion
regime a2 + b2 = c2 + d2. Then the corresponding 6V-models are obtained as follows: first,
one can find α, β ∈ R/2πZ such that in homogeneous coordinates[

a : b : c : d
]

=
[
sin
(
α+β

2

)
: cos

(
α+β

2

)
: cos

(
α−β

2

)
: sin

(
−α+β

2

)]
.

Then the corresponding free-fermion 6V-models have weights that alternate between even
and odd sites of Z2; the first one corresponds to the dimer model on the periodic graph of
Figure 47 (using the correspondence with dimers, this is exactly the decorated graph shown
in Figure 18 when the initial graph is Z2), and the second 6V-model is obtained by switching
the roles of α and β (or equivalently of even and odd sites).

We give elements of the proof of Theorem 20. These also form the basis to the proofs of
Theorems 21, 22, 23.

Idea of proof of Theorem 20. Let V denote the vertices of the quadrangulation Q. We fix a
bipartite coloration of V into black vertices B and white vertices W.

1. Suppose that we have an Ising model on B, with interaction on the diagonals of the
faces of Q, with coupling constants J1 and another one on W with coupling constants
J2. We can use the spin-vertex correspondence (see Proposition 4) to get an 8V-model,
which we denote by 8V12.

2. From there, we apply a duality result to the model 8V12. This duality was discovered
by Wu [Wu69] and stated on more generic graphs in [Dub11a].
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Figure 47: The periodic, bipartite dimer model associated with one of the 6V-models, ob-
tained from the “classical” free-fermion model on Z2.

Proposition 25 ([Wu69, Dub11a]). Let (A,B,C,D) : F → R4 be 8V-weights. Define
(Ã, B̃, C̃, D̃) by

∀f ∈ F ,


Ã(f)
B̃(f)
C̃(f)
D̃(f)

 = 1
2


1 −1 1 1
−1 1 1 1
1 1 1 −1
1 1 −1 1



A(f)
B(f)
C(f)
D(f)

 .
Then

Z8V (Q, A,B,C,D) = Z8V (Q, Ã, B̃, C̃, D̃).

This is a linear involution on the weights. This relation can be proved in several ways;
in Section II.A, extending on results of [Dub11a, Dub11b], we describe how it can be
seen as a Poisson summation formula in discrete Fourier theory.
It happens that applying this duality on the model 8V12 gives a free-fermion model,
which we call 8V ∆

12 .

3. By taking two Ising models on B and two others onW, arranging them as in Figure 48,
we create four 8V-models, that we can transform into free-fermion ones by duality. As
a result, those satisfy the “switching” relation:

Z8V ∆
12
Z8V ∆

34
= Z8V ∆

14
Z8V ∆

32
.

In the special subcase where the Ising models J1 and J4 are dual of each other in the
sense of [KW41], the model 8V ∆

14 turns into a 6V -model; this was shown in [Dub11a].
As a result, in the previous identity, if we set J1, J4 (resp. J2, J3) to be dual Ising
models, it is easy to get

Z2
8V ∆

12
= Z6V ∆

1
Z6V ∆

2
.
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The theorem follows from the fact that the model 8V ∆
12 that we constructed is in fact

a completely generic free-fermion 8V-model.

J1 J2

J3J4

8V12 8V ∆
12

8V34 8V ∆
34

8V14

8V ∆
14

8V32

8V ∆
32

Figure 48: Transformation from Ising models to free-fermion 8V-models, shown at a face of
Q.

In the rest of Chapter II, we investigate Z-invariant free-fermion models on isoradial
graphs, defined in Section 3.6a). We show that there exists a two-parameter family of weights
that satisfy the star-triangle relations, indexed by two elliptic moduli k, l (the notations
related to elliptic functions are introduced in Section 3.2a)). In the isoradial embedding,
every face f of the quadrangulation is a rhombus; let θ be its half-angle at the black vertices,
and let τk = 2K(k)

π θ, and similarly for τl. Then we set

A(f) = sn (τk|k) + sn (τl|l)
B(f) = cn (τk|k) + cn (τl|l)
C(f) = 1 + sn (τk|k) sn (τl|l) + cn (τk|k) cn (τl|l)
D(f) = cn (τk|k) sn (τl|l)− sn (τk|k) cn (τl|l) .

(15)

Note that when k = l this is a 6V-model (i.e. D(f) vanishes), and that exchanging k and l
does not change the regime.

Theorem 26 ([2]). On any finite of infinite isoradial graph, the weights (15) satisfy the
star-triangle relations of the 8V-model.

It might be a bit surprising that these weights are not present in Baxter’s derivation of
Z-invariant weights stated in Proposition 11. This comes from the fact that our definitions
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break the symmetry between black and white vertices of the quadrangulation, thus giving
more solutions to the star-triangle equations. This is sometimes called a checkerboard setting.
The proof of Theorem 26 is a computation, that uses identities on elliptic functions from
[Law89, AS64].

By starting with these Z-invariant weights and applying the procedure to transform them
into 6V-models, we recover models that have been studied in [BdTR18]. This allows for the
computation of explicit correlations, that satisfy the locality property of Section 3.2c). These
correlations can be analysed precisely, to show that:

• When k = 0 or l = 0, the coefficients of the inverse Kasteleyn matrix decay as a power
law.

• When 0 < k < l, they decay exponentially; essentially 〈τeτe′〉 ∼ exp
(
|e−e′|
ξk

)
for faraway

edges e, e′. The correlation length ξk tends to infinity as k → 0, which is the critical
parameter of this model. More precisely, ξk is of order k−2 for small k; this gives the
critical exponent for the correlation length, and this exponent is the same as that of
the Ising model.

The results on exact correlations of [2] are summed up in the phase diagram of Figure 49.
The point k = l = 0 corresponds to the trigonometric 6V-model, which is a special case of
the critical bipartite dimer model on an isoradial graph defined in [Ken02].

l

k

6V

critical (polynomial decay)

exponential
decay

1

1

0

Figure 49: Phase diagram of the Z-invariant free-fermion 8V-models, in the parameters k, l
and in the regime 0 ≤ k ≤ l < 1.

4.3 Incidence theorems and canonical embeddings of graphs
The goal of Chapter III is to give elements towards the definition of canonical embeddings of
graphs equipped with a model, such that observables of the model have a direct interpretation
in the embedding. Examples of such embeddings are given in Section 3.6; one should add
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the correspondence between the dimer model and circle patterns, see [KLRR18]. We propose
the following framework.

Let f : (0,∞)2 → R be a symmetric, homogeneous function. A non-crossed quadrilateral
with successive sides a, b, c, d is said to be an f -quad if it satisfies

f(a, c) = f(b, d).

For instance, a kite, which is a quadrilateral such that {a, c} = {b, d}, is an f -quad for any
function f . Embeddings of graphs made of kites have been studied in [Lis17], equipped with
a critical Ising model. This is generalised by the definition of s-embeddings in [Che17].

For a planar graph G , an f -embedding of G is a proper embedding of both G and G ∗,
such that all faces of G � are f -quads.

Example 27. • For f(x, y) = x2 + y2, being an f -quad is equivalent to being an ortho-
diagonal quadrilateral. Those are the quadrilaterals appearing in the harmonic embed-
dings for resistor networks.

• For f(x, y) = x + y, being an f -quad is equivalent to being a tangential quadrilateral.
Those are the ones that appear in the s-embeddings of the Ising model [Che17].

We are define a particular sub-family of f -quads. For f(x, y) = xα+yα, where α ∈ R∗, we
dub the f -quads as α-quads. The definition can be naturally extended to α ∈ R̄ = [−∞,∞],
by setting 0-quads to correspond to f(x, y) = xy, +∞-quads to f(x, y) = max(x, y), and
−∞-quads to f(x, y) = min(x, y).

We explore the space of such quadrilaterals. For instance,

Proposition 28. If a quadrilateral is an α-quad and an α′-quad for two different values
α, α′ in R̄, then it is a kite.

We then turn to the star-triangle transformations for f -embeddings. Our hope is to
generalise the incidence theorems exemplified in Figures 36, 37, 38. We say that f satisfies
the flip property if, for every proper embedding of three f -quads A0A1A2A3, A0A3A4A5 and
A0A5A6A1 as in Figure 50, there exists a point A7 such that A7A2A3A4, A7A4A5A6 and
A7A6A1A2 are proper f -quads.

A1

A2

A3

A4

A5

A6

A1

A2

A3

A4

A5

A6

A0

A7

Figure 50: The flip property.

The existence of such a flip is a strong indication that f -embeddings form an integrable
system, and hint at the existence of an underlying statistical model.



58 Introduction

Conjecture 29. Any continuous, symmetric, homogeneous function f : (0,∞)2 → R satis-
fies the flip property.

The conjecture holds for f(x, y) = x2 + y2 by Steiner’s theorem. We show that it holds
for f(x, y) = x+ y, proving the property observed in Figure 38.

Theorem 30. The function f(x, y) = x+ y satisfies the flip property, moreover, the points
A0, A7 are unique.

Our goal in the future of this project is to establish this property for more functions f ,
and hopefully to understand these flip properties in terms of integrable models.

4.4 Long paths in partitions of the divisor graph
This chapter is dedicated to the study of optimal partitions of the divisor graph [3]. The
divisor graph of order N is the graph with vertices indexed by the integers {1, . . . , N}, and
edges linking any two distinct integers that are multiple (or divisor) of one another, see
Figure 51. The original definition of this graph goes back to Erdős, Freud and Hegyvári
[EFH83]. Several questions can be asked about this graph:

• What is the longest path, i.e. the longest sequence of distinct integers in {1, . . . , N}
such that one divides or is a multiple of the next? This is denoted f(N) and it has
been shown by Saias [Sai98] that

f(N) � N

logN .

• What is the minimal number of paths needed to partition the divisor graph? After
several successive improvements [ES95, Sai03, Maz06, Cha08, McN18], it is known that
this number F (N) satisfies

F (N) ∼ cN, (16)
where c ∈ (0.176488, 0.2289).

• A partition is said to be optimal if it contains F (N) paths. We address the question of
knowing what an optimal partition can look like. We denote by L(N) the length of the
longest possible path appearing in an optimal partition. Clearly, we have L(N) ≤ f(N),
and by a pigeonhole principle, for N large enough we have L(N) ≥ 1

c > 4 where c is
the constant of (16). In Chapter IV we prove that L(N) can be very large, of order
N1−o(1). More precisely,

Theorem 31 ([3]). There exists a constant A > 0 such that for all N ≥ 3,

logL(N) ≥ logN − (log logN)2

log 2 −A log logN.

Example 32. For N = 7, the divisor graph is shown in Figure 51. One can check that
f(7) = 6, with an example of a maximal path being (5, 1, 3, 6, 2, 4). One has F (7) = 2, as we
can just add the path (7) to the previous one to get a partition of the divisor graph. Thus, in
that case, L(7) = f(7) = 6. Note that we could have optimal partitions with shorter paths,
such as (7, 1, 5), (3, 6, 2, 4).
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1

2

3

4
5

6

7

Figure 51: The divisor graph for N = 7.

Tools for the proof.

• Self-similarity: For k ≥ 2, consider the prime numbers in
(

N
k+1 ,

N
k

]
. By the prime

number theorem, there is an order constant × N
logN of them. For every such prime

number p, in an optimal partition of N , there are k multiples of p, and each of these
can be connected either with other multiples of p, or to a number smaller than k. But
there is far less numbers smaller than k than prime numbers in

(
N
k+1 ,

N
k

]
, hence for

“almost all” p, the multiples of p are only connected to other multiples of p. Hence
they form an optimal partition of

[
N
p

]
= k. This can lead to “bootstrap” functional

equations between L(N) and the L(k) for different values of k. This line of reasoning
can be adapted to prime numbers of order as small as

√
N logN .

• Extraction: In an optimal partition, the integer 1 belongs to some path. We can remove
1 from this path and use it to connect two different paths; in doing so, the total number
of paths has augmented and then decreased by 1, so the final partition is still optimal.
This is very useful, for instance with the previous argument it implies that for any
fixed k, for N large enough, L(N) ≥ 2L(k) + 1. By bootstrapping, this shows that
L(N)→∞.
We can actually extract numbers different from 1, provided we know that there exists
paths ending with multiples (or divisors) of these numbers.

• Buchstab’s inequality: To get better lower bounds on L(N), we want to be able to apply
extraction on many numbers. For that reason, we introduce La,b(N) as the maximal
length of a path having a and b as endpoints and belonging to an optimal partition of
{1, . . . , N} and we work with the “uniform” quantity

H(N) = minLr′,r(N)

where the min is over prime numbers N
3 < r ≤ N

2 < r′ ≤ N . Working with all these
possible endpoints “at once” gives more freedom in the construction of long paths.
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Bootstrap inequalities on H(N) are analogous to Buchstab’s inequality, see [Sai93],
and give the bound on L(N) after some computations.
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Résumé

Nous étudions un modèle de boucles à deux couleurs, connu sous le nom de modèle C(1)
2 . Nous

définissons un régime de fermions libres pour ce modèle, et nous montrons que dans ce cas
le modèle peut être transformé en un couple de modèles de dimères. Nous calculons ensuite
l’énergie du modèle de boucles pour des graphes planaires périodiques. Nous étudions les
transformations triangle-étoile du modèle, et nous montrons qu’après une reparamétrisation,
elles peuvent être résumées en une seule équation connue sous le nom d’équation de Kashaev.
Cela permet d’identifier les solutions de la relation de Kashaev avec la fonction de partition
du modèle de boucles C(1)

2 , pour un bon choix de conditions au bord. Cela apporte une
solution à un problème ouvert de Kenyon et Pemantle [KP16] sur la combinatoire de la
relation de Kashaev.

Abstract

We study a two-color loop model known as the C(1)
2 loop model. We define a free-fermionic

regime for this model, and show that under this assumption it can be transformed into a
double dimer model. We then compute its free energy on periodic planar graphs. We also
study the star-triangle relation or Yang-Baxter equations of this model, and show that after
a proper parametrization they can be summed up into a single relation known as Kashaev’s
relation. This is enough to identify the solution of Kashaev’s relation as the partition function
of a C(1)

2 loop model with some boundary conditions. This solves an open question of Kenyon
and Pemantle [KP16] about the combinatorics of Kashaev’s relation.
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I.1 Introduction

In 1996 Kashaev introduced a way to rewrite the star triangle transformation of the Ising
model [Kas96]. Specifically, let us take a planar graph G = (V,E) with usual coupling
constants for the Ising model (Je)e∈E on the edges. Let us suppose that there is a set of
variables g on the vertices and faces of G such that

sinh2(Je) = gxgy
gugv

(I.1)

where x, y are the endpoints of e and u, v are the faces adjacent to e. Then the star-triangle
relation, or local Yang-Baxter equation, is equivalent to the variables g satisfying a single
polynomial relation:

g3
g23g13

g2g1
g12

g123

g3
g23g13

g2g1
g12

g

g2g2
123 + g2

1g
2
23 + g2

2g
2
13 + g2

3g
2
12

−2g2g3g13g12 − 2g1g3g23g12 − 2g1g2g23g13

−2gg123(g1g23 + g2g13 + g3g12)
−4gg12g23g13 − 4g123g1g2g3

=0.

This relation1, known as Kashaev’s relation, has sparked some interest from the point of
view of spatial recurrences. It can be embedded in Z3 by taking x ∈ Z3 and denoting g = gx,
gi = gx+ei , gij = gx+ei+ej , etc. Then by choosing the greatest root of a degree 2 polynomial
we get [KP16]:

g123 = 2g1g2g3 + g(g1g23 + g2g13 + g3g12) + 2XY Z
g2 , (I.2)

where X = √gg23 + g2g3, Y = √gg13 + g1g3, Z = √gg12 + g1g2.
This transformation (I.2) is called Kashaev’s recurrence. It can be iterated to define g

on further vertices of Z3, provided we had a sufficiently large set of initial conditions. A
remarkable fact is that it exhibits a Laurentness phenomenon: the solution of the recurrence
at any point is always a Laurent polynomial in the initial variables. This fact is related to
cluster algebras [FZ02a, FZ03], but it also hints at a possible hidden object represented by
the solution.

Let us quickly review the current state of spatial recurrences: Speyer related the solution
of the octahedron recurrence (which can be traced back to Dodgson [Dod66]) to the partition
function of a dimer model [Spe07]; then Carroll and Speyer showed that the cube recurrence
(proposed by Propp [Pro01]) corresponds to cube groves [CS04]; more recently Kenyon and
Pemantle studied a generalization of Kashaev’s relation, known as the hexahedron recur-
rence, and identified its solution with a double dimer model [KP16]. Unfortunately, when
specialized to Kashaev’s recurrence, their model does not provide a one-to-one correspon-
dence between configurations and monomials of the Laurent polynomial. In this chapter we

1Kashaev’s initial equation contained a +4 instead of a −4 coefficient for the last terms, but one can easily
get from one to another, for instance by multiplying g by −1 at a vertex of the cube and its three neighbors.
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provide a model that does give a one-to-one correspondence, known in the physics literature
as the C(1)

2 loop model.

The C(1)
2 loop model was introduced by Warnaar and Nienhuis in [WN93], among other

models, as a loop model naturally associated to formal solutions of the Yang-Baxter equation
[Baz85, Jim86]. It was also considered, for different reasons, by Jacobsen and Kondev in
[JK04] as a generalization of the eight-vertex model, and they conjecture a phase diagram
for this model.

It is a dense, two-color loop model where same-colored loops cannot intersect. Let us
detail this terminology; see also Figure I.1 for an example.

• loop model means that the configurations are unions of simple curves. In our case,
these curves use edges of the dual graph of a bipartite quadrangulation G, and are able
to turn inside faces of G.

• two-color means that each loop is either red or blue.

• dense means that every dual edge of G belongs to a loop.

• finally, same-colored loops cannot intersect means that the only allowed crossings are
between red and blue; see Figure I.2 for all possible local configurations at a face of G.

Figure I.1: A quadrangulation G (in black), with a C(1)
2 loop configuration.

Equivalently, a C(1)
2 loop configuration can be seen as a gluing of quadrangles appearing

in Figure I.2, where only same-colored edges can be glued together.
The model is equipped with weights: let n be a positive parameter called fugacity, then

the weight of a C(1)
2 loop configuration σ is

w(σ) = n#loops in σ
∏
f∈F

wfi ,

where F is the set of faces of the quadrangulation and wfi is the local weight corresponding
to σ|f .
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xf yf

uf

vf

f

1a 1b wf1

2a 2b wf2

3a 3b wf3

4a 4b wf4

5a 5b wf5

Figure I.2: A face f , the 10 local configurations 1a, . . . , 5b at f and their local weight wfi .

In [WN93] the authors give a two-parameter family of fugacity and weights such that the
model is integrable, which in their setting means that it satisfies a form of the star-triangle
relation: 

n = −2 cos 2λ
w1 = sin(λ−u) sin(3λ−u)

sinλ sin 3λ
w2 = − sinu sin(2λ−u)

sinλ sin 3λ
w3 = sin(3λ−u)

sin 3λ
w4 = − sinu

sin 3λ
w5 = sinu sin(3λ−u)

sinλ sin 3λ

(I.3)

In [IC09], Ikhlef and Cardy define a fermionic observable Fs for this model and show
that imposing a form of discrete holomorphicity on Fs yields the same integrable weights
as in [WN93]; this approach was extended to the case of non-trivial boundary conditions in
[dGLR13].

In this chapter we only deal with the n = 2 case. We introduce the free-fermionic
relations (see Section I.2.3 for more details on this terminology):

wf1w
f
4 = wf3w

f
5 ,

wf2w
f
3 = wf4w

f
5 ,

wf5 (wf1 + wf2 ) = wf3w
f
4 .

For instance, the integrable weights (I.3) at n = 2 (i.e. λ = ±π
2 ) satisfy the free-fermionic

relations.
When these relations are satisfied, we show that the C(1)

2 loop model can be transformed
into a double dimer model. We prove the following; for a precise statement, see Theorem I.4
of Section I.2.

Theorem. For any free-fermionic C
(1)
2 loop model, there is a bipartite decorated graph

equipped with a dimer model with weights µ, and there are constants (λf )f∈F , such that
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the partition function ZGloop is equal to the square of the partition function Zdim (µ) of this
dimer model, up to multiplicative factors:

ZGloop =

∏
f∈F

λf

(ZGdim (µ)
)2
.

An application of this result is the computation of the free energy of any free-fermionic
C

(1)
2 loop model on a periodic planar quadrangulation; see Section I.2.4.
Then we define a parametrized free-fermionic C(1)

2 loop model, analogous to Kashaev’s
parametrized Ising model (I.1). Let us suppose that there is a set of variables (gv)v∈V on
the vertices of G such that 

wf1 = gxgy

wf2 = gugv

wf3 = √gxgy
√
gxgy + gugv

wf4 = √gvgu
√
gxgy + gugv

wf5 = √gxgygugv.

(I.4)

The existence of such a parametrization is discussed in Appendix I.B. In particular, we show
that it always exists for a free-fermionic model on a lozenge graph.

In this regime, we show that the Yang-Baxter equations associated to the model (corre-
sponding to a move called cube flip, similar to the star/triangle move) are equivalent to g
satisfying Kashaev’s recurrence (I.2). See Theorem I.12 in Section I.3.

Finally, we get to the solution of Kashaev’s recurrence. See Theorems I.18 and I.19 of
Section I.4 for a precise statement of the following.
Theorem. For any solvable initial condition (gi)i∈I on I ⊂ Z3

−, the solution of Kashaev’s
recurrence at the origin is

g0,0,0 =
∑
σ

2#loops in σ
∏
f

wfi
∏
i∈I

g−2
i


where the sum is over taut C(1)

2 configurations σ, and the local weights wfi are given by (I.4).
Moreover, there is a one-to-one correspondence between such loop configurations and

monomials of g0,0,0 as a function of the variables (gi)i∈I .
The taut configurations are those satisfying some boundary and connectivity conditions;

an example is displayed in Figure I.3.
The chapter is organized as follows:

• In Section I.2 we define the models, and show how to get from free-fermionic C(1)
2 loops

to dimers. We also compute the free energy on periodic planar quadrangulations.

• In Section I.3 we show that for the parametrization (I.4) of the weights, the Yang-
Baxter equations of loops are equivalent to Kashaev’s recurrence.

• In Section I.4 we define taut configurations, and prove that the solution of Kashaev’s
recurrence is the partition function of these configurations. We compute some limit
shapes of the model by a now standard technique [PS05, DFSG14, KP16, Geo17]. We
also show that in characteristic 2 the model reduces to the cube groves of [CS04].
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Figure I.3: A taut C(1)
2 loop configuration.
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I.2 Free-fermionic C(1)
2 loops and double dimers

I.2.1 The C(1)
2 loop model on a quadrangulation

Definition I.1. Let S be a connected orientable compact surface without boundary. A
quadrangulation of S is a finite connected simple graph G = (V,E) embedded in S so
that edges do not intersect, and so that the faces of G (the connected components of the
complement of the embedding) are homeomorphic to disks and have degree 4. We denote
by F the set of faces.

Definition I.2. Let G be a bipartite quadrangulation of S. For every face f ∈ F , we fix
names for the vertices of the boundary of f , in clockwise order, as xf , uf , yf , vf , with xf , yf
black vertices and uf , vf white vertices like in Figure I.2. Notice that a vertex will have
several names, corresponding to all the faces adjacent to it; we only use these labels to make
the 10 different configurations of Figure I.2 well defined. When there is no ambiguity, we
will also drop the superscript f .

A C
(1)
2 loop configuration σ on G is the data, for every f ∈ F , of an index ifk ∈

{1a, 1b, . . . , 5a, 5b} (we think of it as i ∈ {1, . . . , 5} and k ∈ {a, b}) representing the local
configuration σ|f , such that glued edges are the same color.
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When there is no ambiguity on the face involved, we will often drop the superscript f in
ifk . Let us denote σ the set σ = {(f, ik) | f ∈ F}.

Simply stated, a C
(1)
2 loop configuration on G is an edge-covering set of red or blue

loops on the dual graph G∗ (which we represent inside a face by turning or crossing when
necessary), such that same-colored loops cannot cross.

We equip the faces with a set of positive weights W = (wfi )f∈F,i∈{1,...,5}. For a loop
configuration σ we let Nσ be the number of loops in σ. The weight of σ is defined as

wGloop(σ) = 2Nσ
∏

(f,ik)∈σ
wfi . (I.5)

The partition function of the model is the weighted sum of loop configurations:

ZGloop (W ) =
∑
σ

wGloop(σ).

I.2.2 Dimer model on the quad-graph

Let G∗ be the dual graph of G. We consider a decorated graph, denoted GQ, constructed
by expanding every vertex of G∗ (which has degree 4) into a small quadrangle called a city2.
Cities are connected by edges called roads. Let EQ be the edges of GQ.

Figure I.4: A quadrangulation G of the sphere with its dual G∗ (dotted); the decorated
graph GQ (dotted); a double dimer model (mA,mB) on GQ.

A dimer configuration on GQ is a subset m ⊂ EQ such that every vertex of GQ belongs
to exactly one edge of m. Dimer models on GQ have appeared several times [WL75, dT07,
Dub11a, BdT14] in the study of the 6V model and of the Ising model.

Let µ = (µe)e∈EQ be a set of positive real weights on the edges of GQ. The weight of a
dimer configuration is then:

wGdim(m) =
∏
e∈m

µe.

We similarly define the partition function for dimers:

ZGdim (µ) =
∑
m

wGdim(m),

2This terminology is related to the urban renewal transformation of the dimer model [KPW00].
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where the sum is over all dimer configurations of GQ.
The aim of this Section is to provide a direct link between the C(1)

2 loop model on G in
a certain regime and a couple of independent dimer models on GQ.

I.2.3 Free-fermion regime

Let us make the following assumptions on the C(1)
2 loops weights (implicitly evaluated at a

face f ∈ F ), which we call the free-fermionic relations:

w1w4 = w3w5,

w2w3 = w4w5,

w5(w1 + w2) = w3w4.

(I.6)

Let us make a few remarks on this terminology. We will see that relations (I.6) are sufficient
to transform the C(1)

2 loop model into dimers. This idea has been used several times in sta-
tistical mechanics to get exact solutions for various models, such as the Ising model [Kas63]
and various vertex models [FW69, FW70, Ass17]. In the physics literature, this technique
is sometimes called the “Pfaffian method”, since the dimer model’s partition function corre-
sponds to Pfaffians [Kas63]. An alternative representation of Pfaffians is to use Grassman
integrals, which are integrals of anti-commuting variables; see for instance [DFMS97], chapter
2.B. These anti-commuting variables are interpreted physically as a system non-interacting
fermions [Hur66]. This is why any regime for which there is a transformation to dimers is
often called free-fermionic.

Lemma I.3. Let w1, w2, w3, w4, w5 ∈ (0,∞) be five positive real numbers. Then they satisfy
(I.6) iff there exists a unique triplet λ, a, b ∈ (0,∞) such that a2 + b2 = 1 and

w1 = λa2

w2 = λb2

w3 = λa

w4 = λb

w5 = λab.

(I.7)

Proof. Given a set of weights w1, w2, w3, w4, w5 ∈ (0,∞) that satisfy (I.6), then there is only
one candidate for λ, a, b:

λ = w1 + w2,

a = w3
λ
,

b = w4
λ
.

Then the third equation of (I.6) simplifies into

w5 = λab

and the first two equations become, respectively

w1 = λa2,

w2 = λb2
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and since λ = w1 +w2, we also have a2 + b2 = 1 so that the parameterization (I.7) is correct.
Reciprocally, it is easy to check that (I.7) implies (I.6).

x y

u

v

1

1

1

1

af

af

bf bf

Figure I.5: Edge weights for the dimer model on GQ at a face f ∈ F .

Theorem I.4. Let us consider a symmetric C(1)
2 loop model such that the free-fermionic

relations (I.6) are satisfied at each face f ∈ F . Let λf , af , bf be the corresponding parameters
in representation (I.7).

Let us consider the dimer model on GQ with weights µ = (µe)e∈EQ given by Figure I.5.
Then

ZGloop (W ) =

∏
f∈F

λf

(ZGdim (µ)
)2
.

Proof. Step 1: double dimers and face weights

Let us consider a couple of independent dimer configurations mA and mB. Dimers A will be
colored in black and dimers B in green. Clearly,(

ZGdim (µ)
)2

=
∑

mA,mB

wGdim(mA)wGdim(mB).

Since the roads weights are all equal to 1, the weight of a couple (mA,mB) can be seen
as a product of “face weight” of the following form; the notation d.dim is a shorthand for
“double dimers”:

wfd.dim(mA,mB) :=
∏

e∈mA in city f

µe
∏

e∈mB in city f

µe.

Thus,
wGdim(mA)wGdim(mB) =

∏
f∈F

wfd.dim(mA,mB).

In Figure I.6, in the first column, we have listed all local configurations of (mA,mB) at
a face (up to symmetries).
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1

1

1

1

a

a

b b

Dimers
mA,mB

Fused
dimers

(mA,mB)

Face weight∑
wfd.dim(mA,mB)

= wff.d.dim

(
(mA,mB)

) Marked loops
σm

Face weight
wfiσm (f)

a2

A A

AA λa2 *

a2

A A

BB λa2 *

1
2 2

22
2 2

22 λa2 + λb2

= λ

? a4 + b4 + 2a2b2

= 1

0 0
00

0 0
00 λa2 + λb2

= λ

b2

2 0
02 λb2 *

b

2
2

A

A λb *

? a2b+ b3

= b

0
0

A

A λb *

ab

2
0A

B

λab *

Figure I.6: Local configurations at a face for double dimers, fused dimers and marked loops.
For each row marked with a *, similar rows could be obtained by applying a symmetry or
by switching the role of dimers A and B.

Step 2: fused double-dimers

In Figure I.6, the different rows correspond to the possible occupations of roads by double
dimers, and how these roads are connected inside the city (up to symmetries). We can group
together the local configurations belonging to the same row, to get a fused double dimer
configuration. More precisely, a fused dimer configuration (mA,mB) is the equivalence class
of the couples of dimer configurations (mA,mB) having identical roads, and having the same
connections of single-dimered roads.

We can define face weights for fused dimers, simply by summing the double dimers’ face
weights; they are given in the third column of Figure I.6. We denote these local weights by
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wff.d.dim

(
(mA,mB)

)
, and the weight of a fused double dimer configuration is simply

wGf.d.dim
(
(mA,mB)

)
=
∏
f∈F

wff.d.dim

(
(mA,mB)

)
.

We thus get a weight-preserving (many-to-one) mapping between a couple of dimer mod-
els and a fused dimer model. We represent such a mapping by a diagram:

DimersA× DimersB −→ Fused dimers.

Step 3: marked loops

Let us now focus on the C(1)
2 loops part. We define a marked C

(1)
2 loop configuration as

a C(1)
2 loop configuration where every red edge is marked with an index 0 or 2, and every

blue edge with an index A or B, so that the index on a path stays constant except when a
different-colored path is crossed. When a different-colored path is crossed, the index has to
change.

To make this definition well defined, we need the following Lemma:

Lemma I.5. When G is a connected bipartite quadrangulation on a connected orientable
surface, for every C(1)

2 loop configuration σ on G, every blue loop of σ crosses red paths an
even number of times (and similarly for red loops).

Proof. Let us color the vertices of G in black and white. Let us consider a blue loop of σ,
and let us chose an orientation for that loop. When the loop turns right or left inside a face,
the color of the vertex on its left does not change. On the other hand, when the loop goes
straight into a face (i.e. when it crosses a red loop), this color changes. Since the surface is
orientable, when we follow the loop from start to end, we end up with the initial vertex on
its left. Therefore it has crossed red paths an even number of times.

For a marked loop configuration σm, let σ be its unmarked version. The weight of σm is
defined just as in (I.5), except there is no factor for the number of loops; we use the notation
m.loop for marked loops:

wGm.loop(σm) =
∏

(f,ik)∈σ
wfi . (I.8)

Since there are 2Nσ ways to mark a C(1)
2 loop configuration σ, the sum of all possible

marked loop weights is equal to the weight of σ. Therefore there is a weight-preserving
(2Nσ -to-one) mapping:

Marked C(1)
2 loops −→ C

(1)
2 loops.

Step 4: marked loops to fused dimers

Let us describe a mapping from marked loops to fused double dimers. Given a marked loop
configuration σm, let us first put dimers on roads: put one A dimer on blue roads marked
with an A, one B dimer on blue roads marked with a B, two dimers on red roads marked
with a 2, and no dimer on red roads marked with a 0. Then, let us chose the dimers in cities:
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when four blue edges come together at a face, chose the city dimers according to the loops
connections (see the first row of Figure I.6). Otherwise, there is only one possible fused
dimer configuration with roads constructed as before. We thus construct a fused double
dimer configuration (mA,mB). All the cases (up to symmetries) are listed in Figure I.6.

This transformation is several-to-one, indeed, loop configurations having four red loops
marked with a 2 (resp. a 0) are mapped onto the same fused dimer configuration. However,
up to a global multiplicative factor λ, this transformation is weight-preserving because, after
summing over marked loops having the same image, the local weights of both models differ
by a same factor λ.

Thus there is a weight-preserving (many-to-one) mapping:

marked C(1)
2 loops −→ Fused dimers.

Step 5: conclusion

To sum things up, there is a series of (many-to-one) weight-preserving mappings:

DimersA× DimersB −→ Fused dimers ←− Marked C(1)
2 loops −→ C

(1)
2 loops.

This implies the equality of partition functions, which concludes the proof of Theorem I.4.

From there, it is natural to ask what information between dimers and loops is kept
through these transformations. At the local level, it seems that the best connection we can
get is the following:

Given a C(1)
2 loop configuration σ, let σb be the set of blue paths in σ. If a particular set

of blue paths σ0
b is fixed, we say that a double dimer configuration (mA,mB) has paths σ0

b if
its set of single-dimer roads is the set of blue edges in σ0

b , and when the four incoming edges
at a city are blue, the dimers in the city are with connection according to σ0

b . Then we have:∑
σ C

(1)
2 loops conf.
s.t. σb=σ0

b

wGloop(σ) =
∑

(mA,mB) dimers conf.
with paths σ0

b

wGdim(mA)wGdim(mB).

As a result, all the observables of the C(1)
2 loop model related to blue loops and their

connectivity correspond to some observable of the double dimer model, which can in turn be
computed by determinantal techniques [Ken97]. On the other hand, the connectivity of red
loops seems to be lost in translation. Of course, since red and blue loops play a symmetric
role, the statistics of red loops connectivities are the same as the blue loops’ and can be
computed in the same way; what we actually mean is that the joint connectivities of red and
blue loops may not be analyzed through the dimer model.

Example I.6. Probability of a dimer on a road.
Let e ∈ EQ be a road in GQ. We are interested in the probability p of that road being

covered by a dimer in a single dimer model mA, with our previous dimers weights. So

p = Pdim(e ∈ mA) =
∑
mA|e∈mA w

G
dim(mA)

ZGdim
.
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When we take two independent dimer models mA,mB, the probability of e being covered by
a single dimer is then 2p(1 − p). Because of the relation with loops, this is equal to the
probability of e being covered by a blue loop. Since loops are color-symmetric, this is equal
to 1

2 , and we deduce that

p = 1
2 .

This is true for any dimer model on a GQ with roads having weight 1 and cities having
weights a, b such that a2 + b2 = 1. This property can be proven straightaway studying this
dimer model, but is trivial in loops.

Remark I.7. We have presented the correspondence with dimers on a quadrangulation
without boundary, but it is possible to consider, for instance, finite quadrangulations of the
plane with a boundary. In that case, there is a number of external dual edges (which we
think of as “half-edges”, not connected together to the external face), and we have to chose
boundary conditions for the C(1)

2 loop model. For instance, we could use free boundary
conditions by imposing nothing on the red or blue paths that use these external edges; we
could also impose the colors of these paths to be fixed; we could even specify how paths
starting on external edges are connected inside the graph.

The equivalence with dimers works similarly by defining appropriate boundary condi-
tions for dimers, except if the specification for loops connections concern both blue and red
connections, since we cannot keep track of both colors’ connections in our mappings.

One example of tractable boundary conditions, where only blue connections are specified,
will be studied in Section I.4.

I.2.4 Free energy

In this paragraph, we consider an infinite quadrangulation G of the plane R2 (so it is nec-
essarily bipartite), that is Z2-periodic. This means that there is a basis (ex, ey) of R2 such
that the translations by ex and ey are color-preserving graph isomorphisms.

We define a toroidal exhaustion of G in the following way: for any n ∈ N∗, Gn is the
quotient of G by the lattice nZex + nZey. We note Vn, En, Fn its set of vertices, edges and
faces. For each n, Gn is a bipartite quadrangulation on the torus. The graph G1 is called
the fundamental domain of our quadrangulation G.

We assume that every face f of G1 is equipped with a set of weights wf1 , . . . , w
f
5 that

satisfy the free-fermion relations (I.6). Then we can define a C(1)
2 loop model on G1 using

these weights. We extend those weights periodically to get a similar model on Gn: every
face f of Gn has a unique representative f0 in G1 and inherits the weights of f0.

We will use the shorthand notation Zn for the partition function ZGnloop (W ) of this loop
model on Gn. Our goal is to compute the free energy of this model, which we define without
a minus sign following [CKP01, KOS06]:

f = lim
n→∞

1
n2 logZn.

The fact that this limit exists and its exact value will follow from the correspondence with
dimers.
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We consider the dimer model of Theorem I.4 for the fundamental domain G1. It can
be extended periodically to get a dimer model on Gn. We simply note µ this set of dimers
weights. Then by Theorem I.4,

Zn =

 ∏
f∈F1

λf

n2 (
ZGndim (µ)

)2

so that
1
n2 logZn =

∑
f∈F1

log(λf ) + 2
n2 log

(
ZGndim (µ)

)
. (I.9)

The right-hand side of (I.9) contains the free energy of the periodic dimer model on GQ with
weights µ. This quantity can be exactly computed [CKP01, KOS06]. Let us recall how this
computation is made.

The graph GQ1 , is a bipartite graph on the torus. We equip it with a Kasteleyn orientation
(i.e. an orientation of edges such that every face has an odd number of clockwise edges; there
exists such an orientation, see for instance [CR07]). We can split its vertices between black
ones BQ

1 and white ones WQ
1 . Then we define its Kasteleyn matrix K1 as a WQ

1 by BQ
1

weighted adjacency matrix, with entries

(K1)w,b =


µ(e) when ew b

−µ(e) when ew b

0 otherwise.

Let z and w be two complex numbers. We construct a modified matrix K1(z, w) in the
following way. Let γx, γy be the two oriented cycles on the torus corresponding respectively
to ex, ey. We multiply the weight of edges crossing γx by z when the white vertex is on the
left of γx, and by z−1 when the white vertex is on the right of γx; and similarly for γy and
w. These weights define a Kasteleyn matrix K1(z, w). The characteristic polynomial of G1
is then:

P (z, w) = detK1(z, w).

The free energy of the dimer model can be expressed using the characteristic polynomial:

Theorem ([CKP01, KOS06]). We have

lim
n→∞

1
n2 log

(
ZGndim (µ)

)
= 1

(2iπ)2

∫
T2

log |P (z, w)|dz
z

dw

w
.

Therefore, (I.9) gives

f =
∑
f∈F1

log(λf )− 1
2π2

∫
T2

log |P (z, w)|dz
z

dw

w
.

Example I.8. Free energy for integrable weights on Z2. Let us take for G the quadrangu-
lation Z2. We equip every face with the positive integrable weights of [WN93, IC09] for the
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fugacity n = 2: 

w1 = sin2(θ)
w2 = cos2(θ)
w3 = sin(θ)
w4 = cos(θ)
w5 = sin(θ) cos(θ)

where θ ∈ (0, π2 ). Then for all f ∈ F , λf = 1, af = sin(θ), bf = cos(θ).
The corresponding weighted graph GQ1 , equipped with a Kasteleyn orientation, is repre-

sented on the left of Figure I.7. We can perform an urban renewal [KPW00] on this graph
to get the graph on the right.
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Figure I.7: The dimers’ fundamental domain GQ1 , before (left) and after (right) urban re-
newal, equipped with a Kasteleyn orientation. Here a = sin(θ), b = cos(θ).

By using the free energy for dominoes on Z2 [Fis61] with horizontal weight sin(θ) and
vertical weight cos(θ), we get

f = − 1
2π2

∫
T2

log
∣∣∣∣−2 + cos2(θ)

(
z + 1

z

)
+ sin2(θ)

(
w + 1

w

)∣∣∣∣ dzz dw

w
.

Several other expressions can be given for this quantity, for instance following [Ken02]:

f = 2
π
L (θ) + 2

π
L

(
π

2 − θ
)

+ 2θ
π

ln(tan(θ)) + ln(2 cos(θ))

where L is the Lobachevsky function.

I.3 Cube flip and Kashaev’s recurrence
From now on, G might be a planar quadrangulation in the sense of Definition I.1, or a finite
planar quadrangulation with a boundary, in the following sense:

Definition I.9. A quadrangulation with a boundary is a finite simple graph G = (V,E),
properly embedded in the plane, such that all internal (bounded) faces have degree 4.

In this case, we define a C(1)
2 loop model on G by specifying a boundary condition in any

way discussed in Remark I.7 – since the correspondence with dimers won’t be used, both
blue and red connections can be specified.

We start by proving a few identities on Kashaev’s relation, then we relate the star-triangle
relation for loops to Kashaev’s relation.
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I.3.1 Kashaev’s recurrence
Kashaev’s relation reads:

g2g2
123 + g2

1g
2
23 + g2

2g
2
13 + g2

3g
2
12

− 2g2g3g13g12 − 2g1g3g23g12 − 2g1g2g23g13

− 2gg123(g1g23 + g2g13 + g3g12)
− 4gg12g23g13 − 4g123g1g2g3 = 0.

(I.10)

If seven of the g variables are positive real numbers, then the eighth one can be deduced
from (I.10), up to the choice of the square root of a quadratic polynomial. The choice of the
greatest root guarantees that the g variables stay positive. In this case, the recurrence can
be explicitly written, see Proposition I.10.

We define six other variables X,Y, Z,X1, Y2, Z3 by

X =
√
gg23 + g2g3,

Y =
√
gg13 + g1g3,

Z =
√
gg12 + g1g2,

X1 =
√
g1g123 + g12g13,

Y2 =
√
g2g123 + g12g23,

Z3 =
√
g3g123 + g13g23.

All of these quantities can be nicely represented on the vertices and faces of a cube, see
Figure I.8.

g

g1

g2

g3

g12

g23

g13

X
Y

Z

X1
Y2

Z3
g123

Figure I.8: The g, X, Y and Z variables, implicitly taken at x ∈ Z3.

The following relations can be obtained by simple calculations:

Proposition I.10 (Kashaev’s recurrence). When Kashaev’s relation (I.10) is satisfied, the
value of g123 obtained by taking the greatest root reads

1. g123 = 2g1g2g3+g(g1g23+g2g13+g3g12)+2XY Z
g2 .

Furthermore,

2. X1 = g1X+Y Z
g ,
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3. Y2 = g2Y+XZ
g ,

4. Z3 = g3Z+XY
g ,

5. X1Y2Z3+g12g13g23
g123

= XY Z+g1g2g3
g .

The first 4 relations are a particular case of the hexahedron recurrence [KP16].
Kashaev’s relation (I.10) has the same symmetries as the cube. In particular, by con-

sidering the central symmetry relative to the center of the cube, we get that the previous
transformation is self-dual, in the following sense:

Proposition I.11. Let g123 be defined in terms of g, g1, g2, g3, g12, g13, g23 as in Item 1 of
Proposition I.10. Then the transformation:

g
g1
g2
g3
g23
g13
g12


7→



g123
g23
g13
g12
g1
g2
g3


.

is an involution.

Also note that this involution exchanges X and X1, Y and Y2, Z and Z3.

I.3.2 Parametrization of a free-fermionic C(1)
2 loop model

Let us suppose that there is a set of positive real values on the vertices V of G, denoted

g = (gx)x∈V , such that the local loop weights take the following form at a face f = x y
u

v
:

wf1 = gxgy

wf2 = gugv

wf3 = √gxgy
√
gxgy + gugv

wf4 = √gvgu
√
gxgy + gugv

wf5 = √gxgygugv.

(I.11)

Notice that these weights satisfy the free-fermionic relations (I.6). In fact, on a class of
planar quadrangulations that includes finite lozenge graphs (embedded graphs whose internal
faces are non-degenerate rhombi with same edge length), every free-fermionic C(1)

2 loop model
can be parametrized in this way. This is proved in Appendix I.B.

Notice also that the bipartite coloring of G is no longer important to define the weights.
We will no longer show this coloring.

We can define a marked model with these weights using the weights of equation (I.8).
We will show that the Yang-Baxter equations for this marked loop model are equivalent to
g satisfying Kashaev’s relation. This implies a similar statement for non-marked loops as
well as for the double dimer model. However, since the indices on loops don’t affect the



I.3 Cube flip and Kashaev’s recurrence 79

weight, the proof for marked loops will not be any more difficult that what it would be for
non-marked loops.

We now denote by ZGm.loop(g) the partition function of marked loops on G:

ZGm.loop(g) =
∑
σ

wGm.loop(σ)

where σ runs over all marked C(1)
2 loop configurations on G, and wGm.loop(σ) is the same as

(I.8) with the local weights defined by (I.11).

I.3.3 Cube flip
Let us suppose that G contains a vertex x ∈ V of degree 3, such that the graph around x
looks like the left-hand side of Figure I.9. We can perform a “cube flip” at x by changing
the edges around this vertex. It gives a new graph G′, on the right-hand side of Figure I.9.
This is a form of star-triangle (or Y −∆) move.

g3

g23g13

g2g1

g12

Z3

X1 Y2
g123
x

G′

g3

g23g13

g2g1

g12

Z

XY

g
x

G

Figure I.9: Cube flip at x.

When such a move is performed, we allow gx to change into a new value g′x; let g′ be the
set of variables equal to g everywhere except at x where it is g′x.

By labeling the g variables around x as in Figure I.9, we say that g satisfies Kashaev’s
recurrence at x when g, g1, . . . , g123 satisfy (I.2). Note that performing cube flips at x twice
with g satisfying Kashaev’s recurrence would bring back the original graph and constants,
because of Proposition I.11.

Theorem I.12. When g satisfies Kashaev’s recurrence at x,

1
g2
x

ZGm.loop(g) = 1
(g′x)2Z

G′
m.loop(g′).

Another way to phrase this is to say that the Yang-Baxter equations for the C(1)
2 loop

model, as defined in [WN93], taken in our parametrization, become equivalent to Kashaev’s
recurrence.



80 Chapter I. Kashaev’s recurrence

Proof. There are six dual edges incoming in the region at x. We call connection pattern any
way to color, label and connect these six incoming edges. For example, in the first row of
Figure I.10, the connection pattern is the following: all edges are all colored in blue; the west
and northwest edges are labeled k and connected; the east and northeast edges are labeled
l and connected; the southeast and southwest edges are labeled m and connected.

We want to construct a coupling between marked C(1)
2 loops on G and on G′ so that they

agree everywhere except inside the changed region around x, and such that the connection
pattern doesn’t change. Thus we want to group the marked loop configurations on G and
on G′ according to their connection pattern. All possible cases are listed in Figure I.10;
indices on loops are arbitrary and we used the notation k̂ for the index different from k (so
Â = B, B̂ = A, 0̂ = 2, 2̂ = 0). We omitted a few cases: first, the ones that can be derived
from represented ones by a simple rotation, symmetry or color swap; secondly, for any row
i ∈ {1, . . . , 7}, there is a dual row obtained by taking the right-hand side configurations of
i, turning them upside-down and drawing them on the left - and similarly for the other side
(notice that rows 2, 6, 7 are self-dual).

Note that connection patterns are the same for G and G′. Let m be the total number
of connection patterns, and let {1, . . . ,m} be a set of indices representing them. For any
j ∈ {1, . . . ,m}, let Σj be the set of marked C

(1)
2 loop configurations on G having that

connection pattern. Then Σ1, . . . ,Σm are a partition of the set of all marked configurations
on G. Thus in terms of partition functions we have

ZGm.loop(g) =
m∑
j=1
Zj

where Zj = ∑
σ∈Σj w

G
m.loop(σ). Similarly,

ZG′m.loop(g) =
m∑
j=1
Z ′j

where Z ′j = ∑
σ∈Σ′j w

G′
m.loop(σ), and Σ′j being the set of marked C(1)

2 loop configurations on
G′ having connection pattern j.

If σ ∈ Σj , then its total weight can be written as

wGm.loop(σ) = a(σ)wloc.(σ)

where wloc.(σ) = wXi1w
Y
i2w

Z
i2 , with (X, i1), (Y, i2), (Z, i3) ∈ σ; this is the local weight coming

from the faces around x, and a(σ) doesn’t depend on the local configuration around x.
Actually, if two local configurations have the same connection pattern, the possible ways to
extend them to construct a loop configuration are the same, so the possible values of a(σ)
for these configurations are the same. This shows that Zj can be factored into:

Zj = Aj

∑
σ∈Lj

wloc.(σ)

 ,
where Aj is the sum of weight of all possible a(σ) for any σ ∈ Σj , and Lj is the set of all
local configurations around x in G that have connection pattern j.
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Figure I.10: Correspondence between marked loops on G (left) and G′ (right) having the
same connection pattern.

Similarly, Z ′j takes the form

Z ′j = Aj

∑
σ∈L′j

wloc.(σ)

 .
Notice that the part Aj is the same for Zj and Z ′j : indeed, G and G′ are the same

outside of the region around x; given a local configuration in that region, the list of possible
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extensions into a global loop configuration only depends on its connection pattern.
As a result, the following lemma is sufficient to conclude the proof.

Lemma I.13. For any row i ∈ {1, . . . , 7} in Figure I.10, let Li (resp. L′i) be the list of local
configurations in row i on G (resp. G′). If g satisfies Kashaev’s recurrence, then

1
g2
x

∑
σ∈Li

wloc.(σ) = 1
(g′x)2

∑
σ∈L′i

wloc.(σ).

Proof. For i = 1, L1 contains 7 configurations, and the sum of their local weights is, in the
same order as in Figure I.10 (using the notation g, g1, . . . , g123 like in Figure I.9),

1
g2
x

∑
σ∈L1

wloc.(σ) = 2g2
1g

2
2g

2
3

g2 + 2g1g2g3XY Z

g2 + g1g2
2g3g13
g

+ g1g2g2
3g12
g

+ g2
1g2g3g23
g

= g1g2g3

(2g1g2g3 + g(g1g23 + g2g13 + g3g12) + 2XY Z
g2

)
.

(I.12)

There is only one configuration in L′1 which has local weight:

1
(g′x)2

∑
σ∈L′1

wloc.(σ) = g1g2g3g123. (I.13)

The equality of (I.13) and (I.12) is given by Item 1 in Proposition I.10.
The other cases are similar, using the various relations of Proposition I.10. This is done

in Appendix I.A.

Because of the self-duality property (Proposition I.11) and the symmetries of the model,
Lemma I.13 is also true for any represented or non-represented row. Since connection pat-
terns of configurations on G and G′ are the same, the boundary conditions (if any) are
preserved by this coupling. This concludes the proof of Theorem I.12

Remark I.14. Based on Theorem I.12, it is natural to define a renormalized partition
function

YGm.loop(g) =
(∏
x∈V

1
g2
x

)
ZGm.loop(g).

We can also go back to unmarked loops, weighted by a factor 2Nσ (I.5), so that

YGloop(g) = YG′loop(g′).

This quantity will appear again as the combinatorial object representing the solution of
Kashaev’s recurrence on a stepped surface.

Remark I.15. In the language of statistical physics, Theorem I.12 is a case of Z-invariance.
Since marked loops generalize unmarked loops as well as dimers, Z-invariance for marked
loops under Kashaev’s recurrence implies Z-invariance for unmarked loops, and (when the
boundary conditions, if any, don’t involve red connections) for the double dimer model of
Theorem I.4 for parametrized weights (I.11).
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This particular dimer model is represented in Figure I.11. After performing gauge trans-
formations (by multiplying weights by 1√

gxgu
around any vertex of GQ that is closest to the

edge {xu} of G), we get the weights on the right of Figure I.11. This is the dimer model
of [KP16] in the particular case of Kashaev’s relation; we get an alternative proof of its
Z-invariance.

x y

u

v

1

1

1

1

√
gxgy/X

√
gxgy/X

√
gugv/X

√
gugv/X x y

u

v

(gxgu)−1

(gxgv)−1

(gygu)−1

(gygv)−1

(guX)−1

(gvX)−1
(gxX)−1 (gyX)−1

Figure I.11: The dimer model’s weights before (left) and after (right) gauge transformations.
Here we have set X = √gxgy + gugv.

Interestingly enough, if one starts from Kashaev’s parametrized Ising model (I.1), and
applies the procedure transforming Ising models into dimers on GQ [Dub11a, BdT14], one
gets the same dimer model as in Figure I.11. However, the transformation between Ising
model and dimers is not a direct mapping, so it is not completely clear in that setting why
the Yang-Baxter equations for the Ising model translate into the same equations for dimers.

I.4 Taut configurations on stepped surfaces

We now turn to the study of taut configurations, which will be the appropriate objects
counted by the solution of Kashaev’s recurrence for arbitrary initial conditions.

I.4.1 Stepped surfaces

We denote by (e1, e2, e3) the canonical basis of R3. For x = (i, j, k) ∈ Z3, let Cx ⊂ R3 be the
unit cube [i, i+ 1]× [j, j + 1]× [k, k + 1].

We call stepped solid a union of such unit cubes. A stepped solid U is said to be monotone
if, for every C(i,j,k) ⊂ U , and for every i′ ≤ i, j′ ≤ j, k′ ≤ k, C(i′,j′,k′) ⊂ U .

In this section, we always assume that U is a monotone stepped solid. In that case, the
topological boundary ∂U is a union of squares of the form (x, x + ei, x + ei + ej , x + ej)
where x ∈ Z3 and 1 ≤ i < j ≤ 3; it is called a stepped surface. This boundary naturally
corresponds to an infinite planar quadrangulation G(U), formally defined by the following
sets of vertices and edges:

V (U) ={x ∈ U ∩ Z3 | x+ e1 + e2 + e3 /∈ U},
E(U) = {{x, y} | x, y ∈ V, x− y ∈ {±e1,±e2,±e3}} .

We will also denote F (U) the set of faces of G(U).
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Figure I.12: A portion of a stepped solid U .

I.4.2 Boundary conditions

To define a loop model on G(U) we need some extra boundary conditions. Consider the
negative corner U0 = R−×R−×R−. We require that U ⊂ U0 and that U0 \U be composed
of finitely many cubes. In this case, we say that U is regular (see Figure I.12 for example).
The infinite graph G(U) is then equal to G(U0) outside of a sufficiently big ball for the
euclidean distance centered at the origin. Let B(O,RU ) be such a ball.

If U is a regular stepped solid, and (gx)x∈V (U) is a collection of variables on the vertices of
G(U), then Kashaev’s recurrence (I.2) is enough to recursively define g on Z3

− \U . Then, the
value at the origin g(0,0,0) is called the solution of Kashaev’s recurrence with initial conditions
(gx)x∈V (U).

On G(U0) let σ0 be the configuration given in Figure I.13. Following the terminology
of [KP16], we say that a C(1)

2 loop configuration σ on G(U) is taut when it has the same
connectivity as σ0 on a neighborhood of infinity – meaning that outside of a ball of radius
Rσ ≥ RU , σ has to be equal to σ0, and σ has to contain paths connecting the edges of
U ∩B(O,Rσ) that are connected in σ0. This is the case in Figure I.3 for example.

Let Σ(U) be the set of taut C(1)
2 loop configuration on G(U).

The following lemmas are direct adaptations of Carroll and Speyer’s arguments on cube
groves [CS04].

Lemma I.16. Σ(U0) only contains σ0.

Proof. Let σ be a taut configuration on G(U0). Suppose that it is different from σ0. Without
loss of generality, we can assume that there is a face f of the form {x, x+e1, x+e1+e2, x+e2}
that differs from σ0. Take such a face with x = (i, j, 0) and i + j minimal; this is possible
because σ is equal to σ0 for all faces far enough from the origin. Then the faces f − e1 and
f − e2 have to be the same for σ and σ0, which implies that the dual edges of {x, x+ e1} and
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Figure I.13: The initial stepped solid U0 and initial configuration σ0.

{x, x+ e2} are blue. Now since σ differs from σ0 on f , the only possible local configurations
connect these two blue edges inside of f . This implies that the connectivity of σ differs from
the one in σ0, which contradicts the definition of a taut configuration.

Note that a configuration σ contains two types of paths: infinite simple paths, and finite
closed simple loops. In the rest of the chapter, the latter will simply be called “loops”.

Lemma I.17. For a regular stepped solid U , Σ(U) is finite. Moreover, a taut C(1)
2 loop

configuration on U has a finite number of loops.

Proof. Let σ ∈ Σ(U). We know that σ has the same connectivity as σ0 and is equal to σ0
outside of B(O,Rσ). By the same argument described in the proof of Lemma I.16, σ actually
has to be equal to σ0 outside of B(O,RU ). For a fixed U , there is only a finite number of
such σ, and their loops have to be in B(O,RU ) so there is a finite number of them.

I.4.3 Weights
Let U be a regular stepped solid, and let (gx)x∈V (U) be a collection of variables on the vertices
of G(U) that can be thought of as positive real numbers. For a taut C(1)

2 loop configuration
σ ∈ Σ(U), we still denote Nσ its number of loops. Let us consider the weight:

wUtaut(σ) = 2Nσ
 ∏

(f,ik)∈σ
wfi

 ∏
x∈V (U)

1
g2
x

 , (I.14)

where the local weights wfi are defined using parametrization (I.11). This expression makes
sense because Nσ is finite (Lemma I.17) and ∏wfi formally makes gx appear with exponent
2 for every x in the “flat” region where σ = σ0, so the two products cancel out for all but a
finite number of terms. For example, wU0

taut(σ0) = g(0,0,0).
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Since the number of taut configurations is finite (Lemma I.17), we can define the renor-
malized partition function:

YUtaut(g) =
∑

σ∈Σ(U)
wUtaut(σ).

Formally, YUtaut(g) is simply a Laurent polynomial in the g variables and in the√gxgy + gugv
variables, for any face bordered by x, u, y, v; we call these face variables.

Theorem I.18. Let U be a regular stepped solid, and (gx)x∈V (U) be a collection of variables
on the vertices of G(U). Then the solution of Kashaev’s recurrence at the origin with initial
condition (gx)x∈V (U) is

g(0,0,0) = YUtaut(g).

Proof. Let g be the solution of Kashaev’s recurrence with initial conditions on V (U) (so that
g is also defined on Z3

− \ U).
The results of Section I.3 imply that the renormalized partition function YUtaut(g) doesn’t

change when a cube is added to, or removed from, U in such a way that it remains a
stepped solid - as long as we keep using the g variables. Indeed, the boundary conditions
are unchanged when a cube flip is performed so all the computations stay the same for taut
configurations.

By repeatedly removing cubes starting from U0 to get to U , this implies

YUtaut(g) = YU0
taut(g).

But Σ(U0) only contains σ0 (Lemma I.16), and wU0
taut(σ0) = g(0,0,0), so that YU0

taut(g) =
g(0,0,0).

I.4.4 Algebraic consequences

We have seen that the solution of Kashaev’s recurrence is equal to the partition function
YUtaut(g). However, several taut C(1)

2 loop configurations on G(U) might correspond to the
same monomial in YUtaut(g). The following Theorem states that it is not the case, and gives
consequences on the exponents and coefficients appearing in the Laurent polynomial. The
first and third points were already obtained in [KP16] (Theorem 7.8) by an indirect method.

Theorem I.19. For any formal initial condition (gx)x∈V (U) where U is a regular stepped
solid, let g(0,0,0) be the solution at the origin of Kashaev’s recurrence. Then:

1. g(0,0,0) is a Laurent polynomial in the (gx)x∈V (U) vertex variables and in the face vari-
ables defined on the faces of G(U);

2. The monomials are in one-to-one correspondence with taut C(1)
2 loop configurations on

U ;

3. The g variables appear with exponent in {−2, . . . , 4}. The face variables appear with
exponent in {0, 1};

4. The coefficients in front of monomials are powers of 2.
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Proof. For any σ ∈ Σ(U) and x ∈ V (U), the gx variable appears with an integer exponent
in wU (σ). Indeed, it gets an exponent 1

2 when, and only when, the color of the loops change
around x (see the weights (I.11) and (I.14)), and this happens an even number of times. The
first point is thus a direct consequence of Theorem I.18.

The third point comes from the observation that any vertex belongs to at most 6 faces
of G(U), so its exponent is between 0−2 and 6−2. The face variables can only appear once
and with exponent 1.

The last point is a direct consequence of the second point, so all that remains to be
proved is the following statement:

Let σ, σ′ ∈ Σ(U) be two taut C(1)
2 loop configurations on G(U). If the following expres-

sions in the formal g variables are equal: ∏
(f,ik)∈σ

wfi

 ∏
x∈V (U)

1
g2
x

 =

 ∏
(f,ik)∈σ′

wfi

 ∏
x∈V (U)

1
g2
x

 (I.15)

then σ = σ′.
To prove this, we give a procedure to reconstruct σ from the monomial in the left-hand

side of (I.15).
Suppose that there is a vertex x ∈ Z3 so that σ is already known on every face around

x except for one, which we call f . We claim that we can find σ|f . To do so, first we look
whether the face variable associated to f is present in the monomial. If it is present, then
the local configuration of σ at f belongs to the third or fourth row of (I.11); otherwise it
belongs to the first, second or fifth row. Then we look at the exponent of gx that doesn’t
come from already known faces: in the first case it can be 1

2 (third row) or 0 (fourth row).
In the second case it can be 1 (first row), 0 (second row) or 1

2 (fifth row), so now we know
which row σ|f belongs to. There are two local configurations in this row. To know which
one it is, just look at the color of an incoming edge that is already known.

Since σ is taut, we already know it outside of a sufficiently big ball centered at the origin.
We want to use the previous argument to successively discover new faces, until σ is known
everywhere. To do so, we need to show that there is always an x that satisfies the first
statement of the previous paragraph. Any x having degree 2 on the boundary of the graph
formed by currently unknown faces would do the trick.

We prove that such an x always exists by showing a slightly more general result on lozenge
graphs. A lozenge graph is a finite planar quadrangulation such that all internal faces are
non-degenerate rhombi with same edge length. We call outer boundary of a lozenge graph
the set of edges separating a face from the infinite connected component of the complement
of the graph in the plane.

Lemma I.20. Any non-empty lozenge graph has at least three vertices of degree 2 on its
outer boundary.

Proof. Let G be a lozenge graph. By restricting ourselves to a connected component, we
can assume that G is connected. Let x1 be a vertex on the boundary of G. We orient the
boundary clockwise, meaning that we orient each of its edges so that the infinite connected
component is on the left, see Figure I.14. Starting from x1, we follow the boundary by taking
the leftmost edge when several outgoing edges are present. We denote (x1, . . . , xp, x1) this
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Figure I.14: A connected lozenge graph and its oriented outer boundary.

closed path, which is a single oriented curve around G, with possible pinches (some of the
xi vertices may be equal). We also take x0 := xp.

For any i ∈ {1, . . . , p}, the edge {xi−1, xi} belongs to exactly one rhombus (otherwise
it would not be on the boundary). Let ui be the vertex of that lozenge that is diagonally
opposite to xi−1. Similarly, let vi be the vertex that is diagonally opposite to xi+1 in the
rhombus that contains the edge {xi, xi+1}; see Figure I.15.

θi

xi

. . .

ui

xi−1

vi

xi+1

. . .

vi−1
ui+1

xi

xi−1
vi

. . .

xi+1
ui

. . .vi−1
ui+1

θi

Figure I.15: The ui, vi vertices and θi angle when xi has degree > 2 (left) or 2 (right).

Let θi be

θi = ∠(−−−−→xixi−1,
−−−−→xixi+1)− ∠(−−−−→xixi−1,

−−→xiui)− ∠(−−→xivi,−−−−→xixi+1),

where the three angles are taken in ]0, 2π[. Clearly, θi is equal to ∠(−−→xiui,−−→xivi) modulo 2π.
By checking all possible cases like in Figure I.15, we can be more precise:

• when xi does not have degree 2 in G, θi ∈]0, 2π[,
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• otherwise, θi ∈]− π, 0[.

Our goal is to show that the sum of these angles is −2π, so that at least three of them
have to be negative, and we can conclude.

Notice that −−→xivi = −−−−−→xi+1ui+1. By using this fact and reorganizing the sums we get:
p∑
i=1

θi =
p∑
i=1

∠(−−−−→xixi−1,
−−−−→xixi+1) −

p∑
i=1

∠(−−−−→xixi−1,
−−→xiui) −

p∑
i=1

∠(−−−−−→xi+1ui+1,
−−−−→xixi+1)

=
p∑
i=1

∠(−−−−→xixi−1,
−−−−→xixi+1) −

p∑
i=1

(∠(−−−−→xixi−1,
−−→xiui) + ∠(−−→xiui,−−−−→xi−1xi)) .

By the choice of angles, ∠(−−−−→xixi−1,
−−→xiui) + ∠(−−→xiui,−−−−→xi−1xi) is equal to π, so we have:

p∑
i=1

θi =
p∑
i=1

(∠(−−−−→xixi−1,
−−−−→xixi+1)− π) .

Now the angles ∠(−−−−→xixi−1,
−−−−→xixi+1) − π are the oriented angles ∠(−−−−→xi−1xi,

−−−−→xixi+1) taken in
]− π, π[. Since the boundary (x1, . . . , xp, x1) is a clockwise oriented closed curve, they sum
up to −2π, so that

p∑
i=1

θi = −2π

as claimed.

This concludes the proof of Theorem I.19.

I.4.5 Limit shapes
The existence of limit shapes is shown exactly as in [KP16]. We just do the computations
here to show how it fits into our particular framework. See also [PS05, DFSG14, Geo17] for
similar proofs in the case of the octahedron and cube recurrences.

For v = (i, j, k) ∈ Z3, we define its height as h(v) = i+ j + k.
For N ∈ Z+, let UN be the following regular stepped solid:

UN = {Cv | v ∈ (Z−)3, h(v) ≤ −N}.

We put a periodic g function on the vertices V (UN ) that only depends on the height of
vertices (see Figure I.16). The values of g in the flat regions don’t appear in the weight of a
taut configuration so they may be chosen arbitrarily. Our aim is to describe the shape of a
random taut loop configuration on G(UN ) sampled proportionally to its weight, when N is
large.

Instead of letting N change, it will be convenient to consider instead the infinite stepped
solid

U = {Cv | h(v) ≤ 2},
represented in Figure I.17, and to see it from some x ∈ Z3 of positive height, and to let x
change. Thus for any x ∈ Z3, we consider the “regular” stepped solid

Ux = U ∩ (x+ U0).
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Figure I.16: The stepped solid U3 and periodic weights on the vertices.
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Figure I.17: The infinite stepped solid U with vertex weights ga,b,c, an x of height 5 and the
associated Ux (in blue). The origin (0, 0, 0) is one of the a variables.

Up to a translation of vector −x, Ux is a regular stepped solid, similar to UN where
N = h(x)− 2 for h(x) ≥ 3.
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Let ga,b,c denote the set of initial conditions of Figure I.17:

ga,b,c(x) =


a if h(x) = 0,
b if h(x) = 1,
c if h(x) = 2.

Using these weights, we can define a partition function of loops on Ux:

Yx = YUxtaut(ga,b,c).

Of course Yx depends only on the height of x. If h(x) = N , we simply denote YN = Yx.
We also define XN =

√
YNYN+2 + Y 2

N+1. These quantity can be exactly computed using
Kashaev’s relation for a function depending only on height, see [KP16], Section 7.5. The
result is the following.

Let R = ac
b2 and S = bd

c2 , where d = 2b3+3abc+2(ac+b2)
3
2

a2 . As a side note, S and R can be
deduced from one another as the greatest root of the intrinsic relation

R2S2 − 6RS − 4R− 4S − 3 = 0.

We have:

Y2n = a1−2nb2nRn
2
Sn

2−n,

Y2n+1 = a−2nb2n+1Rn
2+nSn

2
,

X2n =
√

1 +R Y2n+1,

X2n+1 =
√

1 + S Y2n+2.

We are interested in the quantity

ρ(x) =

g(0,0,0)
∂ log

(
YUxtaut(g)

)
∂g(0,0,0)

∣∣∣∣∣∣
g=ga,b,c

. (I.16)

This quantity has a probabilistic meaning. If σ is a random taut loop configuration on
G(Ux) chosen proportionally to its weight wUxtaut(σ) for the initial conditions ga,b,c, let n0 be
the power of g(0,0,0) appearing in the formal weight of σ. For a face f , let εf (σ) be 1 if σ|f
is in the third or fourth row in Figure I.2, and 0 otherwise. Then

ρ(x) = E

n0 + 1
2(1 +R)

∑
f∈F around (0,0,0)

εf (σ)

 . (I.17)

If we looked instead at UN for N = h(x) − 2, by a simple symmetry, this quantity would
be equal to the same expectation on the vertex −x instead of 0 (and this vertex would have
to be of type a in UN ). By defining the same partial derivative as in (I.16) with respect to
g(1,0,0) or g(1,1,0), we could keep track of similar observables for vertices of type b and c. We
will not make use of the exact formula of that observable, we just use it to show that the
behavior of loops changes depending on the vertex of UN .
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The observable ρ is defined as some logarithmic derivative of the partition function YUxtaut.
By taking the logarithmic derivative of Kashaev’s relation (I.10), which is satisfied by YUxtaut,
and evaluating at the initial condition ga,b,c, we get linear relations on ρ:

if h(x) is even, ρ(x+ e1 + e2 + e3) =αρ(x) + β (ρ(x+ e1) + ρ(x+ e2) + ρ(x+ e3))
+ γ (ρ(x+ e1 + e2) + ρ(x+ e1 + e3) + ρ(x+ e2 + e3)) ,

(I.18)

if h(x) is odd, ρ(x+ e1 + e2 + e3) =α′ρ(x) + β′ (ρ(x+ e1) + ρ(x+ e2) + ρ(x+ e3))
+ γ′ (ρ(x+ e1 + e2) + ρ(x+ e1 + e3) + ρ(x+ e2 + e3)) ,

(I.19)

where

α = 3 + 3
√

1 +R− 2RS
RS

, β = 2 + 2
√

1 +R+R

R2S
, γ = 1 +

√
1 +R

RS
,

α′ = 3 + 3
√

1 + S − 2RS
RS

, β′ = 2 + 2
√

1 + S +R

RS2 , γ′ = 1 +
√

1 + S

RS
.

Let us define the generating function:

F (x, y, z) =
∑

(i,j,k)∈Z3,h(i,j,k)≥0
ρ(i, j, k)xiyjzk.

Using (I.18) (I.19), it is straightforward to compute F . It is a rational function of the
form

F (x, y, z) = P (x, y, z)
H(x, y, z)

where P is some polynomial and

H(x, y, z) = (αxyz + γ(x+ y + z))
(
α′xyz + γ′(x+ y + z)

)
− (1− β(xy + xz + yz))

(
1− β′(xy + yz + xz)

)
.

The coefficients α, β, γ, α′, β′, γ′ can all be defined using R so they are all dependent.
Actually, by defining θ = γγ′, H takes the form:

H(x, y, z) = θ(x2 − 1)(y2 − 1)(z2 − 1) + (1− θ)(xy − 1)(xz − 1)(yz − 1).

At that point, we have recovered the denominator studied in [KP16]. The asymptotic
behavior of the observables ρ(i, j, k) can be obtained from the analysis of their generating
function F at the singularity (1, 1, 1) (Theorem 5.7 of [KP16], which is a corollary of various
results of [PW13, BP11]). Around that point, the leading homogeneous part of H(1+X, 1+
Y, 1 + Z) is

H̄(X,Y, Z) = 2(1 + 3θ)XY Z + (1− θ)(X2Y +XY 2 +X2Z +XZ2 + Y 2Z + Y Z2).

Thus the limit shape of the model can be computed as the dual of the curve

X2Y +XY 2 +X2Z +XZ2 + Y 2Z + Y Z2 + λXY Z
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where λ = 2(1+3θ)
1−θ . See [KP16] for the computation of this dual, its shape, and the behavior

of ρ depending on its position relatively to the limit shape. The dual is a projective curve in
PR3, in the following figures we represent it in R3 intersected with the plane x+y+z = −1.

We note that the limit shape only depends on R, and there is an extra symmetry: when
R and S are exchanged, λ remains the same so the limit shape is the same. In general,
λ ∈ (2, 3]. When λ 6= 3, the limit shape looks like a rounded triangle tangent to the borders
of the carved section of UN , with an internal facet; see Figure I.18. The point λ = 3 is
somehow critical and corresponds to R = S = 3. At that point, the limit shape becomes a
circle and the central facet is reduced to a point.

Figure I.18: Limit shapes for R = 0.2 (left) and R = 3 (right).

We computed simulations of the model for different values of R in Figure I.19. In the three
corner regions ρ decays to 0 exponentially fast in N , which corresponds to the “frozen phase”
where only infinite blue paths appear in the densest possible packing; it is possible to convince
oneself that this is indeed the behavior implied by (I.17) being close to 0. The annular region
around the facet corresponds to a “liquid phase” where ρ tends to 0 polynomially fast. It
seems that this region’s interface with the central facet is delimited by the infinite blue paths
closest to the center. In the central facet there is a “gaseous phase” where ρ tends to 1

3 , and
the boundary conditions don’t appear any more.

I.4.6 Cube groves
Cube groves were introduced by Carroll and Speyer in [CS04]. They are essential spanning
forests, often represented with their dual forest, on the graph consisting of the even vertices
of G(U) with edges on diagonals of the faces of the cubes. One example is displayed in black
lines in Figure I.21.

Let Σ0(U) be the subset of Σ(U) containing all taut C(1)
2 loop configurations σ ∈ Σ(U)

such that Nσ = 0, i.e. σ has no finite loop. Such a configuration cannot contain any red
edge, since all red paths are finite loops. Thus σ can be represented by a subset of the
diagonals of the faces of the cubes, as in Figure I.20.

It is easy to check that this set of diagonals is necessarily a cube grove, and conversely, any
cube grove corresponds to such a loop configuration (which is in fact the classical interface
between the spanning forest and its dual). The transformation is thus a bijection between
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Figure I.19: Simulations for N = 40, and R = 0.2 (top left), R ' 130.7 (S = 0.2) (top right),
R = 3 (bottom). The first two simulations correspond to the same limit shape.

Σ0(U) and cubes groves on U . Moreover, this bijection is weight-preserving, in the sense
that the weight of σ ∈ Σ0(U) is equal to the weight of its associated cube grove as defined
by Carroll and Speyer (using the vertices variables g2 and setting face variables are set to
be equal to 1).
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Figure I.20: Local transformation from Σ0(U) to cube groves

As a result, the partition function truncated to Σ0(U),

YU0 taut(g) =
∑

σ∈Σ0(U)
wUtaut(σ),

is formally equal to the solution of the cube recurrence with initial conditions g2 on U . This
is not such a surprise: on a field of characteristic 2, Kashaev’s relation (I.10) reduces to

g2g2
123 + g2

1g
2
23 + g2

2g
2
13 + g2

3g
2
12 = 0,

which is exactly the cube recurrence in characteristic 2 for the variables g2, while YUtaut(g)
reduces to YU0 taut(g).

Figure I.21: A configuration σ ∈ Σ0(U) and the corresponding cube grove.
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I.A Calculations for Lemma I.13

• i = 2:

1
g2
x

∑
σ∈L2

wloc(σ) = g1g3g12g23,

1
(g′x)2

∑
σ∈L′2

wloc(σ) = g1g3g12g23.

• i = 3:

1
g2
x

∑
σ∈L3

wloc(σ) = g−1g1g3g
1
2
12g

1
2
23XZ + g−1g1g2g3g

1
2
12g

1
2
23Y

= g1g3g
1
2
12g

1
2
23

(
XZ + g2Y

g

)
,

1
(g′x)2

∑
σ∈L′3

wloc(σ) = g1g3g
1
2
12g

1
2
23Y2.

The equality of 1
(g′x)2

∑
σ∈L′2

wloc(σ) and 1
g2
x

∑
σ∈L2 wloc(σ) is equivalent to Item 3 of

Proposition I.10.

• i = 4:

1
g2
x

∑
σ∈L4

wloc(σ) = g−1g
1
2
1 g2g

1
2
3 g

1
2
13g

1
2
23Y Z + g−1g

3
2
1 g2g

1
2
3 g

1
2
13g

1
2
23X

= g
1
2
1 g2g

1
2
3 g

1
2
13g

1
2
23

(
Y Z + g1X

g

)
,

1
(g′x)2

∑
σ∈L′4

wloc(σ) = g
1
2
1 g2g

1
2
3 g

1
2
13g

1
2
23X1.

The equality is equivalent to Item 2 of Proposition I.10.

• i = 5:

1
g2
x

∑
σ∈L5

wloc(σ) = 2g−2g
3
2
1 g

2
2g

3
2
3 Y + 2g−2g

3
2
1 g2g

3
2
3 XZ + g−1g

1
2
1 g2g

1
2
3 g13XZ

+ g−1g
3
2
1 g2g

1
2
3 g23Y + g−1g

1
2
1 g2g

3
2
3 g12Y

= g
1
2
1 g2g

1
2
3

(2g1g2g3Y

g2 + 2g1g3XZ

g2 + g13XZ

g
+ g1g23Y

g
+ g3g12Y

g

)
,

1
(g′x)2

∑
σ∈L′5

wloc(σ) = g
1
2
1 g2g

1
2
3 X1Z3.
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Using Items 2 and 4 of Proposition I.10, we get

X1Z3 =
(
g1X + Y Z

g

)(
g3Z +XY

g

)
= g1g3XZ + g1X2Y + g3Y Z2 +XY 2Z

g2

= g1g3XZ + g1(gg23 + g2g3)Y + g3(gg12 + g1 g2)Y + (gg13 + g1g3)XZ
g2

= 2g1g2g3Y

g2 + 2g1g3XZ

g2 + g13XZ

g
+ g1g23Y

g
+ g3g12Y

g

and the equality follows.

• i = 6:
1
g2
x

∑
σ∈L6

wloc(σ) = g
1
2
1 g2g

1
2
3 g

1
2
12g13g

1
2
23,

1
(g′x)2

∑
σ∈L′6

wloc(σ) = g
1
2
1 g2g

1
2
3 g

1
2
12g13g

1
2
23.

• i = 7:
1
g2
x

∑
σ∈L7

wloc(σ) = g−1g
1
2
1 g

1
2
3 g

1
2
12g

1
2
23XY Z + g−1g

3
2
1 g2g

3
2
3 g

1
2
12g

1
2
23

= g
1
2
1 g

1
2
3 g

1
2
12g

1
2
23

(
XY Z + g1g2g3

g

)
,

1
(g′x)2

∑
σ∈L′7

wloc(σ) = g
1
2
1 g

1
2
3 g

1
2
12g

1
2
23g
−1
123X1Y2Z3 + g

1
2
1 g

1
2
3 g

3
2
12g13g

3
2
23g
−1
123

= g
1
2
1 g

1
2
3 g

1
2
12g

1
2
23

(
X1Y2Z3 + g12g13g23

g123

)
.

The equality is equivalent to Item 5 of Proposition I.10.

I.B Full Kashaev parametrization of free-fermionic C(1)
2 loops

Let G be a planar quadrangulation with a boundary, V its set of vertices, F its set of internal
faces. Then G is necessarily bipartite; we fix a bipartite coloring of V into black and white
vertices.

A train track of G is a path on the dual graph G∗ (defined with “half-edges” on the
boundary of G, i.e. not connected at the external face), such that whenever it enters a face
it exits on the opposite edge of that face; see Figure I.22. Let T be the set of all train tracks
of G.

It is a theorem of Kenyon and Schlenker [KS05] that a quadrangulation is a lozenge
graph iff no train track t ∈ T is a loop or crosses itself, and two distinct train tracks t, t′ ∈ T
cross at most once. For instance the quadrangulation of Figure I.22 cannot be made of
non-degenerate rhombi.
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Figure I.22: A planar finite quadrangulation with a boundary, and two train tracks.

Here we show that on a slightly more general class of quadrangulations, an application
is surjective. This linear application will be needed to construct a parametrization such as
(I.11).

Lemma I.21. If G is a connected planar finite quadrangulation with a boundary, such that
no train track is a loop, then the mapping

Φ : RV →RF

(hv)v∈V 7→ (hx + hy − hu − hv)
f∈F, f= x y

u

v

is surjective.

Proof. Because of the rank-nullity theorem, it is sufficient to prove that the dimension of
ker(Φ) is |V | − |F |.

Let h be a vector in ker Φ, and let t ∈ T . We chose an orientation of t. Whenever t

crosses a face f = x y
u

v
, for instance with x, u on its left and y, v on its right, we have

hx − hv = hu − hy. This means that the quantity given by the value of h on the right minus
its value on the left of an edge crossed by t is constant along t. Let αt(h) be this value.

If we fix an orientation of every train track and a base vertex x0, we thus get a linear
transformation from ker(Φ) to C|T |+1 by associating (hx0 , (αt(h))t∈T ) to h. It is easy to see
that this transformation is injective: if the family is null then hx0 = 0 and similarly for its
neighbors using the train tracks adjacent to x0, etc.

Conversely, if we fix values (αt)t∈T and a hx0 , we can to reconstruct a vector h in the
kernel of Φ associated to these values: starting from x0, define h on its neighbors using
the values αt associated to train tracks adjacent to x0, then on their neighbors, etc. The
orientation of train tracks guaranties that these choices are coherent, and the fact that αt is
constant along t is equivalent to Φ(h) being 0 on every face crossed by t.
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Thus ker(Φ) has dimension |T |+ 1.
Let Eext be the set of edges adjacent to the external face, and Eint = E \Eext. Since the

train tracks never loop, the set of train tracks define a coupling of external edges so

2|T | = |Eext|. (I.20)

Since every internal face is a quadrangle, we have

4|F | = 2|Eint|+ |Eext|. (I.21)

Finally we have Euler’s formula:

|V | − |E|+ |F | = 1. (I.22)

Combining (I.20), (I.21), (I.22) and |E| = |Eint|+ |Eext| easily gives

|T |+ 1 = |V | − |F |

so dim(ker Φ) = |V | − |F | as needed.

Now we can go back to the proof that parametrization (I.11) exists for any free-fermionic
loop model on a graph G that satisfies the assumption of Lemma I.21.

On every face f we have a set of positive weights wf1 , . . . , w
f
5 that satisfy (I.6). Let us

define κf = wf5 and Rf =
(
wf1
κf

)2
. We get:

wf1 = κf
√
Rf

wf2 = κf
√

1
Rf

wf3 = κf
√

1 +Rf

wf4 = κf
√

1 + 1
Rf

wf5 = κf .

(I.23)

By Lemma I.21, there is a function h : V → R such that on every face f = x y
u

v
,

log(Rf ) = hx + hy − hu − hv.

If we set gx = ehx , we get
Rf = gxgy

gugv

and (I.23) becomes 

wf1 = κf
√

gxgy
gugv

wf2 = κf
√

gugv
gxgy

wf3 = κf
√

gxgy+gugv
gugv

wf4 = κf
√

gxgy+gugv
gxgy

wf5 = κf .

Multiplying all weights at a face by a same constant doesn’t change the relative weights of
loop configurations. Here, if we multiply all weights by

√
gxgygugv
κf

, we get the parametrization
(I.11).
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Remark I.22. One can prove in exactly the same way that Kashaev’s parametrization of
the Ising model [Kas96] is possible whenever the underlying quadrangulation satisfies the
assumption of Lemma I.21. For instance, the Ising model on any finite isoradial graph
admits a Kashaev parametrization.



II – Free-fermion eight-vertex models
on a quadrangulation
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Résumé
Nous étudions le modèle “à huit sommets” dans le régime des fermions libres. Nous exp-
rimons une nouvelle symétrie “d’échange” pour ce modèle, de plusieurs façons différentes :
fonctions de partition, variables d’ordre et de désordre, couplages, matrices de Kasteleyn.
Cette symétrie peut être utilisée pour relier le modèle à huit sommets en régime fermions
libres avec des modèles à six sommets, ou des dimères sur des graphes bipartis. Nous
définissons également des nouvelles solutions aux équations de Yang-Baxter dans un cadre
“d’échiquier”, et un régime Z-invariant correspondant. En utilisant les dimères bipartis défi-
nis par Boutillier, de Tilière et Raschel [BdTR18], nous donnons des formules exactes et
locales pour les corrélations entre arêtes du modèle à huit sommets Z-invariant en régime
de fermions libres sur un graphe de losanges, et en déduisons la construction d’une mesure
de Gibbs ergodique.

Abstract
We study the eight-vertex model at its free-fermion point. We express a new “switching”
symmetry of the model in several forms: partition functions, order-disorder variables, cou-
plings, Kasteleyn matrices. This symmetry can be used to relate free-fermion 8V-models to
free-fermion 6V-models, or bipartite dimers. We also define new solution of the Yang-Baxter
equations in a “checkerboard” setting, and a corresponding Z-invariant model. Using the
bipartite dimers of Boutillier, de Tilière and Raschel [BdTR18], we give exact local formulas
for edge correlations in the Z-invariant free-fermion 8V-model on rhombic graphs, and we
deduce the construction of an ergodic Gibbs measure.
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II.1 Introduction

The eight-vertex model, or 8V-model for short, was introduced by Sutherland [Sut70] and Fan
and Wu [FW69] as a generalization of the 6V, or ice model [Sla41, Lie67]. The configurations
are orientations of the edges of Z2 such that every vertex has an even number of incoming
edges, like in Figure II.1. Equivalently, it can be represented as a polygon, by choosing a
checkerboard coloring of the faces of Z2 and drawing in bold the edges oriented with, say, a
white face on their left. The interactions live on vertices and depend on the eight possible
local configurations, hence the name. These notions can naturally be extended to graphs
that are dual of a planar quadrangulation Q; an example is displayed in Figure II.5.

Figure II.1: Two equivalent representations of an eight-vertex configuration on Z2.

More precisely, the Boltzmann weight of a configuration is the product of local weights
associated to local configurations at a face f of the quadrangulation Q, as in Figure II.4,
that are denoted A(f), B(f), C(f), D(f). The case of a 6V-model corresponds to D(f) = 0
at every face. Notice that complementary configurations have the same weight, which means
that we are in a “zero field” case. To make these weights well-defined, notice also that
we fixed a bipartite coloring of Q. This is sometimes referred to as a checkerboard model
[Bax86, BPAY88], or a staggered model on the square lattice [HLW75]. Checkerboard (or
alternating, or staggered) 8V models have attracted some attention, in particular for their
relation with the Ashkin-Teller model [Weg72, Bax82], but little is known about them in
general. In this chapter we investigate checkerboard 8V-models that satisfy the free-fermion
condition defined below; we do so on general quadrangulations, in the hope that it lets us
capture properties that are intrinsic to the model.

The 8V-model with constant weights has been famously solved on the square lattice
and a few other regular lattices using transfer matrices methods, see [Bax82] and references
therein. In particular, the free energy and the different phases of the model are described.
At the special free-fermion point

A2 +B2 = C2 +D2 (II.1)

there exists a different method using a correspondence with non-bipartite dimers, leading
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to the computation of Pfaffians [LW77, FW69, HLW75, Lin76, Lin84]. It is also possible
to adapt the theory of transfer matrices to the free-fermion case, which makes computation
easier than for the complete 8V-model [BS85a, BS85b, BS85c, Fel73c, Fel73a, Fel73b]. The
current chapter is based on a “switching” result, that we now explain.

If we multiply all weights A(f), B(f), C(f), D(f) at a face f by the same constant,
the relative weight of different 8V-configurations are unchanged; this is known as a gauge
transformation. Thus an 8V model with weights satisfying the free-fermion condition (II.1)
can be effectively represented by two free parameters per face, say α(f), β(f) ∈ R/2πZ; see
(II.8) for the exact parametrization. Our parametrization is such that when α = β, the
model becomes a 6V one. We denote by Xα,β the whole set of weights corresponding to α, β,
and by Z8V (Q, Xα,β) the partition function; when α = β, we denote it by Z6V (Q, Xα,α) to
emphasize that it becomes a 6V-model. The choice of parameters α, β is such that we have
the following “switching” relation, see Theorem II.13 for a precise statement and (II.18) for
the value of the constant cα,β:

Theorem II.1. Let Q be a quadrangulation of the sphere. For any α, β, α′, β′ satisfying
natural hypothesis,

Z8V (Q, Xα,β)
√
cα,β

Z8V (Q, Xα′,β′)√
cα′,β′

= Z8V (Q, Xα,β′)√
cα,β′

Z8V (Q, Xα′,β)
√
cα′,β

.

In particular, for (α′, β′) = (β, α), this gives

(Z8V (Q, Xα,β))2 = cα,β√
cα,αcβ,β

Z6V (Q, Xα,α) Z6V (Q, Xβ,β)

which is a new relation between free-fermion 8V-models and 6V ones. The identity of The-
orem II.1 is central to this chapter. It suggests that other hidden features of free-fermion
8V-models might exist. We identify several of them.

First, it hints at a possible coupling of pairs of 8V-configurations. If τ, τ ′ are two 8V-
configurations, seen as subsets of the dual edges of Q, their XOR (or symmetric difference) is
still an 8V-configuration; we denote it by τ ⊕ τ ′. We prove the following, see Theorem II.15
for a precise statement.

Theorem II.2. Let Q be a quadrangulation of the sphere. For any standard α, β, α′, β′,
let τα,β, τα′,β′ , τα,β′ , τα′,β be independent 8V-configurations distributed with the correspond-
ing Boltzmann weights. Then the configurations τα,β ⊕ τα′,β′ and τα,β′ ⊕ τα′,β are equal in
distribution.

This theorem is proved via the formalism of order-disorder variables [KC71, Dub11a], see
Theorem II.13. We also illustrate in Appendix II.A how discrete Fourier theory is a useful
object to deduce such statistical results from order-disorder variables.

For (α′, β′) = (β, α), Theorem II.2 implies that the XOR of two independent 8V-
configurations (with the same distribution) is distributed as the XOR of two independent
6V-configurations (with different distributions). Although being unexpected, this is remi-
niscent of the coupling identities of [BdT14, Dub11a] on the Ising model. However these
previous identities involved two independent Ising models, while our results are naturally as-
sociated with four Ising models (see Corollary II.12) and do not seem to be easy consequences
of their work.
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Second, it is natural to wonder what happens if Q is a quadrangulation of the torus.
This is useful in particular to understand periodic boundary conditions and construct in-
finite measures on the full plane, as we explain later. In the toric case, the 8V-weights
Xα,β are naturally associated with a characteristic (Laurent) polynomial of two complex
variables, denoted P 8V

α,β(z, w), and defined in (II.21) just like in the case of the dimer model
[KOS06]. The analogous statement of Theorem II.1 is that (see Theorem II.26 for the precise
statement):

Theorem II.3. Let Q be a quadrangulation of the torus. For any standard α, β, α′, β′,

cα,βcα′,β′ P 8V
α,β(z, w)P 8V

α′,β′(z, w) = cα,β′cα′,β P 8V
α,β′(z, w)P 8V

α′,β(z, w).

In particular (see Corollary II.28),

P 8V
α,β(z, w) = c̃ P 6V

α (z, w)P 6V
β (z, w).

The polynomials P 6V
α and P 6V

β correspond to bipartite dimers [WL75, Nie84, Dub11a,
BdT14]. The curves defined by their zero locus in C2 are Harnack curves [KOS06]. Thus
the zero locus of P 8V

α,β is the union of two Harnack curves. This can be observed in the
amoebae of Figure II.2, where the amoeba is the image of the zero locus under the map
(z, w) 7→ (log |z|, log |w|).

Figure II.2: Amoebae of the curves defined by P 8V
α,β, P 6V

α and P 6V
β for the square lattice.

Third, the 8V-models at the free-fermion point corresponds to non-bipartite dimers, for
which we can define a version of a Kasteleyn matrix Kα,β, see Section II.4.3. The elements
of the inverse of Kα,β are related to the correlations of the 8V-model (see Proposition II.21).
It is possible to get a relation between those inverse matrices; precise statements are given in
Theorem II.22 on the sphere and in Theorem II.25 on the torus, and the matrix T is defined
by (II.28).

Theorem II.4.
K−1
α,β = 1

2
(
(I + T )K−1

α,β′ + (I − T )K−1
α′,β

)
.

This has the remarkable property of holding for all α′, β′, even though this is not apparent
in the right-hand-side. Again we can set (α′, β′) = (β, α), so that this formula relates 8V-
correlations to 6V ones, i.e. to bipartite dimers [WL75, Nie84, Dub11a, BdT14]. This is an
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important property, as a powerful theory exists to study bipartite dimers [CKP01, KOS06]
which is mostly unavailable for non-bipartite dimers. We give several consequences of this
identity with the solution of the 8V-model in the Z-invariant regime on lozenge graphs.

A model is said to be Z-invariant when it satisfies a form of the Yang-Baxter equations,
or a star-triangle transformation (see Figure II.15). In the approach via transfer matrices,
this property is often seen as a sufficient condition for the commutativity of transfer matrices
[Bax82], see also [Bel79, Dut80]. However it has also been shown by Baxter that the star-
triangle move is enough information to guess the behavior of the model on very generic
lattices [Bax78], without requiring transfer matrices. In particular, it should imply a form
of locality for the model, which means that the two-point correlations depend only on a path
(any path) between the two points. This property is surprising, since in general correlations
are expected to depend on the geometry of the whole graph.

One way to interpret Z-invariance geometrically is to use isoradial graphs. For these
graphs, the faces of the quadrangulation Q are supposed to be rhombi with the same edge-
length (we call Q a lozenge graph), and the weights A(f), B(f), C(f), D(f) at a face f are
supposed to depend on the half-angle θ of the rhombus f at the black vertices. The angles
θ satisfy some relations under star-triangle transformation (see Figure II.3), and the goal
is to define Boltzmann weights in terms of θ so as to transform these relations into the
Yang-Baxter equations. Several Z-invariant models have been studied on lozenge graphs,
including the bipartite dimer model [Ken02], Ising model [BdT11, BdTR18], Laplacian (or
spanning forest model) [Ken02, BdTR17], random cluster model [DCLM18], etc. The results
of [KS05] also imply that we do not lose anything by considering the Yang-Baxter equations
on a lozenge graph rather than on a pseudoline arrangement, like that of [Bax78].

π
2 − θ1

π
2 − θ2

π
2 − θ3

θ1

θ2
θ3

Figure II.3: Star-triangle move on a lozenge graph. The angles satisfy θ1 + θ2 + θ3 = π
2 .

The Z-invariant weights of the 8V model in the non-checkerboard case have been param-
eterized by Baxter [Bax72, Bax78, Bax82] and Zamolodchikov [Zam79]. Other techniques
have appeared since to classify these solutions [SUAW82, GM02, KS13, Vie18]. By consid-
ering checkerboard Yang-Baxter equations, more solutions can appear, as noted for instance
in [PAY06]. Here we introduce what seems to be the first set of checkerboard Z-invariant
weights for the 8V model, but only in the free-fermion case.

Let k, l be complex numbers such that k2, l2 ∈ (−∞, 1). For any real number x let
xk = 2K(k)

π x, where K(k) is the complete elliptic integral of the first kind, and similarly
for xl. Then the following 8V-weights of lozenge graphs, expressed in terms of Jacobi’s
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elliptic functions (see [AS64, Law89]) at a face f with half-angle θ, satisfy the Yang-Baxter
equations:

A(f) = sn (θk|k) + sn (θl|l)
B(f) = cn (θk|k) + cn (θl|l)
C(f) = 1 + sn (θk|k) sn (θl|l) + cn (θk|k) cn (θl|l)
D(f) = cn (θk|k) sn (θl|l)− sn (θk|k) cn (θl|l)

. (II.2)

We prove this in Proposition II.30. When (1 − k2)(1 − l2) = 1 (or k∗ = l in the notation
of [BdTR18]) the weights no longer depend on the bipartite coloring of Q (i.e if a face f
has a half-angle θ and g has a half-angle π

2 − θ, then A(f) = B(g), etc.), and we recover
Baxter’s solution in the free-fermion case. When k = l we get a Z-invariant 6V model
whose corresponding dimer model can be found in [BdTR18]. At this point we do not know
if such parameterizations of the checkerboard Yang-Baxter equations exist outside of the
free-fermion manifold.

Using Theorem II.4, we are able to relate the correlations for the Z-invariant weights
(II.2) to the bipartite dimers of [BdTR18]. In [BdTR18] the authors give explicit, local
formulas for the correlations and deduce the construction of an ergodic Gibbs measure on
any lozenge graphs of the whole plane. Consequently, we get the same kind of results for our
Z-invariant 8V-model, confirming in that case the prediction of Baxter that correlations are
given by local formulas.

We can also deduce the asymptotics of coefficients from [BdTR18]: under some technical
hypothesis, we show that when 0 < k < l < 1 the coefficients of the inverse Kasteleyn matrix
between points at distance r decays as r− 1

2 e−r/ζk (see Corollary II.36). Notice that the effect
of l vanishes in the asymptotics. When k = 0 the decay is polynomial, corresponding to a
critical model. When k → 0, we prove that the quantity ζk is a Θ(k−2) in Proposition II.37.
As k2 plays the role of (β− βc) in usual statistical mechanics terms, this critical exponent is
compatible with that of the correlation length, ν = 1, in the universality class of the Ising
model (see Section 7.12 of [Bax82]).

Finally, the exact computation of correlations allows for the construction of an ergodic
Gibbs measure in the full plane, using the procedure of [KOS06].

Outline of the chapter

In Section II.2 we properly define the 8V, Ising and dimer models in spherical, toric and
planar settings. We also introduce the formalism of order-disorder correlators.

In Section II.3 we restrict ourselves to the spherical case. We compute the correlators
of free-fermion 8V models and relate them to Ising ones, generalizing results of [Dub11a],
see Corollary II.12. We prove the coupling result of Theorem II.2, first in correlators terms
(Theorem II.13), then in probabilistic terms (Theorem II.15). The latter is deduced from the
former by using a discrete Fourier transformation described in Appendix II.A. The results
of Section II.3 imply Theorem II.1. Sections II.4 and II.5 are independent of Section II.3.

In Section II.4 we define the dimer model associated to the 8V-model, and appropri-
ate versions of Kasteleyn matrices, one being skew-symmetric and the other being skew-
hermitian; they are related by a diagonal conjugation, see Lemma II.19. We show that the
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edge correlations can be expressed as minors of the inverse Kasteleyn matrices, see Proposi-
tion II.21. We prove the relation of inverses of Theorem II.4. This gives an alternative proof
of Theorem II.1, as well as its toric counterpart, Theorem II.3.

In Section II.5 we prove that the weights (II.2) satisfy the Yang-Baxter equations. Using
the relation to 6V models coming from Section II.4, we give a local formula for the inverse
Kasteleyn matrix in the full plane in Section II.5.3. We prove the mentioned asymptotics and
critical exponent in Corollary II.36 and Proposition II.37. Finally we construct an ergodic
Gibbs measure in the Z-invariant case in Section II.5.4.
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II.2 Definitions

Let Q be a quadrangulation of a surface S, that is a finite connected graph Q = (V, E),
without multi-edges and self-loops, embedded on S so that edges do not intersect, and so
that the faces of Q are homeomorphic to disks and have degree 4. We denote by F its set
of faces. We will focus on three cases:

• the spherical case where S is the two-dimensional sphere and Q is finite;

• the planar case where S is R2 and Q is infinite and covers the whole plane;

• the toric case where S is the two-dimensional torus and Q is finite and bipartite.

Since Q is bipartite in all these cases, we can fix a partition of V into a set of black vertices
B and white verticesW, such that edges only connect black and white vertices together. We
also set GB (resp. GW) to be the graph formed by black (resp. white) vertices, joined iff
they form the diagonal of a face of Q. Finally, in the toric case, we suppose that there are
two simple cycles γBx and γBy on GB that wind once, respectively horizontally and vertically
on the torus; see Figure II.12.

The dual of Q, denoted by Q∗, is the embedded graph whose set of vertices is F and
which has edges connecting elements of F that are adjacent in Q. We denote by E∗ the set
of edges of Q∗; for an edge e ∈ E , we denote by e∗ its corresponding dual edge.

II.2.1 Eight-vertex-model
An 8V-configuration is a subset τ ⊂ E∗ such that, at each face f ∈ F , an even number of
dual edges that belong to τ meet at f . Thus at any face f ∈ F , τ has to be one of the eight
types shown in Figure II.4. Let Ω(Q) be the set of all 8V-configurations on Q.

Let A,B,C,D be four functions from F to R. We associate to f a local weight function
wf , such that wf (τ) is either A(f), B(f), C(f) or D(f) depending on the local configuration,
as in Figure II.4. In the spherical and toric cases, the global weight of τ is defined as

w8V (τ) =
∏
f∈F

wf (τ). (II.3)
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A(f)

A(f)

B(f)

B(f)

C(f)

C(f)

D(f)

D(f)

Figure II.4: The eight possible configurations for τ at a face f ∈ F and their local weight
wf (τ).

Figure II.5: Left: a quadrangulation Q in the spherical case. Right: the same quadrangula-
tion with its dual Q∗ (dashed) and an eight-vertex configuration.

It is more difficult to make sense of formula (II.3) in the planar case, where the product
becomes infinite, requiring the construction of an appropriate Gibbs measure. We discuss
this construction in the case of a Z-invariant, free-fermion model in Section II.5.4.

For the remainder of this section, we only deal with the spherical and toric cases. Let
X = (A,B,C,D) denote the whole set of weights. The partition function of the model is

Z8V = Z8V (Q, X) =
∑

τ∈Ω(Q)
w8V (τ).

When the weights X take values in positive real numbers, the Boltzmann measure associated
to X is the probability measure on Ω(Q) defined by

P8V (τ) = w(τ)
Z8V

. (II.4)

Even if we are only interested in the positive real values in fine, it is convenient to let the
weights X take any real values. In this case, w(τ) and Z8V are still well-defined but (II.4)
does not define a probability measure.

A gauge transformation at some face f ∈ F consists in multiplying the weightsA(f), B(f), C(f), D(f)
by the same constant λ 6= 0. This has the effect of multiplying all weights w8V (τ) by λ, and
Z8V is also multiplied by λ. Thus the Boltzmann measure is unchanged.
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The weights X = (A,B,C,D) are said to be free-fermion if

∀f ∈ F , A(f)2 +B(f)2 = C(f)2 +D(f)2.

They are said to be standard if
∀f ∈ F , C(f) 6= 0.

Lemma II.5. Let a, b, c, d be real numbers such that c 6= 0 and

a2 + b2 = c2 + d2. (II.5)

Then there exists a couple (α, β) ∈ (R/2πZ)2 such that in homogeneous coordinates,

[
a : b : c : d

]
=


sinα+ sin β :
cosα+ cosβ :

1 + sinα sin β + cosα cosβ :
cosα sin β − sinα cosβ

 (II.6)

=
[
sin
(
α+β

2

)
: cos

(
α+β

2

)
: cos

(
α−β

2

)
: sin

(
−α+β

2

)]
. (II.7)

Proof. We can rewrite (II.5) as(
a

λ

)2
+
(
b

λ

)2
=
(
c

λ

)2
+
(
d

λ

)2
= 1

for some constant λ > 0. Thus there exists u, v ∈ R/2πZ such that

[a : b : c : d] = [sin u : cosu : cos v : − sin v].

Then we define α = u + v, β = u − v, which gives the form (II.7) of the homogeneous
coordinates. The form (II.6) is obtained by multiplying all weights of (II.7) by 2 cos

(
α−β

2

)
,

which is non zero because c 6= 0, and performing simple trigonometric computations.

For that reason, we fix two functions α, β : F → R/2πZ and we define the associated
free-fermion weights by the following formula, implicitly evaluated at any f ∈ F :

Xα,β =


Aα,β
Bα,β
Cα,β
Dα,β

 =


sinα+ sin β
cosα+ cosβ

1 + sinα sin β + cosα cosβ
cosα sin β − sinα cosβ

 . (II.8)

By Lemma II.5, any standard free-fermion 8V-model can be written in this way, after proper
gauge transformations.
Remark II.6.

• The weights Xα,β satisfy

2Cα,β = A2
α,β +B2

α,β = C2
α,β +D2

α,β. (II.9)

As a result, given standard free-fermion 8V-weights X = (A,B,C,D), one gets to the
weights Xα,β by applying gauge transformations at each face with parameter λ(f) =

2C(f)
A(f)2+B(f)2 .
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• The weight Xα,β are standard iff

∀f ∈ F , α(f)− β(f) 6= π[2π]. (II.10)

We also say that α, β are standard when (II.10) is satisfied. Note that if this is not the
case at some face f ∈ F , then all the weights A(f), B(f), C(f), D(f) vanish.

• If α, β lie in the range
∀f ∈ F , 0 < α(f) ≤ β(f) < π

2 (II.11)

then the weights Aα,β, Bα,β, Cα,β are positive and Dα,β is non-negative. As a result,
the Boltzmann measure is a probability measure.

• If α = β, then the weights Dα,β vanish and we are left with a 6V model. We simply
denote Xα the weights in that case, and Z6V (Q, Xα) for the partition function. We
have

[Aα : Bα : Cα] = [sinα : cosα : 1].

• Switching α and β has the effect of multiplying the weights D by −1. Since any 8V-
configuration contains an even number of D faces (see [Dub11a]), in both the spherical
and toric cases,

Z8V (Q, Xα,β) = Z8V (Q, Xβ,α). (II.12)

II.2.2 Ising model

Let α, β : F → (0, π2 ). Let JαB , J
β
W : F → R be the following coupling constants:

∀f ∈ F , JαB (f) = 1
2 ln

(1 + sinα(f)
cosα(f)

)
, JβW(f) = 1

2 ln
(1 + cosβ(f)

sin β(f)

)
.

An spin configuration on GB (resp. GW) is an application from B (resp. W) to {±1}.
The weight of such a configuration σB (resp. σW) is defined as

wB(σB) =
∏
f∈F

eJ
α
B (f) σuσv , wW(σW) =

∏
f∈F

eJ
β
W (f) σxσy ,

where u, v are the black vertices of f , and x, y its white vertices.
The partition functions are:

ZBIsing = ZBIsing (JαB ) =
∑
σB

wB(σB), ZWIsing = ZWIsing (JβW) =
∑
σW

wW(σW),

where the sums are over spin configurations. Again, the associated Boltzmann measure is

PBIsing(σB) = wB(σB)
ZBIsing

, PWIsing(σW) = wW(σW)
ZWIsing

.



112 Chapter II. Free-fermion 8V model

II.2.3 Dimer model

Let G = (V,E) be a finite graph, equipped with real weights on the edges (νe)e∈E . A dimer
configuration, or perfect matching, is a subset of edges m ⊂ E such that every vertex of G is
adjacent to exactly one edge of m. We denote byM(G) the set of all dimer configurations
on G.

The Boltzmann measure onM(G) is defined by

Pdim(m) =
∏
e∈m νe

Zdim(G, ν)

where Zdim(G, ν) is the partition function:

Zdim(G, ν) =
∑

m∈M(G)

∏
e∈m

νe.

II.2.4 Order and disorder variables

The notions of order and disorder variables were defined by Kadanoff and Ceva for the Ising
model [KC71] and play a central role in the study of spinor and fermionic observables; see
for instance [CCK17] for a unifying review. The definition for the Ising model is classical;
for the 8V model, we adapt definitions of Dubédat [Dub11a].

For these definitions Q can be a quadrangulation in the spherical or toric case.

a) Ising correlators

Let B0 ⊂ B and W1 ⊂ W be two subset of black and white vertices of Q, of even cardinality.
Let γB0 be the union of disjoint simple paths on GB that connect the vertices of B0 pairwise
(these are called order lines); γB0 can be alternatively seen as a subset of F . We similarly
define γW1 as a union of disjoint simple paths on GW that connect the W1 pairwise (also
called disorder lines).

Let α : F →
(
0, π2

)
. We modify the coupling constants JαB by adding iπ2 to the coupling

constant at f when f ∈ γB0 , and afterwards multiplying the coupling constant by −1 when
f ∈ γW1 (the order is important). Let J ′ be these new coupling constants. Then the mixed
correlator of Kadanoff and Ceva is defined as〈 ∏

b∈B0

σb
∏

w∈W1

µw

〉IsingB

α,γB0 ,γW1

= 〈σ(B0)µ(W1)〉IsingB
α,γB0 ,γW1

:= ZBIsing(J ′).

This depends on the choice of paths and the order of operations on the coupling constants,
but only up to a global sign. The order variables are simply the spins σb, with 〈·〉 repre-
senting an unnormalized expectation under the Boltzmann measure. The disorder variables
µw represent defects in the configuration, and are conjugated with order variables under
Kramers-Wannier duality [KW41]. Again we refer to [KC71].

Similarly for the Ising model on GW , if W0 ⊂ W and B1 ⊂ B are even subsets, we
chose paths γW0 , γB1 . Then for β : F →

(
0, π2

)
, we add iπ2 to the constants JWβ on γW0 ,

then multiply the constants by −1 on γB1 , and we name the new constants J ′′. The mixed
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correlator is〈 ∏
w∈W0

σw
∏
b∈B1

µb

〉IsingW

β,γW0 ,γB1

= 〈σ(W0)µ(B1)〉IsingW
β,γW0 ,γB1

:= ZWIsing(J ′′).

b) 8V correlators

Order and disorder variables for the 8V-model are defined in [Dub11a]. The following defi-
nition is original but it is easy to check that it is equivalent to that of [Dub11a]. In the 8V
case, order and disorder variables can be located on either black or white vertices of Q.

Definition II.7. Let Q be a quadrangulation in the spherical case. Let X = (A,B,C,D) :
F → R4 be a family of weights. For every f ∈ F , we define operators νBf , νWf , ξBf , ξWf that
act on X by transforming X(f) in the following way:

νBf :


A(f)
B(f)
C(f)
D(f)

 7→

A(f)
−B(f)
C(f)
−D(f)

 νWf :


A(f)
B(f)
C(f)
D(f)

 7→

−A(f)
B(f)
C(f)
−D(f)



ξBf :


A(f)
B(f)
C(f)
D(f)

 7→

C(f)
D(f)
A(f)
B(f)

 ξWf :


A(f)
B(f)
C(f)
D(f)

 7→

D(f)
C(f)
B(f)
A(f)


Let B0, B1 ⊂ B (resp. W0,W1 ⊂ W) be two even subsets of black (resp. white) vertices,

with simple paths γB0 , γB1 (resp. γW0 , γW1) joining them pairwise. As these paths use
black (resp. white) diagonals of faces, we can identify them with subsets of F . Let γ =
(γB, γW , γB′ , γW ′). We define modified weights X ′γ obtained by the following composition of
operators:

X ′γ =

 ∏
f∈γB1

ξBf
∏

f∈γW1

ξWf
∏

f∈γB0

νBf
∏

f∈γW0

νWf

X. (II.13)

We define the mixed correlator as:〈 ∏
b∈B0

σb
∏

w∈W0

σw
∏
b∈B1

µb
∏

w∈W1

µw

〉8V

X,γ

:= Z8V (X ′γ).

We will also use the shorthand notation 〈σ(B0)σ(W0)µ(B1)µ(W1)〉8VX,γ .

Remark II.8.

• Mixed correlators may depend on the set of paths γ, but only up to a global sign
[Dub11a]. Also note that in (II.13) we always apply order operators before disorder
ones. This is important because these operators do not always commute. The only
cases were they do not commute are

νBf ξ
W
f = −ξWf νBf ,

νWf ξ
B
f = −ξBf νWf ,
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but like for path dependence, changing the order might only multiply the correlator
by a factor −1.

• Again these correlators can be interpreted as unnormalized expectations under the
Boltzmann measure. If b, b′ ∈ B0, then the couple of order variables σbσb′ represents
the random variable (−1)n where n is the number of edges in the 8V configuration on
any path on Q between b and b′.

The disorder variables are equivalent to modifying every eight-vertex configuration by
applying a XOR with the configuration of “half edges” shown in Figure II.6. The re-
sulting “configuration” is no longer a subset of edges of Q, but we could still define its
weight as in (II.3). The advantage of modifying weights with the operators of Defini-
tion II.7 is that we never actually have to work with these disordered configurations.

Figure II.6: A piece of a quadrangulation, a subset B1 ⊂ B with paths γB1 joining them
pairwise (dashed), and a partial configuration (bold grey)

II.3 Couplings of 8V-models

We review classical results on the Ising-8V correspondence [Bax78], on the 8V duality [Wu69],
in terms of order and disorder variables [Dub11a]. We then apply them to prove couplings
results for different free-fermion 8V-models.

II.3.1 Spin-vertex correspondence

The spin-vertex correspondence comes from the following simple remark, that seems to be
due to Baxter [Bax78]. If we superimpose two spin configurations, one on GB and one on
GW , and we draw the interfaces between +1 and −1 spins, we get an 8V-configuration. This
transformation is two-to-one, and can be made weight-preserving by choosing the appropriate
8V weights.
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Proposition II.9 ([Bax78, Dub11a]). Let Q be a quadrangulation in the spherical case, and
α, β : F → (0, π2 ). Consider the 8V-weights X : F → R4 given by

X =


eJ

α
B−J

β
W

e−J
α
B+JβW

eJ
α
B+JβW

e−J
α
B−J

β
W

 . (II.14)

Then for any B0, B1,W0,W1 and paths γ as in Definition II.7,

2 〈σ(B0)σ(W0)µ(B1)µ(W1)〉8VX,γ = 〈σ(B0)µ(W1)〉IsingB
α,γB0 ,γW1

〈σ(W0)µ(B1)〉IsingW
β,γW0 ,γB1

.

In particular,
2Z8V (Q, X) = ZBIsing (JαB )×ZWIsing(JβW).

II.3.2 Modifications of weights

One key feature of the 8V-model is its duality relation. This is an instance of Kramers-
Wannier duality [KW41], and in the case of the eight-vertex model it was discovered by Wu
[Wu69] using high-temperature expansion techniques. The formulation for correlators comes
from Dubédat [Dub11a], and means that duality exchanges order and disorder. We give an
interpretation in terms of discrete Fourier transform in Appendix II.A.

Proposition II.10 ([Wu69, Dub11a]). Let Q be a quadrangulation in the spherical case,
and let X = (A,B,C,D) : F → R4 be any 8V-weights. Let X̂ = (Â, B̂, Ĉ, D̂) be defined by

∀f ∈ F ,


Â(f)
B̂(f)
Ĉ(f)
D̂(f)

 = 1
2


1 −1 1 −1
−1 1 1 −1
1 1 1 1
−1 −1 1 1



A(f)
B(f)
C(f)
D(f)

 . (II.15)

Then for any B0, B1,W0,W1 and paths γ as in Definition II.7, let γ̂ = (γB1 , γW1 , γB0 , γW0);
we have

〈σ(B0)σ(W0)µ(B1)µ(W1)〉8VX,γ = 〈σ(B1)σ(W1)µ(B0)µ(W0)〉8V
X̂,γ̂

.

In particular,
Z8V (Q, X) = Z8V (Q, X̂). (II.16)

Another transformation of weights consists in multiplying all weights D(f) by −1. As
any 8V-configuration contains an even number of faces of type D, this does not change its
global weight. However, in correlators containing disorder operators, the effect is non trivial;
a result of [Dub11a] is that µ variables become σµ, while σ variables are unchanged, we
rephrase it here using symmetric differences 4.

Proposition II.11 ([Dub11a]). Let Q be a quadrangulation in the spherical case, and let
X = (A,B,C,D) : F → R4 be any 8V-weights. Let X ′ = (A,B,C,−D).



116 Chapter II. Free-fermion 8V model

Then for any B0, B1,W0,W1 and paths γ as in Definition II.7, let γ′ = (γB04γB1 , γW04γW1 , γB1 , γW1);
we have

〈σ(B0)σ(W0)µ(B1)µ(W1)〉8VX,γ = 〈σ(B04B1)σ(W04W1)µ(B1)µ(W1)〉8VX′,γ′ .

In particular,
Z8V (Q, X) = Z8V (Q, X ′).

II.3.3 Free-fermion 8V correlators
By combining the previous results, we can relate free-fermion 8V correlations with Ising ones.
This has been done in [Dub11a] when the Ising models are dual of each other (which in our
case corresponds to α = β), but the proof works identically when this is not the case.

Corollary II.12. Let Q be a quadrangulation in the spherical case, and let α, β : F → (0, π2 ).
For any B0, B1,W0,W1 and paths γ as in Definition II.7, let γB = (γB0 , γW04γW1) and

γW = (γW0 , γB04γB1). Then

〈σ(B0)σ(W0)µ(B1)µ(W1)〉8VXα,β ,γ = c0 〈σ(B0)µ(W04W1)〉IsingB
α,γB

〈σ(W0)µ(B04B1)〉IsingW
β,γW

(II.17)
where

c0 = 1
2
∏
f∈F

√
cosα(f) sin β(f)Cα,β(f).

In particular,
Z8V (Q, Xα,β) = c0 ZBIsing(JαB ) ZWIsing(JβW).

Proof. From Proposition II.9, the product of Ising correlators on the right-hand side of (II.17)
is equal to

2 〈σ(B0)σ(W0)µ(B04B1)µ(W04W1)〉8VX,(γB,γW )

for the weights X = (A,B,C,D) given by

A = eJ
α
B−J

β
W =

√
1+sinα

cosα
sinβ

1+cosβ ,

B = e−J
α
B+JβW =

√
cosα

1+sinα
1+cosβ

sinβ ,

C = eJ
α
B+JβW =

√
1+sinα

cosα
1+cosβ

sinβ ,

D = e−J
α
B−J

β
W =

√
cosα

1+sinα
sinβ

1+cosβ .

On these weights, we perform the transformation of Proposition II.11, then of Proposi-
tion II.10, and again of Proposition II.11. This amounts to defining X̃ = (Ã, B̃, C̃, D̃) by

Ã

B̃

C̃

D̃

 = 1
2


1 −1 1 1
−1 1 1 1
1 1 1 −1
1 1 −1 1



A
B
C
D

 .
Following the transformations in the Propositions, we get that the Ising correlators are equal
to

2 〈σ(B0)σ(W0)µ(B1)µ(W1)〉8VX̃,γ .
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Trigonometric computations show that (implicitly at any f ∈ F):
Ã

B̃

C̃

D̃

 = 1√
cosα sin β (1 + cos(α− β))


Aα,β
Bα,β
Cα,β
Dα,β


and using the definition of correlators as partition function, we see that these gauge trans-
formations multiply the correlator by the same factor.

II.3.4 Coupling of free-fermion 8V-models
With Corollary II.12, we are able to factor correlators for the weights Xα,β into a part that
depends on α and a part that depends on β. By doing the same for Xα′,β′ and rearranging
the Ising correlators, we can get the correlators of Xα,β′ and Xα′,β. This is expressed in the
following “switching” result. The constants can be defined in terms of

cα,β =
∏
f∈F

Cα,β(f) =
∏
f∈F

A2
α,β(f) +B2

α,β(f)
2 . (II.18)

Theorem II.13. Let Q be a quadrangulation in the spherical case, and let α, β, α′, β′ : F →
(0, π2 ). Let B0, B1,W0,W1, γ (resp. B′0, B′1,W ′0,W ′1, γ′) be as in Definition II.7. Then

〈σ(B0)σ(W0)µ(B1)µ(W1)〉8VXα,β ,γ
〈
σ(B′0)σ(W ′0)µ(B′1)µ(W ′1)

〉8V
Xα′,β′ ,γ

′

=c1
〈
σ(B′′0 )σ(W ′′0 )µ(B′′1 )µ(W ′′1 )

〉8V
Xα,β′ ,γ

′′
〈
σ(B′′′0 )σ(W ′′′0 )µ(B′′′1 )µ(W ′′′1 )

〉8V
Xα′,β ,γ

′′′

(II.19)

where 
B′′0
W ′′0
B′′1
W ′′1

 =


B0
W ′0

B04B′04B′1
W04W ′04W1

 ,

B′′′0
W ′′′0
B′′′1
W ′′′1

 =


B′0
W0

B04B′04B1
W04W ′04W ′1

 ,
with the same formulas for the paths in γ′′, γ′′′, and

c1 =
√
cα,βcα′,β′

cα,β′cα′,β
.

In particular,

Z8V (Q, Xα,β) Z8V (Q, Xα′,β′) = c1 Z8V (Q, Xα,β′) Z8V (Q, Xα′,β). (II.20)

Proof. This immediately comes from writing both the left-hand side and the right-hand side
in terms of Ising correlators using Corollary II.12, and checking that they are the same.

Example II.14. By taking B0 = B′0 = B and W0 = W ′0 = W (i.e. the initial order variables
being the same), we get the simpler formula

〈σ(B)σ(W )µ(B1)µ(W1)〉8VXα,β ,γ
〈
σ(B)σ(W )µ(B′1)µ(W ′1)

〉8V
Xα′,β′ ,γ

′

=c1
〈
σ(B)σ(W )µ(B′1)µ(W1)

〉8V
Xα,β′ ,γ

′′
〈
σ(B)σ(W )µ(B1)µ(W ′1)

〉8V
Xα′,β ,γ

′′′
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This nontrivial equality of correlators (and of partition functions) suggests that there
exists a coupling between pairs of 8V-configurations. Specifically, when (α, β) and (α′, β′)
satisfy (II.11), then the 8V-weights define a Boltzmann probability; if τα,β, τα′,β′ are inde-
pendent and Boltzmann distributed, we want to couple them with τα,β′ , τα′,β, while keeping
as much information as possible. The following Theorem means that it is possible to do so
while keeping the XOR of configurations equal (i.e. the XOR of the corresponding sets of
dual edges of Q, which is still an 8V-configuration). This is a consequence of Theorem II.13,
but our proof requires the introduction of a discrete Fourier transform on the space of 8V-
configurations and is postponed to the end of Appendix II.A. An extended statement can be
formulated for the XOR of configurations with disorder, see Remark II.43.

Theorem II.15. Let Q be a quadrangulation in the spherical case, and let α, β, α′, β′ : F →
(0, π2 ) be such that (α, β), (α′, β′), (α, β′), (α′, β) all satisfy (II.11). Let τα,β, τα′,β′ , τα,β′ , τα′,β
be independent 8V-configurations with the corresponding Boltzmann distributions. Then
τα,β ⊕ τα′,β′ and τα,β′ ⊕ τα′,β are equal in distribution.

II.4 Kasteleyn matrices
We review the transformation of free-fermion 8V-configurations into vdimers, and we com-
pute special relations for the corresponding (inverse) Kasteleyn matrices.

II.4.1 Free-fermion 8V to dimers
In the case of the square lattice, it has been shown by Fan and Wu that the 8V-model at
its free-fermion point can be transformed into a dimer model on a planar decorated graph
[FW69]. Their arguments work identically on any quadrangulation. The corresponding
decorated graph is represented in Figure II.7.

(A−D)/C

(A−D)/C

B/C B/CC

√
D

√
D

√
D

√
D

1

1

1

1

Figure II.7: The quadrangulation Q (dashed) at a face f and the decorated graph of Fan
and Wu [FW69] (solid lines) with its dimer weights. The functions A,B,C,D are implicitly
evaluated at f .

In the more special case of a free-fermionic 6V model, the graph becomes bipartite and
the dimer model can be studied in more details [WL75, Dub11a, BdT14]. No such bipartite
dimer decoration is known for the 8V-model, and the techniques of bipartite dimers are
unavailable as such.
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A/C

A/C

B/C B/C
D/C

D/C

1

Figure II.8: The decorated graph GT of Hsue, Lin and Wu [HLW75] with its dimer weights.

In our setting we will make use of another decorated graph due to Hsue, Lin and Wu
[HLW75], see Figure II.8. This graph is more symmetric but non planar, which makes the
usual theory of dimers as Pfaffians not available, but an adapted theory has been developed
by Kasteleyn [Kas63, Kas67].

More precisely, let GT = (V T , ET ) be a decorated version of Q∗ obtained by drawing
small complete graphs K4 inside faces of Q and joining them by “legs” that cross the edges
of Q, as represented in Figure II.8. Even if this graph is not bipartite, we still decompose
V T into a subset of black vertices BT and white vertices W T , such that the black (resp.
white) vertices lie on the left (resp. right) of an edge of Q oriented from black to white. For
every edge e ∈ ET , we define νe as in Figure II.8. We will need a nonstandard weight for
m ∈M(GT ), defined as

w̃(m) = (−1)N(m) ∏
e∈m

νe

where N(m) is the number of pairs of intersecting edges in m. The corresponding partition
function is

Z̃dim(GT , ν) =
∑

m∈M(GT )
w̃(m).

Note that at the boundary of every face f ∈ F , m uses an even number of legs. As a
result, if we only keep the occupied legs of m, we get an 8V-configuration τ ∈ Ω(Q). We
denote this by m 7→ τ . This mapping is weight-preserving in the following sense; this was
noted when Q is the square lattice by Hsue, Lin and Wu [HLW75] but works in the exact
same way for any quadrangulation:
Theorem II.16 ([HLW75]). Let Q be a quadrangulation in the spherical or toric case, and
X a set of standard free-fermionic 8V-weights on Q. Then for every τ ∈ Ω(Q),

w8V (τ) =

∏
f∈F

C(f)

 ∑
m∈M(GT )
s.t. m 7→τ

w̃(m).

In particular,

Z8V (Q, X) =

∏
f∈F

C(f)

 Z̃dim(GT , ν).
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We now describe how to compute Z̃dim(GT , ν) using an adapted version of Kasteleyn
matrices.

II.4.2 Skew-symmetric real matrix

A Kasteleyn orientation of a planar or toric graph is an orientation of the edges such that
every face is clockwise-odd, meaning that it has an odd number of clockwise-oriented edges;
by the planarity condition, such an orientation can always be constructed, and may be used
to identify the partition function of dimers with the Pfaffian of the corresponding skew-
symmetric, weighted adjacency matrix [Kas61, TF61]. Since GT is non-planar, there might
not exist a usual Kasteleyn orientation, but there still exists an admissible orientation so
that the Pfaffian is equal to Z̃dim(GT , ν) [Kas63, Kas67], which we describe now.

If we remove all edges of GT that join black vertices (the black diagonals of decorations),
we get a planar (or toric) graph GTB. Similarly, removing the white diagonals gives a graph
GTW . An orientation of GT is said to be admissible if its restriction to GTB and GTW are both
Kasteleyn orientation. The existence of such an orientation is established in Section F of
[Kas67].

Figure II.9: An admissible orientation of GT in the toric case.

To define a Kasteleyn matrix, we first fix an admissible orientation of GT . For any
standard α, β : F → R/2πZ, the 8V-weights Xα,β are standard. Thus we can define dimer
weights να,β as in Figure II.8. Let K̃α,β be the weighted, skew-symmetric adjacency matrix
associated to the oriented weighted graph GT .

In the spherical case, the arguments leading to equation (79) in [Kas67] imply the fol-
lowing.
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Proposition II.17 ([Kas63, Kas67]). In the spherical case, for any quadrangulation Q and
any standard α, β : F → R/2πZ,

Z̃dim(GT , να,β) = Pf K̃α,β.

In the toric case, there also exists an admissible orientation, but its Pfaffian is no longer
equal to Z̃dim(GT , να,β). We recall here the standard way of dealing with this problem; the
idea was suggested but not proved by Kasteleyn [Kas61, Kas63] and was then proved in
various forms of generality in the works of Dolbilin et al. [DMS+96], Galluccio and Loebl
[GL99], Tesler [Tes00], Cimasoni and Reshetikhin [CR07].

Let m0 be the dimer configuration consisting of all dimers in the decorations that are
parallel to the edges of GB; see the darker configuration of Figure II.12. For any dimer config-
uration m on GT , the superimposition of m and m0 is the disjoint union of alternating loops
covering all the vertices. This union of curves has a well defined homology in H1(T2,Z/2Z),
which we denote (hmx , hmy ) ∈ (Z/2Z)2. For any θ, τ ∈ {0, 1}, let K̃θ,τ

α,β be the Kasteleyn matrix
where the weights of edges of GT crossing γBx (resp. γBy ) have been multiplied by (−1)θ (resp.
(−1)τ ). Then there exists an admissible orientation such that we have the following.

Proposition II.18 ([Kas61, Kas63, DMS+96, GL99, Tes00, CR07]). In the toric case, for
any quadrangulation Q and any standard α, β : F → R/2πZ, for any θ, τ ∈ {0, 1},

Pf K̃θ,τ
α,β =

∑
m∈M(GT )

(−1)hmx hmy +hmy +hmy +θhmx +τhmy w̃(m).

Consequently,

Z̃dim(GT , να,β) = 1
2
(
−Pf K̃0,0

α,β + Pf K̃0,1
α,β + Pf K̃1,0

α,β + Pf K̃1,1
α,β

)
. (II.21)

For any (z, w) ∈ (C∗)2, consider the modified matrix K̃α,β(z, w), obtained by multiplying
the coefficients K̃α,β[u, v] by z (resp z−1) when the edge uv crosses γBx from left to right (resp.
right to left), and similarly for w and γBy . This leads to the definition of the characteristic
polynomial of the eight-vertex as the Laurent polynomial

P 8V
α,β(z, w) = det K̃α,β(z, w).

When (z, w) /∈ {±1}2, this quantity has no reason to factor as a square product.

We conclude this part with a few remarks on the planar case. Then K̃α,β is an infinite
matrix, or equivalently can be seen as an operator on CV T :

∀f ∈ CV
T
, (K̃α,βf)[x] =

∑
y∈V T

Kα,β[x, y]f [y].

This is well defined because for all x ∈ V T , K̃α,β[x, y] is zero for all but a finite number of
y’s.

An inverse of K̃α,β is an infinite matrix K̃−1
α,β such that K̃α,βK̃

−1
α,β = Id as a matrix

product. This is well defined by the previous remark.
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When the graph is Z2-periodic, let GT1 = GT /Z2 be the fundamental graph. Note that GT1
corresponds to the toric case. For any (z, w) ∈ C2 the subspace V T

(z,w) of (z, w)-quasiperiodic
functions f :

∀x ∈ V T
1 , ∀(m,n) ∈ Z2, f(x + (m,n)) = z−mw−nf(x)

is fixed by K̃α,β. The restriction of K̃α,β to this finite-dimensional subspace is equal to the
matrix K̃α,β(z, w) defined in the toric case for GT1 , via the identification of x ∈ V T

1 with the
only (z, w)-quasiperiodic function δx(z, w) that takes value 1 at x and 0 at the other vertices
V T

1 of the fundamental domain.

II.4.3 Skew-hermitian complex matrix

There is another way to define Kasteleyn matrices that is more intrinsic and does not require
fixing an orientation, by using instead complex arguments on the edges. Let Kα,β be the
matrix whose entries are indexed by vertices V T and defined by Figure II.10 and by the
skew-hermitian condition:

Kα,β[u, v] = −Kα,β[v, u].

iA/C

iA/C

B/C B/C
iD/C

iD/C

−eiφe

e ∈
E

Figure II.10: The skew-hermitian Kasteleyn matrix Kα,β on GT .

The arguments of the entries are inspired by the relation with the Kac-Ward matrix
[KW52, CDC13, CCK17]. The “angles” (φe)e∈E are defined in the following way:

• In the spherical and planar cases, we embed the graph GB properly in the plane, with
straight edges. Then the white vertices of Q, W, are in bijection with faces of GB, and
the edges E of Q are in bijection with the corners of GB. For every e ∈ E , we set 2φe to
be the direct angle at the corner corresponding to e, taken in [0, 2π). See Figure II.11.

• In the toric case, we lift Q to a bipartite periodic quadrangulation of the plane, and
we proceed as in the planar case. This yields a periodic choice of angles φ, which can
be mapped again to the torus.

In the toric case, we also define Kα,β(z, w) just as before.

The following result relates the matrices K̃α,β and Kα,β by “gauge equivalence”. In
particular, it shows that all their principal minors are equal.
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Lemma II.19. In the spherical and toric cases, there exists a diagonal unitary matrix D,
that depends only on the chosen admissible orientation of GT , such that

Kα,β = D−1K̃α,βD (II.22)

Proof. We use Theorem 2.1 of [SS78]; see also Appendix A of [dT18]. The existence of
such a diagonal (not necessarily unitary) matrix is equivalent to having, for every cycle
C = (x1, . . . , xp, xp+1 = x1) of adjacent vertices on GT ,

p∏
i=1

Kα,β[xi, xi+1] =
p∏
i=1

K̃α,β[xi, xi+1]. (II.23)

Since the complex moduli of the entries of Kα,β and K̃α,β are equal, it is sufficient to show
that the complex arguments in (II.23) are the same. Notice that for the simple cycles (x, y, x),
by the skew-symmetric and skew-hermitian properties,

arg(Kα,β[x, y]Kα,β[y, x]) = π = arg(K̃α,β[x, y]K̃α,β[y, x]).

Moreover, if we show that the right-hand side of (II.23) is real (i.e. the argument is 0[π]),
then we only have to check one direction for any cycle.

All in all, by decomposing cycles, it suffices to check that the complex arguments in
(II.23) are equal and real for the following cycles:

1. the cycles that winds once in the counter-clockwise direction around a vertex of B, or
of W;

2. the counter-clockwise 3-cycles inside decorations that use two sides and a diagonal;

3. in the torus case, two fixed cycles that wind once vertically (resp. horizontally) around
the torus.

2φ12φp

−1

−eiφ1

. . .

2φ12φp
i

e−iφ1

Figure II.11: Embedded graph GB and unitary part of the entries of Kα,β on simple cycles
around black and white vertices



124 Chapter II. Free-fermion 8V model

Case 1: let C be such a cycle corresponding to a black vertex b ∈ B. Let φ1, . . . , φp be
the successive angles around b as in Figure II.11. By grouping together the successive steps
of C on legs and inside decorations, the argument of the left-hand side of (II.23) is

p∑
i=1

φi = π. (II.24)

On the right-hand side, as the cycle is even, the product is also a negative real number for
an admissible orientation.

If C corresponds to a white vertex w ∈ W, we also set φ1, . . . , φp to be the successive
angles around w as in Figure II.11. Then

p∑
i=1

2φi = (p± 2)π, (II.25)

with a − sign when w corresponds to an interior face of GB when embedded in the plane, and
a + sign for the exterior face. Again by grouping the steps, the argument for the product of
the left-hand side of (II.23) is ∑p

i=1
(
π
2 − φi

)
= π[2π], and we conclude similarly.

Case 2: In Figure II.10 we easily check that for any of these 3-cycles, the argument of
the product of the elements of Kα,β is π[2π]. By the construction of admissible orientations,
these are also clockwise-odd so the product for K̃α,β is also a negative real number.

Case 3: We show this for a cycle that winds once vertically around the torus, the hor-
izontal case being identical. We chose the alternating cycle Cy represented in Figure II.12.
This cycle is obtained by superimposing the dimer configuration m0 with a configuration
my that uses the legs that cross edges of Q that touch γBy on the right, edges parallel to the
white diagonal in the decorations of faces containing two such edges of Q, and is equal to
m0 otherwise.

Again by decomposing the path, one easily checks that the argument on the left-hand
side of (II.23) is

p∑
i=1

(
ψi −

π

2

)
= 0. (II.26)

For the right-hand side, we know that m0 has homology (0, 0) while my has homology
(0, 1), so that by Proposition II.18 the term in det K̃α,β corresponding to the superimposition
of m0 and my must appear with a minus sign. All the double dimers in this superimposition
give a + sign, because the − sign of the product of opposite matrix elements is compensated
by the signature of a 2-cycle. Following this reasoning, the product corresponding to the
alternating cycle Cy must be positive, since the signature of the corresponding cycle of the
permutation is −1. This proves that the arguments match.

The fact that D does not depend on α, β is a consequence of the explicit form given in
[dT18]. Finally, to show that the matrix D can be taken to be unitary, we just have to show
that its diagonal elements have the same modulus, since multiplying it by a constant leaves
relation (II.22) unchanged. For any two adjacent vertices x, y ∈ V T ,

Kα,β[x, y] = D[y, y]
D[x, x]K̃α,β[x, y]

so that |D[x, x]| = |D[y, y]|. Since the graph is connected, all these moduli are equal.
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2ψp

2ψ1

2ψ2

. . .

Figure II.12: A quadrangulation of the torus with the path γBy (dashed); the graph GT

equipped with two dimer configurations, m0 (dark grey) and my (light grey).

II.4.4 Eight-vertex partition function and correlations
By injecting the result of Theorem II.16 into Propositions II.17 and II.18, and using Lemma II.19
to transform the determinant of K̃α,β into that of Kα,β (we cannot do the same for Pfaffian,
since the latter is only defined for skew-symmetric matrices a priori) we get

Corollary II.20. Let Q be a quadrangulation and α, β : F → R/2πZ be standard. In the
spherical case,

(Z8V (Q, Xα,β))2 =

∏
f∈F

Cα,β(f)

2

detKα,β.

In the toric case,

Z8V (Q, Xα,β) =
∏
f∈F Cα,β(f)

2
(
−Pf K̃0,0

α,β + Pf K̃0,1
α,β + Pf K̃1,0

α,β + Pf K̃1,1
α,β

)
.
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Another standard result is the computation of dimer statistics in terms of minors of the
inverse Kasteleyn matrix; see [Ken97, Ken05]. If we adapt this to the 8V statistics, where
we are only interested in the statistics of the legs dimers, i.e. dimers that have weight 1, we
obtain:

Proposition II.21 ([Ken97]). Let Q be a quadrangulation in the spherical or toric case.
Let e1, . . . , ep ∈ E, each ei corresponding to a leg of GT , whose endpoints we denote bi ∈ BT

and wi ∈W T . Let V = {b1,w1, . . . ,bp,wp}.
Let α, β : F → R/2πZ satisfy (II.11). Let τ be a random 8V-configuration with Boltzmann

distribution P8V . Then in the spherical case,

(P8V ({e1, . . . , ep} ⊂ τ))2 = det
[(
K−1
α,β

)
V

]
where the matrix on the right-hand side is the submatrix of K−1

α,β with rows and columns
indexed by V.

In the toric case,

P8V ({e1, . . . , ep} ⊂ τ) =∏
f∈F Cα,β(f)

2Z8V (Q, Xα,β)
(
−Pf

(
K̃0,0
α,β

)
Vc

+ Pf
(
K̃0,1
α,β

)
Vc

+ Pf
(
K̃1,0
α,β

)
Vc

+ Pf
(
K̃1,1
α,β

)
Vc

)
.

(II.27)

II.4.5 Relations between matrices K−1
α,β

We now exhibit a symmetry in the 8V-model in the form of a relation between inverse
matrices for different values of α, β.

a) Spherical and planar cases

Let us define the matrix T with entries indexed by the vertices V T of the dimer graph GT ,
in the following way: if w ∈ W T , then there is a unique “leg” adjacent to w. Let us denote
ŵ ∈ BT the other endpoint of this leg. Let e ∈ E be the edge of Q crossed by {wŵ}. We
define

T (w, ŵ) = −eiφe ,
T (ŵ,w) = −e−iφe ,

(II.28)

and all the other entries of T are zero. Thus T is a weighted permutation matrix between
vertices x and their associated neighbor, which we still denote x̂, x being black or white.

Theorem II.22. In the spherical case or planar case, let (α, β) and (α′, β′) be standard
elements of

(
[0, 2π)F

)2
. If the matrices K−1

α,β′ ,K
−1
α′,β are inverses of Kα,β′ ,Kα′,β, then the

following are inverses of Kα,β,Kα′,β′:

K−1
α,β = 1

2
(
(I + T )K−1

α,β′ + (I − T )K−1
α′,β

)
,

K−1
α′,β′ = 1

2
(
(I − T )K−1

α,β′ + (I + T )K−1
α′,β

)
.

(II.29)
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Proof. To simplify notation, we will denote

• (A,B,C,D) the weights Xα,β ;

• (A′, B′, C ′, D′) the weights Xα′,β′ ;

• (a, b, c, d) the weights Xα,β′ , and K−1
α,β′ = (ux,y)x,y∈V T ;

• (a′, b′, c′, d′) the weights Xα′,β, and K−1
α′,β =

(
u′x,y

)
x,y∈V T

.

Lemma II.23. The following relations, implicitly evaluated at any f ∈ F , hold:

cA+ dB − aC − bD = 0, c′A− d′B − a′C + b′D = 0,
dA− cB + bC − aD = 0, d′A+ c′B − b′C − a′D = 0,
aA+ bB − cC − dD = 0, a′A+ b′B − c′C − d′D = 0,
bA− aB + dC − cD = 0, b′A− a′B − d′C + c′D = 0.

Proof of Lemma II.23. This is done by direct computations, which are made easier by the
use of the alternative form of weights (II.7).

e1

e2

e4

e3

x1

x̂1

x2

x̂2

x3

x̂3

x4

x̂4

Figure II.13: Notation for GT around x1 ∈W T .

Let x1 ∈W T . Its neighbors are denoted x̂1, x2, x3, x4 as in Figure II.13. For any y ∈ V T

and i ∈ {1, . . . , 4} we have
(
Kα,β′K

−1
α,β′

)
[xi, y] = δxi,y, which reads:

−eiφe1ux̂1,y + b

c
ux2,y + i

d

c
ux3,y + i

a

c
ux4,y = δx1,y

−b
c
ux1,y + e−iφe2ux̂2,y + i

a

c
ux3,y + i

d

c
ux4,y = δx2,y

i
d

c
ux1,y + i

a

c
ux2,y − eiφe3ux̂3,y + b

c
ux4,y = δx3,y

i
a

c
ux1,y + i

d

c
ux2,y −

b

c
ux3,y + e−iφe4ux̂4,y = δx4,y

By writing the same equations for Kα′,β, we get the same relations where ux,y is changed
into u′x,y and (a, b, c, d) are changed into (a′, b′, c′, d′). We denote these four new equations
by (E′1), (E′2), (E′3), (E′4).
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Now we compute

C(E1)−B(E2) + iD(E3)− iA(E4)
+C(E′1) +B(E′2)− iD(E′3) + iA(E′4).

On the right-hand side, this is 2Cδx1,y. On the left-hand side, we can group the terms
corresponding to the same ux,y (or u′x,y). For instance, ux1,y will appear with coefficient

b

c
B − d

c
D + a

c
A

which is equal to C according to Lemma II.23. All in all, using all relations of Lemma II.23,
this yields

−Ceiφe1
(
ux̂1,y + u′x̂1,y − e

−iφe1
(
ux1,y − u′x1,y

))
+B

(
ux2,y + u′x2,y − e

−iφe2
(
ux̂2,y − u′x̂2,y

))
+iD

(
ux3,y + u′x3,y − e

iφe3
(
ux̂3,y − u′x̂3,y

))
+iA

(
ux4,y + u′x4,y − e

−iφe4
(
ux̂4,y − u′x̂4,y

))
= 2Cδx1,y.

(II.34)

For x, y ∈ V T , let ex ∈ E be the edge of the quadrangulation closest to x, and let Mx,y be

if x ∈W T , Mx,y = 1
2
(
ux,y + u′x,y − eiφex

(
ux̂,y − u′x̂,y

))
,

if x ∈ BT , Mx,y = 1
2
(
ux,y + u′x,y − e−iφex

(
ux̂,y − u′x̂,y

))
.

(II.35)

Then Equation (II.34) exactly means that the matrix M = (Mx,y)x,y∈V T satisfies

(Kα,βM) [x1, y] = δx1,y (II.36)

when x1 ∈ W T . A similar computation shows that (II.36) also holds when x1 ∈ BT . As a
result, M is an inverse of Kα,β, and (II.35) is equivalent to

M = 1
2
[
(I + T )K−1

α,β′ + (I − T )K−1
α′,β

]
.

The second matrix relation in (II.29) is obtained by switching (α, β)↔ (α′, β′).

Remark II.24. Theorem II.22 can be used to give an alternative proof of the relation of
partition functions (II.20). This works exactly as in the forthcoming proof of the analogous
statement for toric quadrangulations, see Theorem II.26.

b) Toric case

Theorem II.25. Let Q be a quadrangulation in the toric case. Let (α, β) and (α′, β′) be
two standard elements of

(
[0, 2π)F

)2
.

Let (z, w) ∈ (C∗)2 be such that Kα,β′(z, w) and Kα′,β(z, w) are invertible. Then Kα,β(z, w)
and Kα′,β′(z, w) are invertible and their inverses are given by

K−1
α,β(z, w) = 1

2
[
(I + T )K−1

α,β′(z, w) + (I − T )K−1
α′,β(z, w)

]
,

K−1
α′,β′(z, w) = 1

2
[
(I − T )K−1

α,β′(z, w) + (I + T )K−1
α′,β(z, w)

]
.
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Proof. The proof, being based on a local computation of matrix products, is identical to that
of Theorem II.22. One simply has to take into account the possible multiplication by z±1

and w±1 in the weights when the face considered is crossed by γBx , γWy , or both. For instance,
if it is crossed by γBx , in the notation of the proof of Theorem II.22, one has to compute

C(E1)− zB(E2) + izD(E3)− iA(E4)
+C(E′1) + zB(E′2)− izD(E′3) + iA(E′4).

to get the correct matrix relation. The other cases are similar.

Theorem II.26. Let Q be a quadrangulation in the toric case. Let (α, β) and (α′, β′) be
two standard elements of

(
[0, 2π)F

)2
. Then the characteristic polynomials satisfy

P 8V
α,βP

8V
α′,β′ = c2P

8V
α,β′P

8V
α′,β

where
c2 = cα,β′cα′,β

cα,βcα′,β′
=
∏
f∈F

Cα,β′(f)Cα′,β(f)
Cα,β(f)Cα′,β′(f) .

To prove Theorem II.26, we also need the following diagonal matrix D, whose rows and
columns are indexed by the vertices of GT :

Dxx =
{
−1 if x ∈W T ,

1 if x ∈ BT .

Lemma II.27. Let Q be a quadrangulation in the toric case, and let α, β : F → [0, 2π[ be
standard, and (z, w) ∈ (C∗)2. The commutator of Kα,β(z, w) with T is

[Kα,β(z, w), T ] = −Kα,β(z, w)DKα,β(z, w). (II.37)

If Pα,β(z, w) 6= 0, the commutator of K−1
α,β(z, w) with T is

[
K−1
α,β(z, w), T

]
= D. (II.38)

Proof. Equality (II.37) can be verified by a straightforward computation of the matrix ele-
ments. For instance, in the notation of Figure II.13 (we drop the (z, w) in the computation
to simplify notation) the matrix element [x1, x̂2] are

(Kα,βT ) [x1, x̂2]− (TKα,β) [x1, x̂2] =Kα,β[x1, x2]T [x2, x̂2]− 0

=B

C

(
−e−iφe2

)
;

− (Kα,βDKα,β) [x1, x̂2] =−Kα,β[x1, x2]D[x2, x2]Kα,β[x2, x̂2]

=− B

C

(
e−iφe2

)
.
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Another important case is the matrix element [x1, x1]:

(Kα,βT ) [x1, x1]− (TKα,β) [x1, x1] =Kα,β[x1, x̂1]T [x̂1, x1]− T [x1, x̂1]Kα,β[x̂1, x1]

=
(
−eiφe1

) (
−e−iφe1

)
−
(
−eiφe1

)
e−iφe1 ;

=2;

− (Kα,βDKα,β) [x1, x̂2] =−
((
−eiφe1

)
e−iφe1 + B

C

(
−B
C

)
+ i

D

C
(−1)iD

C
+ i

A

C
i
A

C

)
=−

(
−1 + −B

2 −A2 +D2

C2

)
=2.

All other cases are similar.
For the second point, P (z, w) = det

(
K̃α,β(z, w)

)
= det (Kα,β(z, w)) Lemma II.19, so the

matrix Kα,β(z, w) is invertible. Then (II.38) is simply obtained by multiplying (II.37) by
K−1
α,β(z, w) on both sides.

Proof of Theorem II.26. We prove the polynomials relation for (z, w) such that none of the
four polynomials is zero at (z, w) (i.e. the four Kasteleyn matrices are invertible); the
relation is then obtained by analytic continuation. By noting that T 2 = I, we can rewrite
Theorem II.25 as a block-matrix relation:(

I I
I −I

)(
K−1
α,β(z, w) 0

K−1
α′,β′(z, w) K−1

α′,β′(z, w)

)
=
(
I I
T −T

)(
K−1
α,β′(z, w) 1

2(I − T )K−1
α,β′(z, w)

K−1
α′,β(z, w) 1

2(I + T )K−1
α′,β(z, w)

)
(II.39)

We take the determinant of these. The matrices
(
I I
I −I

)
and

(
I I
T −T

)
can be written

in block-diagonal form, with blocks corresponding to the two copies of the pair (x, x̂) for
x ∈ W T . For the two matrices, the blocks have determinant 4 and there are 2F blocks, so
both their determinants are equal to 24F .

The determinant of both sides of (II.39) can now be computed; we successively use the
formula for determinants of block matrices, Lemma II.27 to exchange T and the matrices
K−1
·,· (z, w), and det(D) = (−1)2F = 1; we drop the (z, w) in the notation to make the

computation clearer:∣∣∣K−1
α,β

∣∣∣ ∣∣∣K−1
α′,β′

∣∣∣ =
∣∣∣K−1

α′,β

∣∣∣ ∣∣∣∣12(I − T )K−1
α,β′ −K

−1
α,β′Kα′,β

1
2(I + T )K−1

α′,β

∣∣∣∣
=
∣∣∣K−1

α′,β

∣∣∣ ∣∣∣K−1
α,β′

∣∣∣ ∣∣∣∣−1
2
(
Kα,β′TK

−1
α,β′ +Kα′,βTK

−1
α′,β

)∣∣∣∣
=
∣∣∣K−1

α′,β

∣∣∣ ∣∣∣K−1
α,β′

∣∣∣ ∣∣∣∣−T + 1
2
(
Kα,β′ +Kα′,β

)
D

∣∣∣∣
=
∣∣∣K−1

α′,β

∣∣∣ ∣∣∣K−1
α,β′

∣∣∣ ∣∣∣∣−TD + 1
2
(
Kα,β′ +Kα′,β

)∣∣∣∣ .
(II.40)

Notice that TD is exactly equal the part of Kα,β that corresponds to legs of GT . Thus
−TD+ 1

2
(
Kα,β′ +Kα′,β

)
is a block-diagonal matrix, where blocks correspond to decorations
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inside of the faces F of Q. When the face is not crossed by γBx nor γBy , the block we get is
represented in Figure II.14, where (in the notation of the proof of Theorem II.22):

ã = 1
2

(
a

c
+ a′

c′

)
b̃ = 1

2

(
b

c
+ b′

c′

)
d̃ = 1

2

(
d

c
+ d′

c′

)

iã

iã

b̃ b̃

id̃

id̃

Figure II.14: Coefficients of the matrix −TD + 1
2
(
Kα,β′ +Kα′,β

)
at a face.

The determinant of this block can be easily computed using (II.7), giving

(
ã2 + b̃2 − d̃2

)2
= 1

4

(
1 + a

c

a′

c′
+ b

c

b′

c′
− d

c

d′

c′

)2

=
a2+b2
c2

a′2+b′2
c′2

A2+B2

C2
A′2+B′2
C′2

When the face is crossed by γBx or γBy , some weights are multiplied by z±1, w±1 but the
determinant is the same.

All in all, (II.40) becomes∏
f∈F

A(f)2 +B(f)2

C(f)2
A′(f)2 +B′(f)2

C ′(f)2

 ∣∣∣K−1
α,β(z, w)

∣∣∣ ∣∣∣K−1
α′,β′(z, w)

∣∣∣
=

∏
f∈F

a(f)2 + b(f)2

c(f)2
a′(f)2 + b′(f)2

c′(f)2

 ∣∣∣K−1
α,β′(z, w)

∣∣∣ ∣∣∣K−1
α′,β(z, w)

∣∣∣ .
Using relation (II.9) finishes the proof.

An important case appears when we set α = β′ and β = α′. The model with weights
Xα,α is actually a 6V model, and the weights of diagonals in GT become null. This gives
the bipartite decorated graph of Wu and Lin [WL75], see also [Dub11a, BdT14] which we
denote GQ.
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More precisely, our Kasteleyn skew-hermitian matrix Kα,α(z, w) can be related to Boutil-
lier, de Tilière and Raschel’s K matrix from Section 5 of [BdTR18] - whose rows are indexed
by white vertices and columns by black vertices of GQ - via

Kα,α(z, w) = i

W T BT( )0 Kα(z, w) W T

tKα(z−1, w−1) 0 BT
. (II.41)

The determinant of K(z, w) is the characteristic polynomial of a bipartite dimer model; we
denote it by P 6V

α (z, w). Thus P 6V
α (z, w) is the determinant of a matrix twice as small as

Kα,β(z, w).

Corollary II.28. Let Q be a quadrangulation in the toric case. Let (α, β) and (α′, β′) be
two standard elements of

(
[0, 2π)F

)2
. Then the characteristic polynomial of the 8V-model

satisfies
P 8V
α,β = c̃P 6V

α P 6V
β

for some constant c̃ satisfying
|c̃| =

∏
f∈F

2
|Cα,β(f)| .

Proof. Equation (II.41) yields

P 8V
α,α(z, w) = P 6V

α (z, w) P 6V
α (z−1, w−1). (II.42)

However, P 6V
α has extra symmetries. First, as it is the characteristic polynomial of a

(bipartite) dimer model, up to a global factor its entries are real (see for instance Proposition
3.1 in [KOS06]), so that P 6V

α = c3P 6V
α for some constant c3 ∈ S1. It also corresponds to

the dimer model on the decorated graph GQ, and the characteristic polynomial in that case
is proportional to that of Fisher’s decorated graph [Fis66] (see Section 4 of [Dub11a]). By
Corollary 16 of [BdTR18],the characteristic polynomial on Fisher’s graph has a symmetry
(z, w)↔ (z−1, w−1). This gives P 6V

α (z, w) = P 6V
α (z−1, w−1). As a result (II.42) becomes

P 8V
α,α = c3

(
P 6V
α

)2

We can now apply Theorem II.26 with α = β′ and β = α′. By the same argument as for
(II.12), P 8V

α,β = P 8V
β,α. Thus Theorem II.26 becomes(

P 8V
α,β

)2
= c2c

2
3
(
P 6V
α P 6V

β

)2
.

By analytic continuation and by computing the constant we get the desired relation.

II.5 Z-invariant regime

In this section we restrict to the planar case. The graph may be periodic (in which case we
will still make use of the toric case) or not. We study the Z-invariant regime of the model,
which is a regime where the star-triangle relations are satisfied.
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II.5.1 Checkerboard Yang-Baxter equations

Here we generalize Baxter’s star-triangle relations [Bax78, Bax82] in our “checkerboard”
setting, and we find free-fermion solutions.

Let us suppose that the quadrangulation Q contains three adjacent faces in the configu-
ration on the left of Figure II.15. Then we can transform it locally into the configuration on
the right. We need to update the weights of the eight-vertex model at the same time. This
can be done in such a way that there exists a coupling of the configurations on the right and
of the left quadrangulations, such that they agree everywhere except at the central dashed
“triangles”.

f ′2

f ′3 f ′1
f2

f3f1

Figure II.15: “Star-triangle” move on the quadrangulation (solid lines) and its dual on which
the 8V-configurations are defined (dashed lines).

Specifically, let us denote (ai, bi, ci, di) the 8V-weights at fi, and (a′i, b′i, c′i, d′i) those at
f ′i . By conditioning on every possible boundary condition, we get the following equations
for the existence of a coupling: for every i, j, k with {i, j, k} = {1, 2, 3},

cicjck + aiajak ∝ c′ic′jc′k + b′ib
′
jb
′
k

aicjck + ciajak ∝ c′ia′ja′k + b′id
′
jd
′
k

cibjbk + aidjdk ∝ b′ic′jc′k + c′ib
′
jb
′
k

cidjdk + aibjbk ∝ c′id′jd′k + b′ia
′
ja
′
k

cibjdk + aidjbk ∝ d′ia′jc′k + a′id
′
jb
′
k

(II.43)

where the proportionality constants are all the same. We call equations (II.43) the Yang-
Baxter equations of our model.

Remark II.29.

• Most of the equations (all but the last one) are invariant under some nontrivial sub-
group of the permutation of indices {i, j, k}. All in all (II.43) contains 16 distinct
equations.

• We presented the “star-triangle” move as going from the left configuration to the right
one, but it can of course be done in both ways, giving the same set of equations.
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Equations (II.43) are often written in matrix form. For the checkerboard setting, we de-
fine R and R̄ matrices containing the weights at every face, with the indexing of Figure II.16:

R(f) =




C(f) 0 0 A(f)
0 D(f) B(f) 0
0 B(f) D(f) 0

A(f) 0 0 C(f)

,

R̄(f) =




C(f) 0 0 B(f)
0 D(f) A(f) 0
0 A(f) D(f) 0

B(f) 0 0 C(f)

.

o2

i1 i2

o1 i1

i2 o1

o2

Figure II.16: Entries of R(f) (left) and R̄(f) (right) are in-
dexed by the occupation state of (i1, i2) and (o1, o2), in the order
(absent, absent), (absent,present), (present, absent), (present,present).

These matrices are elements of End(V ⊗ V ), where V is a complex vector space of
dimension 2. For i, j ∈ {1, 2, 3}, i < j, we define Ri,j(f) ∈ End(V ⊗ V ⊗ V ) that acts as
R(f) on the components i and j, and as the identity on the other component. We similarly
define R̄i,j(f). Then equations (II.43) are equivalent to (see for instance [PAY06])

R1,2(f1)R̄1,3(f2)R2,3(f3) ∝ R̄2,3(f ′3)R1,3(f ′2)R̄1,2(f ′1).

II.5.2 Lozenge graphs

One way to make sure that (II.43) always hold is to make the 8V weights depend on the
geometry of the embedding. This has been done for several models on special embedded
graphs called isoradial; see for instance [Ken02]. In our context it is more natural to talk
only about lozenge graphs.

We say that the planar quadrangulation Q is a lozenge graph if it is embedded in such
a way that all faces are nondegenerate rhombi, with edge length equal to 1. Then for every
f ∈ F , there is a natural parameter θ(f) ∈ (0, π/2), which is the half-angle of the black
corners of the rhombus. For a vertex x ∈ V T , we also denote θ(x) = θ(f) where f is the face
containing x.

A lozenge graph Q is said to be quasicrystalline if the number l of possible directions
±eiα of the edges of the rhombi is finite. In that case there exists an ε > 0 such that for all
faces f , θ(f) ∈ (ε, π2 − ε).
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fθf

Figure II.17: A portion of a lozenge graph.

Let k be a complex number such that k2 ∈ (−∞, 1), which will serve as an elliptic
modulus. We denote by K(k) (or simply K) the complete elliptic integral of the first kind
associated to k. We denote by am(·|k) the Jacobi amplitude with modulus k. For every
complex number θ ∈ C, we define θk as

θk = 2K(k)
π

θ.

Proposition II.30. Let Q be a lozenge graph. Let k, l be two elliptic moduli, with k2 ≤ l2.
For every f ∈ F , let

α(f) = am (θ(f)k| k) ,
β(f) = am (θ(f)l| l) .

(II.44)

Then α, β satisfy (II.11), and the weights Xα,β satisfy the Yang-Baxter equations (II.43).

Proof. The rhombi are supposed to be nondegenerate so that θf ∈ (0, π2 ), and for u ∈
(0,K(k)) one has am(u|k) ∈ (0, π2 ) (see for instance [AS64]). To show that (II.11) holds, it
suffices to show that for all λ ∈ (0, 1),

fλ(k) = am (λK(k)|k)

is an increasing function of k2 ∈ (−∞, 1). This has been shown in [Jor55] (see also [CT83]
for a reference in English) on the domain k2 ∈ [0, 1), but the proof works identically for
k2 ∈ (−∞, 1).

We now prove (II.43). It is easy to check that these equations are unchanged if we
multiply the weights d at every face by −1. Simple but lengthy computations also show that
they are still satisfied if we apply the duality of Proposition II.10 at every face. As a result,
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we just have to check equations II.43 for the weights (II.14) (we show how these weights can
be transformed into Xα,β in the proof of Corollary II.12). This holds iff the Ising models
defined by α and β of (II.44) satisfy the star-triangle relations on lozenge graphs, which is
the case as shown in [BdT10].

Remark II.31. The weights of this Z-invariant 8V model are

A(f) = sn(θ(f)k|k) + sn(θ(f)l|l)
B(f) = cn(θ(f)k|k) + cn(θ(f)l|l)
C(f) = 1 + sn(θ(f)k|k) sn(θ(f)l|l) + cn(θ(f)k|k) cn(θ(f)l|l)
D(f) = cn(θ(f)k|k) sn(θ(f)l|l)− sn(θ(f)k|k) cn(θ(f)l|l)

The dual modulus of k is defined as k′ =
√

1− k2. When k′ = 1
l′ , (or l = k∗ in the notation of

[BdTR18]), the bipartite coloring no longer matters and we recover the Z-invariant weights
of Baxter [Bax78, Bax82] at the free-fermion point.

When k = l, we get a Z-invariant 6V model whose corresponding bipartite dimer model
has been studied in [BdTR18].

From now on, we suppose that Q is a lozenge graph, and that two elliptic moduli k2 ≤ l2
are chosen. We replace the indices α, β by k, l, meaning that they correspond to the α, β of
(II.44). We also slightly modify our Kasteleyn matrices by setting φe = θe in the notation
of Figure II.10. These angles also satisfy (II.24), (II.25), (II.26) so the results of Section II.4
still hold.

II.5.3 Local expression for K−1
k,l

In the case where k = l, we have α = β and we already know that this corresponds to a
free-fermionic six-vertex model – or equivalently to dimers on a bipartite decorated graph
GQ. The operator Kk,k can be written as

Kk,k = i

WQ BQ( )0 Kk WQ

tKk 0 BQ
(II.45)

where Kk is the operator from black to white vertices, associated to the elliptic modulus
k, defined in Section 5 of [BdTR18]; we only change notation slightly to emphasize the
dependence on k. In the following subsection we recall the tools of [BdTR17, BdTR18]
that are required to compute a local formula for K−1

k . Our definitions differ from those of
[BdTR17, BdTR18] by the multiplication of the arguments by a factor π

2K(k) , which is aimed
at making the dependence in k more apparent.

a) Inverse of Kk

Let b ∈ BT and w ∈W T . We chose a path on Q going from the half-edge closest to b to the
half-edge closest to w, which we denote 1

2e
iα1 , eiα2 , . . . , eiαn−1 , 1

2e
iαn . We also set a1, . . . , an−1

to be the successive vertices of Q in that path. See Figure II.18. The following definitions
do not depend on the choice of this path.
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b

a1

a2

an−1

w

1
2e
iα1

eiα2

1
2e
iαn

eiαn−1

. . .

Figure II.18: A path on Q from b to w.

The discrete k-massive exponential function is defined in [BdTR17] as

ea1,an−1(u|k) =
n−1∏
j=2

i
√
k′ sc

((
u− αj

2

)
k

∣∣∣∣ k) .
This is a well-defined function of the complex argument u. It is moreover 2π-periodic, and
2iπK′

K -periodic when a1 and an−1 are the same color (i.e. the product contains an even
number of terms), 2iπK′

K -antiperiodic otherwise.
Let also

h(u | k) =



nc
((u−α1

2
)
k

∣∣∣ k) nc
((u−αn

2
)
k

∣∣∣ k) (−k′) if a1 ∈ B, an−1 ∈ B
nc
((u−α1

2
)
k

∣∣∣ k) dc
((u−αn

2
)
k

∣∣∣ k) (−
√
k′) if a1 ∈ B, an−1 ∈ W

dc
((u−α1

2
)
k

∣∣∣ k) nc
((u−αn

2
)
k

∣∣∣ k) √k′ if a1 ∈ W, an−1 ∈ B
dc
((u−α1

2
)
k

∣∣∣ k) dc
((u−αn

2
)
k

∣∣∣ k) if a1 ∈ W, an−1 ∈ W.

Then the function e−
i
2 (αn−α1)h(u|k) is well defined and has the same (anti)periodicity as

ea1,an−1(u|k). As a result the following function is meromorphic on the torus T(k) =
C/
(
2πZ + 2iπK′

K Z
)
:

fb,w(u|k) = eiθ(w)e−
i
2 (αn−α1) h(u|k) ea1,an−1(u|k).

Its only possible poles are the αi + π. On can chose the paths joining b and w such that
the angles αi all lie in an open interval of length π. Let Γb,w|k be a vertical contour on T(k)
avoiding this sector.

Theorem ([BdTR18], Theorem 37). For b ∈ BT ,w ∈W T , let

K−1
k [b,w] = K(k)

2iπ2

∫
Γb,w|k

fb,w|k(u) du. (II.46)

Then K−1
k is an inverse of the operator Kk. For k 6= 0, it is the only inverse with bounded

coefficients.
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b) Inverse of Kk,l

By (II.45), the following are inverses of Kk,k and Kl,l:

K−1
k,k = −i

W T BT( )0 tK−1
k W T

K−1
k 0 BT

, K−1
l,l = −i

W T BT( )0 tK−1
l W T

K−1
l 0 BT

.

Corollary II.32. The operator

K−1
k,l = 1

2
(
(I + T )K−1

k,k + (I − T )K−1
l,l

)
is an inverse of Kk,l. It is the only inverse with bounded coefficients.

Its coefficients read, for w,w′ ∈W T ,b,b′ ∈ BT ,

K−1
k,l [w,b] = −i2

(
K−1
k [b,w] +K−1

l [b,w]
)
,

K−1
k,l [b,w] = −i2

(
K−1
k [b,w] +K−1

l [b,w]
)
,

K−1
k,l [w,w

′] = ieiθ(w)

2
(
K−1
k [ŵ,w′]−K−1

l [ŵ,w′]
)
,

K−1
k,l [b,b

′] = ie−iθ(b)

2
(
K−1
k [b′, b̂]−K−1

l [b′, b̂]
)
.

Proof. This is a direct consequence of (II.45), (II.46) and Theorem II.22.

c) Asymptotics of coefficients

The asymptotics of the coefficients of K−1 for points b and w far away is also computed
in [BdTR18]. To state the result, using the notation of Section a), we also introduce the
following real function:

χ(u, k) = 1
|a1 − an−1|

log
[
ea1,an−1

(
u+ iπ

K′
K

∣∣∣∣ k)] .
As stated before, the αi can be taken in an interval of length π; let α be the center of
this interval. According to [BdTR17], for any k ∈ (0, 1) the equation ∂χ

∂u (u, k) = 0 has a
unique solution in α+ (−π

2 ,
π
2 ). Let u0(k) be this solution, then u0(k) corresponds to a local

minimum of χ(·|k), and χ(u0(k), k) < 0.

Theorem II.33 ([BdTR18], Theorem 38). Let Q be a quasicrystalline planar lozenge graph,
and k ∈ (0, 1). Then when |b− w| → ∞,

K−1
k [b,w] =

K(k) eiθ(w)e−
i
2 (αn−α1) h

(
u0(k) + iπK′

K

∣∣∣ k)+ o(1)√
2π2|a1 − an−1|∂

2χ
∂u2 (u0(k), k)

e|a1−an−1|χ(u0(k),k).
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The case k = 0 can be deduced from Theorem 4.3 of [Ken02] and corresponds to a
polynomial decay of the coefficients of the inverse matrix.

To get precise asymptotics for K−1
k,l , we need to compare two terms coming from K−1

k

and K−1
l . The following Lemma lets us compare the main term, e|a1−an−1|χ(u0(k),k). The

conclusion is natural, since the case k = 0 corresponds to critical models (where the decay
of correlations is polynomial), while as k gets bigger the decay is exponential and should
have a faster rate. Thus for 0 < k < l < 1, only the term corresponding to k remains in the
asymptotics.

Lemma II.34. The function k 7→ |χ(u0(k), k)| is increasing in (0, 1).

The proof can be found in Appendix II.B.

Remark II.35. In the case of the Z-invariant elliptic Laplacian [BdTR17], Ising or free-
fermion 6V model [BdTR18], the characteristic polynomial defines a Harnack curve of genus
1; in fact every Harnack curve of genus 1 with a central symmetry can be obtained in this
way. This means that its amoeba’s complement has only one bounded component, or “oval”
(see Figure II.2). The boundary of this convex oval is parametrized by functions χ(·, k) for
appropriate paths, and the value of χ(u0(k), k) corresponds to the position of an extremal
point of the oval in the path direction. Thus Lemma II.34 shows that as k goes from 0 to
1, these ovals are actually included into each other. In [BdTR17] the authors show that the
area of the oval grows from 0 to ∞, but the monotonic inclusion is new.

We can now deduce the asymptotics of coefficients for K−1
k,l . There is a technical difficulty

due to the fact that the prefactor h
(
u0(k) + iπK′

K

∣∣∣ k) in Theorem II.33 can be zero. This
may happen when u0(k) is equal to α1 or to αn, in the notation of Figure II.18. We do not
expect this to happen except for a finite number of moduli k, but we could not get rid of
this hypothesis.

Corollary II.36. Let Q be a quasicrystalline planar lozenge graph, and 0 ≤ k < 1. We let
|b− w| → ∞; suppose that there is an ε > 0 such that |u0(k)− α1| > ε, |u0(k)− αn| > ε for
all b,w. Then

K−1
k,l [w, b] =

−iK(k) eiθ(w)e−
i
2 (αn−α1) h

(
u0(k) + iπK′

K

∣∣∣ k)+ o(1)

2
√

2π2|a1 − an−1|∂
2χ
∂u2 (u0(k), k)

e|a1−an−1|χ(u0(k),k).

Proof. This comes immediately from Corollary II.32, Theorem II.33 and Lemma II.34. The
fact that h is bounded away from zero is a consequence of the technical hypothesis, and the
fact that ∂2χ

∂u2 (u0(k), k) is bounded and bounded away from zero is proven in [BdTR17].

The other coefficients of K−1
k,l can be computed in a similar way using Corollary II.32,

giving the same exponential behavior. When k = 0 < l < 1, the decay is polynomial, so that
all these models can be considered as “critical”.

We conclude this part on asymptotics with the computation of a critical parameter.

Proposition II.37. Let Q be a quasicrystalline planar lozenge graph. For any b,w, as
k → 0, there exists positive constants c, C > 0 such that the exponential rate of decay
χ (u0(k), k) satisfies

−Ck2 ≤ χ (u0(k), k) ≤ −ck2.
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Proof. In the notation of Appendix II.B, we showed that the minimum of g is 1
2 log(k′), so

that
χ (u0(k), k) ≥ n− 2

2r log(k′) = n− 2
2r log

(
(1− k2)1/2

)
∼ −n− 2

4r k2.

On the other hand, by Lemma 16 of [BdTR17], there exists an ε > 0 such that χ (u0(k), k) <
log(
√
k′ nd (ε|k)). As nd (ε|k)→ 1 when k → 0, this is equivalent to −1

4k
2.

II.5.4 Free energy and Gibbs measure

A Gibbs measure can be constructed by taking the limit of Boltzmann measures on toric
graphs, i.e. to consider periodic boundary conditions. When Q is a Z2-periodic quadrangu-
lation, we can define a toric exhaustion by Qn = Q/nZ2.

Theorem II.38. Let Q be a planar lozenge graph. For any 0 ≤ k < l < 1, there exists a
unique probability measure P8V on the space of 8V-configurations equipped with the σ-field
generated by cylinders, such that for any e1, . . . , ep ∈ E, each ei corresponding to a “leg” of
GT whose endpoints we denote bi ∈ BT and wi ∈W T , if we set V = {b1,w1, . . . ,bp,wp},

P8V (e1, . . . , em ∈ τ) =
√

det
[(
K−1
k,l

)
V

]
. (II.47)

Moreover, P is a translation invariant ergodic Gibbs measure.

Proof of Theorem II.38. The proof follows closely from the arguments of [CKP01], see also
Theorem 6 of [BdT10]. We sketch the main steps here.

First consider the case where Q is Z2-periodic. We denote Pn8V the Boltzmann probability
on Qn. We use Kolmogorov’s extension theorem; to do so, it is sufficient to show that the
right-hand side of (II.47) is the limit as n→∞ of the probability that e1, . . . , em ∈ τ in the
toric graph Qn. This probability is given by (II.27). Thus we want to compute the limit of
Pf
(
K̃s,t
n;k,l

)
V c

(where the n means that the matrix is defined on Qn) for any s, t ∈ {0, 1}.
When k 6= 0 or (s, t) 6= (0, 0), the matrix K̃s,t

n;k,l is invertible and by Jacobi’s identity,

Pf
(
K̃s,t
n;k,l

)
V c

= Pf
[(
K̃s,t
n;k,l

)−1
]
V

Pf
(
K̃s,t
n;k,l

)
. (II.48)

By Lemma II.19 and Theorem II.25,(
K̃s,t
n;k,l

)−1
= D−1 1

2

[
(I + T )

(
Ks,t
n;k,k

)−1
+ (I − T )

(
Ks,t
n;l,l

)−1
]
D.

As n→∞, the coefficients of
(
Ks,t
n;k,k

)−1
tend to that of the infinite matrix K−1

k,k by the 6V

case [BdTR18]. Using Corollary II.32 we get that the coefficients of
(
K̃s,t
n;k,l

)−1
converge to

that of the infinite matrix K̃−1
k,l (where the orientation of the infinite graph is obtained by

periodizing the orientation of Q1).
As a result, (II.48) implies that for (s, t) 6= (0, 0) or k 6= 0,

Pf
(
K̃s,t
n;k,l

)
V c
∼n→∞ Pf

[
K̃−1
k,l

]
V

Pf
(
K̃s,t
n;k,l

)
.
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When k = 0 and (s, t) = (0, 0), the generic arguments in [BdT10] imply that

Pf
(
K̃0,0
n;0,l

)
V c

Z8V (Qn, X0,l)
= O

( 1
n

)
.

Using these estimates, Proposition II.21 implies

Pn8V (e1, . . . , em ∈ τ) ∼ Pf
[
K̃−1
k,l

]
V

 ∏
f∈Fn Ck,l(f)

2Z8V (Qn, Xk,l)
∑
s,t

εs,t Pf
(
K̃s,t
n;k,l

)
where ε0,0 = −1 and the others are 1. By Corollary II.20, the right-hand side is simply

Pf
[
K̃−1
k,l

]
V

=
√

det
[(
K−1
k,l

)
V

]
.

The non-periodic case can be deduced from the periodic case by the generic arguments
of [dT07]. It comes from the uniqueness of an inverse of the infinite Kasteleyn matrix with
bounded coefficients and the locality property of Corollary II.32.

When Q is Z2-periodic, the free energy is defined as

F k,l8V = − lim
n→∞

1
n2 logZ8V (Qn, Xk,l).

Its existence and exact value can be deduced from that of dimers [CKP01, KOS06], giving
the following:

Proposition II.39. Let Q be a periodic lozenge graph, and 0 ≤ k < l < 1. Let P 8V
k,l be the

characteristic polynomial of the 8V-model on the toric graph Q1. Then

F k,l8V = −
∑
f∈F1

logCk,l(f) − 1
2

∫∫
T2

∣∣∣logP 8V
k,l (z, w)

∣∣∣ dz
2iπz

dw
2iπw .

II.A 8V-configurations as 1-forms
This section aims at providing a simple algebraic framework to understand 8V duality and
order-disorder variables. Specifically, we write configurations as elements of certain Z2-
modules, so we use additive notation; similar definitions can be found for various models,
in multiplicative notation, in [Dub11b]. We do this for a quadrangulation Q only in the
spherical case.

II.A.1 Setup

A spin configuration on the vertices V of Q can be seen as an element σ ∈ ZV2 (we will use a
bold notation to represent objects defined in Z2-modules). Then the spin-vertex correspon-
dence sketched at the beginning of Section II.3.1 can be seen as a linear map Φ : ZV2 →

(
Z2

2
)F ,

such that for a spin configuration σ = (σv)v∈V and a face f ∈ F with boundary vertices
b, b′ ∈ B and w,w′ ∈ W,

Φ (σ)f = (σb + σb′ ,σw + σw′).
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Thus an 8V-configuration can be represented as an element τ = (αf ,βf )f∈F ∈
(
Z2

2
)F , with

αf taking the value 0 when τf is of type A or C (i.e. the black spins are equal) and 1 when
it is of type B or D, and similarly for βf and white spins. Note that this characterizes the
8V configuration up to global complement, so that this setup is only relevant in the zero
field case.

Thus we define the set of 8V-configurations as H = Im Φ, which is a strict subset of(
Z2

2
)F . Also note that if τ = (αf ,βf )f∈F ∈H, then for any b ∈ B, ∑f∼b βf = 0 where the

sum is over all faces adjacent to b. Similarly, if w ∈ W, ∑f∼w αf = 0. This motivates the
definition of Ψ :

(
Z2

2
)F → ZV2 , such that if τ = (αf ,βf )f∈F ∈

(
Z2

2
)F ,

Ψ(τ )x =
{∑

f∼x βf if x ∈ B,∑
f∼xαf if x ∈ W.

The applications Φ and Ψ can be considered as dual of each other. To do so, we equip(
Z2

2
)F with the symplectic form 〈·|·〉

〈τ |τ ′〉 =
∑
f∈F

αfβ
′
f +α′

fβf ,

and ZV2 with the canonical bilinear symmetric form (·, ·)

(σ,σ′) =
∑
v∈V

σvσ
′
v.

Proposition II.40.

1. The applications Ψ and Φ are dual of each other, meaning that for any σ ∈ ZV2 and
τ ∈

(
Z2

2
)F ,

〈Φσ|τ 〉 = (σ,Ψτ ). (II.49)

2. H = Im Φ = ker Ψ. In other words, the following sequence is exact

ZV2
Φ−→
(
Z2

2
)F Ψ−→ ZV2 . (II.50)

3. H = H⊥.

Proof. Let σ = (σv)v∈V and τ = (αf ,βf )f∈F . By linearity, it is enough to prove (II.49)
when σ, τ are elements of the canonical basis, i.e. when σv is 0 for all vertices but one, and
αf ,βf are all 0 except one.

If σb is 1 for one black vertex b ∈ B and 0 for all other vertices, then Φσ is (1,0) on
faces adjacent to b and (0,0) otherwise. Two cases may appear:

• if αf = 1 at some face f and all the other components of τ are 0, then Ψτ is 1 on the
white vertices of f and 0 everywhere else, and we have

〈Φσ|τ 〉 = (σ,Ψτ ) = 0.

• if βf = 1 at some face f and all the other components of τ are 0, then Ψτ is 1 on the
black vertices of f and 0 everywhere else, and we have

〈Φσ|τ 〉 = (σ,Ψτ ) =
{

1 if u is a vertex of f,
0 otherwise.
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The case where σw is 1 at a white vertex w ∈W and 0 elsewhere is similar. This proves 1.
We now prove 2. We already know that Im Φ ⊂ ker Ψ. Let us show that they have the

same dimension.

• The kernel of Φ is clearly composed of elements of ZV2 constant on B and constant on
W, so it has dimension 2. By the rank-nullity theorem, Im Φ has dimension |V| − 2.

• The applications Φ and Ψ are dual of each other so they have the same rank. By the
rank-nullity theorem, ker Ψ has dimension 2|F| − |V|+ 2.

• We have Euler’s formula |V| − |E| + |F| = 2, and the graph is a quadrangulation so
4|F| = 2|E|. Combining these gives |V| − 2 = 2|F| − |V|+ 2 as needed.

Since Φ and Ψ are dual of each other, Im Φ = (ker Ψ)⊥ and 3 is obvious from 2.

Remark II.41.

• It is clear now that we are working with an avatar of discrete Hodge theory. The
applications Φ and Ψ are in fact the d applications defined by Mercat for the double
of a chain complex [Mer01]. For that reason, we will now simply denote the sequence
(II.50) as

ZV2
d−→
(
Z2

2
)F d−→ ZV2

so, for instance, an 8V configuration is a closed 1-form (i.e. a τ ∈
(
Z2

2
)F s.t. dτ = 0).

• The elements of
(
Z2

2
)F \H do not correspond to 8V-configurations, but can be thought

of as configurations with defects. More precisely, if dτ = 1B1∪W1 , with B1 ⊂ B and
W1 ⊂ W, then B1 and W1 have to be of even cardinality, and τ corresponds to the
disordered configurations of [Dub11a] mentioned in b). We will alternatively denote
dτ = B1 ∪W1.

• Properties similar to Proposition II.40 might hold when Q is not a quadrangulation
of the sphere but of the torus, or other surfaces. These are beyond the scope of the
present chapter.

II.A.2 Fourier transform

Let g :
(
Z2

2
)F → C. We define its Fourier transform ĝ :

(
Z2

2
)F → C by

ĝ(τ ) = 2−|F|
∑

τ ′∈(Z2
2)F

(−1)〈τ |τ ′〉g(τ ′).

The normalization is such that we have the Inverse Fourier transform formula is ˆ̂g = g.
Another important formula is Poisson’s summation identity. For any subspace F ⊂(

Z2
2
)F , ∑

τ∈F
g(τ ) =

∑
τ∈F⊥

ĝ(τ ).
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Example II.42. For 8V weights X : F → R4, the weight function w8V that we defined for
8V-configuration (II.3) can be extended to a function on

(
Z2

2
)F . Then it is easy to check that

its Fourier transform is actually the weight function for the dual weights X̂ (II.15). Then
Poisson’s summation identity applied to H, given that H = H⊥, becomes∑

τ∈H
w8V (τ ) =

∑
τ∈H

ŵ8V (τ )

which is the duality relation for partition functions (II.16).

II.A.3 Correlators

We now describe how correlators of Definition II.7 fit into this description. In the absence
of disorder, the order variables σ(B0)σ(W0) correspond to a random variable taking value 1
(resp. −1) when there is an even (resp. odd) number of edges in τ between the B0,W0 joined
pairwise. If we fix paths γB0 , γW0 , and if τ = (αf ,βf )f∈F , this is equivalent to considering∏

f∈γB0

(−1)αf
∏

f∈γW0

(−1)βf .

If we define τγ = (1γW0
,1γB0

) (where the paths are identified with subsets of F), then this
quantity is exactly (−1)〈τγ |τ 〉. On the other hand, disorder variables at B1,W1 correspond
to configurations τ with dτ = B1 ∪W1. Thus we have:

〈σ(B0)σ(W0)µ(B1)µ(W1)〉8VX,γ = 2
∑
τ s.t.

dτ=B1∪W1

(−1)〈τγ |τ 〉w8V (τ ).

The factor 2 comes from the fact that the representation of 8V-configurations in
(
Z2

2
)F is

two-to-one.

Proof of Theorem II.15. Our goal is to prove that for any 8V-configuration τ ∈ Ω(Q),

P8V
(
τα,β ⊕ τα′,β′ = τ

)
= P8V

(
τα,β′ ⊕ τα′,β = τ

)
.

By definition of Boltzmann probabilities, this is equivalent to (we indicate the dependence
of w8V in the α, β variables):

∑
τα,β ,τα′,β′ s.t.
τα,β⊕τα′,β′=τ

wα,β8V (τα,β)
Z8V (Q, Xα,β)

wα
′,β′

8V (τα′,β′)
Z8V (Q, Xα′,β′)

=
∑

τα,β′ ,τα′,β s.t.
τα,β′⊕τα′,β=τ

wα,β
′

8V (τα,β′)
Z8V (Q, Xα,β′)

wα
′,β

8V (τα′,β)
Z8V (Q, Xα′,β) .

We already know that the product of partition functions are proportional with a factor c1
(II.20), so we just have to show that∑

τα,β ,τα′,β′ s.t.
τα,β⊕τα′,β′=τ

wα,β8V (τα,β)wα
′,β′

8V (τα′,β′) = c1
∑

τα,β′ ,τα′,β s.t.
τα,β′⊕τα′,β=τ

wα,β
′

8V (τα,β′)wα
′,β

8V (τα′,β). (II.51)
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To prove (II.51), we first rewrite the correlators of Theorem II.13 in the formalism of
1-forms. In the particular case B = B0 = B′0, W = W0 = W ′0 and B1 = B′1 = W1 = W ′1 = ∅,
let τγ = (1γW ,1γB ), then (II.19) reads∑

τ ′,τ ′′∈H
(−1)〈τ ′+τ ′′|τγ〉wα,β8V (τ ′)wα

′,β′

8V (τ ′′) = c1
∑

τ ′,τ ′′∈H
(−1)〈τ ′+τ ′′|τγ〉wα,β

′

8V (τ ′)wα′,β
8V (τ ′′).

Reordering these sums according to τ = τ ′ + τ ′′ gives∑
τ∈(Z2

2)F
(−1)〈τ |τγ〉

∑
τ ′,τ ′′∈H s.t
τ ′+τ ′′=τ

wα,β8V (τ ′)wα′,β′

8V (τ ′′) = c1
∑

τ∈(Z2
2)F

(−1)〈τ |τγ〉
∑

τ ′,τ ′′∈H s.t
τ ′+τ ′′=τ

wα,β
′

8V (τ ′)wα′,β
8V (τ ′′).

Note that we always have τ = τ ′ + τ ′′ ∈ H, so when τ /∈ H the inner sum is empty. We
rewrite this as ∑

τ∈(Z2
2)F

(−1)〈τ |τγ〉f(τ ) = 0

where

f(τ ) =
∑

τ ′,τ ′′∈H s.t
τ ′+τ ′′=τ

wα,β8V (τ ′)wα
′,β′

8V (τ ′′) − c1
∑

τ ′,τ ′′∈H s.t
τ ′+τ ′′=τ

wα,β
′

8V (τ ′)wα
′,β

8V (τ ′′).

In other words, we have f̂(τγ) = 0. This is true for any B,W and paths γ joining them
pairwise. Conversely, any element τ ∈

(
Z2

2
)F can be considered as such a τγ – namely, if

dτ = B ∪W , then τ = (1γW ,1γB ) for some paths γB, γW that satisfy the hypothesis of
Theorem II.13. This means that f̂ is actually the null function, and by injectivity of the
Fourier transform, so is f . This proves (II.51).

Remark II.43. In the previous proof, if we let B1, B′1,W1,W ′1 be any even subsets of black
and white vertices of Q, we get

∑
τ ′,τ ′′∈(Z2

2)F s.t
τ ′+τ ′′=τ
dτ ′=B1∪W1
dτ ′′=B′1∪W ′1

wα,β8V (τ ′)
Z8V (Q, Xα,β)

wα
′,β′

8V (τ ′′)
Z8V (Q, Xα′,β′)

=
∑

τ ′,τ ′′∈(Z2
2)F s.t

τ ′+τ ′′=τ
dτ ′=B′1∪W1
dτ ′′=B1∪W ′1

wα,β
′

8V (τ ′)
Z8V (Q, Xα,β′)

wα
′,β

8V (τ ′′)
Z8V (Q, Xα′,β)

which expresses a coupling for the XOR of 8V-configurations with disorder.

II.B Proof of Lemma II.34

By rotating the graph, we can suppose that α = 0, i.e. the angles αi and u0(k) all lie in
(−π

2 ,
π
2 ). We also fix a k ∈ (0, 1) and suppose that u0(k) ≥ 0, the other case being symmetric.

Using the chain rule we have

d
dkχ(u0(k), k) = d

dku0(k)∂χ
∂u

(u0(k), k) + ∂χ

∂k
(u0(k), k).
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By definition of u0(k) the first term of the sum is null so we just have to show that ∂χ
∂k is

negative at (u0(k), k).
We denote r = |a1−an−1|; this does not depend on k. By using the change of arguments

in Jacobi elliptic functions (see Table 16.8 in [AS64]),

χ(u, k) = 1
r

n−1∑
j=2

log
[√

k′ nd
((

u− αj
2

)
k

∣∣∣∣ k)] . (II.52)

Let
g(u, k) = log

[√
k′ nd

((
u

2

)
k

∣∣∣∣ k)] .
By the properties of the function nd(·, k) (see 16.2 in [AS64]), for any k ∈ (0, 1), g(·, k) is
decreasing on [−π, 0] and increasing on [0, π]. Its minimum is g(0, k) = 1

2 log(k′) < 0. As
a result, if all the angles αj are equal, then u0(k) has the same value and χ(u0(k), k) =
n−2
2r log(k′), which is indeed a decreasing function of k. We now suppose that the αj are not
all equal. We need some extra properties on g.

Lemma II.44. For all k ∈ (0, 1),

1. g(−u, k) = g(u, k) and g(π − u, k) = −g(u, k).

2. ∂g
∂k (u, k) is a strictly decreasing function of u on [−π, 0], and strictly increasing on
[0, π]. It is zero at u = ±π

2 .

Lemma II.45. We have the following inequality of cardinals:

#
{
j ∈ [2, n− 1] | αj < u0(k)− π

2

}
< # {j ∈ [2, n− 1] | αj > u0(k)} .

We prove these two Lemmas later, and first show how they imply Lemma II.34. By
differentiation of (II.52), for u ∈ [0, π2 ) we have (using Lemma II.44 to remove possible terms
equal to zero):

r
∂χ

∂k
(u, k) =

n−1∑
j=2

∂g

∂k
(u− αj , k)

=
∑

j|αj<u−π2

∂g

∂k
(u− αj , k) +

∑
j|u−π2<αj≤u

∂g

∂k
(u− αj , k) +

∑
j|u<αj

∂g

∂k
(u− αj , k)

(II.53)

By Lemma II.44, the terms in the first sum are positive while those in the second an third
sums are negative. We show that for u = u0(k), the first sum is, in absolute value, smaller
than the third one, which is enough to conclude.

For the first sum, if −π
2 < αj < u− π

2 then π
2 < u− αj < u+ π

2 and by Lemma II.44,

0 < ∂g

∂k
(u− αj , k) < ∂g

∂k

(
u+ π

2 , k
)
.
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Thus the first sum S1 in (II.53) satisfies

0 ≤ S1 ≤
(
∂g

∂k

(
u+ π

2 , k
))

#
{
j ∈ [2, n− 1] | αj < u− π

2

}
. (II.54)

Similarly, for the third sum S3, we have

S3 ≤
(
∂g

∂k

(
u− π

2 , k
))

# {j ∈ [2, n− 1] | αj > u} < 0. (II.55)

By Lemma II.44, g
(
u+ π

2 , k
)

= −g
(
u− π

2 , k
)
> 0, and by differentiating the same symmetry

holds for ∂g
∂k . Hence (II.55) becomes

|S3| ≥
(
∂g

∂k

(
u+ π

2 , k
))

# {j ∈ [2, n− 1] | αj > u} . (II.56)

Using (II.56), (II.54) and Lemma II.45 we see that for u = u0(k), |S3| > S1 as needed.

Proof of Lemma II.44. The first point is a direct consequence of the change of arguments in
elliptic functions, see Table 16.8 in [AS64].

For the second point, first notice that for all k, using Table 16.5 in [AS64], g
(
π
2 , k

)
= 1

so ∂g
∂k

(
π
2 , k

)
= 0. Using the symmetries of the first point of the Lemma, it remains to check

that ∂g
∂k (u, k) is a strictly increasing function of u on

[
0, π2

]
.

Using the derivatives of elliptic functions with respect to u and k (see Sections 2.5 and
3.10 in [Law89]), and setting v =

(
u
2
)
k
, we get

∂g

∂k
(u, k) = − k

2k′2 + k

k′2

(
v

K(k)E(k)− E(v, k) + sn dn
cn (v|k)

) sn cn
dn (v|k) (II.57)

where E is the elliptic integral of the second kind:

E(v, k) =
∫ v

0
dn2(t|k)dt,

E(k) = E(K(k), k).

As v = K(k)
π u, it is sufficient to prove that the right-hand side of (II.57) is a strictly increasing

function of v on
[
0, K(k)

2

]
. On that interval,

• v 7→ v
K(k)E(k)− E(v, k) + sn dn

cn (v|k) is strictly increasing because its derivative in v is
(using Section 2.5 in [Law89])

E(k)
K(k) + k′2sc(v|k) > 0

• v 7→ sn cn
dn (v|k) is strictly increasing because, using the ascending Landen transform

k̃ = 1−k′
1+k′ (see 16.14.1 in [AS64]), this is equal to

1 + k̃

2 sn
(

2K(k̃)
K(k)v

∣∣∣∣∣ k̃
)

and sn(·|k̃) is strictly increasing on [0,K(k̃)].
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As a result, (II.57) is a strictly increasing function of v on
[
0, K(k)

2

]
.

Proof of Lemma II.45. We take again k̃ = 1−k′
1+k′ . By equation (26) in [BdTR17], u0(k) is also

the unique element of
(
−π

2 ,
π
2
)
such that
n−1∑
j=2

sn
(

(u0(k)− αj)k̃
∣∣ k̃) = 0. (II.58)

Let sj = sn
(

(u0(k)− αj)k̃
∣∣ k̃). We fix an ε > 0 such that the angles αi and u0(k) all lie in(

−π
2 + ε, π2 − ε

)
. Since we supposed that u0(k) ≥ 0, we have u0(k) − αj ∈

[
−π

2 + ε, π − ε
]
.

As a result, (u0(k)− αj)k̃ ∈
[
−K(k̃) + εk̃, 2K(k̃)− εk̃

]
. By the properties of the sn function,

this implies that sj < 0 when αj > u0(k), that sj > 0 when αj < u0(k), and that sj = 0
when αj = u0(k). As a result, ∑

j|αj<u0(k)
sj =

∑
j|αj>u0(k)

(−sj)

where all the terms in the sums are positive. In particular,∑
j|αj<u0(k)−π2

sj ≤
∑

j|αj>u0(k)
(−sj).

When αj < u0(k) − π
2 , then (u0(k)− αj)k̃ ∈

[
K(k̃),K(k̃) + (u0(k)− ε)k̃

)
. Since sn(·, k̃)

is decreasing on [K(k̃), 2K(k̃)], in that case

0 < sn
(

K(k̃) + (u0(k)− ε)k̃
∣∣∣ k̃) < sj ≤ 1.

When αj > u0(k), then (u0(k)− αj)k̃ ∈
(
−K(k̃) + (u0(k) + ε)k̃ , 0

)
. Since sn(·, k̃) is increas-

ing on [−K(k̃), 0] and odd, in that case

0 < −sj < sn
(

K(k̃)− (u0(k) + ε)k̃
∣∣∣ k̃) .

Moreover, using again the symmetry and monotonicity of the sn function,

sn
(

K(k̃)− (u0(k) + ε)k̃
∣∣∣ k̃) = sn

(
2K(k̃)−

(
K(k̃)− (u0(k) + ε)k̃

)∣∣∣ k̃)
= sn

(
K(k̃) + (u0(k) + ε)k̃

∣∣∣ k̃)
< sn

(
K(k̃) + (u0(k)− ε)k̃

∣∣∣ k̃) .
As a result, we get the following inequalities:

sn
(

K(k̃) + (u0(k)− ε)k̃
∣∣∣ k̃) #

{
j ∈ [2, n− 1] | αj < u0(k)− π

2

}
≤

∑
j|αj<u0(k)−π2

sj

≤
∑

j|αj>u0(k)
(−sj)

≤ sn
(

K(k̃)− (u0(k) + ε)k̃
∣∣∣ k̃) # {j ∈ [2, n− 1] | αj > u0(k))

< sn
(

K(k̃) + (u0(k)− ε)k̃
∣∣∣ k̃) # {j ∈ [2, n− 1] | αj > u0(k)) .
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In the last inequality, we used the fact that the cardinal is not zero since these j are exactly
those that give a negative term in in (II.58); those negative terms have to exist because
the αj are not all equal. Dividing by sn

(
K(k̃) + (u0(k)− ε)k̃

∣∣∣ k̃) > 0, we get the claim of
Lemma II.45.
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Résumé
Pour f une fonction de deux variables homogène et symétrique, nous définissons un f -quad
comme un quadrilatère de côtés successifs a, b, c, d tels que f(a, c) = f(b, d). Nous étudions
notamment le cas où f(x, y) = xα+yα pour un certain réel α, et nous donnons des caractéri-
sations géométriques des quadrilatères associés. Nous montrons dans des cas particuliers que
les plongements de graphes en f -quads sont intégrables, au sens où ils vérifient une forme de
transformation triangle-étoile locale.

Abstract
Let f be a homogeneous symmetric function in two variables. We define an f -quad as a
quadrilateral whose successive sides a, b, c, d satisfy f(a, c) = f(b, d). We study in particular
the case where f(x, y) = xα + yα for some real number α, and we give properties and
geometric characterizations of such quadrilaterals. We show in a few particular cases that
embeddings of graphs into f -quads are integrable, meaning that they satisfy a form of local
star-triangle transformation.
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III.1 Introduction
In this chapter, we are investigate families of quadrilaterals defined as follows.

Definition III.1. Let f : (R+)2 → R be a symmetric function of two variables. The
function f is said to be homogeneous if there exists u ∈ R such that for any λ, x, y > 0, we
have f(λx, λy) = λuf(x, y).

Definition III.2. Let f : (R+)2 → R be a non-constant homogeneous symmetric function
of two variables. A quadrilateral ABCD is called an f -quad if

f(AB,CD) = f(BC,AD).

Note that multiplying f by a non-zero scalar does not change the class of f -quads; in
fact, post-composing f with a bijection produces the same class of quads.

We will consider in particular the families of quads associated to functions f(x, y) =
xα + yα for α ∈ R∗, and in appropriate limits for α = 0 and ±∞. We denote by R the set
R ∪ {−∞,+∞} of extended real numbers.

Definition III.3. Let α ∈ R∗. A quadrilateral ABCD is called an α-quad if it is an f -quad
for

f(x, y) = xα + yα.

It is called a 0-quad if it is an f -quad for

f(x, y) = xy. (III.1)

It is called a +∞-quad if it is an f -quad for

f(x, y) = max(x, y)

and a −∞-quad for
f(x, y) = min(x, y).

Let β ∈ R. A quadrilateral ABCD is called a β-quadri if it is an f -quad for

f(x, y) = x2 + y2 + βxy.

Of particular interest are the following families:

• α-quads with α = 1 (or β-quadris with β = 2) correspond to tangential quads, i.e.
quads such that there is a circle tangential to their four sides. Embeddings of graphs
into tangential quads are called s-embeddings, as introduced by Chelkak for the Ising
model [Che17].

• α-quads with α = 2 (or β-quadris with β = 0) correspond to orthodiagonal quads, i.e.
quads whose diagonals are perpendicular. Embeddings of graphs into orthodiagonal
quads correspond to harmonic embeddings (where the dual graph is also embedded
and each dual edge is orthogonal to the corresponding primal edge) defined by Tutte
[Tut63b, KLRR18]



154 Chapter III. Star-triangle transformation on canonical embeddings

• The class of 0-quads contains a known class of quads: harmonic quads are defined as
the cyclic quads satisfying (III.1). According to [Jos11], 0-quads are known under the
name of balanced quads.

There exists other interesting families of f -quads, such as f(x, y) = min(x/y, y/x). That
latter function gives the class of quads such that BA.BC = DA.DC (up to symmetries).
Then, given three points A,B,C, the possible locus for the fourth point D is a Cassini oval.
We will thus dub them “Cassini quads”. Note that the function max(x/y, y/x) produces the
same class of quads as f(x, y) = min(x/y, y/x).

As a first attempt to classify these families, let u be the homogeneity weight of f and
the function h : [0, π/4]→ R by

h(θ) = f(cos θ, sin θ)

for any θ ∈ [0, π/4]. Then f is uniquely determined by the pair (h, u). Indeed, if u is an
arbitrary real number and h is an arbitrary function from [0, π/4] to R, then one recovers a
function f producing the pair (h, u) as follows. If x < y are two positive real numbers, write
x+ iy = reiθ and set

f(x, y) =
{
ruh(θ) if x ≥ y
ruh(π2 − θ) if x < y.

Nice classes of quads correspond to nice functions h, as one can see in the table below.

h(θ) u f(x, y) name of the class
1 2 x2 + y2 orthodiagonal quads

cos
(
θ − π

4
)

1 x+y√
2 tangential quads

sin 2θ 2 2xy balanced quads
cos θ 1 max(x, y) +∞-quads
sin θ 1 min(x, y) −∞-quads
tan θ 0 min(xy ,

y
x) Cassini quads

(cos θ)α + (sin θ)α α xα + yα α-quads
1 + β sin 2θ 2 x2 + y2 + 2βxy β-quadris

Let G be a planar graph, finite or infinite. We consider its diamond graph G �, which is
the bipartite graph whose black (resp. white) vertices are the vertices of G (resp. G ∗) and
where an edge connects a black vertex to a white vertex whenever a vertex of G lies on the
face associated with the corresponding vertex of G ∗. All the faces of G � are quadrilaterals.

Definition III.4. An f -embedding of G is defined to be an embedding of G � in the plane
such that every face of G � is an f -quad.

Our goal is to investigate the integrability of such embeddings, in terms of a possible
star-triangle transformation that they may satisfy. This is represented in Figure III.1, and
we give a more precise definition of its meaning hereafter.

Definition III.5. A set of points A0, A1, . . . , A6 in the plane is said to be a proper embedding
of left-hand side of Figure III.1 if it has the following properties:
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A1

A2

A3

A4

A5

A6

A1

A2

A3

A4

A5

A6

A0

A7

Figure III.1: The combinatorics of a star-triangle move.

1. The seven points are distinct;

2. Among the points A1, . . . , A6, no three points are in a line;

3. Edges represented in Figure III.1 do not intersect each other;

4. Each of the three quadrilateralsA0A1A2A3, A0A3A4A5 andA0A5A6A1 is proper, mean-
ing that it has a nonempty interior and the vertices of its boundary are oriented in the
same order as in Figure III.1.

A proper embedding of the right-hand side of Figure III.1 A1, A2, . . . , A7 is defined sim-
ilarly.

Definition III.6. A homogeneous symmetric function f is said to satisfy the flip property if
it has the property that for any six distinct points A1, A2, . . . , A6, the following are equivalent:

• There exists a point A0 such that A0, A1, . . . , A6 is a proper embedding of the left-hand
side of Figure III.1, and the three quadrilaterals A0A1A2A3, A0A3A4A5 and A0A5A6A1
are f -quads;

• There exists a point A7 such that A1, . . . , A7 is a proper embedding of the right-hand
side of Figure III.1, and the three quadrilaterals A7A6A1A2, A7A2A3A4 and A7A4A5A6
are f -quads.

The function f is said to satisfy the unique flip property if it satisfies the flip property
and, when the point A0 (resp. A7) exists, it is unique.

The function f(x, y) = x2 +y2 satisfies the unique flip property; this can be proved using
a Theorem of Steiner, see [Ako11, KLRR18]. We prove:

Theorem III.7. The function f(x, y) = x+ y satisfies the unique flip property.

However, we suspect that a much wider result might hold, although we do not conjecture
uniqueness in that generality:

Conjecture III.8. Any continuous, symmetric, homogeneous function f satisfies the flip
property.
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The rest of this chapter is organised as follows: in Section III.2 we give a few geometric
results about the space of α-quads. In Section III.3 we prove Theorem III.7, by first showing
uniqueness using purely geometric tools, and then proving existence using the formalism of
s-embeddings defined by Chelkak [Che17]. In Section III.4 we give partial results towards
Conjecture III.8 for α-quads, i.e. for f(x, y) = xα + yα.
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III.2 The space of α-quads

Definition III.9. A pair of opposite sides of a quadrilateral is called an extremal pair if
these two sides achieve both the maximum and the minimum side-lengths.

Definition III.10. A quadrilateralABCD is a kite if its sides satisfy {AB,CD} = {AD,BC}.

Proposition III.11. A quadrilateral is an α-quad for some α ∈ R if and only if it has an
extremal pair.

Proof. Let Q be a quadrilateral with side-lengths denoted by l1, l2, l3, l4 in cyclic order.
Assume that Q has no extremal pair. Without loss of generality, one may assume that l1
is the maximal length and l4 the minimal length, and they are distinct. Since (l1, l3) is not
an extremal pair, l3 does not achieve the minimum, thus l3 > l4 and Q is not a −∞-quad.
Similarly, l2 does not achieve the maximum so l2 < l1 and Q is not a +∞-quad. By the
previous inequalities, lα1 + lα3 > lα2 + lα4 if α > 0 and lα1 + lα3 < lα2 + lα4 if α < 0. Also l1l3 > l2l4
(case α = 0). Hence Q is not an α-quad for any α ∈ R.

Conversely, suppose that Q has an extremal pair. We can assume that l1 is the maximal
length, l3 is the minimal length, and l2 ≤ l4 (up to a possible mirror symmetry). If l2 = l3
or if l4 = l1 then Q is, respectively, a −∞-quad or a +∞-quad, so we can assume that
l3 < l2 ≤ l4 < l1. Then consider the function

f(α) = lα1 + lα3 − lα2 − lα4
α

.

It can be extended to a continuous function on R by setting f(0) = ln
(
l1l3
l2l4

)
. By the previous

inequalities, for α → −∞, f(α) ∼ lα3
α < 0 and for α → +∞, f(α) ∼ lα1

α > 0, hence by the
intermediate value theorem there is an α ∈ R such that f(α) = 0 and Q is an α-quad.

Proposition III.12. Let Q be a quadrilateral which is an α-quad and an α′-quad for two
values α 6= α′ ∈ R. Then Q is a kite.

Proof. Denote by l1, l2, l3, l4 the side-lengths of Q in cyclic order. Assume first that neither
α nor α′ take the values −∞,∞ or 0. Then up to replacing li by lα

′
i , one may assume that
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α′ = 1. Write s = l1 + l3 and t = lα1 + lα3 . Since Q is a 1-quad, we have l4 = s− l2. Since Q
is also an α-quad, we have

lα2 + (s− l2)α = t, (III.2)

and 0 ≤ l2 ≤ s. The function x 7→ xα+ (s−x)α is strictly monotonous on [0, s/2] symmetric
with respect to x = s/2, so that the only solutions of equation (III.2) are l2 = l1 and l2 = l3.
Hence {l1, l3} = {l2, l4}, i.e. Q is a kite. If α = 0, and α′ is finite, one may again assume
that α′ = 1, in which case the sums and products of each pair {l1, l3} and {l2, l4} are equal,
thus Q is again a kite. If α ∈ {−∞,∞} and α′ is finite non-zero, one may again assume that
α′ = 1 and the conclusion follows easily. The case when α ∈ {−∞,∞} and α′ = 0 is similar.
Finally the case when {α, α′} = {−∞,∞} is also easy.

This generalizes a result of [Jos11] which claims that a quad which is both a 0-quad and
a 1-quad is a kite. We conclude this part with another geometric property, that generalizes
a result known for 1-quads and 2-quads [Jos12].

Proposition III.13. Let ABCD be a quad with P denoting the intersection point of its
diagonals, and suppose that P is distinct from A,B,C,D. We denote the circumradii of
the triangles ABP,BCP,CDP,DAP by R1, R2, R3, R4. Let f : (R+)2 → R be a symmetric
homogeneous function. The following are equivalent:

1. ABCD is an f -quad ;

2. f(R1, R3) = f(R2, R4).

Proof. We denote the center of the circumcircles of ABP,BCP,CDP,DAP by, respectively,
O1, O2, O3, O4. Since AO1B is isosceles in O1, we have

AB = 2R1 sin ÂO1B

2 .

Since P lies on the circle centered at O1 and going through A and B, we have that

ÂO1B

2 ∈
{
ÂPB, π − ÂPB

}
,

hence
AB = 2R1 sin ÂPB.

Similarly we have

BC = 2R2 sin B̂PC

CD = 2R3 sin ĈPD

DA = 2R4 sin D̂PA

Observing that ÂPB = ĈPD = π − B̂PC = π − D̂PA, we deduce that the quadru-
ples (AB,BC,CD,DA) and (R1, R2, R3, R4) are proportional. Since f is homogeneous,
f(AB,CD) = f(BC,DA) if and only if f(R1, R3) = f(R2, R4), which concludes the proof.
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III.3 The star-triangle move for tangential quads
This section is devoted to the proof of Theorem III.7.

III.3.1 Uniqueness
We first aim at proving the following:

Proposition III.14. For any proper hexagon A1, A2, . . . , A6, there is at most one point A0
so that A0, A1, . . . , A6 is a proper embedding of the left-hand side of Figure III.1.

First we need some information on the geometric properties of 1-quads. Notice that if
three distinct point A,B,C are fixed, then the set of all points D such as ABCD is a 1-quad
is defined by

AD − CD = AB −BC

hence it is a hyperbola branch with foci A,C (with possible degenerate cases being the
perpendicular bisector of [AC], and half-lines A+ t(A− C) or C + t(C −A) for t ≥ 0). We
put all these cases under the same name:

Definition III.15. Let A,C be two distinct points in the plane. For any λ ∈ R, the set of
points D in the plane such that

AD − CD = λ (III.3)
is called a generalised hyperbola branch with foci A,C.

The following Lemma already implies that there are at most two admissible points A0.

Lemma III.16. Assume that two generalised hyperbola branches have exactly one common
focus, then they have at most two intersection points.

This result appears in [LSFW08, XSR08]. Although this result has a very classical flavor,
we could not find any older reference. We give an elementary, self-contained proof below.

Proof. When one of the generalised branches is a line or a half-line, the result comes easily
from the fact that a hyperbola and a line have at most two points of intersection; we now
suppose that it is not the case.

Let B be a hyperbola branch, we call the focus of B which belongs to (resp. does not
belong to) the convex hull B the interior (resp. exterior) focus of B. Assume that B1 is a
hyperbola branch with foci A and C and B2 is a hyperbola branch with foci A and E, with
A,C,E distinct. Then any intersection point of B1 and B2 lies on a hyperbola branch B3
with foci C and E (this can be seen by subtracting the equations (III.3) for B1 and B2), and
we can also suppose that B3 is not a line or a half-line. Then there is at least one of the
three points A, C or E which is the interior focus of one branch and the exterior focus of
another branch. Without loss of generality, we assume that A is the interior focus of B1 and
the exterior focus of B2, and we will show that these two branches intersect in at most two
points.

Suppose that B1,B2 intersect at three distinct points S, T, U ; as they belong to a non-
degenerate hyperbola branch, they are not in a line. The lines (ST ), (TU), (SU) delimit seven
open regions in the plane, three of which touching the triangle STU only at one vertex; we
call these three regions the corner chambers of S, T, U .
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Lemma III.17. Let S, T, U be three distinct points on a hyperbola branch B. Then the
exterior focus of B belongs to a corner chamber of S, T, U , and the interior focus does not.

Before proving this Lemma, notice that it is enough to conclude the proof of Lemma III.16,
as A should be both in a corner chamber of S, T, U (because A is the exterior focus of B2)
and not in one (because A is the interior focus of B1).

Proof of Lemma III.17. For any two distinct points A,B on B, the line (AB) cuts the interior
of B into a finite part and an infinite part. The half-plane delimited by (AB) that contains
the finite part is called the exterior half-plane of A,B. It is easy to see that the exterior
focus belongs to the exterior half-plane of A,B, for instance by noting that this property
is invariant by affine transformations of the plane, and is straightforward to prove for the
special branch {(x, y) ∈ (0,∞)2 | xy = 1}.

Suppose that S, T, U are met in that order when following the branch B. Then, applying
the previous property to (S, T ) and (T,U), we get that the exterior focus has to belong to
the corner chamber that touches T .

As for the interior focus, by convexity of B, the corner chambers are disjoint from the
interior of the convex hull of B.

Proof of Proposition III.14. Suppose that there exists such a point A0. As the hexagon is
made of three 1-quads, we have

A1A2 +A3A4 +A5A6 = A2A3 +A4A5 +A6A1. (III.4)

The admissible point A0 has to be at the intersection of the three generalised hyperbola
branches associated to the three 1-quads (those going through Ai+1 with foci Ai, Ai+2, for
i ∈ {1, 3, 5}). Notice that A1A2 < A2A3 iff A1 is the interior focus of the hyperbola branch
with foci A1, A3 going through A2. Using this and relation (III.4), we see that one of the
points A1, A3, A5 must be the interior focus of both the hyperbola branches associated to
it (otherwise every term on the left would be smaller than a term on the right, or the
converse). Suppose that it is A1. As A0 has to be at the intersection of the three branches,
by Lemma III.16 there is at most one other possible point A′0.

The situation is shown in Figure III.2. For A1A2A3A0 to be a proper quadrilateral
oriented as in Figure III.1, and this holding for both the possible positions of A0, A2 can
only belong to the red part of the hyperbola. Similarly, A6 can only belong to the blue part
of the second hyperbola. But then it is impossible to have the segments [A2A3], [A1A6] not
intersecting, and at the same time the segments [A5A6], [A1A2] not intersecting.

This Figure corresponds to the case where the triangle A1A3A5 is oriented in that or-
der counterclockwise; the other situation is almost identical, but one has to consider the
intersection of [A2, A3] and [A5, A6] to conclude.

III.3.2 Existence
It remains to prove that if we start with a proper embedding A0, A1, . . . , A6 of the left-hand
side of Figure III.1, then there actually exists a point A7 as in the right-hand side. To prove
this, we transform the problem into a linear one by using the propagation equations and
s-embeddings defined by Chelkak [Che17]. We first sum up this construction, then give a
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A2A6

A1

A3
A5

Figure III.2: The case of two intersections of the branches.

few extra property concerning the ordering of the vertices of the quads it gives, and finally
apply it to our setting.

a) Ising model, propagation equation and s-embeddings

Suppose that G is equipped with Ising model coupling constants on the edges, (Je)e∈E , taken
in (0,∞). For every e ∈ E there is a unique θe ∈ (0, π2 ) such that

Je = 1
2 ln

(1 + sin θe
cos θe

)
.

We also set
xe = tanh Je = tan θe2 ∈ (0, 1).

Let G c be the graph with vertices in bijection with the corners of the faces of G , linked
iff they lie around the same edge of e, and weighted like in Figure III.3. There exists a
double-cover Υ× of G c that branches around every edge, vertex and face of G , graphically
represented around an edge in Figure III.4, see also Figure III.9. It inherits the edge weights
of G c.

e

sin θe

cos θe

Figure III.3: The corner graph G c (dashed) around an edge e of G (solid).

Let V × be the vertices of Υ×. We say that a function X : V × → C satisfies the
propagation equation if, for every v ∈ V × with neighbours v′, v′′ ∈ V × around an edge e like
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in Figure III.4,
Xv = sin θeXv′ + cos θeXv′′ .

It is easy to check that if X satisfies the propagation equation, its value is multiplied by −1
whenever we change sheet above a vertex of G c.

v v′

v′′

e

Figure III.4: The double cover Υ× around the edge e of G .

If X is a solution to the propagation equations, then one can construct a s-embedding
S : G � → C in the following way. Fix the image S(u0) of a base vertex u0 of G in the plane.
Then define S such that for every vertex u of G and every face f adjacent to it, and if c is
the corner between u and f ,

S(f)− S(u) = X2
c

where Xc is any of the two values of X above the corner c. See Figure III.6.

Proposition III.18 ([Che17]). For any solution X of the propagation equation such that
Re(X), Im(X) are two free vectors over R, the associated s-embedding is well-defined, and is
such that every face of G � is sent to a 1-quad in the complex plane.

Conversely, for any f -embedding T of G with f(x, y) = x+ y, for any edge e ∈ E let θe
be the unique angle in

(
0, π2

)
such that, in the notation of Figure III.5,

tan2 θe = cotan δ + cotan β
cotanα+ cotan γ .

Then T is an s-embedding associated to a solution to the propagation equations on G with
parameters (θe)e∈E .

e

2δ

2α 2γ
2β

Figure III.5: A piece of an f -embedding for f(x, y) = x+ y.

The plan of our proof of the flip property is therefore to translate the initial configuration
into a solution of the propagation equations, then show that one can apply a star-triangle
transformation on these solution, and finally to go back to embeddings. However, we want
a bit more information than is contained in Proposition III.18, as we want to keep track of
the orientation of quadrilaterals. This is the aim of the following part.
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b) Orientation of quads in s-embeddings

d

−d

c

−c

a

−a

b

−b

e
u v

x

y

−→ S(u)
S(v)

S(y)

S(x)

d2 c2

a2 b2

Figure III.6: An edge e ∈ E with vertices u, v and adjacent faces x, y, with a solution of its
propagation equation, and the corresponding s-embedding.

Lemma III.19. Let a, b, c, d ∈ C∗ be a solution to the propagation equation at an edge e ∈ E
with parameter θ ∈

(
0, π2

)
, set around e as in Figure III.6. Suppose that b/a /∈ R. Then the

following are equivalent:

(i) The 1-quad S(u)S(x)S(v)S(y) is oriented counterclockwise in that order;

(ii) Im(b/a) > 0;

(iii) The arguments of ±a,±b,±c,±d are in the cyclic order (a, d, c, b,−a,−d,−c,−b) around
the circle (as in Figure III.7).

a

dc
b

−a

−d −c
−b

Figure III.7: Cyclic order of the arguments of the complex numbers a, b, c, d.

Proof. All the propositions are unaltered if we multiply all the complex numbers a, b, c, d by
the same nonzero complex number, hence we can suppose a = 1.

• (ii)⇒ (iii): Suppose that Im(b) > 0. Solving the propagation equation gives

c = b

cos θ + tan θ,

d = 1
cos θ + b tan θ.
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Thus c and d are positive combinations of 1 and b, so their complex arguments lie
between 0 and that of b. Moreover, by a computation,

Im
(
c

d

)
= 1∣∣∣ 1

cos θ + b tan θ
∣∣∣2
[
(1 + |b|2) sin θ

cos2 θ
+ 1

cos2 θ
Im(b+ b̄ sin2 θ)

]

and it is easy to check that Im(b + b̄ sin2 θ) ≥ 0. Thus Im
(
c
d

)
> 0 and we deduce the

full Figure III.7.

• (iii)⇒ (ii): Clear.

• (i) ⇒ (iii): Suppose that the quad is oriented in the order of (i), then the sum of
its internal angles is 2π. These internal angles can be written as the oriented angles
of vectors ̂(a2, d2), ̂(b2, a2), (̂c2, b2), ̂(d2, c2) taken in (0, 2π). In the case of (iii), the
arguments of a2, d2, c2, b2 are in that order around the circle and it is easy to check
that the angles sum up to 2π. On the other hand, when (iii) is not verified, we have
Im(b) < 0 and we can apply the previous result to b̄, c̄, d̄ (which is still a solution to
the propagation equation); thus in that case the order is completely opposite, and the
angles sum up to 6π. Hence by contraposition (i)⇒ (iii).

• (iii) ⇒ (i): By Proposition III.18, the embedding S(u)S(x)S(v)S(y) is a tangential
quad, hence it is not crossed. Consequently, it is correctly oriented iff the sum of the
expected internal angles is 2π, and we already noted that it is the case under (iii).

c) Star-triangle transformation on propagation equations

We rephrase Baxter’s results on the star-triangle transformation of the Ising model; see
Section 6.4 of [Bax82].

Let us suppose that the graph G contains a triangle, as in the left-hand side of Figure III.8.
We label the edges with the θi parameters, and we define as well xi, Ji. It is possible to
transform the triangle into the star displayed on the right-hand side, while finding parameters
such that both Ising models are coupled and agree everywhere except at A7. We call this
the star-triangle transformation.

A1

A6A2

A5A3

A4

A0

θ5 θ3

θ1

A1

A6A2

A5A3

A4

A7 θ2θ6

θ4

Figure III.8: star-triangle transformation on G (black vertices)
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Proposition III.20 ([Bax82]). Let k′ ∈ (0,∞) be defined as

k′ = (1− x2
1)(1− x2

3)(1− x2
5)

4
√

(1 + x1x3x5)(x1 + x3x5)(x3 + x1x5)(x5 + x1x3)
.

Then the parameters θ2, θ4, θ6 obtained by the star-triangle transformation are the unique
angles in (0, π2 ) such that

∀i ∈ {1, 3, 5}, tan θi tan θi+3 = 1
k′

(III.5)

where we labeled the angles modulo 6.

Remark III.21. This transformation may be expressed in different ways. The previous
definition of k′ comes naturally from the use of an elliptic modulus k ∈ iR ∪ [0, 1) such that
k2 + k′2 = 1. Then we can define new angles θ′1, . . . , θ′6 by

θ′i = πF(θi, k)
2K(k) .

where F is the elliptic integral of the first kind, and K the complete elliptic integral of the
first kind. For this definition k can be seen as the only modulus such that the θ′ angles
satisfy

θ′1 + θ′3 + θ′5 = π

2 . (III.6)

In these parameters, the star-triangle transformation reads

∀i ∈ {1, 3, 5}, θ′i+3 = π

2 − θ
′
i. (III.7)

Moreover, the trigonometric functions of θ angles are Jacobi elliptic functions of the θ′ angles:
let τi = 2K(k)

π θ′i, then

cos θi = cn (τi, k) ,
sin θi = sn (τi, k) .

The graphs Υ× corresponding to the star and to the triangle configurations are repre-
sented in Figure III.9. We show that when the angles θ are chosen so as to satisfy the
star-triangle relations (III.5), the propagation equations “seen from the boundary vertices”
x1, . . . , x6 are the same.

Proposition III.22. Suppose that θ1, . . . , θ6 ∈ (0, π2 ) satisfy the star-triangle relations
(III.5).

Let (x1, x2, x3, x4, x5, x6, y1, y3, y5) be a solution of the propagation equations on the “tri-
angle” graph of the left of Figure III.9. Then there exists a unique triplet (z2, z4, z6) such
that (x1, x2, x3, x4, x5, x6, z2, z4, z6) is a solution of the propagation equations on the “star”
graph on the right.

Proof. It is easy to see that any values of (y1, y3, y5) characterize uniquely the solution of the
propagation equations on the triangle graph. Thus the set of possible vectors (x1, . . . , x6) is
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θ5

θ1

θ3

x1

x2

x3 x4

x5

x6

y1

y3
y5

θ4

θ6 θ2

x1

x2

x3 x4

x5

x6

z2

z4

z6

Figure III.9: Star-triangle transformation of Υ×.

a 3-dimensional subspace V . By setting (y1, y3, y5) to be the elements of the canonical basis
of C3 and solving the propagation equations, we get a basis of V :

u1 =



1/ cos θ5
tan θ5

0
0

tan θ3
1/ cos θ3


, u3 =



tan θ5
1/ cos θ5
1/ cos θ1
tan θ1

0
0


, u5 =



0
0

tan θ1
1/ cos θ1
1/ cos θ3
tan θ3


.

Similarly, the set of values of (x1, . . . , x6) for the star graph is a subspace V ′ with basis

v2 =



1/ sin θ4
1/ sin θ6
1/ tan θ6

0
0

1/ tan θ4


, v4 =



0
1/ tan θ6
1/ sin θ6
1/ sin θ2
1/ tan θ2

0


, v6 =



1/ tan θ4
0
0

1/ tan θ2
1/ sin θ2
1/ sin θ4


.

We want to show that these subspaces are equal. By dimensionality, we just need to
show that v2, v4, v6 ∈ V . We do it for v2, the other cases being symmetric. We claim that

1
cos θ3 tan θ4

u1 + 1
cos θ1 tan θ6

u3 −
tan θ1
tan θ6

u5 = v2.

This is checked immediately for the third and fourth entries; the fifth and sixth entries are
similar after noting that by (III.5),

tan θ1
tan θ6

= tan θ3
tan θ4

. (III.8)

The first and second entry are a bit more tedious. We detail the first one.
We want to show that

1
cos θ3 tan θ4 cos θ5

+ tan θ5
cos θ1 tan θ6

= 1
sin θ4

. (III.9)
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In terms of the elliptic τi variables from Remark III.21, this amounts to showing (we omit
the elliptic parameter k):

nc(τ3) cs(τ4) nc(τ5) + nc(τ1)sc(τ5) cs(τ6)− ns(τ4) = 0. (III.10)

By (III.7), τ4 = K(k)− τ1 and τ6 = K(k)− τ3, and by (III.6), τ1 = K(k)− (τ3 + τ5). Thus we
can express all the arguments in terms of τ3, τ5. Using the change of arguments in elliptic
functions (see 16.8 in [AS64]), the right-hand side of (III.10) is equal to

nc(τ3) nc(τ5) cs(τ3 + τ5) + sc(τ3)sc(τ5) ds(τ3 + τ5)− ns(τ3 + τ5)
= nc(τ3) nc(τ5) ns(τ3 + τ5)×

(cn(τ3 + τ5) + sn(τ3) sn(τ5) dn(τ3 + τ5)− cn(τ3) cn(τ5)) .

By 32(i) in Chapter 2 of [Law89], this is equal to zero.

Remark III.23. From the previous proof, equations (III.8) and (III.9) imply

cos(θ4) = sin θ1 cos θ3 cos θ5
sin θ1 + sin θ3 sin θ5

.

This is enough to get the new angle θ4 in terms of the initial one. Of course symmetric
formulas exist for θ2, θ6. This a short and seemingly new way of writing the Ising star-
triangle move.

We now have all the elements to prove the flip property.

Proof of Theorem III.7. We start with A0, A1, . . . , A6 a proper embedding of the left-hand
side of Figure III.1. As uniqueness is a consequence of Proposition III.14, we just have to
prove that there exists a point A7 such that A1, A2, . . . , A7 is a proper embedding of the
right-hand side.

By Proposition III.18, there exists (x1, x2, x3, x4, x5, x6, y1, y3, y5) a solution of the propa-
gation equation as in the left-hand side of Figure III.9 such that the initial pointsA0, A1, . . . , A6
are the s-embedding of this solution. Hence by Proposition III.22, there exists (z2, z4, z6)
such that (x1, x2, x3, x4, x5, x6, z2, z4, z6) is a solution to the propagation equations the right-
hand side of Figure III.9. Let us consider its s-embedding. It has the same boundary as
the initial one, hence the points A1, . . . , A6 are unchanged, and we have a new point A7. It
remains to prove that the three new 1-quads are proper.

As no three vertices of the hexagon are in a line, x1/x2 is not a real number; moreover
the initial quad A1A2A3A0 is properly oriented. Hence we can apply Lemma III.19 to get
the order of the arguments of x1, x2, y3, y1. By doing the same for the three initial quads,
the order of the arguments of the variables xi and yi is that of the first part of Figure III.10.

Let us prove that the new quad A1A2A7A6 is properly oriented. By Lemma III.19, it is
enough to prove that Im(x6/x1) > 0. If this is not the case, then we are in the situation
of the second configuration of Figure III.10, where all the arguments are included in a half-
circle. Therefore we can get the order of the arguments of the x2

i , as in the third Figure.
However, as in the proof of Lemma III.19, the successive internal angles of the hexagon
A1A2A3A4A5A6 can be expressed as the successive oriented angles in direct order in this
last figure, hence their sum is 2π. This contradicts the fact that the hexagon is non-crossed,
as the sum should be 4π.

By symmetry, the three new quads are properly oriented, which concludes the proof.
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x5

x1

x6

x3

x4

x2

y5
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x5

x1

x6
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x2
1
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6 x2

3

x2
4

x2
2

Figure III.10: The cyclic order of the arguments of the variables xi and yi.

III.4 Partial results for α-quads flip
In this part we make a few remarks related to the flip property for α-quads.

The fact that A0A1A2A3, A0A3A4A5 and A0A5A6A1 are α-quads implies that

A1A
α
2 +A3A

α
4 +A5A

α
6 = A2A

α
3 +A4A

α
5 +A6A

α
1 . (III.11)

Define the curves

C1 = {M ∈ R2|MAα2 −MAα6 = A1A
α
2 −A1A

α
6 }

C3 = {M ∈ R2|MAα4 −MAα2 = A3A
α
4 −A3A

α
2 }

C5 = {M ∈ R2|MAα6 −MAα4 = A5A
α
6 −A5A

α
4 }.

By (III.11), we deduce that the intersection of any two of these curves is contained inside
the third one, so A7 could be taken to be any point in C1 ∩ C3. However, it is not clear a
priori why these curves should intersect.

Let us discuss briefly the nature of these curves.

Definition III.24. Let A,B,C be three distinct points in the plane, and let f be a sym-
metric homogeneous function. We call f -construction curve with foci A,C going through B
the set

{D ∈ R2 | f(AB,CD) = f(AC,BD)}.

In some cases these curves are simple, for instance:

Lemma III.25. For f(x, y) = xy the f -construction curves are generalised circles (circles
or straight lines).

Proof. Suppose that in complex coordinates A = 0 and C = 1, then the curve can be seen
as the set of z ∈ C such that

∣∣∣ z
1−z

∣∣∣ = constant. Hence Z = z
1−z is on a circle, and z = Z

1+Z
is the image of a circle by a Möbius transformation.

Hence when α = 0, the construction curves intersect in at most two points.
When α = 1, the construction curves are generalised branches of hyperbolas, which are

discussed in Section III.3.
When α = 2, the construction curves are straight lines, more precisely the construction

curve with foci A,C going through B is the line perpendicular to (AC) going through B.
Hence the existence (and uniqueness) of an intersection point is also easy.
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When α is a positive integer, the construction curves associated to f(x, y) = xα + yα

are branches of algebraic curves. For any β ∈ R, the construction curves associated to the
β-quadris (for which f(x, y) = x2 + y2 + βxy) are branches of algebraic curves of degree at
most 4. This gives bounds on the number of intersection points of construction curves, as
by Bézout’s theorem two algebraic curves of respective degree n,m intersect in at most nm
points.

Regarding existence and uniqueness of a proper intersection point, if we are in a regime
of parameters where we have existence and uniqueness (such as α = 1 or α = 2) and we vary
slightly α, then existence and uniqueness should be preserved, as the curves intersect in a
transverse way. This means that a star-triangle move is well-defined for α close to 1 or close
to 2 in some open region of the parameter space.
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Résumé
Il est connu que la plus longue chaîne dans le graphe divisoriel construit sur les entiers ≤ N
a une longueur asymptotiquement � N/ logN . Nous étudions les partitions de {1, 2, . . . , N}
en un nombre minimal de chaînes, et nous montrons que dans une telle partition, la chaîne
la plus longue peut avoir une longueur asymptotiquement N1−o(1).

Abstract
It is known that the longest simple path in the divisor graph that uses integers ≤ N is
of asymptotic length � N/ logN . We study the partitions of {1, 2, . . . , N} into a minimal
number of paths of the divisor graph, and we show that in such a partition, the longest path
can have length asymptotically N1−o(1).
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IV.1 Introduction
The divisor graph is the unoriented graph whose vertices are the positive integers, and edges
are the {a, b} such that a < b and a divides b. A path of length l in the divisor graph is a
finite sequence n1, . . . , nl of pairwise distinct positive integers such that ni is either a divisor
or a multiple of ni+1, for all i such that 1 ≤ i < l. Let F (x) be the minimal cardinal of a
partition of {1, 2, . . . , bxc} into paths of the divisor graph.

The asymptotic behaviour of F (x) has been studied in [ES95, Sai03, Maz06, Cha08].
Thanks to the works of Mazet and Chadozeau, we know that there is a constant c ∈ (1

6 ,
1
4)

such that
F (x) = cx

(
1 +O

( 1
log log x log log log x

))
. (IV.1)

A partition of {1, 2, . . . , N} into paths of the divisor graph is said to be optimal if its
cardinal is F (N). We are interested in the length of the paths in an optimal partition.

Let us take the example N = 30 that was considered in [Pom83, Sai03]. It is known (see
[Sai03]) that F (30) = 5, so that the following partition is optimal:

13, 26, 1, 11, 22, 2, 14, 28, 7, 21, 3, 27, 9, 18, 6, 12, 24, 8, 16, 4, 20, 10, 30, 15, 5, 25
17
19
23
29

Four of these five paths are singletons. In fact, at the end of the proof of Theorem 2 of
[ES95], it is proven that the number of singletons in a (not necessarily optimal) partition is
� N for N large enough.

Let us look at the longest paths in an optimal partition of {1, 2, . . . , N}. Let L(N) be the
maximal path length, among all paths of all optimal partitions of {1, 2, . . . , N} into paths of
the divisor graph. Let also f(N) denote the maximal length of a path of the divisor graph
that uses integers ≤ N .

It is known that (Theorem 2 of [Sai98])

f(N) � N

logN . (IV.2)

Of course L(N) ≤ f(N). In the previous example, four of the five paths are singletons, which
implies that the longest path has maximal length. In other words L(30) = f(30) = 26. More
generally, we know that for all N ≥ 1,

F (N) ≥ N − bN/2c − bN/3c (IV.3)

(see [Sai03]). Inspired by the case N = 30, for any N ∈ [1, 33] it is easy to construct a
partition of {1, . . . , N} into N −bN/2c− bN/3c paths, all of them but one being singletons.
This shows that for 1 ≤ N ≤ 33, (IV.3) is an equality and L(N) = f(N) = bN/2c+bN/3c+1.

However for larger N the situation becomes more complicated. For N large enough there
is no optimal partition with all paths but one being singletons. This can be deduced from
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(IV.2) and the fact that the constant c in (IV.1) is less than 1. Still, it is natural to wonder
if the equality L(N) = f(N) holds for any N ≥ 1.

We were unable to answer this question, but we looked for lower bounds on L(N) and
proved the following:
Theorem IV.1. There is a constant A ≥ 0 such that for all N ≥ 3,

L(N) ≥ N

exp
[

(log logN)2

log 2

]
(logN)A

.

Remark IV.2. In this form of the lower bound, it is tricky to find a decent, explicit value
of A given by our method. However, if we allow for a constant factor, we show in the proof
that there exists C > 0 such that for all N large enough,

L(N) ≥ C N

exp
[

(log logN)2

log 2

]
(logN)B

for an effective B ' 7.248. With some optimization of parameters we managed to get
B ' 5.893. However, notice that an improvement on the coefficient 1

log 2 would be more
significant for the asymptotic.

To prove this we introduce a new function H(x). For a real number x ≥ 1 and two
distinct integers a, b ∈ [1, x], let La,b(x) be the maximal length of a path having a and b as
endpoints and belonging to an optimal partition of {1, 2, . . . , bxc}. If there is no such path,
we set La,b(x) = 0. Then we set

H(x) = minLr′,r(x)

where the min is over all couples (r′, r) of prime numbers such that
x

3 < r ≤ x

2 < r′ ≤ x.

The theorem will be an easy consequence of the following.
Proposition IV.3. There is a constant N0 such that for any N ≥ N0, there is a set P(N)
of prime numbers in (3

√
N logN, 4

√
N logN ], of cardinal |P(N)| ≥

√
N

19(logN)3/2 , such that

H(N) ≥
∑

p∈P(N)
H

(
N

p

)
. (IV.4)

The technique used here is analogous to that of [Sai93] in the study of the longest path.
More precisely, in [Sai93], f∗(N) denotes the maximal length of a path that uses integers
in [
√
N,N ]. A quantity h∗ is introduced, which is to f∗ what H is to L in our case. The

inequality (IV.4) is analogous to Buchstab’s inequality (40) from [Sai93]. The corresponding
lower bounds led to the proof that f∗(N) � N/ logN (Theorem 2 in [Sai98]).

The analogy can be pushed further: in both the proof of (IV.4) and of (40) in [Sai93], we
borrow a technique used by Erdős, Freud and Hegyvári who proved the following asymptotic
behaviour:

min max
1≤i≤N−1

lcm(ai, ai+1) =
(1

4 + o(1)
)

N2

logN ,
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where the min is over all permutations (a1, a2, . . . , aN ) of {1, 2, . . . , N}; see Theorem 1 of
[EFH83]. In [EFH83] as in [Sai93] or in the present work, the proof goes through the
construction of a sequence of integers by concatenating blocks whose largest prime factor is
constant, and linking blocks together with separating integers. In [Sai93] as in the present
work, these blocks take the form of sub-paths pCN/p, where the CN/p is a path of integers
≤ N/p whose largest prime factor is ≤ p.

It is worth mentioning that the article [EFH83] of Erdős, Freud and Hegyvári is the origin
of all works related to the divisor graph.

IV.2 Notation

The letters p, q, q′, r, r′ will always denote generic prime numbers. For an integer m ≥ 2,
P−(m) denotes the smallest prime factor of m.

Let N ≥ 1. A path of integers ≤ N of length l is a l-uple C = (a1, a2, . . . , al) of pairwise
distinct positive integers ≤ N , such that for all i with 1 ≤ i ≤ l − 1, ai is either a divisor or
a multiple of ai+1. For convenience, we take C up to global flip, i.e. we identify (a1, . . . , al)
with (al, . . . , a1). We will denote this path by a1−a2−· · ·−al (or al−· · ·−a2−a1). If b and
c are integers such that b = ai and c = ai±1 for some i, we say that b and c are neighbours
(in C).

When a partition A(N) of {1, 2, . . . , N} is fixed, for any n ∈ {1, 2, . . . , N} we will simply
denote by C(n) the path that contains n in A(N).

A partition of {1, 2, . . . , N} into paths is said to be optimal if it contains F (N) paths
(see the Introduction for the definition of F ).

Let C be a path of integers ≤ N and 1 ≤ n ≤ N . Then C is said to be n-factorable if all
the integers of C are multiple of n. Then C can be written as C = nD where D is a path of
integers ≤ N/n.

For integers 1 ≤ n ≤ N and a partition A(N) of {1, 2, . . . , N}, we say that n is factoring
for A(N) if every path of A(N) that contains a multiple of n is n-factorable.

IV.3 Lemmas

Lemma IV.4. Let N ≥ 1 and A(N) be an optimal partition.

(i) Let 1 ≤ n ≤ N with n factoring for A(N). Let k = bN/nc. There are exactly F (k)
paths in A(N) that contain a multiple of n. They are of the form nD1, nD2, . . . , nDF (k)
where D1,D2, . . . ,DF (k) is an optimal partition of {1, 2, . . . , k}.

(ii) Let z > 1 be a real number. Let Mz(N) be the set of integers m ≤ N that are not
factoring for A(N) and such that

m >
N

z
and P−(m) > z.

Then
|Mz(N)| < 2N

z
.
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Proof. (i) Since n is factoring, the paths in A(N) can be split in two subsets: those formed
by the multiples of n, and those that do not contain any multiple of n. We write the first
{nD1, nD2, . . . , nDg}. Thus D1,D2, . . . ,Dg is a partition of the integers ≤ k = bN/nc;
this implies g ≥ F (k). We claim that this is an equality. Indeed, there exists an optimal
partition D′1,D′2, . . . ,D′F (k) of k. If we had g > F (k), we would be able to replace
{nD1, nD2, . . . , nDg} with {nD′1, nD′2, . . . , nD′F (k)} in the initial partition A(N), thus
getting a partition of n with fewer paths, which contradicts the optimality of A(N).

(ii) Let m ∈ Mz(N). There exists a multiple of m that is a neighbour to non-multiple of
m. Let b(m) be the smallest multiple of m with that property, and let c(m) be its
smallest neighbour that is not a multiple of m. Then c(m) has to be a divisor of b(m).
More precisely, if b(m) = am, then c(m) can be written as c(m) = ãm̃ with ã a divisor
of a and m̃ a strict divisor of m. Since P−(m) > z, c(m) < N/z.
Moreover, if m,m′ are two distinct elements of Mz(N), then

lcm(m,m′) ≥ min(mP−(m′),m′P−(m)) > N

z
z = N.

so that there is no integer in {1, 2, . . . , N} that is both a multiple of m and m′. As a
result the map

b : Mz(N)→ {1, 2, . . . , N}
m 7→ b(m)

is an injection.
Moreover, any integer c < N/z has at most two neighbours in C(c). Consequently the
map

c : Mz(N)→ {1 ≤ n < N/z}
m 7→ c(m)

is at-most-two-to-one. Thus
|Mz(N)| < 2N

z
.

Lemma IV.5. There exists a constant N1 such that for any N ≥ N1, there is a set P̃(N)
of prime numbers in (3

√
N logN, 4

√
N logN ] of cardinal

|P̃(N)| ≥
√

N

logN , (IV.5)

such that for any prime numbers r, r′ with

N

3 < r ≤ N

2 < r′ ≤ N,

there exists an optimal partition A(N) of {1, 2, . . . , N} that contains the paths r′ and 2r− r
and for which all the integers in P̃(N) are factoring.
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Proof. Let N1 be such that for any N ≥ N1,

π
(
4
√
N logN

)
− π

(
3
√
N logN

)
− 2

3

√
N

logN ≥
√

N

logN , (IV.6)

π

(
N

2

)
− π

(
N

3

)
≥ 8. (IV.7)

The existence of such a N1 comes from the prime number theorem (more precisely the
left-hand-side of (IV.6) is equivalent to 4

3

√
N

logN ). We also take N1 large enough so that

(
3
√
N logN, 4

√
N logN

]
∩
(
N

3 ,
N

2

]
= ∅. (IV.8)

Let N ≥ N1. We start by fixing an optimal partition A′(N). We apply Lemma IV.4 (ii)
to A′(N) with z = 3

√
N logN . All the prime numbers p in (3

√
N logN, 4

√
N logN ] that are

not factoring are in Mz(N), since they satisfy p > 3
√
N logN ≥ N

z and P−(p) = p > z, so
there are at most 2

3

√
N

logN of them. By removing these and using (IV.6), we get a set P̃(N)
of prime numbers in (3

√
N logN, 4

√
N logN ] that are factoring in A′(N), with cardinality

|P̃(N)| ≥
√

N

logN .

We now change the notation slightly and fix two prime numbers r0, r′0 such that

N

3 < r0 ≤
N

2 < r′0 ≤ N.

Our goal is to go from A′(N) to a new optimal partition A(N) that contains the paths r′0
and 2r0 − r0 while maintaining the fact that the elements of P̃(N) are factoring.

Let us denote the set of prime numbers

R =
{
N

3 < r ≤ N

2

}
,

and R∗(A′(N)) the subset of r ∈ R such that r does not have 1 as a neighbour in C(r) and
2r does not have 1 nor 2 has a neighbour in C(2r). Then for any r ∈ R∗(A′(N)), since the
only possible neighbour of r is 2r and reciprocally, by optimality the path C(r) is equal to
r − 2r. Moreover, since 1 and 2 have at most two neighbours,

|R \ R∗(A′(N))| ≤ 4. (IV.9)

Now we make it so that r′0 is a path. If it is not the case, since the only possible neighbour
of r′0 is 1, C(r′0) is of the form D − r′0 with D a path ending in 1. We split this path into
D on one side and r′0 on the other side. By (IV.9) and (IV.7), there is at least one element
r∗ ∈ R∗(A′(N)). We stick D to C(r∗), thus forming the path D − C(r∗). This is possible
because D ends in 1. Let A′′(N) be this new partition. The total number of paths has not
changed so A′(N) is still optimal, furthermore it contains the path r′0, and the elements of
P̃(N) are still factoring because the integers in the paths that changed were not multiples
of any p ∈ P̃(N).
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The subset R∗(A′′(N)) might differ from R∗(A′(N)) by one element, but it still satisfies
(IV.9) and its elements r still satisfy that C(r) is equal to r− 2r. If r0 ∈ R∗(A′′(N)), we can
set A(N) = A′′(N) and the proof is over. We now suppose that r0 /∈ R∗(A′′(N)).

By (IV.9) and (IV.7), there are at least four elements r1, r2, r3, r4 in R∗(A′′(N)). We cut
the path C(1) into one, two or three paths, one of them being the singleton 1 (we will see
later that we get in fact three paths). Such a move will be called an extraction of the integer
1. We similarly extract the integer 2. We now use these integers 1 and 2 to stick together
the paths ri − 2ri by forming

r1 − 2r1 − 1− 2r2 − r2 and r3 − 2r3 − 2− 2r4 − r4.

We thus get a new partition A(N). Its number of paths is less or equal to that of A′′(N), so
it is still optimal (this shows in particular that 1 and 2 were not endpoints of their paths).
It also satisfies r0 ∈ R∗(A(N)) since 1 and 2 are not linked to r0 nor 2r0, so that it contains
the path r0 − 2r0, as well as r′0, and the elements of P̃(N) are still factoring.

IV.4 Proof of the Proposition
Let N1 be the constant introduced in the proof of Lemma IV.5. We fix a N0 such that

N0 ≥ N4
1 (IV.10)

and such that for all N ≥ N0,

1
2

√
N

logN ≥ π
(

1
4

√
N

logN

)
− π

(
1
6

√
N

logN

)

≥ π
(

1
8

√
N

logN

)
− π

(
1
9

√
N

logN

)

≥
⌊ √

N

37(logN)3/2

⌋
≥

√
N

38(logN)3/2 + 1
2 ≥ 5

(IV.11)

and
4
√

logN ≤ N1/4. (IV.12)

The existence of such a N0 is again an easy consequence of the prime number theorem. Also
note that since N0 ≥ N1, (IV.8) still holds.

Let N ≥ N0. We chose a set P̃(N) according to Lemma IV.5. Let us denote

I =
⌊

1
37

√
N

(logN)3/2

⌋
.

By (IV.5) and (IV.11) we can chose 2I elements in P̃(N), which we denote as

p1, p2, . . . , p2I .

We set P(N) = {p1, . . . , p2I−1}. By (IV.11) again, |P(N)| ≥
√
N

19(logN)3/2 . It remains to prove
that this set P(N) satisfies (IV.4).
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Let r, r′ be two prime numbers such that
N

3 < r ≤ N

2 < r′ ≤ N. (IV.13)

By the property of P̃(N) in Lemma IV.5, there exists an optimal partition A′(N), that
contains the paths r′ and 2r − r, for which the elements of P̃(N) (and in particular the
elements of P(N)) are factoring.

We denote two sets of prime numbers

Q(N) =
{

1
9

√
N

logN < q ≤ 1
8

√
N

logN

}
,

Q′(N) =
{

1
6

√
N

logN < q′ ≤ 1
4

√
N

logN

}
.

For all (p, q, q′) ∈ P̃(N)×Q(N)×Q′(N) we have

N

3 < pq ≤ N

2 , (IV.14)
N

2 < pq′ ≤ N. (IV.15)

We focus on the factoring prime number p2I . For any q ∈ Q(N), because of (IV.14) the
only possible neighbours of p2Iq are p2I and 2p2Iq. Similarly, the only possible neighbours
of 2p2Iq are p2I , 2p2I or p2Iq. But p2I and 2p2I can be linked to at most 4 elements of
type p2Iq or 2p2Iq. By (IV.11) we know that |Q(N)| ≥ 5, so there exists a q2I ∈ Q(N) for
which neither p2Iq2I nor 2p2Iq2I is a neighbour of p2I or 2p2I . As a result, the only possible
neighbour for p2Iq2I is 2p2Iq2I , and reciprocally. By optimality, A′(N) contains the path
p2Iq2I − 2p2Iq2I .

Using (IV.11) we can chose

• I elements of Q′(N) which we write as

q1, q3, . . . , q2I−1; (IV.16)

• I − 1 elements of Q(N) \ {q2I} which we write as

q2, q4, . . . , q2I−2. (IV.17)

Let i be such that 1 ≤ i ≤ 2I − 1. Then the prime number pi is factoring for A′(N) so
by Lemma IV.4 (i) the paths of A′(N) that contain multiples of pi are of the form

piCi,1, piCi,2, . . . , piCi,F (N/pi)

where Ci,1, Ci,2, . . . , Ci,F (N/pi) is an optimal partition of {1, 2, . . . , bN/pic}. By our choice of
indices (IV.16),(IV.17), one of the elements qi, qi+1 is in Q′(N), we rename it q̃i, and the
other is in Q(N), we rename it q̃i+1. Using (IV.14),(IV.15) we get

N

3pi
< q̃i+1 ≤

N

2pi
< q̃i ≤

N

pi
.
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Using (IV.12) and (IV.10), we have N/pi ≥ N1/4 ≥ N
1/4
0 ≥ N1. Hence we can apply

Lemma IV.5 with N/pi instead of N . We deduce that there exists an optimal partition
of {1, 2, . . . , bN/pic} that contains the paths q̃i and q̃i+1 − 2q̃i+1. By extracting 1 in that
partition, we can stick these two paths together into q̃i − 1− 2q̃i+1 − q̃i+1 while keeping an
optimal partition. To sum up, we know now that there is an optimal partition of the integers
≤ N/pi containing a path that has qi and qi+1 as endpoints.

Let Di,1,Di,2, . . . ,Di,F (N/pi) be an optimal partition of the integers ≤ N/pi, with Di,1
having qi, qi+1 as endpoints and of maximal length Lqi,qi+1(N/pi). We can transform A′(N)
by replacing the paths (piCi,j)1≤j≤F (N/pi) by (piDi,j)1≤j≤F (N/pi). In this way we get a new
optimal partition A′′(N) that contains all the paths piDi,1 for 1 ≤ i ≤ 2I − 1, as well as r′,
2r − r, and p2Iq2I − 2p2Iq2I .

By extracting the integers 1, 2 and the qi for 2 ≤ i ≤ 2I, we construct the path of
Figure IV.1 while keeping an optimal partition of {1, 2, . . . , N}.

r′

1

p1D1,1

q2

p2D2,1

q3

. . .

p2I−1D2I−1,1

q2I

p2Iq2I 2p2Iq2I

2

2r r

Figure IV.1: A long path with endpoints r′, r.

Its length is larger than

2I−1∑
i=1

Lqi,qi+1(N/pi) ≥
∑

p∈P(N)
H(N/pi).

This being true for any r, r′ satisfying (IV.13), we get

H(N) ≥
∑

p∈P(N)
H(N/pi).

IV.5 Proof of the Theorem

Let us fix a constant N2 = 22k0 ≥ N0, where N0 is the constant introduced in the proof
of the Proposition. Let B = 1 + log2(76). We chose a constant C0 > 0 such that for all
N ≤ 22k0+2 ,

N ≤ 4C0 exp
[

(log logN)2

log 2

]
(logN)B. (IV.18)
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We show by induction on k ≥ k0 + 2 that for all N such that

22k0
< N ≤ 22k ,

we have

H(N) ≥ N

C0 exp
[

(log logN)2

log 2

]
(logN)B

(IV.19)

Base case

Let N be such that 22k0 < N ≤ 22k0+2 , then we have N > N2 ≥ N0 ≥ N4
1 (see (IV.10)) with

N1 the constant of Lemma IV.5. Let r, r′ be two prime numbers such that

N

3 < r ≤ N

2 < r′ ≤ N.

Lemma IV.5 implies that there is an optimal partition A(N) of {1, 2, . . . , N} which
contains the paths r′ and 2r−r. By extracting 1, we can stick them into r′−1−2r−r while
keeping an optimal partition. This implies that H(N) ≥ 4, and (IV.18) yields the base case.

Induction step

Let k ≥ k0 + 2. We suppose that (IV.19) holds for all N ∈
(
22k0 , 22k

]
.

Let N be such that 22k < N ≤ 22k+1 . Since k ≥ k0 + 2, we also have N1/4 > 22k0 .
Let p ∈

(
3
√
N logN, 4

√
N logN

]
. By (IV.12), we have

22k0
< N1/4 ≤ N

p
≤
√
N ≤ 22k .

By using the induction hypothesis on N/p, we get

H

(
N

p

)
≥ N

C0p exp
[

(log log(N/p))2

log 2

]
(log(N/p))B

≥ N

C0p exp
[

(log log
√
N)2

log 2

]
(log
√
N)B

= 2B−1(logN)2N

C0p exp
[

(log logN)2

log 2

]
(logN)B

.
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Hence by using the Proposition and the definition of B,

H(N) ≥
∑

p∈P(N)
H

(
N

p

)

≥ |P(N)|
maxP(N)

2B−1(logN)2N

C0 exp
[

(log logN)2

log 2

]
(logN)B

≥ 2B−1

76
N

C0 exp
[

(log logN)2

log 2

]
(logN)B

= N

C0 exp
[

(log logN)2

log 2

]
(logN)B

.

This concludes the induction step.

Finally, since L(N) ≥ 1 for all N ≥ 1, we get the Theorem by choosing A = max(A0, A1),
where A0 is a constant such that for all N ≥ N2,

C0 (logN)B ≤ (logN)A0

and A1 is a constant such that for all 3 ≤ N < N2,

N ≤ exp
[

(log logN)2

log 2

]
(logN)A1 .
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Sujet : Modèles intégrables de spins, vertex et boucles

Résumé : Cette thèse porte sur divers problèmes de mécanique statistique, liée à l’étude des
modèles intégrables. Dans ces modèles, l’existence de symétries particulières, exprimées par
exemple par les équations de Yang-Baxter ou transformations “triangle-étoile”, permettent de
donner des formules exactes pour les observables d’intérêt.
Dans un premier temps, nous étudions la transformation triangle-étoile du modèle d’Ising, refor-
mulée par Kashaev en une équation d’évolution polynomiale. Nous montrons que cette évolution
fait apparaître des objets combinatoires : les modèles de boucles C(1)

2 . Nous montrons de plus
des résultats de formes limites et des calculs d’énergie libre pour ces modèles de boucles.
Dans un second temps, nous développons la compréhension du modèle des “huit sommets”, qui
généralise les modèles de glace. Nous montrons que dans le régime des fermions libres, ces modèles
peuvent être compris via des modèles de dimères bipartis, et des fortes structures d’intégrabilité
de ces derniers. Nous en déduisons des constructions de mesures de Gibbs et des corrélations en
volume infini, notamment pour des régimes Z-invariants sur des graphes isoradiaux.
Enfin, nous proposons des interprétations des équations de Yang-Baxter en géométrie discrète,
via des plongements particuliers de graphes.

Mots clés : Mécanique statistique, modèles intégrables, équations de Yang-Baxter, Triangle-
étoile, modèles de spins, modèles vertex, modèles de boucles, fermions libres.

Subject : Integrable spin, vertex and loop models

Abstract: This thesis deals with several problems in statistical mechanics, related to the study
of integrable models. In these models, some particular symmetries, like those expressed by the
Yang-Baxter equations or “star-triangle” transformations, lead to the existence of exact formulas
for observables of interest.
In a first part, we study the star-triangle transformation of the Ising model, recast into a singe
polynomial evolution equation by Kashaev. We show that this evolution creates combinatorial
objects: C(1)

2 loop models. We show some limit shapes results and compute the free energy of
these loop models.
In a second part, we develop the study of the “eight-vertex” model, that generalises ice models.
In the free-fermion regime, we translate these models into dimers on a bipartite graph, and use
the strong integrability structures of these. We deduce the construction of Gibbs measures and
correlations in infinite volume, in particular for Z-invariant regimes on isoradial graphs.
Finally, we suggest interpretations of the Yang-Baxter equations in discrete geometry, via par-
ticular embeddings of graphs.

Keywords : Statistical mechanics, integrable models, Yang-Baxter equations, star-triangle, spin
models, vertex models, loop models, free fermions.
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