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Abstract

Well-behaved averages were introduced by J. Ecalle to give a positive answer to
the problem of real resummation : how to assign a real sum to a real divergent series
of “natural origin” (stemming for example from a differential equation).

Each average can be described as a collection of weights, that is coefficients in-
dexed by words of plus or minus signs. Among the well-behaved averages, some
are strongly linked to sets of probabilities associated to random walks on the real
axis : For a given word (ε1, . . . , εn) (εi = ±), the weight of the average is simply the
probability to be on R

ε1 at time 1, on R
ε2 at time 2, . . . , on R

εn at time n.
When the probability density associated to the random walk is a linear combi-

nation of elementary exponential laws, it induces an average with explicit weights.
These ones can be decomposed in terms of elementary coefficients that are indexed
by finite rooted oriented trees.

This tree-decomposition yields a first partial answer to the following question :
When does a random walk induce the same average as the random walk with expo-
nential law.
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1 Introduction

Well-behaved uniformizing averages (WBA) were introduced by J. Ecalle to answer the
problem of real resummation : how to assign a real sum to a real divergent series of
“natural origin”, for example a formal solution of a differential equation. The need for
“uniformizing” some analytic ramified functions appears naturally in this kind of problem.
For example, let ϕ be an analytic function with singularities over N∗, analytically con-
tinuable on the universal covering of C/N∗. For a given non-negative integer n we can
label the 2n determinations of ϕ over the interval ]n, n + 1[ that are obtained by analytic
continuation of ϕ along the 2n paths dodging the singularities {1, . . . , n} to the left or to
the right. If the sign + (resp. −) is assigned when dodging to the right (resp. to the
left), these 2n determinations of ϕ over ]n, n+ 1[ are labeled by the addresses (ε1, . . . , εn)
(εi = ± and 1 ≤ i ≤ n). Such functions appear naturally in the real-resummation theory
and it’s as much natural to try to associate a uniform function to ϕ, that is to “uniformize”.
The most simple way to do so is , over the interval ]n, n + 1[, to do an “average” of the
2n determinations of ϕ, pondering them by 2n “weights” mε1,...,εn, of sum (for a given n)
equal to 1.

Thus, a uniformizing average m is just a collection of weights :

m = {mε1,...,εn ; n ≥ 0 ; εi = ± ; 1 ≤ i ≤ n} (1.1)

As it will be reminded in section 2 some supplementary, analytic and algebraic, conditions
are imposed to such averages, so that they become a very powerful tool in real resummation.
In these conditions, the average m is called a well-behaved average (WBA).For details see
section 2 and [2, 3, 6, 7]. The study of particular averages, which appeared to be WBA,
proved the existence of such objects.

For example, J. Ecalle found a great class of WBA, which were named averages induced
by diffusion. There is a way to generate an average (i.e. to to induce), from a random
walk (abusively called diffusion) : Let (Xn)n≥1 be a sequence of independent, identically
distributed, real random variables, having an integrable even function as probability density
( we will often write “the diffusion f”). We can define the random variables (Sn)n≥1 :

∀n ≥ 1 ; Sn = X1 + · · ·+Xn

and this induces an average m :

∀n ≥ 1 ; ∀(ε1, . . . , εn) ∈ {+,−} ; mε1,...,εn = P(ε1S1 > 0, . . . , εnSn > 0) (1.2)

J. Ecalle proved that such averages are WBA. Moreover, for the purpose of real re-
summation, we can omit that f is positive. A complete expository of these results can be
found in [6].

Let us give the example of the “Catalan” average, that is, the average induced by the
diffusion with the exponential law :

f(x) =
1

2
e−|x|
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This averageman is called the “Catalan average” because it was first defined by its weights,
in which the Catalan numbers appear. Moreover, it was proved then, independently of the
results on averages induced by diffusion, that this is a WBA (see [2, 6]).

This average is also the point of origin of this paper. In his work on WBA (see [4]), C.
Even conjectured that the average man was also induced by the diffusion of “law” :

f(x) = 3e−|x| − 15e−2|x| + 15e−3|x|

Although this function is no more positive, we call it a “law”. We prove in this paper that
this result is true and we give a sufficient condition for “diffusion” (i.e. “diffusion laws”)
to induce the Catalan average. As it is suggested by the above example, on one hand, we
will restrict our study to “linear exponential diffusions” (or “exponential diffusions”), that
is to say laws that are linear combinations of exponentials :

f(x) =

d∑

i=1

aie
−λi|x| (d ≥ 1 ; λi > 0)

on the other hand, we omit the fact that such functions should be positive.
We prove that, if f is an “exponential diffusion” such that d is odd, and :

∀1 ≤ i ≤ d ; ai =
1

4

∏d
j=1(λi + λj)

∏d
j=1
j 6=i

(λi − λj)

then f induces the average man by diffusion.
This result is based on computations of the weights of the averages induced by exponen-

tial diffusions. More precisely, we give decompositions for the average (and for some other
objects associated to) in terms of simple coefficients that are indexed by rooted-oriented
trees.

Without any details, let us just give an example. If m is induced by an exponential
diffusion, for example :

m+++− =
∑

T∈Ca3

mT

where Ca3 is the set of rooted-oriented trees with three edges :

The set Ca3.
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and the coefficients mT are described in theorem 4.
This tree-decomposition should lead, in a forthcoming paper, to give a complete answer

to the question : when do two “exponential diffusions” induce the same average ?

The section 2 is a general introduction to the real resummation that motivates the
definition of WBA. In sections 3 and 4 we define several objects, and among them the
averages, that are “induced” by diffusion, and more specifically by exponential diffusions.
The section 5 contains our main results about “tree-decomposition”. This will be helpful
to give, in section 6, a sufficient criteria for an exponential diffusion to induce the Catalan
average. The proofs of our main results are illustrated in section 7 and we shall then
conclude by giving some perspectives on this work and some results that shall be available
soon.
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2 Reminder on real resummation theory.

2.1 Some heuristics on real resummation. The need for well-

behaved averages.

The resummation scheme

All the series and functions in z introduced here are considered at infinity.
Let ϕ̃(z) be a real (with real coefficients) divergent series of “natural origin”: for in-

stance the formal solution of a local analytic equation or system:

E(ϕ̃) = 0 (2.1)

The most simple resummation scheme for resumming ϕ̃(z) goes like this:

ϕ̃(z) − − → ϕ(z)
ց ր

ϕ̂(ζ)
(2.2)

We begin by subjecting ϕ̃(z) to the formal Borel transform (to obtain ϕ̂(ζ)) which, for
instance, turns each monomial z−σ into ζσ−1/Γ(σ) (σ > 0).

Then we carry out a Laplace transform:

ϕ̂(ζ) −→ ϕ(z) =

∫ +∞

0

e−zζϕ̂(ζ)dζ (2.3)

This procedure for turning the formal object ϕ̃(z) into a geometric one ϕ(z) is the most
simple one, but it is already representative of the difficulties arising from the need for a
real resummation.

Although the move ϕ̂(ζ) 7→ ϕ(z) seems to be one single step, it actually involves three
distinct sub-steps.
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Three steps in one.

(i) First sub-step : calculating a germ. The function ϕ̂(ζ) is obtained, by the Borel trans-
form, as a germ near ζ = +0 and, generally speaking, it converges only for small enough
values of ζ .

(ii) Second sub-step : getting a global function. We must continue this germ from +0 to
+∞ so as to get a global function, which could be Laplace transformed. This will be
generally possible by analytic continuation, owing to the “natural origin” of ϕ̃(z).

(iii) Third sub-step : uniformizing the global function. Although there are no obstacles
to analytic continuation, there may be analytic singularities. Indeed, the existence of
singularities in the ζ-plane is precisely what causes the divergence of ϕ̃. There are often
compelling reasons for them to be located on R+. Then ϕ̂ is multi-valued (many-branched)
over R+ (its determination depends on the choice of a path of analytic continuation and
on the way this one dodges the singularities.). If so, we must turn ϕ̂(ζ), “in some suitable
way”, into a univalued (uniform) function (mϕ̂)(ζ), so as to be able to carry out the Laplace
transform.

What does “suitable way” mean ?

If we assume that ϕ̂(ζ) is multivalued, we will turn it into a uniform function by making
an average of the different analytic continuations of ϕ̂ and then, the difficulty relates to
the choice of a “suitable” (or well-behaved) uniformizing average m. Here, suitable means
three things:

P1: m must respect convolution: it is indispensable in all non-linear situations that m

turns convolution into convolution. The Borel and Laplace transforms are algebra homo-
morphisms. Thus our average m must be an algebra homomorphism (for the convolution
of “ramified” functions and the convolution of “uniform” functions) so as to assign to ϕ̃(z)
a sum ϕ(z) which is also a solution of the original equation.

P2: m must respect realness: this is rather necessary if ϕ̃(z) has real coefficients and if
we want to assign a real sum for some compelling reason: for example, if it represents a
physical or real-geometric object.

P3: m must respect the lateral growth: for a series ϕ̃ of natural origin, ϕ̂ displays,
generally speaking, the good growth rate (that is to say exponential growth) which allows
to carry out the Laplace transform. But that statement must be restricted. In fact, this
exponential growth is obtained only:
- on singularity-free axes Γθ (from 0 to infinity in the direction θ).
- on both sides (right and left) of a singularity-carrying axis.

If ϕ̂(ζ) has singularities on R+, this exponential growth is, generally speaking, also
ensured on paths Γ which are close to the positive axis and cross it only a finite number of
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times. But, if R+ carries infinitely many singularities, on paths Γ following R+, but with
infinitely many crossings, the function ϕ̂(ζ) often has faster-than-exponential growth:

| ϕ̂(ζ) |≤ c0exp(c1(| ζ | + | ζ | log | ζ |)) (2.4)

Unfortunately, the uniformizing averages which are P1 and P2 will involve the analytic
continuations of ϕ̂(ζ) on such “often-crossing” paths. Thus we must carefully choose
the average m such that (mϕ̂)(ζ) has a no-faster-than-exponential growth (| (mϕ̂)(ζ) |≤
c0exp(c1 | ζ |)).

Now an average m will be called a “well-behaved” uniformizing average if the three
properties P1, P2, P3 hold.

In order to define and present such well-behaved averages, we need to introduce the
convolution algebras of resurgent functions. But, for the sake of simplicity, we will restrict
ourselves to the definition of the convolution algebra RESUR(R+//N, int.) of resurgent
functions, with singularities over N∗ and which are locally integrable. Nonetheless, the
following statements can be extended to more general convolution algebras (with some
different set of singularities and without the condition of local integrability)

2.2 The algebra RESUR(R+//N, int.).

Definition: The algebra RESUR(R+//N, int.) is defined as follows. Let ϕ̂(ζ) be an
element of this algebra, then:

• ϕ̂(ζ) is defined and holomorphic at the root of R+ (on ]0, ǫ[).

• ϕ̂(ζ) is analytically continuable along any path that follows R+ and dodges each point
of N∗ to the left or to the right, but without ever going back.

• All the determinations of ϕ̂(ζ) are locally integrable on R+.

Moreover, the convolution is defined by:

ϕ̂3(ζ) = (ϕ̂1 ∗ ϕ̂2)(ζ) =

∫ ζ

0

ϕ̂1(ζ1) ϕ̂2(ζ − ζ1) dζ1 (0 < ζ ≪ 1) (2.5)

(ϕ̂1, ϕ̂2 ∈ RESUR(R+//N, int.))

This expression is purely local (at ζ = 0) and the germ ϕ̂3(ζ) must then be extended, by
analytic continuation, to a global function.

For details see [2].

Now, for a function of RESUR(R+//N, int.), we can give the following notation:
Let ϕ̂(ζ) be a function of RESUR(R+//N, int.) and (ε1, . . . , εn) be a sequence of n plus

or minus signs, then, for ζ in ]n, n + 1[, we will note ϕ̂ε1,...,εn(ζ) the analytic continuation
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of ϕ̂ from 0 to ζ on the path that follows R+ and dodges each singularity k (1 ≤ k ≤ n)
to the right (resp. to the left) if εk = + (resp. εk = −).

Example: If ζ ∈]4, 5[, then ϕ̂+,−,−,+(ζ) is the analytic continuation of ϕ̂ along the following
path:

• -• • • • •� �

� � � �

� � ζ0

Of course, ϕ̂∅(ζ) (O < ζ < 1) is the unique determination of ϕ̂ on ]0, 1[.

Once this notation is given, for any fixed integer n, a function ϕ̂ of
RESUR(R+//N, int.) has 2n possibly different determinations ϕ̂ε1,...,εn(ζ) over the in-
terval ]n, n + 1[ and a uniformizing average m will return an actual average of these 2n

determinations.

2.3 The uniformizing averages.

A uniformizing average m is a uniformizing projection of the space
RESUR(R+//N, int.) into the space UNIF (R+, int.) of uniform, locally integrable func-
tions on R+.

It can be define as a collection of “weights”:

m = {mε1,...,εn; n ∈ N ; εi = ± ; mε1,...,εn ∈ C} (2.6)

subject to the self-consistency relations:

∑

εn=±

mε1,...,εn = mε1,...,εn−1 (resp. m∅ = 1) if n > 1 (resp. n = 1) (2.7)

and the action of the average m on a function ϕ̂ of RESUR(R+//N, int.) is defined as
follows:

∀n ∈ N ; ∀ζ ∈]n, n + 1[ (mϕ̂)(ζ) =
∑

ε1=±...εn=±

mε1,...,εnϕ̂ε1,...,εn(ζ) (2.8)

Thus an average m turns a multivalued function into a uniform one by averaging its
different determinations and it is important to point out that the self-consistency relations
are a necessity: for instance, whenever a function ϕ̂ of RESUR(R+//N, int.) has only
fictive singularities, that is to say ϕ̂ is uniform, then we would like to obtain mϕ̂ = ϕ̂,
which is ensured by the self-consistency relations.
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Once these definitions are given, there exists more precise statements for the properties
P1, P2, P3:

P1: An average m respects convolution if and only if, for any two functions ϕ̂ and ψ̂ in
RESUR(R+//N, int.):

m(ϕ̂ ∗ ψ̂) = (mϕ̂) ∗ (mψ̂) (2.9)

where the first star ∗ (resp. the second) denotes the convolution on
RESUR(R+//N, int.) (resp. on UNIF (R+, int.)).

This condition is ensured if and only if the weights ofm verify a universal multiplication
table which reads, for example:





m+m+ = m+,+ −m−,+

m+m− = m+,− +m−,+

m−m− = m−,− −m+,−

m+m+,+ = m+,+,+ −m+,−,+ −m−,+,+

...

(2.10)

For proofs and complements, see [2, 3].

P2: The fact that an average m respects realness can easily be read on its weights. Let
ϕ̂ be a function of RESUR(R+//N, int.) and let us assume that ϕ̂ is the formal Borel
transform of a real divergent series. Then ϕ̂(ζ) is real for small enough real values of ζ and
assumes complex conjugate values on complex conjugate paths of analytic continuation:

∀n ∈ N ; ∀ζ ∈]n, n + 1[ ; ∀εi ∈ {+,−} ϕ̂ε1,...,εn(ζ) = ϕ̂ε̄1,...,ε̄n(ζ) (2.11)

where ε̄i is the opposite sign to ε.
Therefore, a uniformizing average m respects realness ((mϕ̂) is real on R+) if and only

if:
mε1,...,εn = mε̄1,...,ε̄n (∀n ≥ 0 ; ∀εi ∈ {+,−}) (2.12)

P3: Although this appears to be the main demand, we won’t go into details in this
introductory paper (see [2]). This condition does not reduce to growth conditions on the
weights. It actually involves some compensation phenomena. This faster-than-exponential
growth on “often-crossing” paths is a precise mechanism, which has to do with the nature
of the “acting alien algebra”. But, whenever a function ϕ̂ is of “natural origin”, the analysis
of this nuisance (with the “Bridge equation”) shows how to construct, independently of
ϕ̂ itself, “well-behaved” averages m which produce mean values mϕ̂ with the requisite
exponential growth.
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These three properties tend to be mutually exclusive but the main fact is that such well-
behaved averages exist. Among them, we shall give the example of the averages induced
by diffusion.

3 Averages induced by a diffusion.

3.1 Definition.

We fix an integrable function f on R such that:

∫ +∞

−∞

f(x)dx = 1 (3.1)

The function f may be viewed as representing the probability distribution at the time
t = 1, on the vertical axis 1 + iR, of a particle starting from the origin at t = 0, moving
along R+ with unit speed, and diffusing randomly in the vertical direction. To any such
“diffusion”, we may associate a uniformizing average m with weights defined as follows :

Definition 1 (J. Ecalle) mε1,...,εn is the probability for the particle to hit the half-axis
n + iεnR

+ at the time n after successively crossing each half-axis j + iεjR
+ (1 ≤ j < n)

at the time j.

Analytically, this translates into the following formula :

mε1,...,εn =

∫
f(x1) . . . f(xn)σε1(x1)σε2(x1 + x2) . . . σεn(x1 + · · ·+ xn) dx1 . . . dxn (3.2)

with integration over Rn and with the classical step functions σ+ and σ− :

σ±(x) ≡ 1 (resp. 0) if ± x > 0 (resp.± x ≤ 0) (3.3)

J. Ecalle proved that any average induced by a diffusion respects both convolution and
lateral growth. Moreover, as soon as the function f is even (f(x) = f(−x)), the average
also respects realness and thus is a well-behaved uniformizing average (for details see [2]).

The construction and the study of the averages induced by a diffusion are due to J.
Ecalle. Moreover, this method for building well-behaved averages allows to generalize
them, so that they can act on resurgent functions having their singularities in any discrete
additive semi-group of R+. J. Ecalle also proved that the condition of local integrability,
for the resurgent functions, is not a necessity.
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3.2 Some probability theory : Random walk on R.

We are aware that the above definition would perhaps be shocking for probabilists. First,
we didn’t make any assumption on the sign of f (note that we will always consider even
functions). Second, it seems that the terminology is unusual. Thus let us give here a short
dictionary to link averages induced by diffusion to random walks on R.

Suppose that f is a positive function on R. It represents a probability density. Con-
sider now a sequence of independent random variables (Xn)n∈ N

∗ having f as probability
density. Then we can consider the sums :

∀n ∈ N∗, Sn = X1 + · · ·+Xn (3.4)

The relation between averages and random walk is now clear because, for any sequence
(ε1, . . . , εr) :

mε1,...,εr = P (ε1S1 > 0, . . . , εrSr > 0) (3.5)

We shall end this section by an example that has been deeply studied as well in re-
summation theory as in probability theory and that motivates the study of “exponential
diffusions”.

3.3 The Catalan average and the exponential law.

The Catalan average was studied independently from averages induced by diffusion. Nev-
ertheless, this average, well-behaved, is induced by the exponential law :

f(x) =
1

2
e−|x| (3.6)

and provides us a first example of average induced by “exponential diffusion”. Moreover,
some questions, raised by the study of the Catalan average, were the start point of the
present paper.

Let us resume first the elementary properties of the Catalan average.

The Catalan average man.

The weights of man assume rational values, and can be obtained by the following formula :

manε1,...,εn ≡ 4−ncan1can2 . . . cans
(1 + ns) (3.7)

with the classical Catalan numbers :

can
def
=

(2n)!

n! (n+ 1)!
(can ∈ N) (3.8)

which in this case are indexed by the integers n1, n2, . . . , ns which denote the numbers of
identical consecutive signs within the address (ε1, . . . , εn) :

(ε1, . . . , εn) = (±)n1(∓)n2 . . . (εn)
ns (of course n1 + · · ·+ ns = n) (3.9)

The Catalan average man is interesting because it is a first example of well-behaved
uniformizing average (P1, P2, P3). As it was mentioned, this average motivated the study
of averages induced by diffusion.
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Some questions about exponential diffusions.

First of all, the weights of this average, induced by the exponential law, have explicit
expressions, in term of some combinatorial numbers. As we shall see, this property remains
true for any exponential diffusion :

f(x) =
d∑

i=1

aie
−λi|x| (3.10)

We will thus obtain an exhaustive description of the averages induced by exponential
diffusion. Moreover C. Even, in his work (see [4]), suggested that the Catalan average is
also induced by the following diffusion :

f(x) = 3e−|x| − 15e−2|x| + 15e−3|x| (3.11)

It shall be proved in theorem 5 that this statement is true and we will give a wider
family of exponential diffusion inducing man.

We should first deal with some general algebraic considerations on diffusions, exponen-
tial diffusions and some underlying objects (weighted functions, operators ...) associated
to an average induced by diffusion.

4 Diffusions and exponential diffusions.

We first give here some definitions of objects associated to an average induced by “diffu-
sion”.

4.1 Weighted functions and operators

The weighted functions associated to a diffusion.

Let us consider a diffusion f :

f(−x) = f(x) and

∫

R

f(x)dx = 1

The definition 1 of the average induced by f suggests to consider the following weighted
functions :

Definition 2 let (ε1, . . . , εr) a sequence of r signs. The weighted function f ε1,...,εr is
defined by the following induction :





f ε1(x) = f(x)σε1(x)

f ε1,...,εr(x) = (f ∗ f ε1,...,εr−1)(x)σεr(x) if r ≥ 2
(4.1)

where σ− = 1− σ+ and σ+(x) = 1 (resp. 0) if x ≥ 0 (resp. x < 0).
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Using this definition, for a sequence (ε1, . . . , εr), the weight associated to the average
m induced by f is :

mε1,...,εr =

∫

R

f ε1,...,εr(x)dx (4.2)

These weighted functions inherits some of the property P2 (see section 2.3) of the
weights of m. Thus, we will focus in the next section on lightly modified version of these
weighted functions.

The even weighted functions.

As we start with an even diffusion, we can define the following even weighted functions :

Definition 3 To any given sequence (ε1, . . . , εr) we associate the even function F ε1,...,εr

which coincides with the function f ε1,...,εr on the axis R
εr .

As f is even, it’s not difficult to check that :

F ε1,...,εr = F ε̄1,...,ε̄r (ε̄i opposite sign to εi) (4.3)

and these functions are defined by the induction :




F ε1(x) = f(x)

F ε1,...,εr(x) = (f ∗ F ε1,...,εr−1σεr−1)(x)σεr(x) = T
εr−1,εr
f F ε1,...,εr−1 if r ≥ 2, εrx ≥ 0

(4.4)
As f is even :

T+,+
f = T−,−

f = T 1
f

T+,−
f = T−,+

f = T 2
f

(4.5)

For any sequence (ε1, . . . , εr), which can be written (±)n1 , (∓)n2 . . . (εr)
nt, that is in stacks

of identical signs,

F (±)n1 ,(∓)n2 ...(εr)nt
= (T 1

f )
nt−1T 2

f (T
1
f )

nt−1−1T 2
f . . . (T

1
f )

n2−1T 2
f (T

1
f )

n1−1f (4.6)

and if we have a complete understanding of the operators (T 1
f )

n−1 and T 2
f (T

1
f )

n−1 (n ≥ 1),
we easily obtain all the even weighted functions. Moreover we should see now that we can
restrict our study to the second kind of operators, namely T f

n = T 2
f (T

1
f )

n−1 (n ≥ 1).
We have the following property :

Proposition 1 If the action of the operators T f
n = T 2

f (T
1
f )

n−1 is known, then we can
compute all the weights of the associated average m.

Proof : Because of the equation (4.2), for any sequence (ε1, . . . , εr) :

mε1,...,εr =

∫

R
+

F ε1,...,εr(x)dx

13



Now, m+ = m− = 1/2, and we suppose that, for positive integers n1, . . . , nt we know :

mn1,...,nt = m(ε1)n1 (ε2)n2 ...(εt)nt ,ε̄t =

∫

R
+

T f
nt
. . . T f

n2
T f
n1
F (x)dx

where the signs ε1, . . . , εt, ε̄t are alternate.
To prove the above property, we have to prove that we can now compute the other

weights of m, that is to say the weights of m for the sequences (ε1)
n1(ε2)

n2 . . . (εt)
nt with

t ≥ 1, nt ≥ 2 and alternate signs ε1, . . . , εt. But because of the general equation :

∀(ε1, . . . , εs−1)
∑

εs=±

mε1,...,εs−1,εs = mε1,...,εs−1

We easily obtain that, if nt ≥ 2 :

m(ε1)n1 (ε2)n2 ...(εt)nt
= m(ε1)n1 (ε2)n2 ...(εt−1)

nt−1 ,εt −
nt−1∑

k=1

m(ε1)n1 (ε2)n2 ...(εt)nt−k,ε̄t (4.7)

and then the above property is proven.

We can note that we have also obtained the following result : If two averages m1, m2

coincides for the sequences ((ε1)
n1(ε2)

n2 . . . (εt)
nt , ε̄t) , then m1 = m2.

To resume the above section, the definition of the weights of an average induced by
diffusion gives rise to the definition of some other objects : two different but very similar
kind of weighted functions and some fundamental operators T f

n . We proved (see property
above) that a deep understanding of these operators would lead us to a full knowledge
of the average induced by f . We shall now restrict ourself to the case of “exponential”
diffusions. In this case, we’ll be able to give some simple matricial representations of the
operators T f

n , which will lead us to the main results on averages induced by exponential
diffusion.

4.2 The exponential diffusions.

In the following sections, we consider diffusions f :

f(x) :=

d∑

i=1

aie
−λi|x| (4.8)

with 



∀ i, 1 ≤ i ≤ d, ai ∈ R

d∑

i=1

ai/λi = 1/2

(
⇔

∫

R

f(x)dx = 1

)

∀ i, j ∈ {1, d} , λi > 0 , and λi 6= λj if i 6= j

Let us first study the operators T 1
f and T 2

f with some help of linear algebra.

14



Some elementary algebra.

Let us consider the following vector space :

E =
d⊕

i=1

Ei =
d⊕

i=1

R[| x |]e−λi|x| (4.9)

and its basis :

{ei,k(x)} 1≤i≤d
k∈ N

, ei,k(x) =
| x |k

k!
e−λi|x| (4.10)

Note that

T 1
f =

d∑

i=1

aiT
1
ei,0

T 2
f =

d∑

i=1

aiT
2
ei,0

(4.11)

and using the definition of such operators (see (4.4)) :

Proposition 2 T 1
f , T

1
ei,0

, T 2
f and T 2

ei,0
are endomorphisms of E and :

T 1
ei,0
ej,k =





ei,k+1 +
k∑

l=0

1

(λi + λj)k+1−l
ej,l if j = i

1

(λj − λi)k+1
ei,0 +

k∑

l=0

(
1

(λi + λj)k+1−l
−

1

(λj − λi)k+1−l

)
ej,l if i 6= j

(4.12)

T 2
ei,0
ej,k =

1

(λi + λj)k+1
ei,0 (4.13)

Moreover, using the equations (4.11), we obtain the same kind of relations for T 1
f and

T 2
f .

Our goal remains to study the operators T 2
f (T

1
f )

n−1 = T f
n (n ≥ 1). Instead of using the

above relations, we can express T 1
f and T 2

f as infinite matrices in the basis {ei,k(x)} 1≤i≤s
k∈ N

.

To do so, we use the following notations.

Some notations on infinite matrices.

Let α(x) =

+∞∑

n=0

αnx
n a formal series. Then :

Definition 4 We define the following infinite matrices :

• Aα(x) is the infinite matrix such that Aα(x),(i,j) = αj−1 (resp. 0) if i = 1 (resp. i > 1).

• Bα(x) is the infinite matrix such that Bα(x),(i,j) = αj−i+1 (resp. 0) if j − i + 1 ≥ 0
(resp. otherwise).
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These matrices are useful to represent the operators T 1
f and T 2

f and,

Proposition 3 For any given formal series α1(x) and α2(x) :

Aα1(x)Aα2(x) = Aα1(0)α2(x) (4.14)

Aα1(x)Bα2(x) = A∆(α1(x)α2(x)) (4.15)

where ∆ is the shift operator :

if α(x) =
+∞∑

n=0

αnx
n then ∆(α(x)) =

α(x)− α(0)

x
=

+∞∑

n=0

αn+1x
n (4.16)

We have now an easy way to represent the operators T 1
f and T 2

f .

The representative matrices of T 1
f and T 2

f .

We can decompose the operators T 1
f and T 2

f with respect to the basis :

e = {ei,k(x)} 1≤i≤d
k∈ N

= ∪d
i=1{ei,k(x)}k∈ N (4.17)

and using this ordering for the basis and proposition 2,

Proposition 4

• The infinite representative matrix M of T 1
f can be decomposed in a d × d matrix of

infinite matrices M = ((Mi,j)) 1≤i≤d
1≤j≤d

with

Mi,j = Aαi,j(x) with αi,j(x) =
ai

λj − λi − x
for i 6= j (4.18)

Mi,i = Bαi,i(x) with αi,i(x) =

d∑

k=1

2λkaix

λ2k − (λi − x)2
(4.19)

• The infinite representative matrix N of T 2
f can be decomposed in a d × d matrix of

infinite matrices N = ((Ni,j)) 1≤i≤d
1≤j≤d

with

Ni,j = Aβi,j(x) with βi,j(x) =
ai

λi + λj − x
(4.20)

Using these matricial representations, we obtain our first theorem on the operators
T f
n = T 2

f (T
1
f )

n−1 (n ≥ 1).
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4.3 A first theorem on averages induced by exponential diffu-

sions.

We give here a theorem on the representative matrices of the operators T f
n = T 2

f (T
1
f )

n−1.

It is obvious that the representative matrix of T f
n is :

P f
n = N .Mn−1

Theorem 1 For n ≥ 1, the infinite representative matrix P f
n of T f

n can be decomposed in
a d× d matrix of infinite matrices P f

n = ((P f
n,(i,j))) 1≤i≤d

1≤j≤d

with

P f
n,(i,j) = Aβn

i,j(x)
(4.21)

where the series βn
i,j(x) are defined by the following induction :

β1
i,j(x) = βi,j(x) (4.22)

βn+1
i,j (x) =

d∑

k=1
k 6=j

βn
i,k(0)αk,j(x) + ∆(βn

i,j(x)αj,j(x)) (4.23)

Proof : This result is a very simple consequence propositions 3 and 4. It can easily be
proved by induction on n.

As P f
1 = N , the theorem is true for n = 1. Suppose it’s true for a fixed n, then :

P f
n+1 = N.Mn = N.Mn−1.M = P f

n−1.M

Thus

P f
n+1,(i,j) =

d∑

k=1

Pn,(i,k)Mk,j

=
d∑

k=1
k 6=j

Aβn
i,k

(x)Aαk,j(x) + Aβn
i,j(x)

Bαj,j(x)

=

d∑

k=1
k 6=j

Aβn
i,k

(0)αk,j (x) + A∆(βn
i,j(x)αj,j(x))

= A(∑d
k=1
k 6=j

βn
i,k

(0)αk,j (x) +∆(βn
i,j(x)αj,j (x))

)

This clearly ends the proof of this theorem.

With this theorem we obtained a first description of the operators T f
n and it also yields

a finite-dimensional description :
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Proposition 5 The vector space E0 = V ect{e−λ1|x|, . . . , e−λd|x|} is stable under the oper-
ators T f

n . To any given element

g(x) =
d∑

i=1

bie
−λi|x|

we can associate the vector ~b = (b1, . . . , bd). Now, for all n ≥ 1,

T f
n g =

d∑

i=1

bni e
−λi|x|

and the vector ~bn can be deduced from the vector ~b :

~bn = P̃ f
n
~b

where P̃ f
n is a d× d matrix with entries P̃ f

n,(i,j) = βn
i,j(0).

This proposition is a consequence of theorem 1 and of the definition of matrices A (see
definition 4).

We can also note that, for a function g of E0, represented by the vector ~b, integration
over R+ is : ∫

R
+

g(x) dx =< ~Λ |~b > (4.24)

where < . | . > is the standard scalar product on Rd and ~Λ = (1/λ1, . . . , 1/λd).

We can consider theorem 1 as the fundamental theorem of our paper and it already
points out what is easier, that is more explicit, when we restrict ourself to exponential
diffusions. Nevertheless, in order to have a deeper understanding of averages induced by
exponential diffusions, we must have some sharper evaluation of the operators T f

n , that is
of the functions βn

i,j. This will be done in the following section, by using combinatorial
objects, strongly linked to the Catalan numbers : rooted-oriented trees.

5 Tree-decompositions for exponential diffusions.

Most of our results are based on theorem 1 and on the fact that any object (weights,
weighted functions, operators) associated to an exponential diffusion can be “decomposed”
with the help of elementary coefficients indexed by rooted-oriented trees. Before we give
these results, let us introduce some definitions and notations on trees.
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5.1 Trees.

Some reminder about trees.

Let us define the sets Can of rooted-oriented trees with n edges. These sets are drawn for
the first values of n in the figure 1 below. The figure is quite sufficient to understand what
rooted-oriented trees are and the reader could refer to [1, 5] for details. We called these
sets Can because their cardinal is the Catalan number can. We can also introduce some
terminology.

Let T be a tree of Can. This tree has n edges and n + 1 vertices : 1 root and n
“children”. The length l(T ) of the tree is n. The definition of the first children of a vertex
of T (fc(T )) and of the “father” of a vertex are obvious.

n = 0

n = 1

n = 2

n = 3

Figure 1: First sets Can of rooted-oriented trees

Before we introduce some coefficients indexed by trees let us define a canonical way to
“label” a tree, that is to give a name to each vertex of the tree. Then we should introduce
the notion of “indexing” a tree with respect to a sequence.

Labeling of a tree.

Let us define the “labeling” of a tree with respect to a sequence. Let T be a tree of length
n and l a sequence of index of length n (l = (l0, . . . , ln−1)). Let us also give another index
j. The labeled tree Tj:l is obtained by labeling the tree T with respect to the sequence
j : l : we name the root j and then name the other vertices from left to right and from the
root to the children. For example :
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T Tj:l

j

l0 l1

l2 l3 l4

l5 l6 l7

Figure 2: Labeling the tree T with respect to the sequence j : l = (j : l0, . . . , l7).

Note that labeling a tree T with respect to a sequence j : l induces a natural partial
ordering on this sequence and we can define, for each index in l, an antecedent. For
instance, in figure 2 : 




l−0 = l−1 = j
l−2 = l−3 = l0
l−3 = l1
l−5 = l−6 = l−7 = l4

(5.1)

To end with this section, we shall give two more definitions about some special labeled
trees and about the decomposition of a labeled tree.

Rakes

For n ≥ 0, in each set Can, we shall give the name T n to the “rake”, that is the tree with
one root and n first children :

T 0 T 1 T 2 T 3

Figure 3: Rakes for n = 0, 1, 2, 3.

Decomposition of a labeled tree.

For n ≥ 0, let us consider a tree T of Can labeled by the sequence j : l = j : l0, . . . , ln−1. If
k (k ≥ n− 1) is the number of first children of j, then we first consider the rake T k

j:l0,...,lk
.

20



Then we define, for 0 ≤ p ≤ k, the subtree T
≤lp

lp:l
<lp

as the subtree having lp as root. The

labeling sequence l
<lp is naturally inherited from the initial tree. We have “decomposed”

the tree :
Tj:l = T k

j:l0,...,lk−1
∪k−1
p=0 T

≤lp

lp:l
<lp

(5.2)

For example :

Tj:l

j

j

l0

l0

l0

l1

l1

l1

l2

l2 l3

l3

l4

l4

l5

l5

l6

l6

l7

l7

T 2
j:l0,l1

T≤l0
l0:l

<l0
= T≤l0

l0:l2,l3
T≤l1
l1:l

<l1
= T≤l1

l1:l4,l5,l6,l7

Figure 4: Decomposition of the tree Tj:l0,...,l7.
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Note that :

• The new sequences l
<lp are graphically obvious. Nonetheless, for a given tree, it is

not really easy to give these sequences explicitly.

• We can iterate this decomposition on each of the subtrees T
≤lp

lp:l
<lp

that are not rakes

so that we easily get a rake-decomposition of trees.

• If a labeled rake with k edges and k labeled trees are given, then, assuming that the
indices are compatible, then we can re-compose the unique labeled tree having this
decomposition. The compatibility of indices is quite obvious : it simply means that
each index associated to a first child of the rake is equal to the root of one and only
one of the k labeled trees.

We can now give the definition of miscellaneous coefficients indexed by trees that will
be useful to study the “tree-decomposition” of the objects associated to an exponential
diffusion.

5.2 Notations.

Let us remind that we considered an exponential diffusion :

f(x) =
d∑

i=1

aie
−λi|x|

We can associate to such a diffusion the following elementary coefficients :

1 ≤ i, j ≤ d, Ri
j(x) =

ai
λi + λj − x

, Ri
j = Ri

j(0) =
ai

λi + λj
(5.3)

For a given tree of Can, we can give a first family of coefficients indexed by labeled
trees. Let us consider a tree T labeled with respect to the sequence j : l = j : l0, . . . , ln−1

(1 ≤ lk ≤ d). Among the children c(T ) in the tree, we distinguish the first children of
the root fc(T ) and to any child labeled by lk, we can associate its father whose labeled is
noted l−k . Now let us define the following coefficients :

RTj:l0,...,ln−1 (x) =
∏

lk∈fc(T )

Rlk
j (x)

∏

lk∈c(T )/fc(T )

Rlk
l−
k

(5.4)

RTj:l0,...,ln−1 = RTj:l0,...,ln−1 (0) =
∏

lk∈c(T )

Rlk
l−
k

(5.5)

For example, if we consider the tree T pictured in figure 5, then, for j : l = j : l0, . . . , l7 :

RTj:l(x) = Rl0
j (x)R

l1
j (x)R

l2
j (x)R

l3
l1
Rl4

l1
Rl5

l3
Rl6

l3
Rl7

l3
(5.6)
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j

l0 l1 l2

l3 l4

l5 l6 l7

Figure 5: Example of tree.

RTj:l = Rl0
j R

l1
j R

l2
j R

l3
l1
Rl4

l1
Rl5

l3
Rl6

l3
Rl7

l3
(5.7)

Note that we could have define these coefficients by induction, using the previously
defined decomposition of labelled tree :

For example, on figure 5, we have

Tj:l = T 3
j:l0,l1,l2

∪ T≤l0
l0:∅

∪ T≤l1
l1:l3,l4,l5,l6,l7

∪ T≤l3
l3:∅

Thus

RTj:l(x) = RT 3
j:l0,l1,l2 (x) R

T
≤l0
l0:∅RT

≤l1
l1:l3,l4,l5,l6,l7R

T
≤l3
l3:∅

and, by induction, we simply need the following definitions

R
T

≤l0
l0:∅ (x) = R

T 0
l0:∅(x) = 1

R
T k
j:l0,...,lk−1 =

k−1∏

p=0

R
lp
j

We can also give a notation that will be useful : If T is a tree of Can (n ≥ 1), then we
can label this tree by the sequence (j, l0, l1, . . . , ln−1) and then define :

RT
l0,j(x) =

∑

(l1,...,ln−1)∈{1,...,d}n−1

RT(j:l0,l1,...,ln−1)(x) (5.8)

RT
l0,j =

∑

(l1,...,ln−1)∈{1,...,d}n−1

RT(j:l0,l1,...,ln−1) (5.9)

With the use of these notations, we give now many theorems on Tree-decomposition of
the objects associated to an exponential diffusion.

5.3 Tree-decomposition for operators.

Let us first remind that, because of theorem 1, the operators T f
n are strongly related to

some infinite matrices :
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For n ≥ 1, the infinite representative matrix P f
n of T f

n can be decomposed in a d × d
matrix of infinite matrices P f

n = ((P f
n,(i,j))) 1≤i≤d

1≤j≤d

with

P f
n,(i,j) = Aβn

i,j(x)
(5.10)

where the series βn
i,j(x) are defined by the following induction :

β1
i,j(x) = βi,j(x) (5.11)

βn+1
i,j (x) =

d∑

k=1
k 6=j

βn
i,k(0)αk,j(x) + ∆(βn

i,j(x)αj,j(x)) (5.12)

with

αi,j(x) =
ai

λj − λi − x
for i 6= j (5.13)

αi,i(x) =
d∑

k=1

2λkakx

λ2k − (λi − x)2
(5.14)

βi,j(x) =
ai

λi + λj − x
(5.15)

We shall see now that the coefficients βn
i,j(x) can be expressed in term of tree-indexed

coefficients.

Theorem 2 For n ≥ 1 and 1 ≤ i, j ≤ d :

βn
i,j(x) =

∑

T∈Can

RT
i,j(x) (5.16)

Scheme of the proof : Let us consider the matrices βn(x) = ((βn
i,j(x)))1≤i,j≤d then

theorem 1 defines a transformation U : βn(x) 7→ βn+1(x) (see above) that can be trivially
extended to a linear operator on d×d matrices with coefficients in C[[x]]. To prove theorem
2, by induction on n, we shall study the action of U on the matrices :

RT
•,•(x) =

((
RT

i,j(x)
))

1≤i,j≤d
(T ∈ Can ; n ≥ 1) (5.17)

The proof will be easily obtained, using the two following lemmas.

Lemma 1 Let 1 ≤ n0 ≤ n and T a tree of Can with n0 first children. We have :

U.RT
•,•(x) =

n0∑

k=0

R
kT
•,•(x) (5.18)

where the trees of Can+1
0T, . . . , n0T stem from well-defined transformations of the tree T :
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• If 0 ≤ k ≤ n0 − 1, then “cut” the tree T at the root, just after the edge of the
(k + 1)th first child (first children counted from left to right). We have now a “left”
tree and a “right” one. On the left tree (with k + 1 first children), add an edge to
the (k + 1)th first child, to the right of its other edges, and then identify (“glue”) the
lower extremity of this edge to the root of the right tree. This new tree is kT .

• If k = n0 then simply add an edge to the root, to the right of its other edges

The graphical interpretation of these operations is really simple. For example, let us
consider the following tree T with n0 = 3 and n = 11 :

To build the tree 1T (k = 1) we cut after the second first edge to get the left and right
trees :

cut

“left tree” “right tree”

then we add a new edge to the right first child of the left tree and glue the right tree
to the lower extremity of this edge :

“left tree” “right tree”new edge

1T
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For the specific case k = n0, it is clear that, for this example we get :

1T

Using lemma 1, for a given integer n, the transformation U induces an application U∗

from the set :
C̃an

def
= {(k, T ) ; T ∈ Can ; 0 ≤ k ≤ Card(fc(T ))} (5.19)

into Can+1, defined by :

U∗ : C̃an → Can+1

(k, T ) 7→ kT (see Lemma 1)

(5.20)

Then :

Lemma 2 U
∗ is a bijection.

Because of these lemmas, the proof of theorem 2 is straightforward. The result is true
for n = 1 (see the definitions). Suppose that the result is true for n ≥ 1 :

βn(x) =
∑

T∈Can

RT
•,•(x)

then

βn+1(x) =
def

U.βn(x)

=
∑

T∈Can

U.RT
•,•(x)

=
Lemma 1

∑

T∈Can

Card(fc(T ))∑

k=0

R
kT
•,•(x)

=
Eq. (5.20)

∑

(k,T )∈C̃an

RU
∗(k,T )

•,• (x)

=
Lemma 2

∑

T∈Can+1

RT
•,•(x)

This ends the proof of theorem 2.
We shall “illustrate” the proofs for these two lemmas at the end of this part. But

right now, we will deduce some similar theorems for the weighted functions associated to
a diffusion and also for the weights of an average induced by an “exponential diffusion”.
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5.4 Tree-decomposition for weighted functions.

Let us define the following weighted functions associated to a diffusion f (see definition
3) :

F n1,...,nt = T f
nt
. . . T f

n1
F

= F (±)n1 (∓)n2 ...(εt)nt ε̄t (5.21)

for t ≥ 1 and ni ≥ 1 (1 ≤ i ≤ t).
Because of theorem 1 and proposition 5,

F n1,...,nt(x) =

d∑

i=1

bn1,...,nt

i e−λi|x|

with the vector of dimension d :

~bn1,...,nt = βnt(0) . . . βn1(0) .~a

and of course f(x) =

d∑

i=1

aie
−λi|x|.

Using the results of the previous section, and once again manipulating some trees, we
get the following result :

Theorem 3 For a given sequence of positive integers (n1, . . . , nt), we remind that

F n1,...,nt(x) =

d∑

i=1

bn1,...,nt

i e−λi|x| (5.22)

For this sequence we can find, in a constructive way, a subset Can1,...,nt
of Can1+···+nt

containing exactly can1can2 . . . cant
elements such that :

∀i , 1 ≤ i ≤ d , bn1,...,nt

i = ai
∑

T∈Can1,...,nt

RT
i (5.23)

with

RT
i =

d∑

l0=1

RT
l0,i

(0) (5.24)

Once again we shall simply illustrate the proof of this theorem. Nonetheless we can
easily give the explicit and inductive construction of Can1,...,nt

:

Step 0 : For each integer s (1 ≤ s ≤ t) chose a tree T s in Cans
.
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Step 1 : Pull up the left first child of T 1 so that it becomes the root of a new tree T̃ 1. If t = 1
the procedure is over.

Step 2 : Glue T̃ 1 and T 2 using the following rules : the roots of both trees are identified and
T̃ 1 is located to the right of the first edges of T 2. Repeat Step 1 to this tree to obtain
a tree T̃ 2 of Can1+n2.

Step s : (s ≥ 2) Repeat Step 2 for the trees T̃ s−1 and T s to get a tree T̃ s of Can1+···+ns
.

Step t : Repeat Step s for s = t to finally get a tree T̃ t of Can1+···+nt
.

Thus to each t-uple (T 1, . . . , T t) of Can1 × · · · × Cant
we can associate a tree T̃ t =

H(T 1, . . . , T t) of Can1+···+nt
and

Can1,...,nt
= {H(T 1, . . . , T t) ; (T 1, . . . , T t) ∈ Can1 × · · · × Cant

} (5.25)

Note that we wrote in the theorem that Can1,...,nt
is a subset of Can1+···+nt

containing as
much elements as Can1 × · · · ×Cant

. Thus, we will have to prove that the transformation
H is injective.

The proof of this theorem shall be illustrated later, but as in the previous section, let
us give a simple graphical interpretation of the above construction, For 3 trees as below,
let us give the three steps leading to a tree T̃ 3.
Step 1 :

T 1

T 2

T 2

T 3

T 3

Step 1

T̃ 1
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Step 2 :

T 2

T 3

T 3

Step 2

T̃ 1

T̃ 2
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Step 3 :

T 3

Step 3

T̃ 2

T̃ 3

We give now the same kind of result for the weights of an average induced by exponential
diffusion.

5.5 Tree-decomposition for the weights of an average.

Once again, let us define the weights (see section 4) :

mn1,...,nt = m(±)n1 (∓)n2 ...(εt)nt ε̄t (5.26)

for t ≥ 1 and ni ≥ 1 (1 ≤ i ≤ t).

30



We remind that it is sufficient to know these weights to determine all the weights of
the average m. Using the previous theorem and the proposition 5 :

Theorem 4 For (n1, . . . , nt) ∈ (N)t (t ≥ 1) :

m
n1,...,nt =

∑

T∈Can1,...,nt

m
T (5.27)

with

m
T =

d∑

i=1

ai
λi
RT

i (5.28)

In this case, the theorem is a very simple consequence of the previous one.

We can now give a partial answer to the following question : Which are the exponential
diffusion inducing the Catalan average ?

6 Exponential diffusions inducing the Catalan aver-

age.

Let us first give some precise statements for the Catalan diffusion.

6.1 The Catalan diffusion.

The Catalan diffusion is :

fa(x) =
1

2
e−|x| (6.1)

and, because of the homogeneity of the construction, we can generate the Catalan average
by any of the following diffusions :

f(x) = ae−λ|x| a

λ
=

1

2
, λ > 0 (6.2)

These diffusions define the same average man with weights :

manε1,...,εn ≡ 4−ncan1can2 . . . cans
(1 + ns) (6.3)

with the classical Catalan numbers :

can
def
=

(2n)!

n! (n+ 1)!
(can ∈ N) (6.4)

which in this case are indexed by the integers n1, n2, . . . , ns which denote the numbers of
identical consecutive signs within the address (ε1, . . . , εn) :

(ε1, . . . , εn) = (±)n1(∓)n2 . . . (εn)
ns (of course n1 + · · ·+ ns = n) (6.5)
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Note that (see the previous section) for a sequence of integers (n1, . . . , nt) :

mann1,...,nt = man(±)n1 (∓)n2 ...(εt)nt ε̄t =
1

2
4−(n1+···+nt)can1can2 . . . cant

(6.6)

This average depends only on the stacks of identical signs and this property already
exists for the weighted functions associated to the Catalan diffusion :

Fa(±)n1 (∓)n2 ...(εn)ns

= 4−n+nscan1can2 . . . cans−1Fa
(εn)ns

(x) (6.7)

Once again note that :

Fan1,...,nt = T f
nt
. . . T f

n1
Fa

= Fa(±)n1 (∓)n2 ...(εt)nt ε̄t

= 4−(n1+···+nt)can1can2 . . . cant
Faε̄t (6.8)

for t ≥ 1, ni ≥ 1 (1 ≤ i ≤ t) and, of course, Faε = fa.
We don’t go further in the description of the Catalan average and the reader can refer

to [6] for details.

6.2 The strong and the weak Catalan property.

We shortly described the Catalan diffusion and the Catalan average. If we are looking for
diffusions f inducing the Catalan average, the most natural way to do it is to compare
the weights of the average m induced by f to the weights of man. If m = man then the
diffusion f has the “weak Catalan property”.

But these equations are rather difficult to solve. Thus, we will restrict ourselves to a
more simple case. Instead of working on the weights induced by a given diffusion f , we
can rather consider the weighted functions. Using the equation (6.7), we get :

∀n ≥ 1, T fa
n fa(x) =

can
4n

fa(x) (6.9)

This property is noticeable because it’s a sufficient property for fa to generate the average
man, as a consequence of the proposition 1. Thus, if a diffusion f verifies the equations
(6.9), it automatically induces the Catalan average. We call this property the “strong
Catalan property”.

6.3 Exponential diffusions having the strong Catalan property.

Let us consider an exponential diffusion :

f(x) =
d∑

i=1

aie
−λi|x|
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Using the proposition 5, this diffusion can be written ~a = (a1, . . . , ad) in the basis
e1,0, . . . , ed,0. If f has the strong Catalan property, then we must have at least :

∀n ≥ 1, P̃ f
n~a = ~an = γn~a (6.10)

For n = 1, 1 ≤ i ≤ d,

a1i =
d∑

j=1

βi,j(0)aj =
d∑

j=1

aiaj
λi + λj

= ai

d∑

j=1

aj
λi + λj

= aiS(λi) (6.11)

with

S(X) =

d∑

j=1

aj
X + λj

(6.12)

Thus, to obtain the equation (6.10) for n = 1, we must have :

∀i, j ; S(λi) = S(λj) (6.13)

and then,
γ1 = S(λi)

We can note that

S(0) =

d∑

j=1

aj
λj

=
1

2

If we write

S(X) =
P (X)

Q(X)

then

S(X)− S(λ1) =
P (X)Q(λ1)− P (λ1)Q(X)

Q(X)Q(λ1)
=

P1(X)

Q(X)Q(λ1)

and, because of equation (6.13), we must have

P1(λ1) = · · · = P1(λd) = 0

But this means that

P1(X) = −P (λ1)
d∏

i=1

(X − λi)

and then

S(X) = −S(λ1)

∏d
i=1(X − λi)−

∏d
i=1(X + λi)∏d

i=1(X + λi)

The equation :

S(0) =
1

2
= −S(λ1)((−1)d − 1)
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proves that d must be odd and that S(λ1) = 1/4.
But if we decompose the fraction S(X), we get :

S(X) =
d∑

j=1

aj
X + λj

= −
1

4

∏d
i=1(X − λi)−

∏d
i=1(X + λi)∏d

i=1(X + λi)

=
1

4

d∑

j=1

∏d
i=1(λj + λi)∏d
i=1
i6=j

(λj − λi)

1

X + λj

This means that if f has the strong Catalan property, it must at least have the following
properties : 




d is odd

∀1 ≤ j ≤ d, aj =
1

4

∏d
i=1(λj + λi)∏d
i=1
i6=j

(λj − λi)

(6.14)

and this means that γ1 = 1/4 = ca1/4.
We can now prove that this is also a sufficient condition. Using theorem 2 and propo-

sition 5, we have :

γ1 =
d∑

j=1

β1
j,i(0) =

d∑

j=1

Rj
i (0) =

1

4
(6.15)

but for n > 1 the function T f
n f is represented by the vector ~bn = (bn1 , . . . , b

n
d) and, see

theorem 3 :
bni = ai

∑

T∈Can

RT
i

and,

RT
i =

∑

(l0,l1,...,ln−1)∈{1,...,d}n

RTi:l0,...,ln−1 (0)

=
∑

(l0,l1,...,ln−1)∈{1,...,d}n

∏

lk∈fc(T )

Rlk
i

∏

lk∈c(T )/fc(T )

Rlk
l−
k

=
∑

(l0,l1,...,ln−1)∈{1,...,d}n

∏

lk∈c(T )

Rlk
l−
k

But if we sum on the indices ln−1, ln−2, . . . , l1, l0 in this specific order, then, using
equation (6.15), we get :

bni = ai
∑

T∈Can

1

4n
= ai

Card(Can)

4n
= ai

can
4n
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and that proves that f has the strong Catalan property.
We can give the :

Theorem 5 A diffusion f :

f(x) =

d∑

i=1

aie
−λi|x|

has the strong Catalan property (and thus induces man) if and only if :





d is odd

∀1 ≤ i ≤ d, ai =
1

4

∏d
j=1(λi + λj)

∏d
j=1
j 6=i

(λi − λj)

(6.16)

6.4 What about the weak property ?

We won’t go further here but it seems that :
Conjecture : The only diffusions inducing man are those with the strong Catalan prop-
erty.

We shall give some ideas to prove this in the conclusion.

7 Key examples to prove theorems 2 and 3.

We won’t give completely exhaustive proofs for the above theorems. For each one, we will
give key examples. Nonetheless, the reader should easily understand that these examples
somehow contains the proof, as all the necessary arguments are exposed. Rigorous proofs
are left to the reader willing to deal with great amounts of heavy notations.

7.1 Lemma 1

Let us first give in sections 7.1.1 and 7.1.2 some remarks about the transformation U

induced by equation (5.12). Once this work is done, we shall justify the combinatorial part
of Lemma 1 on a very illustrative example.

7.1.1 Remarks about U.

First of all, the transformation U can be trivially extended to a linear operator on matrices
d× d with coefficients in C[[x]] (see eq. (5.12)).

Due to this, we can look at its action on a matrix
((
RT

l0,j
(x)

))
1≤l0,j≤d

for any tree

T ∈ Can (n ≥ 1).
If we remind the following notations :
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RT
l0,j

(x) =
∑

(l1,...,ln−1)∈{1,...,d}n−1

RTj:l0,l1,...,ln−1 (x)

and, if T has k first children,

Tj:l0,l1,...,ln−1 = T k
j:l0,...,lk−1

∪k−1
p=0 T

≤lp

lp:l
<lp

then we can write the following equations :

(
URT

)
l0,j

=

d∑

m=1
m6=j

RT
l0,m(0)αm,j(x) + ∆(RT

l0,j(x)αj,j(x))

=
∑

l1,...,ln−1







d∑

m=1
m6=j

R
T k
m:l0,...,lk−1 (0)αm,j(x) + ∆(R

T k
j:l0,...,lk−1 (x)αj,j(x))




k−1∏

p=0

R
T

≤lp

lp:l
<lp




And, thanks to the decomposition of trees, we can focus on the following coefficients :

Rj:l0,l1,...,lk−1
def
=

d∑

m=1
m6=j

R
T k
m:l0,...,lk−1 (0)αm,j(x) + ∆(R

T k
j:l0,...,lk−1 (x)αj,j(x)) (k ≥ 1) (7.1)

7.1.2 Decomposition of U.

The action of the operator U is resumed in the above coefficient. This one can be decom-
posed in a very interesting way. Using the definitions of ∆ and αi,j(x), we get :

∆
(
R

T k
j:l0,...,lk−1 (x)αj,j(x)

)
= ∆

(
R

T k
j:l0,...,lk−1 (x)

)
αj,j(0) +R

T k
j:l0,...,lk−1 (x)∆(αj,j(x))

and

αj,j(0) = aj

∆(αj,j(x)) =
d∑

m=1

βm,j(x)−
d∑

m=1
m6=j

αm,j(x)

thus we can write Rj:l0,l1,...,lk−1 = R
j:l0,l1,...,lk−1

k + R̃j:l0,l1,...,lk−1 :

R
j:l0,l1,...,lk−1

k =

d∑

m=1

R
T k
j:l0,...,lk−1 (x)RT 1

j:m(x) (7.2)

R̃j:l0,l1,...,lk−1 =
d∑

m=1
m6=j

(
R

T k
m:l0,...,lk−1 (0)−R

T k
j:l0,...,lk−1 (x)

)
αm,j(x)
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+ aj∆
(
R

T k
j:l0,...,lk−1 (x)

)
(7.3)

and, after some easy computations, we get :

R̃j:l0,l1,...,lk−1 =
k−1∑

t=0

d∑

m=1

RT t+1
j:l0,...,lt (x)RT 1

lt:m(0)R
T k−1−t
m:lt+1,...,lk−1 (0) (7.4)

We have decomposed Rj:l0,l1,...,lk−1 in k + 1 terms :

R
j:l0,l1,...,lk−1

t =

d∑

m=1

RT t+1
j:l0,...,lt (x)RT 1

lt:m(0)R
T k−1−t
m:lt+1,...,lk−1 (0) (0 ≤ t ≤ k − 1) (7.5)

R
j:l0,l1,...,lk−1

k =
d∑

m=1

R
T k
j:l0,...,lk−1 (x)RT 1

j:m(x) (7.6)

We gave in the two above sections the computations that are necessary to prove Lemma
1. To finish the proof we will first give some graphical and combinatorial interpretations
of the above results. This step will really simplify the induction of the proof.

7.1.3 Combinatorial interpretation.

Let us graphically resume the two previous sections.
First we considered in section 7.1.1 an elementary coefficient RT

l0,j
(x) for a tree T . Let

us give the example illustrated by figure 6.
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T

Figure 6: Example of tree.

We reminded then that this coefficient was a sum over indices l1, . . . , ln−1 of some
elementary coefficients indexed by a labeled tree Tj:l0,l1,...,ln−1 :

j

l0 l1 l2

l3 l4

l5 l6 l7

Tj:l0,l1,...,ln−1

Figure 7: Associated labeled tree Tj:l0,l1,...,ln−1.

Using the decomposition of a labeled tree, see figure 8 below,we were then able to
isolate the most important part in the action of U, that is the expression Rj:l0,l1,...,lk−1. See
equation (7.1).

In section 7.1.2 we decomposed this expression in k + 1 terms, each of them having a
new summation index m. Putting this together with :

• the decomposition of our tree,

• our previous summations on l1, . . . , ln−1,

• and the convention that the branch T 1
lt:m (resp. T 1

j:m) will stay on the left of the other
branches attached to the summit lt (resp. j),
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j

l0

l0

l1

l1 l2

l2

l3 l4

l5 l6 l7

T 3
j:l0,l1,l2

T≤l0
l0:∅

T≤l1
l1:l3,l4,l5,l6,l7

T≤l2
l2:∅

Figure 8: Decomposition of the labeled tree Tj:l0,l1,...,ln−1 = T k
j:l0,...,lk−1

∪k−1
p=0 T

≤lp

lp:l
<lp

.

we can graphically understand that, using the transformation U each coefficient RT
l0,j

will
yield, for a tree of Can with k first children, k + 1 similar coefficients indexed by trees of
Can+1. Let us now illustrate these transformations for our tree. Let us first remind that,
in our example :

• We are dealing at the beginning with the coefficient (see figure 7 and eq. (5.4)) :

RT
l0,j

=
∑

(l1,...,l7)∈{1,...,d}7

Rl0
j (x)R

l1
j (x)R

l2
j (x)R

l3
l1
Rl4

l1
Rl5

l3
Rl6

l3
Rl7

l3

• Our tree Tj:l0,...,l7 can be decomposed :

Tj:l0,l1,...,l7 = T 3
j:l0,...,l2 ∪ T

≤l0
l0:∅

∪ T≤l1
l1:l3,l4,l5,l6

∪ T≤l2
l2:∅

and

RTj:l0,l1,...,l7 = RT 3
j:l0,...,l2 (x)R

T
≤l0
l0:∅ (0)RT

≤l1
l1:l3,l4,l5,l6 (0)R

T
≤l2
l2:∅ (0)

• Finally, see eq. (7.1), (7.5) and (7.6), we first just deal with the coefficient :

Rj:l0,l1,...,l2 =
3∑

t=0

Rj:l0,l1,...,l2
t

• We can thus write :

(URT )l0,j =

3∑

t=0

(URT )tl0,j

3∑

t=0

∑

(l1,...,l7)∈{1,...,d}7

Rj:l0,l1,...,l2
t Rl3

l1
Rl4

l1
Rl5

l3
Rl6

l3
Rl7

l3
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Let us now use eq. (7.5) and (7.6) for a fixed t (0 ≤ t ≤ 3).
For t = 0, see eq. (7.5) :

(URT )0l0,j =
∑

(l1,...,l7)∈{1,...,d}7

m∈{1,...,d}

RT 1
j:l0 (x)RT 1

l0:m(0)RT 2
m:l1,l2 (0)R

T
≤l0
l0:∅ (0)RT

≤l1
l1:l3,l4,l5,l6 (0)R

T
≤l2
l2:∅ (0)

and, see figure below, this corresponds to a new coefficient R
0T
l0,j

:

m m

j jj

l0l0

l0l0l0

l1

l1

l1
l1

l1 l2

l2

l2l2

l2

l3

l3

l3 l4

l4

l4

l5

l5

l5 l6

l6

l6 l7

l7

l7

T 3
j:l0,l1,l2

T≤l0
l0:∅

T≤l0
l0:∅

T≤l1
l1:l3,l4,l5,l6,l7

T≤l1
l1:l3,l4,l5,l6,l7

T≤l2
l2:∅

T≤l2
l2:∅

Figure 9: Interpretation of the equation (7.5) for t = 0 : Tj:l0,l1,...,l7 →
0Tj:l0,m,l1,...,l7 .

For t = 1, see eq. (7.5) :

(URT )1l0,j =
∑

(l1,...,l7)∈{1,...,d}7

m∈{1,...,d}

RT 2
j:l0,l1 (x)RT 1

l1:m(0)RT 1
m:l2 (0)R

T
≤l0
l0:∅ (0)R

T
≤l1
l1:l3,l4,l5,l6 (0)R

T
≤l2
l2:∅ (0)

and, see figure below, this corresponds to a new coefficient R
1T
l0,j

:

mm

j jj

l0l0

l0l0l0

l1

l1

l1

l1

l1

l2

l2

l2

l2

l2

l3

l3l3

l4

l4l4

l5

l5l5

l6

l6l6

l7

l7l7

T 3
j:l0,l1,l2

T≤l0
l0:∅

T≤l0
l0:∅

T≤l1
l1:l3,l4,l5,l6,l7

T≤l1
l1:l3,l4,l5,l6,l7

T≤l2
l2:∅

T≤l2
l2:∅

Figure 10: Interpretation of the equation (7.5) for t = 1 : Tj:l0,l1,...,l7 →
1Tj:l0,l1,l3,l4,m,l5,l6,l7,l2

.
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For t = 2, see eq. (7.5) :

(URT )2l0,j =
∑

(l1,...,l7)∈{1,...,d}7

m∈{1,...,d}

RT 3
j:l0,l1,l2 (x)RT 1

l2:m(0)RT 0
m:∅(0)R

T
≤l0
l0:∅ (0)RT

≤l1
l1:l3,l4,l5,l6 (0)R

T
≤l2
l2:∅ (0)

and, see figure below, this corresponds to a new coefficient R
2T
l0,j

m m

j jj

l0l0

l0l0l0

l1

l1

l1

l1

l1

l2l2

l2l2

l2

l3

l3l3

l4

l4l4

l5

l5l5

l6

l6l6

l7

l7l7

T 3
j:l0,l1,l2

T≤l0
l0:∅

T≤l0
l0:∅

T≤l1
l1:l3,l4,l5,l6,l7

T≤l1
l1:l3,l4,l5,l6,l7

T≤l2
l2:∅

T≤l2
l2:∅

Figure 11: Interpretation of the equation (7.5) for t = 2 : Tj:l0,l1,...,l7 →
2Tj:l0,l1,l2,l3,l4,m,l5,l6,l7 .

For t = 3, see eq. (7.6) :

(URT )3l0,j =
∑

(l1,...,l7)∈{1,...,d}7

m∈{1,...,d}

RT 3
j:l0,l1,l2 (x)RT 1

j::m(x)R
T

≤l0
l0:∅ (0)RT

≤l1
l1:l3,l4,l5,l6 (0)R

T
≤l2
l2:∅ (0)

and, see figure below, this corresponds to a new coefficient R
3T
l0,j

:

mm

jj j

l0l0

l0l0l0
l1

l1

l1

l1

l1

l2l2

l2l2

l2

l3

l3l3

l4

l4l4

l5

l5l5

l6

l6l6

l7

l7l7

T 3
j:l0,l1,l2

T≤l0
l0:∅

T≤l0
l0:∅

T≤l1
l1:l3,l4,l5,l6,l7

T≤l1
l1:l3,l4,l5,l6,l7

T≤l2
l2:∅

T≤l2
l2:∅

Figure 12: Interpretation of the equation (7.6) : Tj:l0,l1,...,l7 →
3Tj:l0,l1,l2,m,l3,l4,l5,l6,l7 .

This example clearly illustrate the operations described in Lemma 1.
To end with theorem 2, it remains to prove Lemma 2. This will be done in the following

section.
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7.2 Lemma 2.

7.2.1 The transformation U∗.

Let us first remind some definitions. For a given non-negative integer n we defined in
section 5.3 the set :

C̃an
def
= {(k, T ) ; T ∈ Can ; 0 ≤ k ≤ Card(fc(T ))} (7.7)

And using lemma 1 the transformation U induces an application U∗ (eq (5.20)) :

U∗ : C̃an → Can+1

(k, T ) 7→ kT (see Lemma 1)

Let us remind its definition. For an element (k, T ) of C̃an, define U∗(k, T ) as follows
(see lemma 1) : Let 0 ≤ n0 ≤ n the cardinal of first children of the root in T (note that
0 ≤ k ≤ n0).

U∗(k, T ) stem from well-defined transformation of the tree T :

• If 0 ≤ k ≤ n0 − 1, then “cut” the tree T at the root, just after the edge of the
(k + 1)th first child (first children counted from left to right). We have now a “left”
tree and a “right” one. On the left tree (with k + 1 first children), add an edge to
the (k+1)th first child, to the right of its other edges, and then identify (“glue”) the
lower extremity of this edge to the root of the right tree. This new tree is kT .

• If k = n0 then simply add an edge to the root, to the right of its other edges

We shall now define an inverse to U∗.

7.2.2 The transformation V∗.

Let us define the application :

V∗ : Can+1 → C̃an

T 7→ (k, T̃ )

(7.8)

Let be given a tree T ∈ Can+1 with n1 first children.

• If the right first child of the root has no children, then consider the tree T̃ ∈ Can
obtained by cutting the edge bearing this first child. In this case, V∗(T ) = (n1−1, T̃ ).

• Otherwise, omit the edge linking the right first child of the root to its own right first
child. Two trees are obtained. Let ñ be the cardinal of first children of the tree
containing the original root of T and T̃ ∈ Can be the tree obtained by identifying
the roots of both obtained trees, tree containing the original root of T being located
on the left. In this case, V∗(T ) = (ñ− 1, T̃ ).
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Then it is easy to prove that :

U∗ ◦V∗ = IdCan+1 (7.9)

V∗ ◦U∗ = IdC̃an
(7.10)

This clearly implies that U∗ is a bijection and it ends the proof of Lemma 2. The reader
should convince himself of this proof by looking at the following figure for n = 2.

0

0

1

1

2 ,

,

,

,

,

C̃a2 Ca3

Figure 13: Bijection between C̃a2 and Ca3.
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As theorem 4 is a consequence of theorem 3, it remains to give a proof to this one.
Once again we should restrict ourself to key example.

7.3 Proof of theorem 3.

7.3.1 Theorem 2 and its consequences.

Because of theorem 2, we remind that, for a given integer n, the d× d matrix βn(0) is :

βn
i,j(0) =

∑

T∈Can

RT
i,j

with coefficients :

RT
i,j =

∑

(l1,...,ln−1)∈{1,...,d}

RTj:i,l1,...,ln−1 =
∑

(l1,...,ln−1)∈{1,...,d}n−1

∏

u∈{i,l1,...,ln−1}

Ru
u−

and u− is the father of u in T . For example :
If we consider the tree T pictured in figure 14, then, for j : i, l1, . . . , l7 :

RTj:i,l1,...,l7 = Ri
jR

l1
j R

l2
j R

l3
l1
Rl4

l1
Rl5

l3
Rl6

l3
Rl7

l3
(7.11)

j

i l1 l2

l3 l4

l5 l6 l7

Figure 14: Example of tree.

Let us just remind finally that :

Ri
j =

ai
λi + λj

To prove theorem 3, we have to compute, for t ≥ 1, for a sequence of positive integers
(n1, . . . , nt), the vector :

~bn1,...,nt = βnt(0) . . . βn1(0) .~a (~a = (a1, . . . , ad))

Thus, using theorem 2, the ith coordinate of ~bn1,...,nt is :

~bn1,...,nt

i =
∑

(k1,...,kt)∈{1,...,d}t

βnt

i,kt
(0)β

nt−1

kt,kt−1
(0) . . . βn1

k2,k1
(0)ak1
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=
∑

(T1,...,Tt)∈Can1×···×Cant
(k1,...,kt)∈{1,...,d}t

RT t

i,ktR
T t−1

kt,kt−1
. . . RT 1

k2,k1
ak1 (7.12)

In the two following sections, a careful examination of the coefficient :

RT t

i,ktR
T t−1

kt,kt−1
. . . RT 1

k2,k1
ak1

for the cases t = 1 and t = 2 will allow us to define some operations on trees. These ones
are the transformations that are involved in the definition of the sets Can1,...,nt

and the end
of the proof will be straightforward.

7.3.2 Case t = 1 : Left-pulling and right-pulling.

Note that in this case, for a given positive integer n1, the set “Can1” in theorem 3 should
coincide with the previously defined set Can1 .

Because of eq. (7.12), for 1 ≤ i ≤ d :

bn1
i =

∑

T 1∈Can1

∑

k1∈{1,...,d}

RT 1

i,k1ak1

and, for a given tree T 1 and a given index k1 :

RT 1

i,k1
ak1 =

∑

(l1,...,ln1−1)∈{1,...,d}n1−1

Ri
k1

∏

u∈{l1,...,ln1−1}

Ru
u− ak1

but
Ri

k1
ak1 = aiR

k1
i

thus
RT 1

i,k1ak1 = ai
∑

(l1,...,ln1−1)∈{1,...,d}n1−1

Rk1
i

∏

u∈{l1,...,ln1−1}

Ru
u−

Let us have a “tree” interpretation of this identity. We did not change the fatherhood
of any of the vertices labelled by l1, . . . , ln1−1. We just invert the the fatherhood between i
and k1. Assuming, by convention, that the root k1 became the right first child of i, then,
see figure 15,

RT 1

i,k1ak1 = aiR
T̃ 1

k1,i

and T̃ 1 is obtained by pulling up the left first child of the root of the tree T 1 the original
root remaining on the right :

We call this transformation lp for left pulling :

lp : Can1 → Can1

T 1 7→ T̃ 1

(7.13)

45



lp

rp

k1

k1 i

i

l1

l1
l2

l2
l3

l3

l4

l4

l5

l5 l6

l6

l7

l7

l8

l8

ak1 R
i
k1
Rl1

k1
Rl2

k1
Rl3

i R
l4
l2
Rl5

l2
Rl6

l3
Rl7

l3
Rl8

l3
ai R

k1
i R

l1
k1
Rl2

k1
Rl3

i R
l4
l2
Rl5

l2
Rl6

l3
Rl7

l3
Rl8

l3

Figure 15: Transformation T 1 ↔ T̃ 1.

This is a bijection because, if we define, similarly to lp, a right pulling rp, then, obvi-
ously :

rp ◦ lp = lp ◦ rp = IdCan1

and this ends the proof of theorem 3 for t = 1 :

bn1
i =

def

∑

k1∈{1,...,d}

βn1
i,k1

(0)ak1

=
theorem 2

∑

T 1∈Can1

∑

k1∈{1,...,d}

RT 1

i,k1ak1

=
∑

T 1∈Can1

∑

k1∈{1,...,d}

aiR
lp(T 1)
k1,i

=
lp bijective

ai
∑

T 1∈Can1

∑

k1∈{1,...,d}

RT 1

k1,i

=
def

ai
∑

T 1∈Can1

RT 1

i

Let us have a look to the case t = 2

7.3.3 Case t = 2 : Product of two trees.

Let us consider two positive integers (n1, n2). Because of eq. (7.12), for 1 ≤ i ≤ d :

bn1,n2

i =
∑

(T 1,T 2)∈Can1×Can2

∑

(k1,k2)∈{1,...,d}2

RT 2

i,k2R
T 1

k2,k1ak1
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and, because of the previous section :

bn1,n2

i =
∑

(T1,T2)∈Can1×Can2
(k1,k2)∈{1,...,d}2

RT 2

i,k2R
lp(T 1)
k1,k2

ak2

Thus, we have to deal with coefficients :
∑

k1∈{1,...,d}

RT 2

i,k2R
lp(T 1)
k1,k2

Once again, going back to the definition of the coefficients RT
i,j, it is not difficult to give

a tree interpretation of this operation : Consider two trees (T 1, T 2) ∈ Can1 × Can2 , one
can easily define a non commutative product π(T 2, T 1) ∈ Can1+n2 where π(T 2, T 1) is the
tree obtained by identifying the roots of T 2 and T 1, T 1 being on the right of T 2. Then :

∑

k1∈{1,...,d}

RT 2

i,k2
RT 1

k1,k2
= R

π(T 2,T 1)
i,k2

(7.14)

and

bn1,n2

i =
∑

(T1,T2)∈Can1×Can2
k2∈{1,...,d}

R
π(T 2,lp(T 1))
i,k2

ak2

= ai
∑

(T1,T2)∈Can1×Can2
k2∈{1,...,d}

R
lp(π(T 2,lp(T 1)))
k2,i

= ai
∑

(T 1,T 2)∈Can1×Can2

R
lp(π(T 2,lp(T 1)))
i

The last equation comes from the results for t = 1 and it remains to prove the assump-
tion on the product π in equation (7.14), but this is clarified by the figure 16.

To end the proof for t = 2, we can note that, for two given positive integers n1, n2, the
product π, as an application from Can1 × Can2 into Can1+n2 is injective : Consider two
trees (T 1, T 2) ∈ Can1 × Can2 and then their product π(T 2, T 1). Their is clearly only one
way to cut the tree at the root, between two edges, such that the left tree is in Can2 , and
once we cut the tree, we obviously recovered T 2 on the left and T 1 on the right.

As the application lp is bijective, the application :

H2 : Can1 × Can2 → Can1+n2

(T 1, T 2) 7→ lp(π(T 2, lp(T 1)))

is injective : The set Can1,n2 = H2(Can1 × Can2) is a subset of Can1+n2 having the same
cardinal as Can1 × Can2 , that is can1can2. Moreover the application H2 is exactly the one
described in theorem 3. Finally :

bn1,n2

i = ai
∑

(T 1,T 2)∈Can1×Can2

R
lp(π(T 2,lp(T 1)))
i = ai

∑

T∈Can1,n2

RT
i (7.15)

Let us have a look to the general case.
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π

k2k2 k2

k1k1
l1l1

l2l2

l3l3
l4l4 l5l5

l6l6 l7l7 l8l8

i
i

m1m1
m2m2

m3m3

RT 1

k1,k2
=

∑

(l1,...,l8)∈{1,...,d}8

Rk1
k2
Rl1

k2
Rl2

k2
Rl3

k1
Rl4

l2
Rl5

l2
Rl6

l3
Rl7

l3
Rl8

l3

RT 2

i,k2
=

∑

(m1,m2,m3)∈{1,...,d}3

Ri
k2
Rm1

i Rm2
i Rm3

m1

R
π(T 2,T 1)
i,k2

=

∑

(l1,...,l8)∈{1,...,d}8

(m1,m2,m3)∈{1,...,d}3

k1∈{1,...,d}

Ri
k2R

k1
k2
Rl1

k2
Rl2

k2
Rm1

i Rm2
i Rl3

k1
Rl4

l2
Rl5

l2
Rm3

m1
Rl6

l3
Rl7

l3
Rl8

l3

Figure 16: Product of T 2 and T 1.

7.3.4 Conclusion

For a given t ≥ 3 it is easy to end the proof by induction, using the transformations
introduced for t = 1 and t = 2. Let (n1, . . . , nt) be t positive integers. For u ≤ t we can
build the following transformations by induction :

For u = 1 :
H1 : Can1 → Can1

T 1 7→ lp(T 1)

For u = 2 :
H2 : Can1 × Can2 → Can1+n2

(T 1, T 2) 7→ lp(π(T 2, H1(T
1)))

For u > 2 :
Hu : Can1 × Can2 · · · × Canu

→ Can1+n2+...nu

(T 1, T 2, . . . , T u) 7→ lp(π(T u, Hu−1(T
1, T 2, . . . , T u−1)))

But then, using the same method as in the case t = 2, it becomes obvious that :

• Ht is injective, thus Can1,...,nt
= Ht(Can1 × · · · × Cant

) is a subset of Can1+···+nt
of

cardinal can1 . . . cant
.

• The transformation Hu are identical to the ones described in theorem 3 to build the
set Can1,...,nt

.
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• By induction, we finally obtain, as in equation (7.15), that, for 1 ≤ i ≤ d

bn1,...,nt

i = ai
∑

T∈Can1,...,nt

RT
i (7.16)

This ends the proof of theorem 3 and thus of theorem 4.

8 Conclusion.

One of the main results of this paper is the tree-decomposition for an average induced
by exponential diffusion. This results can be easily extended to other diffusions, using
some density arguments. This can also be done explicitly, by a combinatorial procedure,
independent of the diffusion. We will explain this in a forthcoming paper. Moreover, this
will lead us to an inverse formula for tree-decomposition.

These coming results shall yield a complete answer to the question : When does an
exponential diffusion induce the Catalan average (Weak Catalan Property). In fact, we
should get an answer for a more general problem. Let be given two “exponential diffusion”
f and g and their induced averages mf and mg, is there a simple necessary and sufficient
condition on f and g for inducing the same average, i.e. mf = mg ?

References

[1] Louis Comtet. Analyse Combinatoire, volume 1. P.U.F., 1970.

[2] J. Ecalle. Well-behaved convolution averages and their applications to real resum-
mation. To appear.

[3] J. Ecalle et F. Menous. Well-behaved convolution averages and the non-
accumulation theorem for limit-cycles. Prépublications d’Orsay., 1995.
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