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Une découverte, celle de l’intégrale de Lebesgue, n’est d’abord entendue en son vrai sens
que de rares adeptes, prompts à éclairer de ce flambeau saisi quelques coins obscurs de la
science. Même la réaction générale est hostile et vive contre l’irruption d’une idée balayant sans
égards les jugements révérés. Lentement, mais irrésistiblement, la lumière pénètre un monde
d’esprits de plus en plus étendu. Une heure vient où, dans cet ordre de pensées, la dernière
acquise des grandes vérités apparaît à tous comme le jour, claire, évidente, et pour finir banale.
Arnaud DENJOY

1. Intégrale de Lebesgue :
propriétés et théorèmes de convergence

Nous allons définir la notion générale d’intégrale de Lebesgue sur Rd en procédant
par généralisations successives à des familles de plus en plus étendues de fonctions. À
chaque étape, nous vérifierons que l’intégrale satisfait toutes les propriétés élémentaires
qu’on est en droit d’attendre d’elle, la linéarité, la monotonie, l’inégalité du triangle, et nous
démontrerons des théorèmes de convergence qui expriment essentiellement que l’on peut
intervertir limite et intégration. À la fin de ce processus définitionnel par élargissements
successifs, nous aurons atteint une théorie si forte et si générale qu’elle sera d’une utilité
décisive dans tous les développements ultérieurs de l’Analyse.

Nous procéderons en quatre étapes majeures, en intégrant progressivement :

1. les fonctions étagées ;

2. les fonctions bornées supportées sur un ensemble de mesure finie ;

3. les fonctions positives ;

4. les fonctions intégrables, au sens théorique le plus général.

Soulignons dès à présent que toutes les fonctions seront d’emblée supposées mesurables.
Le plus souvent aussi, nous travaillerons avec des fonctions qui sont à valeurs dans R, et
plus tard, nous considérerons aussi des fonctions qui sont à valeurs dans C en regardant
leurs partie réelle et leur partie imaginaire.
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2. Étape 1 : Fonctions étagées

Rappelons qu’une fonction étagée, telle que définie dans le chapitre précédent, est une
fonction :

φ(x) =
N∑
k=1

ak · 1Ek(x),

qui est combinaison linéaire finie à coefficients ak ∈ R de fonctions indicatrices 1Ek de
sous-ensembles mesurables Ek ⊂ Rd de mesures m(Ek) <∞ finies.

Toutefois, une complication s’insinue dans cette définition, en tant qu’une fonction éta-
gée peut en fait être écrite d’une infinité de manières différentes comme combinaisons
linéaires de cette espèce ; par exemple, et quelque peu artificiellement, on a :

0 = 1E − 1E,

pour tout ensemble mesurableE ⊂ Rd. Fort heureusement, il existe une manière inambiguë
de choisir un représentant unique parmi toutes les représentations possibles, représentant
qui sera à la fois naturel et utile dans les démonstrations.

Proposition-Définition 2.1. La forme canonique d’une fonction étagée φ est l’unique re-
présentation :

φ =
N∑
k=1

ak · 1Ek ,

dans laquelle les ak sont distincts deux à deux, et les Ek sont disjoints deux à deux.

Démonstration. Trouver la forme canonique d’une fonction étagée n’est pas bien difficile.
Puisque φ ne prend qu’un nombre fini de valeurs, l’ensemble de ses valeurs :{

a1, . . . , aN
}
=

{
ak1 , . . . , akM

}
=:

{
c1, . . . , cM

}
se réduit à un certain nombre M ⩽ N de nombres réels distincts deux à deux :

cℓ1 ̸= cℓ2 (1⩽ ℓ1<ℓ2 ⩽M).

Si donc nous introduisons les ensembles de niveau :

Fℓ :=
{
x ∈ Rd : φ(x) = cℓ

}
,

il vient que ces ensembles sont disjoints deux à deux (exercice mental). Par conséquent :
M∑
ℓ=1

cℓ · 1Fℓ = φ,

est la forme canonique désirée de φ. □

Définition 2.2. Si φ est une fonction étagée sous forme canonique :

φ =
M∑
ℓ=1

cℓ 1Fℓ ,

on définit l’intégrale de Lebesgue de φ comme étant le nombre réel :∫
Rd
φ(x) dx :=

M∑
ℓ=1

cℓ ·m
(
Fℓ
)
.
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Si E ⊂ Rd est un sous-ensemble mesurable de mesure m(E) < ∞ finie, alors (exer-
cice) :

φ(x) · 1E(x)
est encore une fonction étagée.

Définition 2.3. L’intégrale sur E ⊂ Rd mesurable de φ étagée sur Rd est définie par :∫
E

φ(x) dx :=

∫
Rd
φ(x)1E(x) dx.

Afin de bien signaler le choix de la mesure de Lebesgue m dans la définition de l’inté-
grale, on écrit parfois : ∫

Rd
φ(x) dm(x),

pour l’intégrale de Lebesgue de φ.
Mais en fait, nous abrégerons souvent l’intégrale par :∫

φ(x) dx,

voire même par : ∫
φ.

Proposition 2.4. L’intégrale ainsi définie des fonctions étagées φ, ψ sur Rd jouit des cinq
propriétés suivantes.

(i) Indépendance vis-à-vis de la représentation : Pour toute représentation — pas forcément
canonique — :

φ =
N∑
k=1

ak · 1Ek ,

on a : ∫
Rd
φ =

N∑
k=1

akm
(
Ek

)
.

(ii) Linéarité : Pour tous a, b ∈ R, on a :∫
Rd

(
aφ+ b ψ

)
= a

∫
Rd
φ+ b

∫
Rd
ψ.

(iii) Additivité domaniale : Si F et G sont deux sous-ensembles disjoints de Rd de mesure
finie, alors : ∫

F∪G
φ =

∫
F

φ+

∫
G

φ.

(iv) Monotonie : Si φ ⩽ ψ en tout point, alors :∫
Rd
φ ⩽

∫
Rd
ψ.

(v) Inégalité du triangle : La fonction valeur absolue |φ| est aussi une fonction étagée et l’on
a : ∣∣∣∣ ∫

Rd
φ

∣∣∣∣ ⩽
∫
Rd
|φ|.
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Démonstration. La seule affirmation qui est quelque peu délicate est la première. Il faut
donc être astucieux lorsqu’on ramène une fonction étagée à sa représentation canonique, et
nous allons effectuer cela en deux moments.

Supposons d’abord que dans la représentation :

φ =
N∑
k=1

ak · 1Ek ,

les ensembles Ek sont disjoints deux à deux, sans toutefois demander que les ak soient
mutuellement distincts. Plus bas, nous verrons comment nous ramener à cette situation. Il
s’agit maintenant d’établir (i), et pour cela, nous devons ramener φ à sa forme canonique.

Si cℓ est l’une des valeurs distinctes c1, . . . , cM , avec M ⩽ N , que prennent a1, . . . , aN ,
introduisons l’ensemble :

E ′ℓ :=
⋃

{k : ak=cℓ}

Ek.

Les ensembles {k : ak = cℓ} forment alors une partition de {1, 2, . . . , N}, et comme les Ek
sont disjoints, E ′1, . . . , E

′
M sont disjoints deux à deux. De plus, on a visiblement :

m
(
E ′ℓ

)
=

∑
{k : ak=cℓ}

m
(
Ek

)
.

Enfin, puisque :

φ =
M∑
ℓ=1

cℓ · 1E′
ℓ
,

est la représentation canonique de φ, une application de la Définition 2.2 suivie d’une réor-
ganisation donne le résultat :∫

φ
déf
=

M∑
ℓ=1

cℓm
(
E ′ℓ

)
=

M∑
ℓ=1

cℓ
∑

{k : ak=cℓ}

m
(
Ek

)
=

N∑
k=1

akm
(
Ek

)
.

Ensuite, traitons le cas général pour lequel les ensembles E1, . . . , EN ne sont pas for-
cément disjoints, et les valeurs a1, . . . , aN ne sont pas forcément distinctes. Pour ramener
φ à sa forme canonique, il s’agit surtout de morceler les Ek jusqu’à en faire des pièces de
puzzle qui ne se recouvrent plus.

Lemme 2.5. Étant donné N ⩾ 1 sous-ensembles quelconques d’un ensemble abstrait D :

E1, E2, . . . , EN ⊂ D,

il existe 2N − 1 autres sous-ensembles :

E∗1 , E
∗
2 , . . . . . . . . . , E

∗
2N−1 ⊂ D,

qui sont mutuellement disjoints :

∅ = E∗ℓ1 ∩ E
∗
ℓ2

(1⩽ ℓ1<ℓ2 ⩽ 2N−1),
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dont la réunion est la même que celle des Ek :

N⋃
k=1

Ek =
2N−1⋃
ℓ=1

E∗ℓ ,

et qui satisfont de plus pour tout k = 1, . . . , N :

Ek =
⋃

{ℓ : E∗
ℓ⊂Ek}

E∗ℓ .

Démonstration. Ces ensembles sont toutes les 2N intersections possibles entre les Ek et
leurs complémentaires Ec

k = D\Ek :(
E1 ou Ec

1

) ⋂
· · · · · ·

⋂ (
EN ou Ec

N

)
,

à l’exclusion bien sûr du complémentaire commun :

Ec
1

⋂
· · ·

⋂
Ec
N ,

puisque l’on souhaite demeurer dans la réunion des Ek. Codons alors toutes ces intersec-
tions possibles de manière binaire :

E∗i1,...,iN , avec i1, . . . , iN ∈ {0, 1},

en écartant donc E∗0,...,0 ce qui nous fait bien 2N − 1 ensembles.
Pour N = 1, on a 21 − 1 = 1 et on prend E∗1 := E1.
Pour N = 2, on a effectivement 22 − 1 = 3 ensembles qui décomposent disjointement

la réunion E1 ∪ E2 :

E∗1,1 = E1 ∩ E2, E1,0 = E1 ∩ Ec
2, E0,1 = Ec

1 ∩ E2.

E2E1

E∗
1,1

E∗
1,0 E∗

0,1

E2
E1

E∗
1,0,0

E∗
0,1,0

E∗
1,1,0

E∗
1,1,1

E∗
0,1,1

E∗
0,0,1

E∗
1,0,1

E3

Pour N = 3, on a effectivement 23 − 1 = 7 ensembles décomposants. Le diagramme
s’avère un auxiliaire utile pour qui souhaite (exercice) rédiger les détails combinatoires en
langage symbolique. □

De la représentation de chaque Ek en réunion disjointe de certains E∗ℓ découle :

1Ek =
∑

{ℓ : E∗
ℓ⊂Ek}

1E∗
ℓ
,

puis :

m
(
Ek

)
=

∑
{ℓ : E∗

ℓ⊂Ek}

m
(
E∗ℓ

)
.
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Grâce à cette décomposition plus fine, on peut transformer naturellement :

φ =
N∑
k=1

ak · 1Ek

=
N∑
k=1

ak
∑

{ℓ : E∗
ℓ⊂Ek}

1E∗
ℓ

=
2N−1∑
ℓ=1

( ∑
{k : Ek⊃E∗

ℓ }

ak︸ ︷︷ ︸
=: a∗ℓ

)
· 1E∗

ℓ
.

Or maintenant, puisque cette nouvelle représentation de φ est telle que les ensembles me-
surables E∗ℓ sont disjoints deux à deux, nous pouvons lui appliquer le résultat obtenu dans
la première partie de la démonstration, ce qui donne ici la conclusion (i) :

∫
Rd
φ =

2N−1∑
ℓ=1

a∗ℓ m
(
E∗ℓ

)
=

2N−1∑
ℓ=1

∑
{k : Ek⊃E∗

ℓ }

akm
(
E∗ℓ

)
[Reconnaître m(Ek)] =

N∑
k=1

ak
∑

{ℓ : E∗
ℓ⊂Ek}

m
(
E∗ℓ

)
︸ ︷︷ ︸

=m(Ek)

=
N∑
k=1

akm
(
Ek

)
.

Ensuite, en partant de n’importe quelle représentation étagée pour φ et pour ψ, une fois
la propriété (i) acquise, la propriété (ii) découle de la linéarité évidente des sommations.
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Pour ce qui concerne la propriété (iii) d’addititivé de l’intégration sur les ensembles
disjoints, on transforme :∫

F∪G
φ =

∫
φ · 1F∪G

=

∫ ( N∑
k=1

ak 1Ek

)
·
(
1F + 1G

)
=

∫ { N∑
k=1

ak 1Ek∩F +
N∑
k=1

ak 1Ek∩G

}

[Linéarité (ii)] =

∫ ( N∑
k=1

ak · 1Ek
)
· 1F +

∫ ( N∑
k=1

ak · 1Ek
)
· 1G

=

∫
F

φ+

∫
G

φ.

Pour (iv), si η ⩾ 0 est une fonction étagée positive, il est clair (exercice mental) que sa
forme canonique est aussi partout positive, et donc par la Définition 2.1, on a bien

∫
η ⩾ 0.

Si φ ⩽ ψ, en posant η := ψ − φ, on a bien
∫
φ ⩽

∫
ψ.

Enfin pour l’inégalité du triangle (v), il suffit d’écrire φ sous sa forme canonique :

φ =
N∑
k=1

ak · 1Ek ,

et d’observer, puisque les Ek sont disjoints, que :

|φ| =
N∑
k=1

∣∣ak∣∣ · 1Ek .
Par conséquent, grâce à l’inégalité du triangle appliquée à la Définition 2.1 de l’intégrale,
on obtient : ∣∣∣∣ ∫

Rd
φ

∣∣∣∣ =

∣∣∣∣ N∑
k=1

akm
(
Ek

)∣∣∣∣
⩽

N∑
k=1

∣∣ak∣∣m(
Ek

)
=

∫
Rd
|φ|,

ce qui termine la démonstration détaillée de ces cinq propriétés (très) élémentaires. □

En fait incidemment, nous avons presque démontré l’énoncé suivant, qui correspond
pleinement à la manière de penser propre à la théorie de la mesure : tout énoncé est valide
à des ensembles de mesure nulle près.

Proposition 2.6. Si deux fonctions étagées φ et ψ sur Rd satisfont presque partout :

φ ⩽ ψ,
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alors : ∫
φ ⩽

∫
ψ.

Démonstration. En considérant à la place la fonction étagée positive presque partout :
η :=ψ − φ

⩾ 0,

on se ramène à devoir montrer que
∫
η ⩾ 0. Or si η est mise sous forme canonique :

η =
M∑
ℓ=1

bℓ 1Eℓ ,

puisque l’intégrale de η vaut par définition :∫
η =

M∑
ℓ=1

bℓm
(
Eℓ

)
,

on peut supposer que tous les Eℓ sont de mesure strictement positive (mettre de côtés ceux
qui sont de mesure nulle). Mais comme les Eℓ sont disjoints deux à deux, la positivité
presque partout de η nécessite (exercice mental) que tous les bℓ ⩾ 0 soient positifs. Donc∫
η ⩾ 0 ! □

3. Étape 2 : Fonctions mesurables bornées à support dans un ensemble de mesure
finie

Définition 3.1. Le support d’une fonction mesurable f : Rd −→ R est l’ensemble des
points où elle ne s’annule pas :

supp(f) :=
{
x ∈ Rd : f(x) ̸= 0

}
.

On dit aussi que f est à support dans un ensemble E ⊂ Rd lorsque f(x) = 0 pour tout
x ̸∈ E.

En fait, la mesurabilité de f assure immédiatement que son support est un ensemble
mesurable. Dans cette section, nous allons nous intéresser principalement aux fonctions
dont le support est de mesure finie :

m
(
supp(f)

)
< ∞.

Un résultat important du chapitre précédent énonce que si une fonction mesurable
f : Rd −→ R bornée en valeur absolue par une constante M > 0 est à support dans un
ensemble E de mesure finie, alors il existe une suite de fonctions étagées (φn)

∞
n=1 telle

que :
φn(x) −→

n→∞
f(x),

en tout point x ∈ E. Le lemme-clé qui suit nous permet alors de définir l’intégrale de
Lebesgue des fonctions mesurables bornées à support dans un ensemble de mesure finie.

Lemme 3.2. Soit f : Rd −→ R une fonction mesurable bornée à support dans un ensemble
E ⊂ Rd de mesure m(E) < ∞ finie. Si

(
φn

)∞
n=1

est une suite quelconque de fonctions
étagées telles que :
• il existe une constante M > 0 avec

∣∣φn∣∣ ⩽M pour tout n ⩾ 1,
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• supp(φn) ⊂ E pour tout n ⩾ 1,
• φn(x) −→

n→∞
f(x) pour presque tout x ∈ E,

alors la limite :

lim
n→∞

∫
φn

existe, et de plus, lorsqu’on a f = 0, cette limite vaut (naturellement !) 0.

Démonstration. Ces conclusions seraient presque évidentes si l’on supposait que φn
converge uniformément vers f . Or souvenons-nous de l’un des trois principes de Little-
wood, qui prétendait que la convergence d’une suite de fonctions mesurables est toujours
presque uniforme. Nous savons d’ailleurs aussi que ce principe informel s’est réalisé ri-
goureusement sous la forme du Théorème (tellement magique !) d’Egorov, que nous allons
maintenant sortir de notre chapeau de prestidigitateur-mathématicien.

Ainsi, comme m(E) < ∞, le Théorème d’Egorov s’applique, et pour tout ε > 0, il
garantit l’existence d’un sous-ensemble mesurable fermé Eε ⊂ E de mesure presque égale
à celle de E :

m
(
Eε

)
⩾ m(E)− ε,

sur lequel la convergence est uniforme :

φn(x)
∣∣
Eε

−→
uniformément

f(x)
∣∣
Eε
.

En utilisant aussi crucialement le fait que la suite (φn)
∞
n=1 est uniformément bornée par la

constante M > 0, et en découpant :

E = Eε ∪
(
E\Eε

)
,

nous pouvons alors exécuter des majorations intuitivement naturelles :∣∣∣∣ ∫ φn −
∫

φm

∣∣∣∣ ⩽
∫
E

∣∣φn(x)− φm(x)∣∣ dx
=

∫
Eε

∣∣φn(x)− φm(x)∣∣ dx+ ∫
E\Eε

∣∣φn(x)− φm(x)∣∣ dx
⩽

∫
Eε

∣∣φn(x)− φm(x)∣∣ dx+ 2M m
(
E\Eε

)
⩽

∫
Eε

∣∣φn(x)− φm(x)∣∣ dx+ 2M ε.

Mais par convergence égorovienne uniforme sur Eε, il existe un entier N = Nε ≫ 1 tel
que :

n, m ⩾ Nε =⇒
(
∀x ∈ Eε

∣∣φn(x)− φm(x)∣∣ ⩽ ε
)
.

Au total : ∣∣∣∣ ∫ φn −
∫

φm

∣∣∣∣ ⩽ ε
(
m(Eε) + 2M

)
⩽ ε

(
m(E) + 2M

)
,

toujours pour n,m ⩾ Nε, ce qui montre bien que la suite de nombres réels :(∫
φn

)∞
n=1
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est convergente, puisqu’elle est de Cauchy dans R complet !
Enfin, lorsque f = 0, on peut répéter les mêmes arguments, et obtenir (exercice) :∣∣∣∣ ∫ φn

∣∣∣∣ ⩽ ε
(
m(E) +M

)
,

ce qui, sans doute aucun, assure que la limite en question vaut effectivement 0. □

En utilisant ce lemme, nous pouvons maintenant définir l’intégration des fonctions me-
surables bornées qui sont à support dans un ensemble de mesure finie.

Proposition-Définition 3.3. Étant donné une fonction mesurable bornée f : Rd −→ R à
support contenu supp(f) ⊂ E dans un ensemble E ⊂ Rd de mesure m(E) < ∞ finie, on
définit l’intégrale de Lebesgue de f comme la limite :∫

f(x) dx := lim
n→∞

∫
φn(x) dx,

où (φn)
∞
n=1 est une suite auxiliaire quelconque de fonctions étagées satisfaisant :

• il existe une constante M > 0 avec
∣∣φn∣∣ ⩽M pour tout n ⩾ 1,

• supp(φn) ⊂ E pour tout n ⩾ 1,
• φn(x) −→

n→∞
f(x) pour tout x ∈ E.

Démonstration. Effectivement, vérifions que cette limite ne dépend pas de la suite φn, en
prenant une autre suite (ψn)∞n=1 jouissant des mêmes propriétés que (φn)∞n=1. Alors grâce au
lemme précédent qui anticipait notre besoin argumentatif présent, la suite des différences :(

ηn
)∞
n=1

:=
(
φn − ψn

)∞
n=1

reste bornée — maintenant par 2M au lieu de M —, elle reste à support dans E (oui !), et
elle tend ponctuellement vers 0, donc la fin du lemme en question assure que :

0 = lim
n→∞

∫
ηn

= lim
n→∞

∫ (
φn − ψn

)
ce qui veut justement dire, grâce à la linéarité, déjà acquise, de l’intégrale sur les fonctions
étagées, que :

lim
n→∞

∫
φn = lim

n→∞

∫
ψn,

et conclut en longueur cette vérification très détaillée. □

Définition 3.4. Si une fonction mesurable bornée f : Rd −→ R possède un support de
mesure finie :

m
(
supp(f)

)
< ∞,

et si E ⊂ Rd est un sous-ensemble mesurable, on définit l’intégrale de Lebesgue de f sur
E par : ∫

E

f :=

∫
Rd
f(x) · 1E(x) dx.
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Clairement, lorsque f elle-même est une fonction étagée, cette définition coïncide avec
la précédente.

Avant de poursuivre, notons que si tous les ensembles Ek mesurables qui interviennent
dans une fonction étagée φ =

∑
ak 1Ek sont tous de mesure nulle m(Ek) = 0, l’intégrale∫

φ =
∑

akm(Ek) = 0 est trivialement nulle. Autrement dit :

« L’intégrale ne voit pas les ensembles de mesure nulle ».

Définition 3.5. Une propriété P = P(x) dépendant d’un point x ∈ E appartenant à un
sous-ensemble mesurable E ⊂ Rd sera dite vraie presque partout, ou vraie pour presque
tout x ∈ E lorsqu’il existe un sous-ensemble :

N ⊂ E

de mesure nulle 0 = m(N) tel que P(x) est satisfaite pour tout x ∈ E\N .

Par exemple, on dira qu’une suite de fonctions étagées (φn)∞n=1 converge presque partout
vers une certaine fonction mesurable f : Rd lorsqu’il existe un sous-ensembleN ⊂ Rd avec
0 = m(N) tel que :

f(x) = lim
n→∞

φn(x) (∀x∈Rd\N).

On vérifie alors (exercice de compréhension) que le Lemme 3.2 ci-dessus reste vrai
en supposant seulement la convergence presque partout de la suite de fonctions étagées
concernée.

Ainsi donc, sur notre route initiatique en direction de la bellissime et généralisssime
intégrale de Lebesgue, nous atteignons par l’Étape 2 un niveau considérablement plus élevé
que celui des fonctions étagées, puisque nous atteignons leurs limites ponctuelles bornées,
limites qui ne sont pas forcément uniformes.

Bien entendu, toute cette élucubration par passages téméraires à la limite s’effondrerait
si nous ne conservions pas les propriétés élémentaires fondamentales qu’on est en droit
d’attendre de toute intégrale. Éh bien, les voici !

Proposition 3.6. Soient f et g deux fonctions mesurables bornées Rd −→ R à support
dans un ensemble (commun) de mesure finie. Alors les quatre propriétés suivantes sont
satisfaites.

(i) Linéarité : Pour tous a, b ∈ R, on a :∫
Rd

(
a f + b g

)
= a

∫
Rd
f + b

∫
Rd
g.

(ii) Additivité domaniale : Si F et G sont deux sous-ensembles mesurables disjoints de Rd de
mesure finie, alors : ∫

F∪G
f =

∫
F

f +

∫
G

f.

(iii) Monotonie : Si f ⩽ g en presque tout point, alors :∫
Rd
f ⩽

∫
Rd
g.
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(iv) Inégalité du triangle : La fonction valeur absolue |f | est aussi une fonction mesurable
bornée et l’on a : ∣∣∣∣ ∫

Rd
f

∣∣∣∣ ⩽
∫
Rd
|f |.

Démonstration. Toutes ces propriétés se vérifient (exercice) en utilisant l’approximation
par des fonctions étagées, à partir des propriétés que ces fonctions satisfont déjà en vertu
de la Proposition 2.4 □

Nous sommes maintenant en position de démontrer le premier théorème important de
convergence.

Théorème 3.7. [Convergence bornée] Soit (fn)∞n=1 une suite de fonctions mesurables
fn : Rd −→ R satisfaisant :
• il existe une constante M > 0 avec

∣∣fn∣∣ ⩽M pour tout n ⩾ 1,

• il existe E ⊂ Rd mesurable avec m(E) <∞ et supp(fn) ⊂ E pour tout n ⩾ 1,
• fn(x) −→

n→∞
f(x) pour presque tout x ∈ E.

Alors la fonction-limite f est mesurable, satisfait :

supp(f) ⊂ E,

et de plus, on a surtout : ∫
Rd

∣∣fn − f ∣∣ −→
n→∞

0,

d’où : ∫
fn −→

n→∞

∫
f.

Cette dernière ligne signifie précisément la propriété que l’on adore :

lim
n→∞

∫
fn =

∫
lim
n→∞

fn,

autrement dit, que prendre la limite et intégrer sont deux opérations interchangeables.

Démonstration. D’après les hypothèses, on voit immédiatement que la fonction-limite f
est bornée par la même constante :

|f | ⩽ M (presque partout).

On voit aussi que f s’annule hors de E. Clairement, l’inégalité du triangle pour les inté-
grales assure qu’il suffit d’établir la première convergence.

En fait, la démonstration est une reprise d’un argument basé sur le Théorème d’Egorov,
qui nous avait permis dans le Lemme 3.2 de vérifier que l’intégrale était indépendante de
la suite approximante de fonctions étagées.

En effet, si ε > 0 est arbitrairement petit et fixé, le Théorème d’Egorov nous permet de
trouver un sous-ensemble mesurable Eε ⊂ E avec :

m
(
E\Eε

)
⩽ ε,

en restriction auquel on a convergence uniforme :

fn(x)
∣∣
Eε

−→
uniformément

f(x)
∣∣
Eε
.
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Alors sur Eε, nous pouvons trouver un entier Nε ≫ 1 assez grand pour que :

n ⩾ Nε =⇒
(
∀x ∈ Eε

∣∣fn(x)− f(x)∣∣ ⩽ ε
)
.

Rassemblant tous ces faits, nous pouvons estimer, toujours pour n ⩾ Nε :∫
E

∣∣fn(x)− f(x)∣∣ dx =

∫
Eε

∣∣fn(x)− f(x)∣∣ dx+ ∫
E\Eε

∣∣fn(x)− f(x)∣∣ dx
⩽ εm

(
Eε

)
+ 2M m

(
E\Eε

)
⩽ ε

(
m(E) + 2M

)
.

Comme ε > 0 était arbitraire, cela conclut. □

Observons que ce théorème de convergence exprime la possibilité d’intervertir intégra-
tion et passage à la limite :

lim
n→∞

∫
fn =

∫
lim
n→∞

fn.

Une autre observation utile que nous pouvons faire au point que nous venons d’atteindre
est la suivante.

Proposition 3.8. Si f ⩾ 0 est une fonction réelle positive bornée à support dans un sous-
ensemble E ⊂ Rd de mesure finie, et si

∫
E
f = 0, alors f = 0 presque partout.

Démonstration. En effet, pour tout entier k ⩾ 1, introduisons l’ensemble :

Ek :=
{
x ∈ E : f(x) ⩾ 1/k

}
.

Alors Ek est mesurable (exercice mental), et le fait que :

0 ⩽
1

k
1Ek(x) ⩽ f(x)

implique par monotonie de l’intégrale :

0 ⩽
1

k
m
(
Ek

)
⩽

∫
f = 0.

Par conséquent :
m
(
Ek

)
= 0 (∀ k⩾ 1).

Enfin, puisque : {
x : f(x) > 0

}
=

∞⋃
k=1

Ek,

on conclut (exercice mental) que f = 0 presque partout. □

4. Retour aux fonctions Riemann-intégrables

Rappelons que dans un chapitre qui précède, nous avons formulé une question que la
théorie de Riemann semblait dans l’incapacité de résoudre, à savoir la :

Question. Si une suite de fonctions continues sur l’intervalle [0, 1] :

fn : [0, 1] −→ [0, 1] (n⩾ 1),

possède en tout point x ∈ [0, 1] une limite ponctuelle :

lim
n→∞

fn(x) =: f(x),



14 François DE MARÇAY, Département de Mathématiques d’Orsay, Université Paris-Saclay, France

quelle théorie d’intégration pourrait être développée afin qu’on ait :∫ 1

0

f(x) dx = lim
n→∞

∫ 1

0

fn(x) dx ?

En effet, à la fin du chapitre sur l’ensemble de Cantor, nous avons produit un exemple
de fonction bornée f : [0, 1] −→ [0, 1] limite de fonctions continues fn : [0, 1] −→ [0, 1]
dont les points de discontinuité sont de mesure strictement positive, de telle sorte que f
n’est pas Riemann-intégrable, bien que la limite des nombres réels

∫ 1

0
fn existe.

Mais au niveau que nous venons d’atteindre dans la théorie plus puissante de Lebesgue,
le Théorème 3.7 de convergence bornée que nous venons d’établir répond déjà en un certain
sens à cette question, et ce Théorème 3.7 montre surtout que notre fonction f de la fin du
chapitre sur l’ensemble de Cantor est Lebesgue-intégrable.

Or puisque nous allons maintenant montrer que les fonctions Riemann-intégrables sont
aussi Lebesgue-intégrables (la réciproque n’étant pas vraie !), nous pouvons d’ores et déjà
conclure que c’est l’intégrale de Lebesgue qu’il fallait inventer pour répondre à la question
dont nous venons de rappeler l’énoncé ci-dessus.

Théorème 4.1. Sur un intervalle compact [a, b] ⋐ R, soit f : [a, b] −→ R une fonction
bornée Riemann-intégrable. Alors f est mesurable, et son intégrale au sens de Riemann
coïncide avec son intégrale au sens de Lebesgue :∫ R

[a,b]

f(x) dx =

∫ L

[a,b]

f(x) dx.

Démonstration. Puisque l’intégrale de Riemann ne concerne par définition que les fonc-
tions bornées, il existe une constante M > 0 telle que :∣∣f(x)∣∣ ⩽ M (∀x∈ [a, b]).

Comme f est Riemann-intégrable, ses sommes de Darboux inférieure et supérieure asso-
ciées à des subdivisions de plus en plus fines de l’intervalle [a, b] permettent de définir deux
suites : (

φ−k (x)
)∞
k=1

et
(
φ+
k (x)

)∞
k=1

de fonctions en escalier bornées :∣∣φ−k ∣∣ ⩽ M et
∣∣φ+

k

∣∣ ⩽ M,

qui encadrent f de manière monotone :

φ−1 (x) ⩽ φ−2 (x) ⩽ · · · ⩽ f(x) ⩽ · · · ⩽ φ+
2 (x) ⩽ φ+

1 (x),

et dont les intégrales convergent vers celle de f :

lim
k→∞

∫ R

[a,b]

φ−k (x) dx =

∫ R

[a,b]

f(x) dx = lim
k→∞

∫ R

[a,b]

φ+
k (x) dx.(4.2)

Plusieurs observations se manifestent à nous simultanément. Premièrement, il découle
immédiatement des définitions que les intégrales de Riemann et de Lebesgue coïncident
sur les fonctions en escalier, d’où :

∫ R

[a,b]

φ−k (x) dx =

∫ L

[a,b]

φ−k (x) dx et
∫ R

[a,b]

φ+
k (x) dx =

∫ L

[a,b]

φ+
k (x) dx,

(4.3)



5. Étape 3 : Fonctions mesurables positives quelconques 15

pour tout k ⩾ 1. Ensuite, sachant que toutes les φ−k et toutes les φ+
k sont mesurables, leurs

limites :

φ−∞(x) := lim
k→∞

φ−k (x) et φ+
∞(x) := lim

k→∞
φ+
k (x)

sont mesurables elles aussi — car la mesurabilité est préservée par passage à la limite —,
et bien entendu, on a :

φ−∞ ⩽ f ⩽ φ+
∞.

Plus avant, le Théorème 3.7 de convergence bornée assure que :

lim
k→∞

∫ L

[a,b]

φ−k (x) dx =

∫ L

[a,b]

φ−∞(x) dx,

et que :

lim
k→∞

∫ L

[a,b]

φ+
k (x) dx =

∫ L

[a,b]

φ+
∞(x) dx.

Ceci combiné à (4.2) et (4.3) donne :∫ L

[a,b]

(
φ+
∞(x)− φ−∞(x)

)
dx = 0,

et comme par ailleurs φ+
k − φ

−
k ⩾ 0 donne à la limite :

φ+
∞ − φ−∞ ⩾ 0,

nous déduisons grâce à la Proposition 3.8 que :

φ+
∞ − φ−∞ = 0,

presque partout, et enfin que :

φ+
∞ = φ−∞ = f,

presque partout, ce qui démontre merveilleusement que f est mesurable !
Pour terminer, puisque :

φ−k −→
k→∞

f et f ←−
∞←k

φ+
k

presque partout, on a, par définition même de l’intégrale des fonctions mesurables bornées
donnée dans cette section :

lim
k→∞

∫ L

[a,b]

φ−k (x) dx =

∫ L

[a,b]

f(x) dx = lim
k→∞

∫ L

[a,b]

φ+
k (x) dx,

et en tenant à nouveau compte de (4.2) et (4.3), on conclut que :∫ L

[a,b]

f(x) dx =

∫ R

[a,b]

f(x) dx,

comme annoncé. □
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5. Étape 3 : Fonctions mesurables positives quelconques

Nous procédons maintenant à l’intégrale des fonctions mesurables positives quel-
conques, pas nécessairement bornées. Il sera important d’autoriser ces fonctions à prendre
leurs valeurs dans l’ensemble étendu des nombres réels positifs :

R+ ∪ {+∞},

la valeur +∞ étant bien entendu prise sur un ensemble mesurable. Rappelons la convention
standard que le supremum d’un ensemble de nombres réels positifs vaut +∞ lorsque, et
seulement lorsque, l’ensemble en question est non borné.

Définition 5.1. L’intégrale de Lebesgue
∫
Rd f d’une fonction mesurable positive :

f : Rd −→ R+ ∪ {∞},

est le nombre :∫
Rd
f(x) dx := sup

{∫
Rd
φ(x) dx : φ : Rd −→ R+ mesurable bornée avec 0 ⩽ φ ⩽ f

à support dans un ensemble de mesure finie
}
,

nombre qui appartient à R+ ∪ {∞}.

Avec cette définition, deux cas se présentent : ou bien le supremum en question est fini,
ou bien il est infini.

Définition 5.2. Dans les mêmes circonstances, lorsque :∫
Rd
f(x) dx < ∞,

on dit que f est Lebesgue-intégrable, ou, simplement, intégrable.

En restriction à un ensemble mesurable, on peut aussi introduire la :

Définition 5.3. Si E ⊂ Rd est un sous-ensemble mesurable, si f ⩾ 0 est une fonction
mesurable sur Rd à valeurs dans R+ ∪ {+∞}, alors f · 1E est aussi positive mesurable sur
Rd, et on définit : ∫

E

f(x) dx :=

∫
Rd
f(x) · 1E(x) dx.

Pour un réel a > 0, considérons les deux fonctions bien connues sur Rd :

fa(x) =


1

|x|a
lorsque |x| ⩽ 1,

0 lorsque |x| > 1,

Fa(x) =
1

1 + |x|a
.

Comme en théorie de l’intégrale généralisée de Riemann (exercice de révision), fa est
Lebesgue-intégrable précisément quand a < d, tandis que Fa l’est précisément quand a >
d.
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Proposition 5.4. L’intégrale des fonctions mesurables positives quelconques :

f, g : Rd −→ R+ ∪ {∞}
satisfait les six propriétés suivantes.

(i) Linéarité positive : Pour tous a, b ∈ R+, on a :∫
Rd

(
a f + b g

)
= a

∫
Rd
f + b

∫
Rd
g.

(ii) Additivité domaniale : Si F et G sont deux sous-ensembles disjoints de Rd, alors :∫
F∪G

f =

∫
F

f +

∫
G

f.

(iii) Monotonie : Si 0 ⩽ f ⩽ g en presque tout point, alors :

0 ⩽
∫
Rd
f ⩽

∫
Rd
g.

(iv) Si g est intégrable et si 0 ⩽ f ⩽ g, alors f est aussi intégrable.

(v) Si f est intégrable, alors f(x) <∞ pour presque tout x ∈ Rd.

(vi) Si
∫
f = 0, alors f(x) = 0 pour presque tout x ∈ Rd.

Démonstration. Seule la première assertion (i) n’est pas une conséquence rapide des défi-
nitions, et pour l’établir, nous procéderons comme suit.

Par dilatation, il suffit de traiter le cas a = b = 1. Si 0 ⩽ φ ⩽ f et si 0 ⩽ ψ ⩽ g, où φ
et ψ sont bornées à support dans un ensemble de mesure finie, alors :

φ+ ψ ⩽ f + g,

et la somme φ+ψ est aussi bornée à support dans un ensemble de mesure finie. Par consé-
quent : ∫

f +

∫
g = sup

0⩽φ⩽f

∫
φ+ sup

0⩽ψ⩽g

∫
ψ

= sup
0⩽φ⩽f
0⩽ψ⩽g

∫ (
φ+ ψ

)
⩽ sup

φ+ψ⩽f+g

∫ (
φ+ ψ

)
⩽ sup

0⩽χ⩽f+g

∫
χ

=

∫ (
f + g

)
.

Pour ce qui concerne l’inégalité inverse, supposons qu’une fonction η ⩾ 0 est bornée à
support dans un ensemble de mesure finie avec :

η ⩽ f + g,

et introduisons la fonction mesurable :

η1(x) := min
(
f(x), η(x)

)
,
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ainsi que :
η2 := η − η1 ⩾ 0.

Évidemment, on a :
0 ⩽ η1 ⩽ f,

et puisque η2 est en tout point, ou bien égale à η − f ⩽ g, ou bien égale à η − η = 0, on a
aussi :

0 ⩽ η2 ⩽ g.

Clairement, η1 et η2 sont toutes deux bornées à support dans un ensemble de mesure finie.
Nous en déduisons : ∫

η =

∫ (
η1 + η2

)
=

∫
η1 +

∫
η2

⩽
∫

f +

∫
g.

Enfin, en prenant le supremum sur η, nous obtenons l’inégalité inverse :∫ (
f + g

)
⩽

∫
f +

∫
g,

ce qui conclut (i).
Pour montrer (v), introduisons pour tous k ⩾ 1 entiers les ensembles :

Ek :=
{
x ∈ Rd : f(x) ⩾ k

}
,

ainsi que :
E∞ :=

{
x ∈ Rd : f(x) =∞

}
.

Alors il est clair que :

∞ >

∫
f ⩾

∫
f · 1Ek ⩾ km

(
Ek

)
,

inégalité qui montre instantanément que :

m
(
Ek

)
−→
k→∞

0.

Mais puisque (Ek)∞k=1 est une suite décroissante emboitée d’ensembles mesurables qui tend
vers E∞, un énoncé du chapitre qui précède assure que :

m
(
E∞

)
= lim

k→∞
m
(
Ek

)
= 0,

ce qui montre bien que f ne peut être infinie que sur un ensemble de mesure nulle.
Pour terminer, la démonstration de (vi) est essentiellement la même que celle de la

Proposition 3.8. □

Développons maintenant des théorèmes de convergence importants valables pour la
classe des fonctions mesurables positives. Afin de motiver ces résultats, posons la :
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Question 5.5. Si une suite (fn)
∞
n=1 de fonctions mesurables positives fn ⩾ 0 converge

ponctuellemement vers une certaine fonction-limite f :

fn(x) −→
n→∞

f(x),

elle-même alors automatiquement mesurable, est-il toujours vrai qu’on peut intervertir li-
mite et intégration : ∫

Rd
fn(x) dx

??−→
n→∞

∫
Rd
f(x) dx?

Malheureusement, tel n’est pas toujours le cas, comme le montre un exemple extrême-
ment simple. Sur R, soit la suite de fonctions :

fn(x) :=

{
n lorsque 0 < x < 1/n,

0 lorsque x ⩽ 0 ou lorsque x ⩾ 1/n.

Il est clair que fn(x) −→ 0 en tout point x, mais on a :∫
R
fn(x) = 1,

constamment pour tout entier n ⩾ 1.
Bien qu’essentiellement stupide, cet exemple possède quand même une vertu inatten-

due ! En effet, il fait suspecter intuitivement que l’intégrale de la fonction-limite doive
toujours être inférieure à la limite des intégrales, et tel est bien le cas en général !

Théorème 5.6. [Lemme de Fatou] Si une suite de fonctions mesurables positives sur Rd :(
fn
)∞
n=1

: Rd −→ R+ ∪ {∞},
converge presque partout vers une certaine fonction f , automatiquement mesurable :

lim
n→∞

fn(x) = f(x),

alors : ∫
Rd
f(x) dx ⩽ lim inf

n→∞

∫
Rd
fn(x) dx.

Il importe de faire observer que dans cet énoncé, on n’exclut ni le cas
∫
limn→∞ fn =∞,

ni le cas lim infn→∞
∫
fn =∞.

Démonstration. Soit une fonction mesurable g bornée à support dans un ensemble E ⊂ Rd

de mesure m(E) <∞ finie telle que :

0 ⩽ g ⩽ f.

Si nous introduisons :
gn(x) := min

(
g(x), fn(x)

)
,

alors la suite (gn)∞n=1 est aussi mesurable, aussi à support dans E, et l’on a presque partout :

gn(x) −→
n→∞

g(x),

donc le Théorème 3.7 de convergence bornée assure que :∫
gn −→

n→∞

∫
g.



20 François DE MARÇAY, Département de Mathématiques d’Orsay, Université Paris-Saclay, France

Mais par construction on a aussi gn ⩽ fn pour tout n ⩾ 1, d’où :∫
gn ⩽

∫
fn,

et en prenant la limite à gauche, même si le membre de droite n’a pas de limite, sa limite
inférieure lui demeure nécessairement supérieure :∫

g ⩽ lim inf
n→∞

∫
fn.

Enfin, en prenant le supremum à gauche sur toutes les fonctions g, on trouve bien par
application de la Définition 5.1 : ∫

f ⩽ lim inf
n→∞

∫
fn,

ce qui est la conclusion. □

Du Lemme de Fatou, on peut déduire les résultats les plus importants de la Théorie de
l’Intégration de Lebesgue.

Théorème 5.7. Soit f : Rd −→ R+ ∪ {∞} une fonction mesurable positive, et soit une
suite : (

fn
)∞
n=1

de fonctions mesurables encadrées en presque tout point x ∈ Rd :

0 ⩽ fn(x) ⩽ f(x),

et qui convergent presque partout ponctuellement vers f :

lim
n→∞

fn(x) = f(x).

Alors :

lim
n→∞

∫
fn =

∫
f.

Démonstration. Puisque fn(x) ⩽ f(x) presque partout, on a instantanément :∫
fn ⩽

∫
f,

d’où découle (exercice mental) :

lim sup
n→∞

∫
fn ⩽

∫
f.

Par ailleurs, le Lemme de Fatou qui précède complète ceci :

lim sup
n→∞

∫
fn ⩽

∫
f ⩽ lim inf

n→∞

∫
fn,

et comme une limite supérieure ne peut se trouver en-dessous d’une limite inférieure que
lorsque toutes deux coïncident, c’est bien que la limite existe et vaut

∫
f ! □

Ensuite, nous récoltons aussi comme fruit mûr un résultat très important de convergence
pour les suites monotones de fonctions positives.
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Théorème 5.8. [Convergence monotone, Beppo-Levi] Soit une suite de fonctions mesu-
rables positives : (

0 ⩽
)
fn : Rd −→ R+ ∪ {∞},

qui est ponctuellement croissante :(
0 ⩽

)
fn(x) ⩽ fn+1(x) (en presque tout point x∈Rd),

donc qui converge vers une certaine fonction-limite mesurable :
f := lim

n→∞
fn

Rd −→ R+ ∪ {∞}
Alors on a :

lim
n→∞

∫
fn =

∫
f.

Il est particulièrement important de noter que l’éventualité
∫
f =∞ n’est pas exclue ici.

Bien entendu, un énoncé analogue vaut aussi pour les suites de fonctions presque partout
ponctuellement décroissantes de fonctions à valeurs dans {−∞} ∪ R−.

Démonstration. Il s’agit juste d’un corollaire immédiat du théorème qui précède ! □

Ce magnifique théorème de convergence monotone possède de nombreuses consé-
quences utiles. Par exemple, voici un énoncé spectaculaire qui produit de la convergence.

Théorème 5.9. Soit une série :
∞∑
k=1

ak(x),

de fonctions mesurables positives sur Rd :

ak(x) ⩾ 0 (∀ k⩾ 1, presque partout).

Alors pourvu seulement qu’on ait la finitude :
∞∑
k=1

∫
ak(x) dx < ∞,

la série :
∞∑
k=1

ak(x)

converge presque partout vers une certaine fonction-limite mesurable finie.

Démonstration. Introduisons en effet les sommes partielles d’ordre n :

fn(x) :=
n∑
k=1

ak(x),

ainsi que la somme infinie complète :

f(x) :=
∞∑
k=1

ak(x).

Bien entendu, les fonctions fn sont mesurables, leur suite est croissante :

fn(x) ⩽ fn+1(x) (∀ k⩾ 1, presque partout),
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et l’on a en admettant toujours la valeur∞ pour les fonctions :

lim
n→∞

fn(x) = f(x) (presque partout).

Mais alors puisque : ∫
fn =

n∑
k=1

∫
ak(x) dx,

le Théorème de convergence monotone assure que :
∞∑
k=1

∫
ak(x) dx =

∫ ∞∑
k=1

ak(x) dx.

Si donc on a comme cela a été supposé dans l’énoncé qu’il faut démontrer :
∞∑
k=1

∫
ak(x) dx < ∞,

cette dernière équation implique la finitude de l’intégrale :∫ ∞∑
k=1

ak(x) dx < ∞,

ce qui signifie précisément que la fonction-limite :

f(x) =
∞∑
k=1

ak(x)

est Lebesgue-intégrable, et nous avons déjà vu que toute fonction positive Lebesgue-
intégrable prend presque partout des valeurs finies. □

Donnons encore deux belles illustrations de ce dernier énoncé.

Théorème 5.10. [Borel-Cantelli] Si une collection infinie dénombrable :

E1, E2, . . . , Ek, . . . ,

de sous-ensembles Ek ⊂ Rd satisfait :
∞∑
k=1

m
(
Ek

)
< ∞,

alors l’ensemble des points x ∈ Rd qui appartiennent à une infinité de Ek est de mesure
nulle.

Démonstration. Introduisons en effet les fonctions indicatrices de ces ensembles :

ak(x) := 1Ek(x),

et observons alors qu’un point x ∈ Rd appartient à une infinité de Ek précisément lorsque :
∞∑
k=1

ak(x) = ∞.
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Mais par contraste, notre hypothèse que la somme des mesures deEk est finie se ré-exprime
comme la finitude :

∞∑
k=1

∫
ak(x) dx < ∞,

et nous venons à l’instant de voir dans le théorème qui précède que cela forçait la série
positive

∑∞
k=1 ak(x) à prendre des valeurs finies excepté sur un ensemble de mesure nulle,

et ainsi, Borel-Cantelli tombe de l’arbre mathématique comme une pomme de Newton ! □

La seconde illustration servira ultérieurement dans de nombreux contextes.

Proposition 5.11. La fonction :

f(x) :=


1

|x|d+1
lorsque x ̸= 0,

0 lorsque x = 0,

est Lebesgue-intégrable hors de toute boule de rayon ε > 0, et son intégrale correspon-
dante satisfait l’inégalité : ∫

|x|⩾ε
f(x) dx ⩽

C

ε
,

pour une certaine constante C > 0.

Démonstration. En partant de l’anneau ouvert :

A :=
{
x ∈ Rd : 1 ⩽ |x| < 2

}
,

pour tout entier k ⩾ 1, introduisons ses dilatés d’un facteur 2k−1ε :

Ak :=
{
x ∈ Rd : 2k−1ε ⩽ |x| < 2kε

}
,

dont la réunion infinie est disjointe et remplit :{
ε ⩽ |x| ⩽ ∞

}
=

∞⋃
k=1

Ak.

Introduisons aussi la série infinie :

g(x) :=
∞∑
k=1

gk(x),

constituée des fonctions :

gk(x) :=
1

(2k−1ε)d+1
1Ak(x).

Comme la fonction |x| 7−→ 1
|x|d+1 est décroissante, on se convainc aisément qu’en restric-

tion à Ak, on a :
f(x) ⩽ gk(x) (x∈Ak),

puis :
f(x) ⩽ g(x) (ε⩽ |x|⩽∞),

d’où : ∫
|x|⩾ε

f ⩽
∫
|x|⩾ε

g.
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D’un autre côté, grâce aux propriétés d’invariance par dilatation de la mesure de Le-
besgue, on a :

m
(
Ak

)
=

(
2k−1ε

)d
m
(
A

)
(k⩾ 1),

et comme g est manifestement une fonction étagée :∫
|x|⩾ε

g =
∞∑
k=1

m
(
Ak

)
(2k−1ε)d+1

= m
(
A

) ∞∑
k=1

(2k−1ε)d

(2k−1ε)d+1

=
m(A )

ε

∞∑
k=1

1

2k−1

=
2m(A )

ε
,

ce qui explicite une constante possible C > 0 ! □

Concluons la présentation de cette floppée de théorèmes de convergence par celui qui
les chapeaute tous.

Théorème 5.12. [Inégalité généralissime de Fatou] Étant donné une suite quelconque
(fn)

∞
n=1 de fonctions mesurables positives sur Rd :

fn ⩾ 0,

à valeurs dans R+ ∪ {∞}, la fonction limite inférieure (positive) :

lim inf
n→∞

fn(x),

est toujours automatiquement mesurable, et on a en toute généralité maximalissime :∫
Rd

lim inf
n→∞

fn(x) dx ⩽ lim inf
n→∞

∫
Rd
fn(x) dx.

La force extrême de cet énoncé, en effet, c’est qu’absolument aucune hypothèse de
convergence n’est faite : il est vrai dans toutes les situations imaginables !

Démonstration. D’après les propriétés standard de la notion de limite inférieure (exercice :
à réviser !) d’une suite de nombres réels, on a :

lim inf
n→∞

∫
fn︸ ︷︷ ︸

∈ [0,∞]

= lim
k→∞

(
inf
n⩾k

∫
fn︸ ︷︷ ︸

suite croissante
en fonction de k

)
.

De manière similaire, la limite inférieure de la suite de fonctions :(
fn(x)

)∞
n=1

se détermine comme :
lim inf
n→∞

fn(x) = lim
k→∞

(
inf
n⩾k

fn(x)︸ ︷︷ ︸
=: gk(x)

)
.
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Il est alors avisé d’introduire la suite auxiliaire de fonctions définies pour k ⩾ 1 entier par :

gk(x) := inf
n⩾k

fn(x),

qui satisfait donc :
lim
k→∞

gk(x) = lim inf
n→∞

fn(x),

et qui est manifestement positive croissante :(
0 ⩽

)
gk ⩽ gk+1 (k⩾ 1).

Mais alors, tel le fantôme phosphorescent d’un Lucky-Luke solitaire perdu au milieu des
elfes radioactifs du Plateau de Saclay, en dégainant infiniment plus vite que l’ombre in-
saisissable de notre intuition mathématique intime, qu’avons-nous de mieux à faire que
d’appliquer à une vitesse supérieure à celle de la lumière le Théorème 5.8 de convergence
monotone?

Oui, dégainons Beppo-Levi calibre 58 :∫
lim
k→∞

gk = lim
k→∞

∫
gk !

Ensuite, comme pour tout n ⩾ k, on a :

0 ⩽ gk ⩽ fn,

une intégration donne : ∫
gk ⩽

∫
fn (∀n⩾ k),

puis : ∫
gk ⩽ inf

n⩾k

∫
fn,

ce qui, en prenant la limite quand k tend vers l’infini, donne justement parce que Beppo-
Levi s’applique : ∫

lim
k→∞

gk ⩽ lim
k→∞

(
inf
n⩾k

∫
fn

)
,

ce qui est bien (exercice visuel) l’inégalité établie par le Général en Chef, Fatou, de notre
Grande Armée de l’Intégration théorique (sans blaguer, Fatou était un mathématicien très
profond, qui n’a peut-être pas bénéficié de toute la reconnaissance qu’il méritait de son
vivant). □

Corollaire 5.13. [Inégalité de Fatou inverse] Étant donné une suite quelconque de fonc-
tions mesurables négatives sur Rd :

fn ⩽ 0

à valeurs dans {−∞} ∪ R−, on a :

lim sup
n→∞

∫
Rd
fn(x) dx ⩽

∫
Rd

lim sup
n→∞

fn.

Démonstration. Appliquons le théorème précédent à la suite de fonctions − fn ⩾ 0 :∫
Rd

lim inf
n→∞

(
− fn(x)

)
dx ⩽ lim inf

n→∞

∫
Rd

(
− fn(x)

)
dx.
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Lemme 5.14. Pour toute suite (an)
∞
n=1 de nombres réels an ∈ R, on a :

lim inf
n→∞

(
− an

)
= − lim sup

n→∞
an,

ainsi que :
lim sup
n→∞

(
− an

)
= − lim inf

n→∞
an.

Démonstration. Rappelons que les limites inférieures et supérieures d’une suite numérique
quelconque (bn)

∞
n=1 sont définies par :

lim inf
n→∞

bn = lim
n→∞

(
inf
m⩾n

bm

)
et lim sup

n→∞
bn = lim

n→∞

(
sup
m⩾n

bm

)
,

où les deux suites :
inf
m⩾n

bm et sup
m⩾n

bm

ont chacune une limite, puisqu’elles sont respectivement croissantes et décroissantes avec
n (exercice mental).

Ici appliquée à la suite bn := − an, cette définition de la limite inférieure peut être
transformée en le premier résultat annoncé :

lim inf
n→∞

(
− an

)
= lim

n→∞

(
inf
m⩾n
− am

)
= lim

n→∞

(
− sup

m⩾n
am

)
= − lim

n→∞

(
sup
m⩾n

am

)
= − lim sup

n→∞
an,

le second se vérifiant ensuite de manière similaire. □

Grâce à ce lemme élémentaire, l’inégalité en cours de travaux devient :∫
Rd
− lim sup

n→∞
fn ⩽ − lim sup

n→∞

∫
Rd
fn(x) dx,

et pour conclure il suffit alors d’infliger à cette dernière inégalité imparfaite la foudre trans-
perçante d’une inversion de signe ! □

6. Étape 4 : Fonctions Lebesgue-intégrables au sens le plus général possible

Définition 6.1. Une fonction mesurable réelle quelconque :

f : Rd −→ {−∞} ∪ R ∪ {+∞},
est dite Lebesgue-intégrable lorsque sa valeur absolue :

|f | : Rd −→ R+ ∪ {∞}
— une fonction elle aussi mesurable —, est Lebesgue-intégrable d’intégrale finie :∫

Rd
|f | < ∞,

au sens de la Définition 5.1 qui précède.
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En fait, on peut donner un sens précis et naturel à la valeur de l’intégrale de f en intro-
duisant les deux fonctions auxiliaires positives :

f+(x) := max
(
0, f(x)

)
et f−(x) := −min

(
f(x), 0

)
,

lesquelles sont mesurables ; en effet, on a déjà vu dans le chapitre sur l’intégrale de Riemann
que l’on peut écrire simultanément :

f = f+ − f−,
|f | = f+ + f−,

de telle sorte qu’en tenant compte aussi des deux majorations :

0 ⩽ f− ⩽ |f | et 0 ⩽ f+ ⩽ |f |,
montrant que f− et f+ sont Lebesgue-intégrables lorsque f i.e. |f | l’est, la définition sui-
vante apparaît comme étant parfaitement naturelle.

Définition 6.2. La valeur de l’intégrale de Lebesgue d’une fonction Lebesgue-intégrable
est : ∫

f :=

∫
f+ −

∫
f−.

En vérité, on peut rencontrer dans la pratique de multiples décompositions :

f = f1 − f2,
où f1 et f2 sont deux fonctions mesurables positives, et alors il est légitime de se demander
si l’on est toujours en droit d’écrire :∫

f =

∫
f1 −

∫
f2?

Oui, c’est bien le cas, parce que si f jouit d’une autre telle décomposition :

f = g1 − g2,
avec g1 ⩾ 0 et g2 ⩾ 0, il vient :

f1 + g2 = g1 + f2,

et comme les deux côtés de cette équation consistent en des fonctions mesurables positives,
la linéarité déjà vue de l’intégrale sur les fonctions positives donne :∫

f1 +

∫
g2 =

∫
g1 +

∫
f2,

ce qui, puisque toutes ces intégrales sont des nombres réels finis, donne bien l’indépendance
escomptée : ∫

f1 −
∫

f2 =

∫
g1 −

∫
g2.

Intermède spéculatif crucial. Maintenant, lorsqu’on parcourt en arrière mentalement, syn-
thétiquement et intelligemment toute la théorie qui a été développée jusqu’à présent, il
importe d’effectuer une mise au point capitale concernant la pensée interne relative au
concept intuitif de « presque partout ».

Tout d’abord, nous savons que l’intégrabilité d’une fonction f et la valeur de son inté-
grale

∫
f restent inchangées lorsqu’on modifie à souhait f sur des ensembles de mesure
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nulle. Par conséquent, il est à la fois naturel et utile dans le contexte de la Théorie de l’inté-
gration d’adopter la convention fondamentale que les fonctions seront essentiellement non
définies sur les ensembles de mesure nulle.

Qui plus est, puisque nous savons aussi qu’une fonction Lebesgue-intégrable f prend
des valeurs finies presque partout, on prolonge cette convention fondamentale en admettant,
par exemple, que l’addition f+g de deux fonctions intégrables f et g est toujours possible,
puisque l’ambiguïté causée par la non-définition de f et de g sur certains ensembles de
mesure nulle, et aussi le fait que f et g peuvent éventuellement prendre des valeurs infinies,
ces deux difficultés ne concernent au total qu’un ensemble négligeable et

∫
-invisible parce

que de mesure nulle.
Enfin, lorsqu’on parle d’une fonction f , il devient alors naturel d’admettre par conven-

tion qu’on considère simultanément la collection de toutes les fonctions qui diffèrent de f
seulement sur un ensemble de mesure nulle.

De simples applications des définitions, accompagnées des résultats obtenus jusqu’à
présent, montrent que les propriétés élémentaires de l’intégrale sont héritées par la Défini-
tion 6.1 la plus générale.

Proposition 6.3. L’intégrale de Lebesgue des fonctions Lebesgue-intégrables est linéaire,
additive, monotone, et elle satisfait l’inégalité du triangle. □

Rassemblons maintenant deux résultats qui non seulement sont instructifs, éclairants et
intéressants en eux-mêmes, mais s’avéreront aussi utiles pour la démonstration du célébris-
sime Théorème de la convergence dominée de Lebesgue qui va suivre.

Théorème 6.4. Si f est une fonction Lebesgue-intégrable sur Rd, alors pour tout ε > 0, il
existe un ensemble de mesure finie B — une boule assez grande par exemple — tel que :∫

Rd\B
|f | ⩽ ε.

Démonstration. Après remplacement de f par |f |, on peut supposer que f ⩾ 0.
SiBN désigne la boule fermée centrée à l’origine de rayon un entierN ⩾ 1, introduisons

la suite de fonctions mesurables positives « tronquées » :

fN(x) := f(x) · 1BN (x),
qui est manifestement croissante :

0 ⩽ fN(x) ⩽ fN+1(x),

et qui converge ponctuellement vers f partout :

lim
N→∞

fN(x) = f(x).

Or grâce au Théorème 5.8 de convergence monotone, on a :

lim
N→∞

∫
Rd
fN =

∫
Rd
f.

Autrement dit, pour tout ε > 0 arbitrairement petit, il existe un entier N = Nε ≫ 1 assez
grand pour que : (

0 ⩽
) ∫

Rd
f −

∫
Rd
f · 1BN ⩽ ε,
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et alors puisque :
1Rd\BN = 1Rd − 1BN ,

il vient : ∫
Rd\BN

f ⩽ ε,

comme nous nous étions proposé de le faire voir. □

Intuitivement, les fonctions intégrables doivent en un certain sens s’annuler à l’infini,
puisque leurs intégrables sont finies, mais attention ! une telle annulation n’est valable qu’au
sens intégral, et elle est en général fausse au sens ponctuel — penser en effet à une fonction
qui contient une infinité de pics s’enfuyant vers l’infini dont les contributions intégrales
deviennent de plus en plus petites telle que par exemple (exercice) la fonction :

f : R1 −→ R+

définie précisément par :

f(x) =

{
n lorsque x ∈

[
n, n+ 1

n3

]
avec n ⩾ 2 entier,

0 ailleurs.

Théorème 6.5. Si f est une fonction Lebesgue-intégrable sur Rd, alors pour tout ε > 0, il
existe δ = δε > 0 tel que pour tout sous-ensemble mesurable E ⊂ Rd avec :

m(E) ⩽ δ,

on a : ∫
E

|f | ⩽ ε.

Cette dernière condition est connue sous le nom d’absolue continuité de l’intégrale
d’une fonction par rapport à la mesure de Lebesgue.

Démonstration. Après remplacement de f par |f |, on peut à nouveau supposer que f ⩾ 0.
Pour N ⩾ 1 entier, introduisons l’ensemble :

FN :=
{
x ∈ Rd : f(x) ⩽ N

}
,

et la suite de fonctions :
fN(x) := f(x) · 1FN (x) (N ⩾ 1),

satisfaisant visiblement :
0 ⩽ fN ⩽ N.

Comme dans la démonstration du théorème qui précède, cette suite de fonctions positives
est croissante :

0 ⩽ fN(x) ⩽ fN+1(x),

avec de plus sur Rd\{f =∞} la convergence presque partout :

f(x) = lim
N→∞

fN(x),

donc le Théorème 5.8 de convergence monotone assure, pour tout ε > 0 arbitrairement
petit, l’existence d’un entier N = Nε > 0 assez grand pour que :(

0 ⩽
) ∫

Rd

(
f − fN

)
⩽

ε

2
.
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Si maintenant nous prenons δ = δε > 0 avec :

N δ ⩽
ε

2
,

alors pour tout sous-ensemble mesurable E ⊂ Rd de mesure petite :

m(E) ⩽ δ,

on peut majorer : (
0 ⩽

) ∫
E

f =

∫
E

(
f − fN

)
+

∫
E

fN

⩽
∫
Rd

(
f − fN

)
+

∫
E

fN

⩽
ε

2
+N m(E)

⩽
ε

2
+
ε

2
,

ce qui conclut ! □

Nous sommes enfin parvenus au terme de ce long périple théorique dévolu à l’intégrale
de Lebesgue, et c’est pour fêter ensemble ce moment intellectuel important que nous of-
frons au lecteur comme bouquet final le théorème le plus frappant et le plus utile de toute
la théorie.

Théorème 6.6. [Théorème dit de la convergence dominée dû à Lebesgue] Si une suite
(fn)

∞
n=1 de fonctions mesurables :

fn : Rd −→ {−∞} ∪ R ∪ {+∞}
converge ponctuellement vers une certaine fonction-limite :

fn(x) −→
n→∞

f(x) (pour presque tout x∈Rd),

tout en restant constamment majorée presque partout en valeur absolue par une fonction
positive fixe g : Rd −→ R+ ∪ {∞} : ∣∣fn(x)∣∣ ⩽ g(x) (∀n⩾ 1),

qui est Lebesgue-intégrable : ∫
Rd
g < ∞,

alors on a :
lim
n→∞

∫ ∣∣fn − f ∣∣ = 0,

d’où aussi :
lim
n→∞

∫
fn =

∫
lim
n→∞

fn.

Bien entendu, l’énoncé est tout aussi valable lorsque les fonctions fn et g sont définies
sur un sous-ensemble mesurable fixé E ⊂ Rd. L’intérêt phénoménal de ce théorème, par
rapport à ceux de la théorie de Riemann qui exigaient en général d’abondantes doses de
convergence uniforme, c’est que la seule hypothèse de domination par une fonction d’inté-
grale finie suffit à justifier rigoureusement l’interversion entre limite et intégrale !

Rendez-vous compte ! L’exigence de convergence uniforme part en fumée !
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Lebesgue, bien à tort, se montra confus des dieux qu’il avait destitués, des statues qu’il avait
renversées de leur socle. Arnaud DENJOY

Démonstration. Pour tout entier N ⩾ 1, introduisons l’ensemble simultanément tronqué à
l’horizontale et à la verticale :

GN :=
{
x ∈ Rd : |x| ⩽ N et g(x) ⩽ N

}
,

ainsi que la suite de fonctions croissantes :

gN(x) := g(x) · 1GN .

Une convergence monotone de ces gN vers g entièrement analogue à celle qui avait lieu
dans la démonstration du Théorème 6.4 assure alors (« petit » exercice) que pour tout ε > 0
arbitrairement petit, il existe un entier N = Nε ≫ 1 assez grand pour que :∫

Rd\GN
g ⩽ ε,

mais pour la clarté et la complétude de ce cours, mieux vaut résoudre cet exercice pas si
« petit » que cela . . . Ces détails peuvent être sautés en première lecture.

Commençons par un préliminaire classique qui peut être effectué dans de nombreuses situations.
Comme

∫
g < ∞, l’ensemble

{
g = ∞

}
est de mesure nulle. Modifions les valeurs de g sur

cet ensemble en posant g(x) := 0 si g(x) = ∞, ce qui ne change pas la valeur finie positive de
l’intégrale de notre fonction dominatrice intégrable g.

Modifions aussi les valeurs de chacune des fonctions fn là où nous avions g(x) =∞, en posant
de même fn(x) := 0, ce qui ne change pas les valeurs des intégrales

∫
fn.

Observons que ces modifications (mineures) de valeurs préservent aussi notre hypothèse des
inégalités ponctuelles |fn(x)| ⩽ g(x).

Évidemment, chaque fn est intégrable, puisque |fn| ⩽ g et puisque g est intégrable !
Ensuite, comme on vérifie en revenant à la définition de la suite de fonctions

{
gN

}∞
N=1

qu’elle
est ponctuellement croissante :

0 ⩽ gN ⩽ gN+1,

et comme on vérifie mentalement qu’en tout point x ∈ Rd on a :

gN (x) −→
N→∞

g(x),

le Théorème 5.8 de convergence monotone nous donne :∫
gN −→

N→∞

∫
g,

c’est-à-dire : ∫
GN

g −→
N→∞

∫
Rd

g,

d’où par soustraction ensembliste :

0 ←−
∞←N

∫
Rd\GN

g,

et ainsi, pour N ≫ 1 assez grand, cette intégrale peut effectivement être rendue plus petite qu’un
epsilon de la moitié d’un quart d’une demi-miette. □

Par ailleurs, pour un tel N fixé, la suite de fonctions :

fn · 1GN (n⩾ 1)
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reste bornée par N en valeur absolue puisque |fn| ⩽ g ⩽ N sur GN , et comme cette suite
reste de plus à support contenu dans l’ensemble de mesure finie GN , le Théorème 3.7 de
convergence bornée s’applique et fournit un entier n = nε ≫ 1 assez grand pour que :

n ⩾ nε =⇒
∫
GN

∣∣fn − f ∣∣ ⩽ ε.

Grâce à ces deux inégalités, nous pouvons alors aisément majorer :∫
Rd

∣∣fn − f ∣∣ =

∫
GN

∣∣fn − f ∣∣+ ∫
Rd\GN

∣∣fn − f ∣∣
⩽

∫
GN

∣∣fn − f ∣∣+ 2

∫
Rd\GN

g

⩽ ε+ 2 ε,

toujours pour n ⩾ nε, ce qui achève la démonstration de ce grand théorème. □

Pour terminer cette section capitale, mettons en lumière une conséquence facile du
Théorème 6.6 majeur de convergence dominée, ainsi que du Théorème 5.8 — tout aussi
majeur ! — de convergence monotone, sous la forme d’un « théorème-corollaire », hyper-
fréquemment utilisé dans les applications, et qui renforce le Théorème 5.9 sans supposer la
positivité des fonctions considérées.

Abrégeons ici :
R := {−∞} ∪ R ∪ {∞}.

Théorème 6.7. Si une suite
{
fk(x)

}∞
k=1

de fonctions mesurables intégrables sur Rd à va-
leurs dans R est telle que :

∞∑
k=1

∫
Rd

∣∣fk(x)∣∣ dx < ∞,

alors en presque tout point x ∈ Rd, la série numérique :

f(x) :=
∞∑
k=1

fk(x),

converge absolument vers une valeur finie appartenant à R, elle définit une fonction me-
surable intégrable f : Rd −→ R, et surtout, elle satisfait l’interversion entre intégration et
sommation infinie dénombrable :∫

Rd
f(x) dx =

∫
Rd

( ∞∑
k=1

fk(x)

)
dx

=
∞∑
k=1

∫
Rd
fk(x) dx.

Démonstration. Comme les fk sont intégrables, nous pouvons changer à l’avance leurs va-
leurs sur une réunion dénombrable d’ensembles de mesure nulle de manière à ce qu’aucune
fonction fk : Rd −→ R ne prenne les valeurs −∞ et∞.
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Ensuite, pour n ⩾ 1 entier, posons :

Fn(x) :=
∑

1⩽k⩽n

fk(x) (∈R),

Gn(x) :=
∑

1⩽k⩽n

∣∣fk(x)∣∣, (∈R+),

g(x) :=
∞∑
k=1

∣∣fk(x)∣∣ (∈R+),

où :
R+ := R ∪ {∞}.

D’après le Théorème 5.8 de convergence monotone, nous pouvons écrire :∫
Rd
g(x) dx =

∫
Rd

lim
n→∞

Gn(x) dx

CM
= lim

n→∞

∫
Rd
Gn(x) dx

= lim
n→∞

∑
1⩽k⩽n

∫
Rd

∣∣fk(x)∣∣ dx
=

∞∑
k=1

∫
Rd

∣∣fk(x)∣∣ dx
< ∞,

quantité qui est finie, grâce à l’hypothèse principale du théorème en cours de démonstration.
Alors puisque

∫
g <∞, la Proposition 5.4 (v) offre pour presque tout x ∈ Rd la finitude

des valeurs g(x) ∈ R+, la valeur ∞ étant ainsi exclue. C’est exactement la convergence
absolue :

g(x) =
∞∑
k=1

∣∣fk(x)∣∣ < ∞ (presque partout),

de notre série initiale de fonctions :
∞∑
k=1

fk(x) =: f(x)

= lim
n→∞

Fn(x),

qui converge donc aussi presque partounette !
Enfin, notre suite

{
Fn(x)

}∞
n=1

étant par nature dominée :∣∣Fn(x)∣∣ =

∣∣∣∣ ∑
1⩽k⩽n

fk(x)

∣∣∣∣ ⩽
∑

1⩽k⩽n

∣∣fk(x)∣∣ = Gn(x)

⩽ g(x),

par notre fonction-plafond positive g dont nous venons de dire qu’elle est Lebesgue-
intégrable, le Théorème 6.6 de convergence dominée de Lebesgue — le benêt qui bé-
gaille ! — : ∫

Rd

(
lim
n→∞

Fn(x)
)
dx = lim

n→∞

∫
Rd
Fn(x) dx,
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nous offre la conclusion annoncée :∫
Rd

( ∞∑
k=1

fk(x)

)
dx =

∞∑
k=1

∫
Rd
fk(x) dx □

7. Fonctions à valeurs complexes

Lorsque les fonctions f que l’on considère sont à valeurs complexes, elles se décom-
posent :

f(x) = u(x) + i v(x),

en partie réelle u et en partie imaginaire v. Bien entendu, la fonction f est mesurable si et
seulement si u et v le sont.

Définition 7.1. On dit qu’une fonction à valeurs complexes f = u + i v définie sur Rd est
Lebesgue-intégrable lorsque son module :∣∣f(x)∣∣ =

√
u(x)2 + v(x)2

est Lebesgue-intégrable d’intégrale finie :∫
|f | < ∞.

Rappelons les inégalités élémentaires :∣∣u(x)∣∣ ⩽
∣∣f(x)∣∣ et

∣∣v(x)∣∣ ⩽
∣∣f(x)∣∣,

ainsi que : ∣∣f(x)∣∣ ⩽
∣∣u(x)∣∣+ ∣∣v(x)∣∣,

cette dernière découlant de l’inégalité (a + b)1/2 ⩽ a1/2 + b1/2, valable pour a, b ⩾ 0
(exercice).

Ces inégalités extrêmement simples font d’ailleurs voir qu’une fonction à valeurs com-
plexes est Lebesgue-intégrable si et seulement si ses parties réelle et imaginaire le sont, et
dans ce cas : ∫

f(x) dx =

∫
u(x) dx+ i

∫
v(x) dx.

Définition 7.2. Étant donné un sous-ensemble mesurable quelconque E ⊂ Rd, on dit
qu’une fonction mesurable :

f : E −→ C
est Lebesgue-intégrable lorsque f · 1E l’est sur Rd au sens de la définition qui précède, et
dans ce cas, on note : ∫

E

f =

∫
Rd
f · 1E.

La collection de toutes les fonctions à valeurs complexes intégrables sur un ensemble
mesurable E ⊂ Rd forme un C-espace vectoriel, comme on s’en convainc aisément ; en
effet, si f et g sont intégrables, alors f +g l’est aussi puisque l’inégalité du triangle donne :∣∣(f + g)(x)

∣∣ ⩽
∣∣f(x)∣∣+ ∣∣g(x)∣∣,

et puisque la monotonie de l’intégrale donne :∫
E

∣∣f + g
∣∣ ⩽

∫
E

|f |+
∫
E

|g| < ∞.
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Enfin, il est clair que pour λ ∈ C, si f est intégrable, λ f l’est aussi.

8. Intégrale de Riemann généralisée versus intégrale de Lebesgue

Cherchons maintenant à comparer l’intégrale de Lebesgue avec l’intégrale de Riemann
généralisée.

Sur un intervalle ouvert ]a, b[ avec −∞ ⩽ a < b ⩽ ∞, soit donc f : ]a, b[ −→ R une
fonction localement Riemann-intégrable, à savoir qui, sur tout intervalle compact [c, d] ⊂
]a, b[, est bornée et Riemann-intégrable, d’où grâce au Théorème 4.1 :∫ R

[c,d]

f(x) dx =

∫ L

[c,d]

f(x) dx.

Rappelons que f est dite intégrable au sens généralisé de Riemann lorsque, avec c ∈ ]a, b[
fixé :

lim
ε→0
>

∫ c

a+ε

f(x) dx et lim
ε→0
>

∫ b−ε

c

f(x) dx

existent toutes deux, i.e. pour toutes paires de suites a ←− an décroissante et bn −→ b
croissante :

lim
n→∞

∫ bn

an

f(x) dx =:

∫ b

a

f(x) dx existe.

Lemme 8.1. Sous ces hypothèses, si f est Lebesgue-intégrable sur ]a, b[ :∫ L

]a,b[

∣∣f(x)∣∣ dx < ∞,

alors |f | est intégrable au sens généralisé de Riemann, et f aussi.

Preuve. Le Théorème 6.6 de convergence dominée tout récemment démontré qui sort du
four comme un croissant chaud nous offre pour la première fois son croustillant instantané :∫ R

[an,bn]

∣∣f(x)∣∣ dx =

∫ L

[an,bn]

∣∣f(x)∣∣ dx −−−−→
n−→∞

∫ L

[a,b]

∣∣f(x)∣∣ dx < ∞,

ou alors, pour ceux qui préfèrent déguster lentement le beurré délicieux de la vérification
scrupuleuse des hypothèses, comme la suite fn := f · 1[an,bn] est majorée |fn| ⩽ |f | par
la fonction-dominatrice g := f elle-même qui est Lebesgue-intégrable sur [a, b], on peut
effectivement intervertir limite et intégration !

Que cette première viennoiserie ne nous déçoive jamais ! car dans l’avenir, nous aurons
d’innombrable occasions de constater la puissance incomparable qu’offre la convergence
dominée, toujours rapide comme l’éclair ! □

Toutefois, la réciproque est fausse : la fonction t 7−→ sin t
t

sur [0,∞[ nous a déjà fait voir,
à la fin du chapitre sur l’intégrale de Riemann, qu’elle admet une intégrale de Riemann
généralisée, tandis que :

lim
n→∞

∫ L

[0,nπ]

|sin t|
t

dt = lim
n→∞

∫ R

[0,nπ]

|sin t|
t

dt = ∞.
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9. Espace L1 des fonctions intégrables : complétude ; séparabilité

Le fait que les fonctions intégrables forment un C-espace vectoriel constitue une pro-
priété fondamentale qui est de type algébrique.

Une propriété de type analytique encore plus importante mais bien moins élémen-
taire — et qui n’était absolument pas satisfaite en théorie de Riemann —, est que ce C-
espace vectoriel est complet pour la quantité positive naturelle :∫

|f |,

laquelle va s’avérer être une vraie norme.

Définition 9.1. La norme d’une fonction Lebesgue-intégrable f : Rd −→ C est la quantité :

||f ||L1 = ||f ||L1(Rd) :=

∫
Rd

∣∣f(x)∣∣ dx.
La collection de toutes les fonctions Lebesgue-intégrables munie de cette norme consti-

tue un espace noté :
L1(Rd),

dont il s’agit maintenant de préciser rigoureusement la définition. En fait, on sait déjà par
la Propositon 5.4 que :∣∣∣∣f ∣∣∣∣

L1(Rd) = 0 =⇒ f = 0 presque partout,

et cette propriété reflète la pratique intuitive que nous avons déjà implicitement adoptée de
ne pas distinguer deux fonctions qui coïncident en presque tout point. Avec cela en tête,
nous pouvons fournir le concept rigoureux attendu.

Définition 9.2. L’espace L1(Rd) est l’espace des classes d’équivalence de fonction mesu-
rables

f : Rd −→ C
Lebesgue-intégrables : ∣∣∣∣f ∣∣∣∣

L1(Rd) :=

∫
Rd

∣∣f ∣∣ < ∞,
où deux telles fonctions f1 et f2 sont équivalentes :

f1 ∼ f2

si et seulement si elles sont égales en presque tout point x ∈ Rd.

Toutefois, il est fréquemment admis de considérer qu’un élément f ∈ L1(Rd) est une
fonction intégrable spécifique, même si en toute rigueur, on devrait parler de la classe
d’équivalence d’une telle f .

Bien entendu, la norme ||f ||L1(Rd) ne dépend pas du choix d’un représentant dans une
classe d’équivalence. De plus, L1(Rd) hérite la propriété d’être un espace vectoriel. Les
propriétés élémentaires de L1(Rd) sont résumées dans l’énoncé suivant.

Proposition 9.3. Si f et g sont deux fonctions appartenant à L1(Rd,C), alors :
(i) ||λ f ||L1(Rd) = |λ| ||f ||L1(Rd) pour tout λ ∈ C ;
(ii) ||f + g||L1(Rd) ⩽ ||f ||L1(Rd) + ||g||L1(Rd) ;
(iii) ||f ||L1(Rd) = 0 si et seulement si f = 0 presque partout ;
(iv) d(f, g) := ||f − g||L1(Rd) définit une métrique sur L1(Rd).
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Démonstration. Pour ce qui concerne (iv), il s’agit de vérifier que d(f, g) satisfait les trois
axiomes d’une métrique, ce qui est manifestement aisé. □

Définition 9.4. Un C-espace vectoriel V muni d’une métrique d(·, ·) est dit complet lorsque
toute suite de Cauchy (xn)

∞
n=1 de points xn ∈ V admet une limite x∞ ∈ V qui appartient

encore à V , à savoir plus précisément toute cauchycité :

∀ ε > 0 ∃N(ε) ⩾ 1
(
n, m ⩾ N(ε) =⇒ d

(
xn, xm) ⩽ ε

)
,

implique convergence interne à l’espace :

∃x∞ ∈ V lim
n→∞

xn = x∞.

Notre objectif principal est de montrer maintenant que la Théorie de l’intégration de
Lebesgue complète celle de Riemann, en un sens qui est simultanément fort et signifiant
mathématiquement.

Théorème 9.5. [Riesz-Fischer] Le C-espace vectoriel L1
(
Rd,C

)
muni de la métrique

dérivée de sa norme :

d
(
f, g) :=

∫
Rd

∣∣f − g∣∣ = ||f − g||L1(Rd)

est complet.

Démonstration. Étant donné une suite de Cauchy quelconque (fn)
∞
n=1 dans L1(Rd,C) :

∀ ε > 0 ∃N(ε) ⩾ 1
(
n, m ⩾ N(ε) =⇒

∣∣∣∣fn − fm∣∣∣∣L1(Rd) ⩽ ε
)
,

il s’agit donc d’établir qu’il existe une fonction mesurable intégrable — a posteriori
unique — :

f∞ ∈ L1(Rd,C),
laquelle est donc encore d’intégrale finie, telle que :

0 = lim
n→∞

∣∣∣∣fn − f∞∣∣∣∣L1(Rd).

Le plan de la démonstration consiste à extraire une sous-suite appropriée (fnk)
∞
k=1 de

(fn)
∞
n=1 qui convergera presque partout ponctuellement vers une certaine fonction f ∈

L1(Rd), et à faire voir ensuite que cette sous-suite converge aussi vers f en norme L1, ce
qui produira la fonction f∞ := f recherchée.

Or dans des circonstances idéales, on pourrait espérer que la suite complète (fn)
∞
n=1

elle-même converge presque partout vers une limite f ∈ L1(Rd), mais malheureusement,
une telle convergence n’a pas toujours lieu pour les suites de Cauchy quelconques dans
L1(Rd), voir à ce sujet l’Exercice 14. Cependant, il va se trouver que si la convergence au
sens de Cauchy est assez rapide en norme L1(Rd), alors la convergence ponctuelle presque
partout va devenir garantie.

Ce sera donc pour accélérer la convergence au sens de Cauchy que nous devons extraire
une certaine sous-suite (fnk)

∞
k=1 de (fn)

∞
n=1.

Plus précisément, pour k = 1, 2, 3, . . . , choisissons successivement des εk = 1
2k

de plus
en plus petits auxquels sont associés des entiers :

N
(
1
2

)
, N

(
1
22

)
, N

(
1
23

)
, . . . . . . , N

(
1
2k

)
, . . . . . . ,
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garantissant que :

n, m ⩾ N
(

1
2k

)
=⇒

∣∣∣∣fn − fm∣∣∣∣L1(Rd) ⩽ 1
2k
,

et introduisons la sous-suite d’entiers :

nk := max
(
N
(

1
21

)
, . . . , N

(
1
2k

))
,

qui est manifestement croissante :

1 ⩽ nk ⩽ nk+1.

Grâce à ce choix, on produit donc une sous-suite (fnk)
∞
k=1 de (fn)

∞
n=1 qui satisfait :∣∣∣∣fnk+1

− fnk
∣∣∣∣
L1(Rd) ⩽ 1

2k
(∀ k⩾ 1).

Quitte à augmenter légèrement nk en posant plutôt par exemple :

nk := k +max
(
N
(

1
21

)
, . . . , N

(
1
2k

))
,

on peut supposer la croissance stricte :

nk < nk+1,

ce qui est certainement avisé pour avoir une vraie sous-suite.

Introduisons ensuite une série de fonctions dont la convergence sera établie ultérieure-
ment :

f(x) := fn1(x) +
∞∑
k=1

(
fnk+1

(x)− fnk(x)
)
,(9.6)

ainsi que la série majorante associée, via l’inégalité triangulaire infinie :

F (x) :=
∣∣fn1(x)

∣∣+ ∞∑
k=1

∣∣fnk+1
(x)− fnk(x)

∣∣.(9.7)

Introduisons aussi, pour tout entier K ⩾ 1, les sommes partielles d’ordre K :

SK(f)(x) = fn1(x) +
K∑
k=1

(
fnk+1

(x)− fnk(x)
)

= fnK+1
(x),

qui se contractent par téléscopie, et aussi les majorantes de ces sommes partielles :

FK(x) =
∣∣fn1(x)

∣∣+ K∑
k=1

∣∣fnk+1
(x)− fnk(x)

∣∣,
lesquelles ne se simplifient en général pas.
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En tout cas, l’inégalité triangulaire donne au moins :∣∣∣∣SK(f)∣∣∣∣L1(Rd) ⩽
∣∣∣∣FK∣∣∣∣L1(Rd) =

∣∣∣∣fn1

∣∣∣∣
L1(Rd) +

K∑
k=1

∣∣∣∣fnk+1
− fnk

∣∣∣∣
L1(Rd)

⩽
∣∣∣∣fn1

∣∣∣∣
L1(Rd) +

K∑
k=1

1

2k

⩽
∣∣∣∣fn1

∣∣∣∣
L1(Rd) +

∞∑
k=1

1

2k

=
∣∣∣∣fn1

∣∣∣∣
L1(Rd) + 1

< ∞,
ce dernier majorant étant uniforme, i.e. indépendant de K ⩾ 1.

Considérons maintenant la suite de fonctions :(
FK

)∞
K=1

,

qui est manifestement positive croissante :

0 ⩽ FK ⩽ FK+1,

et qui tend par définition vers la fonction :

F (x) = lim
K→∞

FK(x),

à valeurs dans [0,+∞]. On peut alors appliquer le Théorème 5.8 de convergence monotone
qui nous donne : ∫

Rd
F = lim

K→∞

∫
Rd
FK

⩽
∣∣∣∣fn1

∣∣∣∣
L1(Rd) + 1

< ∞,
ce qui fait voir que F est Lebesgue-intégrable — information fort agréable !

Immédiatement, de l’inégalité :
|f | ⩽ F,

on tire que :
f ∈ L1(Rd).

Ensuite, en se référant au Théorème 5.9, on déduit aussi que la série (9.7) ci-dessus qui
définit f converge ponctuellement presque partout vers une fonction mesurable presque
partout finie, et donc en revenant à (9.6), f elle-même est bien définie, mesurable, presque
partout finie.

Dit autrement, les sommes partielles de cette série (9.6) :

Sk−1(f)(x) = fnk(x)

convergent presque partout ponctuellement vers :

f(x) = lim
k→∞

fnk(x) (pour presque toutx∈Rd).

Nous affirmons alors que cette fonction f est la fonction f∞ ∈ L1(Rd) recherchée vers
laquelle converge la suite de Cauchy (fn)

∞
n=1 dans L1(Rd) dont nous sommes partis.
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En effet, pour établir d’abord la convergence dans L1 de notre sous-suite :

fnk −→
k→∞

f dans L1(Rd),

à savoir pour vérifier que :
0

?
= lim

k→∞

∣∣∣∣f − fnk∣∣∣∣L1(Rd),

on remarque que l’inégalité valable par construction presque partout :∣∣f − fnk∣∣ ⩽ |f |+
∣∣fnk∣∣

= |f |+
∣∣Sk−1(f)∣∣

⩽ |f |+ |F |
⩽ 2F,

assure la domination uniforme :∣∣∣∣f − fnk∣∣∣∣L1(Rd) ⩽ 2 ||F ||L1(Rd)

< ∞,
et alors grâce au Théorème 6.6 de convergence dominée, on conclut que la sous-suite
(fnk)k⩾1 de la suite (fn)n⩾1 converge en norme L1 vers la fonction f ∈ L1(Rd) :

0 = lim
k→∞

∣∣∣∣f − fnk∣∣∣∣L1(Rd).

Mais il s’agit en fait d’établir la convergence vers f de la suite entière (fn)
∞
n=1, pas

seulement d’une sous-suite !
Or comme (fn)

∞
n=1 est par hypothèse de Cauchy :

n, m ⩾ N
(
ε
2

)
=⇒

∣∣∣∣fn − fm∣∣∣∣L1(Rd) ⩽ ε
2
,

en choisissant un entier de la sous-suite nk ≫ 1 assez grand pour que grâce à ce que nous
venons de voir : ∣∣∣∣fnk − f ∣∣∣∣L1(Rd) ⩽ ε

2
,

un entier satisfaisant aussi, quitte à l’augmenter, nk ⩾ N( ε
2
), on peut intercaler ce fnk dans

une inégalité triangulaire terminale :∣∣∣∣fn − f ∣∣∣∣L1(Rd) ⩽
∣∣∣∣fn − fnk∣∣∣∣L1(Rd) +

∣∣∣∣fnk − f ∣∣∣∣L1(Rd)

⩽ ε
2
+ ε

2
,

valable pour tout n ⩾ N( ε
2
), qui conclut la démonstration de ce grand théorème de com-

plétude très souvent utilisée en Analyse. □

Puisque toute suite qui converge en norme L1 est une suite de Cauchy dans cette norme,
les arguments de la démonstration précédente ont fait voir un énoncé suivant qui s’avère
très souvent utile.

Théorème 9.8. Si (fn)∞n=1 est une suite de fonctions appartenant à L1(Rd) qui converge
en norme L1 vers une certaine fonction f∞ ∈ L1(Rd) :

0 = lim
n→∞

∣∣∣∣fn − f∞∣∣∣∣L1(Rd),

alors il existe une sous-suite : (
fnk

)∞
k=1
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qui converge ponctuellement vers f∞ :

lim
k→∞

fnk(x) = f∞(x)

en presque tout point x ∈ Rd.

Définition 9.9. On dit qu’une famille G de fonctions g appartenant à L1(Rd) est dense dans(
L1(Rd), || · ||L1(Rd)

)
lorsque :

∀ f ∈ L1(Rd) ∀ ε > 0 ∃ g ∈ G
∣∣∣∣f − g∣∣∣∣

L1(Rd) ⩽ ε.

Naturellement, nous sommes déjà familiers avec certaines familles de fonctions qui sont
denses dans des espaces fonctionnels : par exemple, le théorème de Weierstrass montre que
les polynômes sont denses dans l’espace des fonctions continues C 0

(
[0, 1], || · ||C 0([0,1])

)
munies de la norme de la convergence uniforme.

Le théorème qui suit décrit d’autres familles denses qui s’avéreront très utiles lorsqu’il
s’agira d’établir des propriétés et des identités satisfaites par les fonctions intégrables quel-
conques. Dans un tel objectif, le principe général c’est que le résultat est souvent plus
facile à démontrer pour une classe restreinte de fonctions, telles que par exemple les fonc-
tions étagées, et ensuite, un argument de densité ou de passage à la limite permet d’obtenir
le résultat général.

Théorème 9.10. Dans l’espaceL1(Rd) des fonctions Lebesgue-intégrables sur Rd, les trois
familles suivantes de fonctions sont denses :
(i) les fonctions étagées ;
(ii) les fonctions en escalier ;
(iii) les fonctions continues à support compact.

Démonstration. Soit f ∈ L1(Rd,C). On peut supposer que f est à valeurs réelles, en trai-
tant séparément Re f et Im f . Si donc f ∈ L1(Rd,R), en écrivant f = f+ − f− avec
f− ⩾ 0 et f+ ⩾ 0, on peut aussi supposer que f ⩾ 0.

Maintenant, pour ce qui concerne (i), un théorème du chapitre qui précède garantit
l’existence d’une suite (φk)

∞
k=1 de fonctions étagées positives φk ⩾ 0 qui tendent ponc-

tuellement vers f en tout point. Mais alors le Théorème 5.8 de convergence monotone
donne :

0 = lim
k→∞

∣∣∣∣f − φk∣∣∣∣L1(Rd),

ce qui montre bien qu’il existe des fonctions étagées arbitrairement proches de f en norme
L1 !

Quant à (ii), grâce à (i) obtenue à l’instant, il suffit d’approximer les fonctions étagées
par des fonctions en escalier. Or par définition, les fonctions étagées sont combinaisons
linéaires finies de fonctions indicatrices d’ensembles mesurables de mesure finie. Donc il
suffit de faire voir que la fonction indicatrice 1E d’un unique ensemble mesurable E ⊂ Rd

est approximable par des escaliers.
Si ε > 0 est arbitrairement petit, il s’agit de trouver une fonction en escalier ψ telle que :∣∣∣∣1E − ψ∣∣∣∣L1(Rd) ⩽ ε.

Mais il se trouve que nous avons déjà effectué cette tâche sans nous en rendre compte.
En effet, un théorème du chapitre qui précède a fait voir qu’il existe une famille finie de
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rectangles fermés presque disjoints R1, . . . , RJ tels que :

m

(
E∆

J⋃
j=1

Rj

)
⩽ ε.

Mais alors en passant aux intérieurs des rectangles (leurs bords étant de mesure nulle), les
deux fonctions :

1E et ψ :=
J∑
j=1

1IntRj

diffèrent seulement sur un ensemble de mesure ⩽ ε, sont égales à 0 ou à 1 en tout point, ce
qui assure que : ∣∣∣∣1E − ψ∣∣∣∣L1(Rd) ⩽ ε.

Enfin pour obtenir (iii), grâce à (ii) obtenu à l’instant, en jonglant avec des ε > 0 pour
embrasser des combinaisons linéaires finies comme on a déjà réussi maintes fois à le faire,
on se ramène (exercice du poignet) à démontrer que la fonction indicatrice d’un unique
rectangle fermé borné :

1R =
∏

1⩽i⩽d

1[ai,bi] (−∞<ai<bi<∞),

est approximable, en norme || · ||L1(Rd) à ε > 0 arbitrairement petit près, par des fonctions
continues à support compact.

Tous les apprentis-menuisiers de Licence 3 en Mathématiques Fondamentales et Appli-
quées savent déjà comment raboter les arêtes d’un gratte-ciel en modifiant peu son volume.

Avec δ > 0 très petit, gonflons plutôt légèrement le rectangle R en :

Rδ :=
∏

1⩽i⩽d

[
ai − δ, bi + δ

]
,

ce qui ne change que très peu son volume :∣∣Rδ
∣∣ =

∏
1⩽i⩽d

(
bi − ai + 2δ

)
=

∏
1⩽i⩽d

(
bi − ai

)
+O(δ) = |R|+O(δ).

ai

ai−δ

1

bi

χδ
[ai,bi]

bi+δ

1[ai,bi]

Dans chaque i-ème dimension, introduisons ensuite la fonction continue affine par mor-
ceaux simplette :

χδ[ai,bi](x) ∈ C 0
c

(
R, [0, 1]

)
,

dont le graphe vient d’être représenté, égale à 1 sur [ai, bi], et nulle hors de [ai − δ, bi + δ].
Alors la fonction-produit :

χδR(x) :=
∏

1⩽i⩽d

χδ[ai,bi](x),
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est à support compact dans Rd, est continue, et puisque 0 ⩽ χδR ⩽ 1 avec χδR ≡ 1 sur R, la
différence : ∫

Rd

∣∣1R(x)− χδR(x)∣∣ dx ⩽
∫
Rδ\R

1

=
∣∣Rδ

∣∣− |R|
= O(δ),

peut effectivement être rendue ⩽ ε pour δ = δ(ε) > 0 suffisamment petit. □

Nous pouvons maintenant dévoiler une propriété troublante — et pourtant mathémati-
quement vraie ! — de l’ensemble L1(Rd) des fonctions intégrables. Nous venons de voir
que dans l’espace vectoriel normé (complet) :(

L1(Rd), || · ||L1

)
,

l’ensemble des fonctions en escalier est dense. Toutefois, cet ensemble n’est certainement
pas dénombrable, puisqu’une seule combinaison linéaire avec un seul coefficient λ ∈ R
donne déjà une famille de cardinal égal à celui de R, non dénombrable. Mais en approxi-
mant ces λ ∈ R par des rationnels λQ ∈ Q, tout va devenir possible ! Commençons alors
par conceptualiser l’objectif.

Définition 9.11. [Espace séparable] Un espace vectoriel normé
(
E, || · ||E

)
— pas néces-

sairement complet — est dit séparable s’il existe une suite (fn)
∞
n=1 — dénombrable ! —

de vecteurs fn ∈ E qui est dense :

∀ g ∈ E ∀ ε > 0 ∃ fN(ε) ∈
(
fn
)∞
n=1

telle que
∣∣∣∣g − fN(ε)

∣∣∣∣
E

⩽ ε.

Théorème 9.12. [Séparabilité de L1] Dans L1(Rd), il existe une suite (fn)∞n=1 de fonctions
fn intégrables qui est dense.

Le phénomène est troublant en ceci qu’un espace de fonctions aussi vaste et aussi com-
plexe que celui des fonctions mesurables intégrables aurait pu sembler, au moment où on a
dépensé tant d’efforts à le construire, ne jamais pouvoir être « capturé » comme l’adhérence
d’une suite dénombrable.

Démonstration. D’après le Théorème 9.10 (ii), il existe une combinaison linéaire finie de
fonctions indicatrices de rectangles compacts :

R = [a1, b1]× · · · × [ad, bd] ⊂ Rd
(−∞<ai<bi<∞),

telle que : ∣∣∣∣∣∣∣∣g −∑
finie

λ · 1R
∣∣∣∣∣∣∣∣
L1

⩽
ε

2
.

Or puisque Q ⊂ R est dense, il existe des rationnels extrêmement proches a′i ≈ ai,
b′i ≈ bi, λ′ ≈ λ tels qu’avec les rectangles perturbés :

R′ = [a′1, b
′
1]× · · · × [a′d, b

′
d] (−∞<a′i<b

′
i<∞),

on maintient l’approximation :∣∣∣∣∣∣∣∣∑
finie

λ · 1R −
∑
finie

λ′ · 1R′

∣∣∣∣∣∣∣∣
L1(Rd)

⩽
ε

2
,
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d’où par inégalité triangulaire :∣∣∣∣∣∣∣∣g −∑
finie

λ′ · 1R′

∣∣∣∣∣∣∣∣ ⩽
ε

2
+
ε

2
.

Mais l’ensemble des coefficients rationnels λ′ ∈ Q+ iQ, en nombre fini, et l’ensemble
des coordonnées a′i, b

′
i ∈ Q, aussi en nombre fini, sont dénombrables, ce qui permet, par un

procédé de renumérotation quelconque d’organiser :{∑
finie

λ′ · 1R′

}
=

(
fn
)∞
n=1

comme une suite de fonctions, et ainsi, ||g − fN(ε)||L1 ⩽ ε, comme voulu. □

Les résultats de densité dans L1(Rd) conduisent tout naturellement à une généralisation
immédiate pour laquelle Rd est remplacé par un sous-ensemble mesurables E ⊂ Rd. En
fait, on peut introduire et définir L1(E) comme L1(Rd), pour développer la théorie de
manière entièrement similaire. À vrai dire, on peut aussi de manière alternative prolonger
à 0 toute fonction f définie sur E en posant :

f̃ :=

{
f sur E,

0 sur Rd\E,

puis déclarer que : ∣∣∣∣f ∣∣∣∣
L1(E)

:=
∣∣∣∣f̃ ∣∣∣∣

L1(E)
.

Les versions sur E des propositions et théorèmes de cette section sont alors parfaitement
réalisées.

10. Propriétés d’invariance

Définition 10.1. Étant donné une fonction f : Rd −→ C, pour un vecteur fixe h ∈ Rd, la
fonction :

τh(f)(x) := f(x− h)
est appelée la translation de f par h.

Comme en théorie de Riemann, l’intégrale de Lebesgue sur Rd tout entier est invariante
par translation.

Lemme 10.2. Si f ∈ L1(Rd), alors τh(f) ∈ L1(Rd) est aussi intégrable et de plus :∫
Rd
f(x− h) dx =

∫
Rd
f(x) dx.

Démonstration. L’argument est une illustration du principe de réduction à des fonctions
simples, complémenté par la densité. En effet, lorsque :

f = 1E

est la fonction indicatrice d’un ensemble mesurable E ⊂ Rd, on a :

τh(f) = 1Eh ,

où naturellement :
Eh =

{
x+ h : x ∈ E

}
,
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et comme on sait que la mesure de Lebesgue est invariante par translation :

m
(
Eh

)
= m(E),

le résultat est immédiat dans ce cas :∫
τh(f) = m

(
Eh

)
= m(E) =

∫
f.

Ensuite par linéarité de l’intégrale, le résultat est encore valable pour toute fonction
étagée.

Enfin, soit f ∈ L1(Rd,R+) une fonction intégrable quelconque à valeurs réelles posi-
tives, puisque l’on peut toujours se ramener à ce cas (exercice mental). Nous savons pour
l’avoir utilisé il y a très peu de temps qu’il existe une suite croissante (φk)

∞
k=1 de fonctions

étagées positives :
0 ⩽ φk ⩽ φk+1 ⩽ f = lim

k→∞
φk,

qui convergent ponctuellement vers la fonction f tout en lui restant inférieures, et le Théo-
rème 5.8 de convergence monotone assure donc que :∫

f = lim
k→∞

∫
φk.

Mais alors la suite des fonctions translatées :

τh
(
φk

)
−→
k→∞

τh(f)

converge (exercice mental) de manière monotone et bornée vers la translatée de f , et donc
le Théorème de convergence monotone donne à nouveau∫

τh(f) = lim
k→∞

∫
τh
(
φk

)
= lim

k→∞

∫
φk

=

∫
f,

ce qu’il fallait faire voir. □

En utilisant l’invariance par dilatation de la mesure de Lebesgue, on peut aussi établir
l’énoncé élémentaire suivant, laissé en exercice.

Théorème 10.3. Si f ∈ L1(Rd), alors pour δ > 0, la fonction :

x 7−→ f(δ x)

appartient aussi à L1(Rd) avec de plus :

δd
∫
Rd
f(δx) dx =

∫
Rd
f(x) dx.

Enfin : ∫
Rd
f(−x) dx =

∫
Rd
f(x) dx. □
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Conséquemment, pour tout a > d et pour tout ε > 0, on a :∫
|x|⩾ε

dx

|x|a
= ε−a+d

∫
|x|⩾1

dx

|x|a
,

tandis que pour tout a < d et pour tout ε > 0, on a :∫
|x|⩽ε

dx

|x|a
= ε−a+d

∫
|x|⩽1

dx

|x|a
.

En fait, comme en théorie de Riemann — à laquelle se ramènent toutes ces considérations
fort élémentaires ! —, lorsque a > d, on a la finitude :∫

|x|⩾1

dx

|x|a
< ∞,

et lorsque a < d, la finitude : ∫
|x|⩽1

dx

|x|a
.

Plus important encore que tous ces enfantillages, nous allons maintenant examiner les
propriétés de continuité des translatées τh(f) d’une fonction arbitraire f ∈ L1(Rd) par des
vecteurs h −→ 0 qui tendent vers zéro. Rappelons qu’en un point x ∈ Rd, la convergence
ponctuelle :

τh(f)(x) −→
h→0

f(x)

a lieu lorsque et seulement lorsque f est continue en x.
Mais hélas, comme nous l’avons fait savoir à plusieurs reprises, il est hors de ques-

tion d’espèrer avoir une telle convergence ponctuelle pour les fonctions qui sont seulement
intégrables au sens de Lebesgue, puisque ces fonctions présentent en général de très nom-
breux points de discontinuité. Pire encore, on peut montrer par un exemple (voir à ce sujet
l’Exercice 18) que même après correction sur un ensemble de mesure nulle, une fonction
intégrable peut avoir des points de discontinuité sur un ensemble de mesure strictement
positive, et même parfois, en tout point !

Heureusement, il existe une propriété de continuité dont jouissent les fonctions f ∈
L1(Rd), celle qui est en relation naturelle avec la norme L1.

Théorème 10.4. Pour toute fonction f ∈ L1(Rd), on a :

0 = lim
h→0

∣∣∣∣τh(f)− f ∣∣∣∣L1(Rd).

Démonstration. Ce résultat est une conséquence relativement élémentaire de l’approxima-
bilité des fonctions intégrables par des fonctions continues à support compact, déjà vue
dans le Théorème 9.10.

En effet, pour tout ε > 0, il existe une fonction g ∈ C 0
c (Rd) continue à support compact

telle que : ∣∣∣∣f − g∣∣∣∣
L1(Rd) ⩽ ε.

Mais alors, puisque g est continue à support compact, il est aisé de se convaincre que elle
au moins, parce qu’elle est bien élevée, satisfait sans mal la propriété attendue (exercice !
exploiter la continuité uniforme de g) :

∃ δε > 0 |h| ⩽ δε =⇒
∣∣∣∣τh(g)− g∣∣∣∣L1(Rd) ⩽ ε.
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Bien que cela puisse paraître quelque peu contre-intuitif, ce qui vaut pour g continue vaut
alors pour f possiblement très discontinue, puisqu’une simple inégalité triangulaire précé-
dée d’insertions astucieuses :∣∣∣∣τh(f)− f ∣∣∣∣L1(Rd) =

∣∣∣∣τh(f)− τh(g) + τh(g)− g + g − f
∣∣∣∣
L1(Rd)

⩽
∣∣∣∣τh(f)− τh(g)∣∣∣∣L1(Rd) +

∣∣∣∣τh(g)− g∣∣∣∣L1(Rd) +
∣∣∣∣g − f ∣∣∣∣

L1(Rd)

=
∣∣∣∣τh(f − g)∣∣∣∣L1(Rd) +

∣∣∣∣τh(g)− g∣∣∣∣L1(Rd) +
∣∣∣∣g − f ∣∣∣∣

L1(Rd)

=
∣∣∣∣f − g∣∣∣∣

L1(Rd) +
∣∣∣∣τh(g)− g∣∣∣∣L1(Rd) +

∣∣∣∣g − f ∣∣∣∣
L1(Rd)

⩽ ε+ ε+ ε,

le tout agrémenté de l’invariance de l’intégrale par translations donne effectivement la peti-
tesse de la norme L1 de la différence entre τh(f) et f , pourvu seulement que |h| ⩽ δε. □

11. Exercices
Exercice 1. Établir rigoureusement l’affirmation laissée en exercice dans la démonstration du Théorème 6.6
de convergence dominée de Lebesgue.

Exercice 2. Montrer que si une fonction f ∈ L1(Rd,C) est Lebesgue-intégrable, alors :

0 = lim
δ→1

∣∣∣∣f(x)− f(δx)
∣∣∣∣
L1(Rd)

.

Exercice 3. Soit une fonction :
f ∈ L1

(
]− π, π]

)
que l’on prolonge comme fonction 2π-périodique sur R. Montrer que pour tout intervalle I de longueur 2π,
on a : ∫

I

f(x) dx =

∫ π

−π

f(x) dx.

Exercice 4. Avec b > 0, à une fonction :
f ∈ L1

(
[0, b]),

on associe la fonction définie pour 0 < x ⩽ b par :

g(x) :=

∫ b

x

f(t)

t
dt,

Montrer que g est Lebesgue-intégrable sur [0, b] et que l’on a :∫ b

0

g(x) dx =

∫ b

0

f(t) dt.

Exercice 5. Soit un sous-ensemble fermé F ⊂ R dont le complémentaire est de mesure finie :

m
(
R\F

)
< ∞.

On note δ(·) la fonction distance à F , définie par :

δ(x) := dist(x, F ) = inf
{
|x− y| : y ∈ F

}
,

et on introduit la fonction définie par une intégrale :

I(x) :=

∫
R

δ(y)

|x− y|2
dy.

(a) Montrer que δ est continue, et même mieux, montrer que δ satisfait la condition de 1-lipschitzianité :∣∣δ(x)− δ(y)
∣∣ ⩽ |x− y|.

(b) Montrer que I(x) =∞ pour tout x ̸∈ F .
(c) Montrer que I(x) < ∞ pour presque tout x ∈ F . Certes, cela peut paraître surprenant, eu égard au fait
que la condition de Lipschitz ne ‘tue’ qu’une puissance de |x− y| dans l’intégrande de I(x) !
Indication: Étudier

∫
F
I(x) dx.
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Exercice 6. Comme en théorie de Riemann (généralisée), l’intégrabilité d’une fonction positive f sur R
n’implique nullement que f(x) tende vers 0 lorsque x −→∞.
(a) Montrer qu’il existe une fonction réelle continue strictement positive f définie sur R telle que f est
Lebesgue-intégrable sur R, bien que :

∞ = lim sup
x→∞

f(x).

(b) Toutefois, quand f est supposée uniformément continue sur R et intégrable (au sens de Riemann ou de
Lebesgue), montrer que :

0 = lim
x→∞

f(x).

Exercice 7. À une fonction mesurable f : Rd −→ R, on associe son graphe :{
(x, y) ∈ Rd × R : y = f(x)

}
.

Montrer que Γ est un sous-ensemble mesurable de Rd × R, et que sa mesure est nulle :

m(Γ) = 0.

Exercice 8. Soit f : R −→ {−∞} ∪ R ∪ {∞} une fonction mesurable Lebesgue-intégrable. Montrer, pour
tout n ⩾ 1, que l’ensemble :

An := f−1
(
[n,∞]

)
,

est de mesure finie, et qu’il satisfait :
0 = lim

n→∞
n ·m(An).

Exercice 9. Si f : R −→ R est une fonction Lebesgue-intégrable, montrer que la fonction définie par :

F (x) :=

∫ x

−∞
f(t) dt

est uniformément continue.

Exercice 10. [Inégalité de Tchebychev] Soit f : Rd −→ R+ une fonction intégrable à valeurs positives.
Pour α > 0, on pose :

Eα :=
{
x ∈ Rd : f(x) > α

}
.

Montrer que :

m
(
Eα

)
⩽

1

α

∫
f.

Exercice 11. Soit une fonction f : Rd −→ R+ ∪ {∞} mesurable à valeurs positives. Pour k ⩾ 1 entier, on
pose :

E2k :=
{
x ∈ Rd : f(x) > 2k

}
,

ainsi que :
Fk :=

{
x ∈ Rd : 2k < f(x) ⩽ 2k+1

}
,

(a) Lorsque f prend presque partout des valeurs <∞, vérifier que :
∞⋃

k=−∞

Fk =
{
f(x) > 0

}
,

cette réunion étant disjointe.
(b) Montrer que f est Lebesgue-intégrable si et seulement si :

∞∑
k=−∞

2k m
(
Fk

)
< ∞,

si et seulement si :
∞∑

k=−∞

2k m
(
E2k

)
< ∞.
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(c) On introduit les deux fonctions :

f(x) :=


1

|x|a
pour 0 < |x| ⩽ 1,

0 autrement,

et :

g(x) :=


1

|x|b
pour |x| ⩾ 1,

0 autrement.

Déduire de (b) que f est Lebesgue-intégrable sur Rd exactement lorsque a < d, et aussi, que g est Lebesgue-
intégrable sur Rd exactement lorsque b > d.

Exercice 12. Étudier :

lim
n→∞

∫ 1

0

(
cos

1

x

)n
dx.

Exercice 13. Si f : Rd −→ R est une fonction satisfaisant
∫
E

f(x) dx ⩾ 0 pour tout sous-ensemble mesu-
rable E ⊂ Rd, montrer que f ⩾ 0 presque partout ; avec

∫
E
f = 0, montrer f = 0 p.p.

Exercice 14. Montrer qu’il existe une fonction f ∈ L1(Rd) et une suite (fn)
∞
n=1 de fonctions fn ∈ L1(Rd)

telles que :
0 = lim

n→∞

∣∣∣∣f − fn
∣∣∣∣
L1(Rd)

,

bien que fn(x) ne tende vers f(x) pour aucun x ∈ Rd.
Indication: En dimension d = 1, choisir fn = 1In , où les In ⊂ R sont des intervalles appropriés dont les
mesures m(In) −→ 0 tendent vers zéro.

Exercice 15. Trouver deux ensembles mesurables A et B tels que A+B n’est pas mesurable.
Indication: Dans R2, prendre A := {0} × [0, 1] et B := N × {0}, où N ⊂ [0, 1] est le sous-ensemble non
mesurable construit par Vitali.

Exercice 16. On se propose d’évaluer la mesure de la boule unité ouverte — ou fermée, cela reviendrait au
même — de Rd :

vd := m
({

x ∈ Rd : |x| < 1
})

.

(a) En dimension d = 2, montrer que :

v2 = 2

∫ 1

−1

√
1− x2 dx,

puis en déduire que v2 = π.
(b) Montrer que :

vd = 2 vd−1

∫ 1

0

(
1− x2

) d−1
2 dx.

(c) Avec la fonction Γ(z) =
∫∞
0

tz−1 e−t dt d’Euler, obtenir le résultat :

vd =
πd/2

Γ(d/2 + 1)
.

Exercice 17. Soit f : Rd −→ R une fonction intégrable. Pour un d-uplet quelconque δ = (δ1, . . . , δd) ∈
(R∗)d de nombres réels non nuls, on pose :

fδ(x) := f
(
δ1x1, . . . , δdxd

)
.

Montrer que la fonction fδ est intégrable et qu’elle satisfait :∫
Rd

fδ(x) dx =
1

|δ1 · · · δd|

∫
Rd

f(x) dx.
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Exercice 18. Soit la fonction définie sur R par :

f(x) :=


1√
x

lorsque 0 < x < 1,

0 ailleurs.

Soit une énumération (rn)
∞
n=1 des nombres rationnels Q ⊂ R. On introduit la fonction définie par une série :

F (x) :=

∞∑
n=1

1

2n
f
(
x− rn

)
.

(a) Montrer que F est Lebesgue-intégrable sur R.

(b) Montrer que la série qui définit F converge presque partout vers une valeur finie.

(c) Montrer que F est non bornée sur tout intervalle d’intérieur non vide.

(d) Montrer que toute fonction égale à F presque partout est non bornée dans tout intervalle d’intérieur non
vide.

Exercice 19. Soit (fn)n∈Z une suite paramétrée par Z de fonctions mesurables positives fn : R −→ R+.

(a) Montrer que : ∫
R

( ∞∑
n=−∞

fn

)
=

∞∑
n=−∞

∫
R
fn.

(b) Soit une fonction mesurable positive f : R −→ R+, et soit sa 1-périodisation :

f(x) :=
∑
n∈Z

f(n+ x),

à valeurs dans R+ ∪ {∞}. Montrer que :∫ 1

0

g(x) dx =

∫ ∞

−∞
f(x) dx.

(c) Montrer que si f : R −→ R+ est mesurable intégrable, i.e. si
∫
R f <∞, alors pour presque tout x ∈ R,

on a :
0 = lim

|n|→∞
f(n+ x).

(d) Toujours avec f ⩾ 0 intégrable, montrer qu’on n’a pas nécessairement :

0 = lim
|t|→∞

f(t).

Indication: Penser à des gratte-ciels fuyant vers l’infini en s’amaigrissant.

(e) Soit E ⊂ R un sous-ensemble mesurable de mesure m(E) < 1. Établir le non-recouvrement :⋃
n∈Z

(
n+ E

)
̸⊃ R.

Exercice 20. Soit (fn)∞n=1 une suite de fonctions mesurables intégrables R −→ R+ ∪ {∞} qui converge
ponctuellement presque partout vers une certaine fonction-limite :

f∞(x) := lim
n→∞

fn(x).

Montrer que :(
lim

n→∞

∫
R
fn(x) dx =

∫
R
f∞(x) dx

)
=⇒

(
0 = lim

n→∞

∫
R

∣∣fn(x)− f∞(x)
∣∣ dx).

Indication: Introduire
(
f∞ − fn

)+
:= max

(
0, f∞ − fn

)
.



11. Exercices 51

Exercice 21. (a) Pour n ⩾ 0 entier, calculer
∫ 1

0
xn log x dx, et en déduire que :∫ 1

0

log x

x− 1
dx =

∞∑
n=1

1

n2
.

(b) Pour n ⩾ 0 entier, calculer
∫ 1

0
x2n (1− x) dx, et en déduire la valeur de la série alternée :

∞∑
n=1

(−1)n−1

n
.

(c) Montrer que la fonction R −→ R+ définie par la série :
∞∑

n=0

2n

1 + 32n (x− 3n)2

est intégrable, et calculer la valeur de son intégrale.

Exercice 22. Soit f : R −→ R+ une fonction mesurable intégrable d’intégrale 0 <
∫
R f (<∞), soit α > 0

un paramètre réel, et soit la suite numérique (an)
∞
n=1 définie par :

an :=

∫
R
n log

(
1 +

(f(x)
n

)α)
dx (n⩾ 1),

avec an ∈ R+ ∪ {∞}.
(a) Lorsque 0 < α < 1, montrer, à l’aide du théorème de Fatou, que an −→

n→∞
∞. Indication: Travailler sur

Eδ := {x ∈ Rd : f(x) ⩾ δ} pour un δ > 0 tel que m(Eδ) > 0.
(b) Lorsque α = 1, montrer que an −→

n→∞

∫
R f .

(c) Lorsque α > 1, montrer que an −→
n→∞

0. Indication: Établir l’inégalité 1+xα ⩽ (1+x)α pour tout x > 0,

et montrer que la fonction x 7−→ log(1+xα)
x est bornée sur R+.

Exercice 23. Étudier l’existence des trois limites suivantes, et les déterminer le cas échéant :

lim
n→∞

∫ ∞

0

n sin
(
x
n

)
x (1 + x2)

dx,

lim
n→∞

∫ 1

0

nx sinx

1 + nα xα
dx (discuter selon α∈R),

lim
n→∞

∫ ∞

1

nxα arctan (nx)

1 + nx2
dx (discuter selon α∈R).

Exercice 24. [Exemple de fonction intégrable nulle part bornée] Soit (rk)
∞
k=1 une énumération des

nombres rationnels Q ⊂ R, i.e. une bijection N∗ ∼−→ Q. Avec :

φ(x) :=
1√
x
· 1]0,1](x),

on définit la suite (fn)
∞
n=1 de fonctions :

fn(x) :=

n∑
k=1

1

2k
φ
(
x− rk

)
(n⩾ 1).

(a) Montrer que φ est intégrable sur R.
(b) Montrer que, en tout point x ∈ R, la suite numérique

(
fn(x)

)∞
n=1

converge vers une valeur appartenant
à R+ ∪ {∞}. On note f(x) cette limite.
(c) Montrer que f est intégrable sur R.
(d) Calculer

∫
R f .

(e) Montrer que f(x) <∞ pour presque tout x ∈ R.
(f) Montrer que f est non-bornée sur tout intervalle ouvert non vide de R.
(g) Existe-t-il un ensemble mesurable de mesure strictement positive sur lequel f est bornée?


