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Une découverte, celle de I'intégrale de Lebesgue, n’est d’abord entendue en son vrai sens
que de rares adeptes, prompts a éclairer de ce flambeau saisi quelques coins obscurs de la
science. Méme la réaction générale est hostile et vive contre l'irruption d’'une idée balayant sans
égards les jugements révérés. Lentement, mais irrésistiblement, la lumiére pénétre un monde
d’esprits de plus en plus étendu. Une heure vient ou, dans cet ordre de pensées, la derniere
acquise des grandes vérités apparait a tous comme le jour, claire, évidente, et pour finir banale.
Arnaud DENJOY

1. Intégrale de Lebesgue :
propriétés et théorémes de convergence

Nous allons définir la notion générale d’intégrale de Lebesgue sur R? en procédant
par généralisations successives a des familles de plus en plus étendues de fonctions. A
chaque étape, nous vérifierons que 1’intégrale satisfait toutes les propriétés élémentaires
qu’on est en droit d’attendre d’elle, la linéarité, la monotonie, I’inégalité du triangle, et nous
démontrerons des théorémes de convergence qui expriment essentiellement que 1’on peut
intervertir limite et intégration. A la fin de ce processus définitionnel par élargissements
successifs, nous aurons atteint une théorie si forte et si générale qu’elle sera d’une utilité

décisive dans tous les développements ultérieurs de 1’ Analyse.
Nous procéderons en quatre étapes majeures, en intégrant progressivement :
1. les fonctions étagées ;
2. les fonctions bornées supportées sur un ensemble de mesure finie;
3. les fonctions positives ;
4. les fonctions intégrables, au sens théorique le plus général.

Soulignons des a présent que toutes les fonctions seront d’emblée supposées mesurables.
Le plus souvent aussi, nous travaillerons avec des fonctions qui sont a valeurs dans R, et
plus tard, nous considérerons aussi des fonctions qui sont a valeurs dans C en regardant
leurs partie réelle et leur partie imaginaire.
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2. Etape 1 : Fonctions étagées

Rappelons qu’une fonction étagée, telle que définie dans le chapitre précédent, est une

fonction :
N

o@) =3 ar-1p,(),
k=1
qui est combinaison linéaire finie a coefficients a; € R de fonctions indicatrices 15, de
sous-ensembles mesurables £y, C R? de mesures m(FE}) < oo finies.
Toutefois, une complication s’insinue dans cette définition, en tant qu’une fonction éta-
gée peut en fait étre écrite d’une infinité de manieres différentes comme combinaisons
linéaires de cette espece ; par exemple, et quelque peu artificiellement, on a :

OzlE_1E7

pour tout ensemble mesurable £ C R?. Fort heureusement, il existe une maniére inambigué
de choisir un représentant unique parmi toutes les représentations possibles, représentant
qui sera a la fois naturel et utile dans les démonstrations.

Proposition-Définition 2.1. La forme canonique d’une fonction étagée p est l’'unique re-

présentation :
N
Y= § ag - 1Ek7
k=1

dans laquelle les ay sont distincts deux a deux, et les F, sont disjoints deux a deux.

Démonstration. Trouver la forme canonique d’une fonction étagée n’est pas bien difficile.
Puisque ¢ ne prend qu’un nombre fini de valeurs, I’ensemble de ses valeurs :

{(Il, ce ,aN} == {akl, c. ,akM}
= {cl, . ,cM}
se réduit a un certain nombre M < N de nombres réels distincts deux a deux :
coy F Co, (1< <l2 < M).
Si donc nous introduisons les ensembles de niveau :
F) = {:E eRY: o(x) = C[},

il vient que ces ensembles sont disjoints deux a deux (exercice mental). Par conséquent :
M

Zce'le = ¢

=1
est la forme canonique désirée de . U

Définition 2.2. Si ¢ est une fonction étagée sous forme canonique :

M
QD - Z Cy 1F[7
/=1

on définit I’intégrale de Lebesgue de o comme €tant le nombre réel :
M

/Rd p@)de =Y e m(F).

(=1
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Si E C R? est un sous-ensemble mesurable de mesure m(E) < oo finie, alors (exer-
cice) :
p(z) - 1p(z)
est encore une fonction étagée.

Définition 2.3. Lintégrale sur £ C RY mesurable de ¢ étagée sur R? est définie par :

[ etorde = [ ol 1pte) de

Afin de bien signaler le choix de la mesure de Lebesgue m dans la définition de I’inté-
grale, on écrit parfois :

[, el amia),

pour I’intégrale de Lebesgue de .
Mais en fait, nous abrégerons souvent 1’intégrale par :

[ ey,
o

Proposition 2.4. L’intégrale ainsi définie des fonctions étagées o, 1 sur R jouit des cing
propriétés suivantes.

voire méme par :

(i) Indépendance vis-a-vis de la représentation : Pour toute représentation — pas forcément
canonique — :

N
Y= Z ayg - ]-Ek7
k=1
ona.
N
= FE
@w > am(E)

(ii) Linéarité : Pour tous a,b € R, ona :

/Rd (ap+by) = a/Rdgo—I—b g .

(iii) Additivité domaniale : Si F' et G sont deux sous-ensembles disjoints de RY de mesure

’inle, alOlS .
G G

(iv) Monotonie : Si ¢ < v en tout point, alors :

/ ¢ < Y.
Rd R4

(v) Inégalité du triangle : La fonction valeur absolue || est aussi une fonction étagée et l’on

‘/ 90‘ </ o]
R4 Rd
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Démonstration. La seule affirmation qui est quelque peu délicate est la premiere. Il faut
donc étre astucieux lorsqu’on ramene une fonction étagée a sa représentation canonique, et
nous allons effectuer cela en deux moments.

Supposons d’abord que dans la représentation :

N
Y= Z ag - ]-Ek?
k=1

les ensembles £, sont disjoints deux a deux, sans toutefois demander que les a; soient
mutuellement distincts. Plus bas, nous verrons comment nous ramener a cette situation. Il
s’agit maintenant d’établir (i), et pour cela, nous devons ramener ¢ a sa forme canonique.
Si ¢, est 'une des valeurs distinctes ¢y, . . ., ¢y, avec M < N, que prennent aq, . .., ay,
introduisons 1I’ensemble :
E; = |J En

{k: ap=ce}
Les ensembles {k: a; = ¢,} forment alors une partition de {1,2,..., N}, et comme les F,
sont disjoints, F, ..., E', sont disjoints deux a deux. De plus, on a visiblement :

{k: ap=ce}
Enfin, puisque :

M

o= Z ¢ 1gy,
=1

est la représentation canonique de (, une application de la Définition 2.2 suivie d’une réor-
ganisation donne le résultat :

déf
fo*

cem(Ey)

) Z m(Ek)

=1 {k: ax=ce}

= i ag m(Ek)

k=1
Ensuite, traitons le cas général pour lequel les ensembles £, ..., F/y ne sont pas for-
cément disjoints, et les valeurs ay, ..., ay ne sont pas forcément distinctes. Pour ramener

¢ a sa forme canonique, il s’agit surtout de morceler les £} jusqu’a en faire des pieces de
puzzle qui ne se recouvrent plus.

Lemme 2.5. Etant donné N > 1 sous-ensembles quelconques d’un ensemble abstrait D :
E\, Ey ..., En C D,
il existe 2 — 1 autres sous-ensembles :
B . Eiv 4 C D,
qui sont mutuellement disjoints :

0 = E; NE], (1<t <ty <2V-1),
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dont la réunion est la méme que celle des E}, :

N 2N _1

*
Ue=U &
k=1 /=1

B.= U E.

{¢: B;CE)

Démonstration. Ces ensembles sont toutes les 27V intersections possibles entre les £}, et
leurs complémentaires Ff = D\ EJ, :

(Ey ou EY) ﬂ ...... ﬂ (Ex ou E),

a I’exclusion bien siir du complémentaire commun :

C C
5 B
puisque 1’on souhaite demeurer dans la réunion des £j. Codons alors toutes ces intersec-
tions possibles de maniere binaire :

E*

i avec iy,...,iy € {0,1},

en écartant donc £ ce qui nous fait bien 2" — 1 ensembles.
Pour N =1,ona2!' —1=1eton prend By = Ej.

Pour N = 2, on a effectivement 22 — 1 = 3 ensembles qui décomposent disjointement
la réunion £ U Es :

i1 = Fy N Ky, E\ o= EiNE;, Ey1 = E7 N Es.
E> E1
H A‘

Pour N = 3, on a effectivement 23 — 1 = 7 ensembles décomposants. Le diagramme
s’avere un auxiliaire utile pour qui souhaite (exercice) rédiger les détails combinatoires en
langage symbolique. U

De la représentation de chaque £ en réunion disjointe de certains £ découle :
]—Ek - Z 1EZ7
{Z: EZ;CE]C}
puis :

m(Ek) = Z m(E;)

{é: EZCE]C}
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Grace a cette décomposition plus fine, on peut transformer naturellement :

Or maintenant, puisque cette nouvelle représentation de ¢ est telle que les ensembles me-
surables F; sont disjoints deux a deux, nous pouvons lui appliquer le résultat obtenu dans
la premiere partie de la démonstration, ce qui donne ici la conclusion (i) :

[ =3 am)

[Reconnaitre m(Ey)] = Qg Z m (E;)
k=1 {¢: E;CEy}

~~

=m(Ey)

= i\f: ay m(Ek)

k=1

Ensuite, en partant de n’importe quelle représentation étagée pour ¢ et pour 1, une fois
la propriété (i) acquise, la propriété (ii) découle de la linéarité évidente des sommations.
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Pour ce qui concerne la propriété (iii) d’addititivé de I’intégration sur les ensembles
disjoints, on transforme :

/ © = /SO']-FUG
FUG

N

:/(ZaklEk>'(1F+1G)
k=1
N N
:/{ZaklEkﬂF+ZaklEka}
k=1 k=1

N N
[Linéarité (ii)] = / (Z ay - 1Ek) -1F+/ (Z ay - 1Ek) 1g
=1 k=1

k
— [+ [ v
F a
Pour (iv), si 7 > 0 est une fonction étagée positive, il est clair (exercice mental) que sa
forme canonique est aussi partout positive, et donc par la Définition 2.1, on a bien [ n > 0.
Si ¢ < ¢, enposantn :=1) — p,onabien [ p < [
Enfin pour I’inégalité du triangle (v), il suffit d’écrire ¢ sous sa forme canonique :

N
Y= Z ar - 1,
k=1

et d’observer, puisque les £} sont disjoints, que :

N
ol = Z |al€‘ 1g,.
k=1

Par conséquent, grace a I’inégalité du triangle appliquée a la Définition 2.1 de I’intégrale,

on obtient :
R4 I

<Y Ja| m(Ey)
k=1

=/ o],
Rd

ce qui termine la démonstration détaillée de ces cinq propriétés (tres) élémentaires. U

ag m(Ek)

WE

i

En fait incidemment, nous avons presque démontré I’énoncé suivant, qui correspond
pleinement a la maniere de penser propre a la théorie de la mesure : tout énoncé est valide
a des ensembles de mesure nulle pres.

Proposition 2.6. Si deux fonctions étagées ¢ et ) sur R? satisfont presque partout :

e < Y,
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[e<[w

Démonstration. En considérant a la place la fonction étagée positive presque partout :
=P =g
=0,

alors :

on se ramene a devoir montrer que f 1 = 0. Or si 1) est mise sous forme canonique :

M
n = Z bf 1E(ga
/=1

puisque I’intégrale de 7 vaut par définition :

[ n- f;bem@),

on peut supposer que tous les £, sont de mesure strictement positive (mettre de cotés ceux
qui sont de mesure nulle). Mais comme les £, sont disjoints deux a deux, la positivité
presque partout de 7 nécessite (exercice mental) que tous les b, > 0 soient positifs. Donc
[n=0! i

3. Etape 2 : Fonctions mesurables bornées a support dans un ensemble de mesure
finie

Définition 3.1. Le support d’une fonction mesurable f: R? — R est I’ensemble des
points ou elle ne s’annule pas :

supp(f) := {z € R%: f(z) #0}.

On dit aussi que f est a support dans un ensemble £ C R lorsque f(z) = 0 pour tout

En fait, la mesurabilité de f assure immédiatement que son support est un ensemble
mesurable. Dans cette section, nous allons nous intéresser principalement aux fonctions
dont le support est de mesure finie :

m(supp(f)) < 00.

Un résultat important du chapitre précédent énonce que si une fonction mesurable
f:R? — R bornée en valeur absolue par une constante M > 0 est & support dans un
ensemble E de mesure finie, alors il existe une suite de fonctions étagées (p,,)72, telle
que :

on(r) — f(),
n—oo
en fout point x € FE. Le lemme-clé qui suit nous permet alors de définir I’intégrale de
Lebesgue des fonctions mesurables bornées a support dans un ensemble de mesure finie.

Lemme 3.2. Soit f: R — R une fonction mesurable bornée a support dans un ensemble
E C R? de mesure m(E) < oo finie. Si (gpn)zo:l est une suite quelconque de fonctions
étagées telles que :

o il existe une constante M > 0 avec ‘gpn‘ < M pour tout n > 1,
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e supp(¢,) C E pour tout n > 1,
e o, (r) — f(x) pour presque tout x € F,
n—o0

lim / On
n—oo

existe, et de plus, lorsqu’on a f = 0, cette limite vaut (naturellement!) 0.

alors la limite :

Démonstration. Ces conclusions seraient presque évidentes si 1’on supposait que ¢,
converge uniformément vers f. Or souvenons-nous de I’un des trois principes de Little-
wood, qui prétendait que la convergence d’une suite de fonctions mesurables est toujours
presque uniforme. Nous savons d’ailleurs aussi que ce principe informel s’est réalisé ri-
goureusement sous la forme du Théoreme (tellement magique !) d’Egorov, que nous allons
maintenant sortir de notre chapeau de prestidigitateur-mathématicien.

Ainsi, comme m(E) < oo, le Théoreme d’Egorov s’applique, et pour tout £ > 0, il
garantit I’existence d’un sous-ensemble mesurable fermé . C E de mesure presque égale
acellede £ :

m(E.) = m(E) —e,
sur lequel la convergence est uniforme :

—
Ee yniformément f (I)

gOn(ZE) E.’

En utilisant aussi crucialement le fait que la suite (¢, )% ; est uniformément bornée par la
constante M > 0, et en découpant :

E = E.U (E\E.),

nous pouvons alors exécuter des majorations intuitivement naturelles :

[ o= [ on] < [, loser - putol s

_ /E on(@) — ()| da + / | linla) = ()| o

< / |on(x) — @i ()| dx + 2 M m(E\E.)

€

é/ !gpn(a:)—gom(x)‘dzv—i-QMs.

€
Mais par convergence égorovienne uniforme sur F., il existe un entier N = N. > 1 tel
que :

n,m >N, = <VI S |gpn(x) — gpm(x)‘ < z—:).

o[
< e(m(E)+2M),

toujours pour n, m > N, ce qui montre bien que la suite de nombres réels :

(/).

Au total :
< e(m(E.) +2M)
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est convergente, puisqu’elle est de Cauchy dans R complet !

Enfin, lorsque f = 0, on peut répéter les mémes arguments, et obtenir (exercice) :

[

ce qui, sans doute aucun, assure que la limite en question vaut effectivement 0. U

< e(m(E)+ M),

En utilisant ce lemme, nous pouvons maintenant définir 1’intégration des fonctions me-
surables bornées qui sont a support dans un ensemble de mesure finie.

Proposition-Définition 3.3. Etant donné une fonction mesurable bornée f: R* — R a
support contenu supp(f) C E dans un ensemble E C R? de mesure m(E) < oo finie, on
définit I’intégrale de Lebesgue de f comme la limite :

[ iz = jim [ (@)

out ()2, est une suite auxiliaire quelconque de fonctions étagées satisfaisant :
o i/ existe une constante M > 0 avec ‘cpn‘ < M pour tout n > 1,
e supp(¢,) C E pour toutn > 1,
e o, (r) — f(x) pourtout x € E.
n—oo

Démonstration. Effectivement, vérifions que cette limite ne dépend pas de la suite ¢, en
prenant une autre suite (1,,)°° ; jouissant des mémes propriétés que (¢,,)5° ;. Alors grice au
lemme précédent qui anticipait notre besoin argumentatif présent, la suite des différences :

(77”)20:1 = (90" - 1/’”)20:1

reste bornée — maintenant par 2 M au lieu de M —, elle reste a support dans £ (oui!), et
elle tend ponctuellement vers 0, donc la fin du lemme en question assure que :

0 = lim /nn
n—oo

= lim /(%—%)

n—o0

ce qui veut justement dire, grace a la linéarité, déja acquise, de I’intégrale sur les fonctions

étagées, que :
lim ©n = lim U,
n— oo n—oo

et conclut en longueur cette vérification fres détaillée. U

Définition 3.4. Si une fonction mesurable bornée f: R? — R posséde un support de
mesure finie :

m(supp(f)) < oo,
et si & C RY est un sous-ensemble mesurable, on définit I’intégrale de Lebesgue de f sur
E par:

/Ef =, f(z) - 1p(z)da.



3. Etape 2 : Fonctions mesurables bornées a support dans un ensemble de mesure finie 11

Clairement, lorsque f elle-méme est une fonction étagée, cette définition coincide avec
la précédente.

Avant de poursuivre, notons que si tous les ensembles £, mesurables qui interviennent
dans une fonction étagée ¢ = > ay 15, sont tous de mesure nulle m(Ey) = 0, I'intégrale
[ ©=>" apm(E)) = 0 est trivialement nulle. Autrement dit :

« L’intégrale ne voit pas les ensembles de mesure nulle ».

Définition 3.5. Une propriété &2 = Z(z) dépendant d’un point = € F appartenant a un
sous-ensemble mesurable £ C R? sera dite vraie presque partout, ou vraie pour presque
tout x € F lorsqu’il existe un sous-ensemble :

N CE
de mesure nulle 0 = m(NN) tel que & (z) est satisfaite pour tout x € E\N.

Par exemple, on dira qu’une suite de fonctions étagées (¢, )%, converge presque partout
vers une certaine fonction mesurable f : R? lorsqu’il existe un sous-ensemble N C R% avec
0 =m(N) tel que :

f(z) = lim @,(x) (Vo €RE\N).

n— oo
On vérifie alors (exercice de compréhension) que le Lemme 3.2 ci-dessus reste vrai

en supposant seulement la convergence presque partout de la suite de fonctions étagées
concernée.

Ainsi donc, sur notre route initiatique en direction de la bellissime et généralisssime
intégrale de Lebesgue, nous atteignons par 1’Etape 2 un niveau considérablement plus élevé
que celui des fonctions étagées, puisque nous atteignons leurs limites ponctuelles bornées,
limites qui ne sont pas forcément uniformes.

Bien entendu, toute cette élucubration par passages téméraires a la limite s’effondrerait
sl nous ne conservions pas les propriétés élémentaires fondamentales qu’on est en droit
d’attendre de toute intégrale. Eh bien, les voici!

Proposition 3.6. Soient f et g deux fonctions mesurables bornées R — R a support
dans un ensemble (commun) de mesure finie. Alors les quatre propriétés suivantes sont
satisfaites.

(i) Linéarité : Pour tous a,b € R, ona :

/Rd (af+bg):a/Rdf+b/Rdg.

(ii) Additivité domaniale : Si F' et G sont deux sous-ensembles mesurables disjoints de R? de

mesure finie, alors :
f= [
FUG F G

(iii) Monotonie : Si f < g en presque tout point, alors :

/Rdf</Rdg-
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(iv) Inégalité du triangle : La fonction valeur absolue |f| est aussi une fonction mesurable

bornée et l’'on a :
/ f‘ <[ i
R4 R4

Démonstration. Toutes ces propriétés se vérifient (exercice) en utilisant 1’approximation
par des fonctions étagées, a partir des propriétés que ces fonctions satisfont déja en vertu
de la Proposition 2.4 O

Nous sommes maintenant en position de démontrer le premier théoreme important de
convergence.

Théoréme 3.7. [Convergence bornée] Soit (f,,)°°, une suite de fonctions mesurables
fn: RY — R satisfaisant :

e [ existe une constante M > (0 avec ‘fn‘ < M pour toutn > 1,

o il existe E C R? mesurable avec m(E) < oo et supp(f,) C E pour toutn > 1,

o fn(x) . f(z) pour presque tout x € E.

Alors la fonction-limite f est mesurable, satisfait :

supp(f) C E,
et de plus, on a surtout :
R4 n—oo
d’out
n—oo

Cette derniere ligne signifie précisément la propriété que 1’on adore :

lim / fn = / lim f,,
n—oo n—oo
autrement dit, que prendre la limite et intégrer sont deux opérations interchangeables.

Démonstration. D’apres les hypotheses, on voit immédiatement que la fonction-limite f
est bornée par la méme constante :

‘f ’ < M (presque partout).

On voit aussi que f s’annule hors de E. Clairement, I’inégalité du triangle pour les inté-
grales assure qu’il suffit d’établir la premiere convergence.

En fait, la démonstration est une reprise d’un argument basé sur le Théoreme d’Egorov,
qui nous avait permis dans le Lemme 3.2 de vérifier que I'intégrale était indépendante de
la suite approximante de fonctions étagées.

En effet, si € > 0 est arbitrairement petit et fixé, le Théoreme d’Egorov nous permet de
trouver un sous-ensemble mesurable £, C FE avec :

m(E\E.) < e,
en restriction auquel on a convergence uniforme :

()

—
Ee uniformément f (l‘)

E.’
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Alors sur £, nous pouvons trouver un entier N. > 1 assez grand pour que :
n> N = (Vx €E. |fulz)— f(z)] < 5).

Rassemblant tous ces faits, nous pouvons estimer, toujours pour n > N :

[ 0@ = s@lde = [ |fue) = @)l dot [ (o) - fia)]da
E B E\Ee
< em(E.) +2M m(E\E;)
< e (m(E) +2M).
Comme ¢ > 0 était arbitraire, cela conclut. |

Observons que ce théoreme de convergence exprime la possibilité d’intervertir intégra-

tion et passage a la limite :
lim / fn = / lim f,.
n—oo n—oo

Une autre observation utile que nous pouvons faire au point que nous venons d’atteindre
est la suivante.

Proposition 3.8. Si f > 0 est une fonction réelle positive bornée a support dans un sous-
ensemble E C RY de mesure finie, et si /, [ =0, alors f = 0 presque partout.

Démonstration. En effet, pour tout entier £ > 1, introduisons 1’ensemble :
Ey:={z€E: f(z) >1/k}.

Alors E, est mesurable (exercice mental), et le fait que :

0 < 1160 < 1)

implique par monotonie de I’intégrale :

0 < %m(Ek) < /f:0.

Par conséquent :
m(Ek) =0 (Vk>1).
Enfin, puisque :

{z: f(z) >0} = U E,
k=1
on conclut (exercice mental) que f = 0 presque partout. U

4. Retour aux fonctions Riemann-intégrables

Rappelons que dans un chapitre qui précede, nous avons formulé une question que la
théorie de Riemann semblait dans I’incapacité de résoudre, a savoir la :

Question. Si une suite de fonctions continues sur I'intervalle [0, 1] :
fo: [0,1] — [0,1] (n>1),
posséde en tout point x € [0, 1] une limite ponctuelle :

Tim_ () = f (),
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quelle théorie d’intégration pourrait étre développée afin qu’on ait :

/01 f(x)dz = lim /01 Fal@)dz?

n—o0

En effet, a la fin du chapitre sur ’ensemble de Cantor, nous avons produit un exemple
de fonction bornée f: [0,1] — [0, 1] limite de fonctions continues f,: [0,1] — [0, 1]
dont les points de discontinuité sont de mesure strictement positive, de telle sorte que f
n’est pas Riemann-intégrable, bien que la limite des nombres réels fol fn existe.

Mais au niveau que nous venons d’atteindre dans la théorie plus puissante de Lebesgue,
le Théoreme 3.7 de convergence bornée que nous venons d’établir répond déja en un certain
sens a cette question, et ce Théoréme 3.7 montre surtout que notre fonction f de la fin du
chapitre sur I’ensemble de Cantor est Lebesgue-intégrable.

Or puisque nous allons maintenant montrer que les fonctions Riemann-intégrables sont
aussi Lebesgue-intégrables (la réciproque n’étant pas vraie !), nous pouvons d’ores et déja
conclure que c’est I’intégrale de Lebesgue qu’il fallait inventer pour répondre a la question
dont nous venons de rappeler 1I’énoncé ci-dessus.

Théoreme 4.1. Sur un intervalle compact [a,b] € R, soit f: [a,b] — R une fonction
bornée Riemann-intégrable. Alors f est mesurable, et son intégrale au sens de Riemann
coincide avec son intégrale au sens de Lebesgue :

R L

f(z)de = f(z)dx.

[a,b] [a,b]

Démonstration. Puisque I’intégrale de Riemann ne concerne par définition que les fonc-
tions bornées, il existe une constante M > 0 telle que :

‘f({E)’ <M (Vz €la,b)).

Comme f est Riemann-intégrable, ses sommes de Darboux inférieure et supérieure asso-
ciées a des subdivisions de plus en plus fines de I’intervalle [a, b] permettent de définir deux

suites :

(ex (@), et (i (@)
de fonctions en escalier bornées :

lor] < M et o] < M,

qui encadrent f de manieére monotone :
pr(@) Spp(r) < < fl) < < g () < o (2),
et dont les intégrales convergent vers celle de f :
R R R
4.2) lim / o (x)dr = f(x)dz = lim / o (z) dx.
k—o0 k—o0
[a,b] (a,b] [a,b]

Plusieurs observations se manifestent a nous simultanément. Premierement, il découle
immédiatement des définitions que les intégrales de Riemann et de Lebesgue coincident
sur les fonctions en escalier, d’ou :

(4.3)

R L R L

/ | op (z)dr = /[ o (z) dz et /[ of(z)de = / o) (z) dz,

a,b a,b] a,b] [a,b]
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pour tout k£ > 1. Ensuite, sachant que toutes les ¢, et toutes les goz sont mesurables, leurs
limites :
po(®) = lim ¢ (2) et poo(x) = lim ¢l (z)
k—o0

k—o0

sont mesurables elles aussi — car la mesurabilité est préservée par passage a la limite —,
et bien entendu, on a :

v < f < 9L
Plus avant, le Théoreme 3.7 de convergence bornée assure que :
L L
i [ ei@de = [ s
k—o0 [a,b]

et que :

jim /[L ot () dr = /L o (2) da.

k=00 Jiap)
Ceci combiné a (4.2) et (4.3) donne :
L
|, (b —en@)ds = o

et comme par ailleurs ¢, — ¢, > 0 donne 2 la limite :

Yoo~ ¥ = 0,
nous déduisons grace a la Proposition 3.8 que :

Pao — Poo = 0,
presque partout, et enfin que :

Poo = Poo = [,

presque partout, ce qui démontre merveilleusement que f est mesurable !
Pour terminer, puisque :

S et — o

presque partout, on a, par définition méme de 1’intégrale des fonctions mesurables bornées
donnée dans cette section :

L L L
lim /[ o () de = f(x)dr = lim / oy (x) du,

k—o0 mb] [a,b] k—o00 [a,b}

et en tenant a nouveau compte de (4.2) et (4.3), on conclut que :

L

f(z)de = f(z)dz,

[a,b] [a,b]

comme annonce. O
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5. Etape 3 : Fonctions mesurables positives quelconques

Nous procédons maintenant a 'intégrale des fonctions mesurables positives quel-
conques, pas nécessairement bornées. Il sera important d’autoriser ces fonctions a prendre
leurs valeurs dans I’ensemble étendu des nombres réels positifs :

Ry U {400},

la valeur 400 étant bien entendu prise sur un ensemble mesurable. Rappelons la convention
standard que le supremum d’un ensemble de nombres réels positifs vaut +oco lorsque, et
seulement lorsque, I’ensemble en question est non borné.

Définition 5.1. L’intégrale de Lebesgue fRd f d’une fonction mesurable positive :
f: R* — R, U{o0},
est le nombre :

) f(z)dx := sup { /d o(x)dr : p: R — R, mesurable bornée avec 0 < ¢ < f
R R

a support dans un ensemble de mesure finie ;,

nombre qui appartient a R, U {occ}.

Avec cette définition, deux cas se présentent : ou bien le supremum en question est fini,
ou bien il est infini.

Définition 5.2. Dans les mémes circonstances, lorsque :
f(z)dr < oo,
R4
on dit que f est Lebesgue-intégrable, ou, simplement, intégrable.

En restriction a un ensemble mesurable, on peut aussi introduire Ia :

Définition 5.3. Si £ C R? est un sous-ensemble mesurable, si f > 0 est une fonction
mesurable sur R? a valeurs dans R, U {+occ}, alors f - 1 est aussi positive mesurable sur
R<, et on définit :

/Ef(x) dr = » f(x) - 1p(x)dx.

Pour un réel a > 0, considérons les deux fonctions bien connues sur R :

1
— lorsque |z| < 1,
fa(x) = ’:L,|a
0 lorsque |z| > 1,
1
Fo(r) = ——.
(@) 1+ |x|e

Comme en théorie de I'intégrale généralisée de Riemann (exercice de révision), f, est
Lebesgue-intégrable précisément quand a < d, tandis que F, I’est précisément quand a >
d.
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Proposition 5.4. L’intégrale des fonctions mesurables positives quelconques :
frg: RY — Ry U {0}
satisfait les six propriétés suivantes.

(i) Linéarité positive : Pour tous a,b € R, ona:

léd@f+b@::a4¥f+blég

(i) Additivité domaniale : Si F' et G sont deux sous-ensembles disjoints de R?, alors :

ot =L

(iii) Monotonie : Si 0 < f < g en presque tout point, alors :

0</f</g-
R4 R4

(iv) Si g est intégrable et si 0 < f < g, alors f est aussi intégrable.
(v) Si f est intégrable, alors f(x) < oo pour presque tout v € R<.
(vi) Si [ f =0, alors f(z) = 0 pour presque tout € R°.

Démonstration. Seule la premiere assertion (i) n’est pas une conséquence rapide des défi-
nitions, et pour 1’établir, nous procéderons comme suit.
Par dilatation, il suffit de traiterlecasa = b =1.Si0 < o < fetsi0O <Y < g, 0t @
et 1) sont bornées a support dans un ensemble de mesure finie, alors :
e+ < fy,

et la somme ¢ + ) est aussi bornée a support dans un ensemble de mesure finie. Par consé-

quent :
/f+/g= SUP/80+SUP /w
0<p<f 0<y<yg

= sup /(ww)

0<p<f
(U]

swp [+ 0)

< ftg
< [
0<x<f+g

= [0

Pour ce qui concerne I'inégalité inverse, supposons qu’une fonction > 0 est bornée a
support dans un ensemble de mesure finie avec :

n < f+g,

N

et introduisons la fonction mesurable :

m(z) = min (f(z), n(z)),
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ainsi que :
2 i=n—m = 0.
Evidemment, ona:
0<m </,

et puisque 7, est en tout point, ou bien égale an — f < g, ou bien égalean —n = 0, on a
aussi :

0<m <y

Clairement, 7; et 72 sont toutes deux bornées a support dans un ensemble de mesure finie.

Nous en déduisons :
/ n = / (771 + 772)

e[
<[r+]s

Enfin, en prenant le supremum sur 7, nous obtenons 1’inégalité inverse :
/(f+g) </f+/g,

Pour montrer (v), introduisons pour tous £ > 1 entiers les ensembles :

Ey, = {z eR%: f(z) >k},

ce qui conclut (i).

ainsi que :
Ey = {z €R?: f(z)=o00}.

Alors il est clair que :

oo > /f > /flEk > k‘m(Ek),
inégalité qui montre instantanément que :

k—ro0
Mais puisque (Ej )72, est une suite décroissante emboitée d’ensembles mesurables qui tend
vers E., un énoncé du chapitre qui précede assure que :
m(Ex) = lim m(Ey)

k—o0

=0,

ce qui montre bien que f ne peut étre infinie que sur un ensemble de mesure nulle.
Pour terminer, la démonstration de (vi) est essentiellement la méme que celle de la
Proposition 3.8. U

Développons maintenant des théoremes de convergence importants valables pour la
classe des fonctions mesurables positives. Afin de motiver ces résultats, posons la :
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Question 5.5. Si une suite (f,,)3>, de fonctions mesurables positives f, > 0 converge
ponctuellemement vers une certaine fonction-limite f :

Iule) — 1),

elle-méme alors automatiquement mesurable, est-il toujours vrai qu’on peut intervertir li-
mite et intégration :

fol@)de =25 | flz)da?
R4 n—oo R4

Malheureusement, tel n’est pas toujours le cas, comme le montre un exemple extréme-
ment simple. Sur R, soit la suite de fonctions :

n lorsque 0 < x < 1/n,
Inl@) = 0 lorsque = < 0 oulorsque = > 1/n.

Il est clair que f,,(z) — 0 en tout point =, mais on a :

/R fule) = 1,
>1

constamment pour tout entier n >

Bien qu’essentiellement stupide, cet exemple possede quand méme une vertu inatten-
due! En effet, il fait suspecter intuitivement que ’intégrale de la fonction-limite doive
toujours étre inférieure a la limite des intégrales, et tel est bien le cas en général !

Théoréme 5.6. [Lemme de Fatou] Si une suite de fonctions mesurables positives sur R? :
o . d
(f”)nzl' R R-‘r U{OO})
converge presque partout vers une certaine fonction f, automatiquement mesurable :
lim f.(x) = f(z),
n—oo
alors :

f(z)dx < liminf fo(z) dx.
Rd

n—oo R4

Il importe de faire observer que dans cet énoncé, on n’exclut ni le cas f lim, oo frn = 00,
ni le cas liminf, o [ f,, = occ.

Démonstration. Soit une fonction mesurable g bornée a support dans un ensemble £ C R¢
de mesure m(E) < oo finie telle que :

0<g</
Si nous introduisons :
gn(x) == min(g(z), fu(x)),

alors la suite (g,,)5° ; est aussi mesurable, aussi a support dans F, et I’on a presque partout :
gn(x) — g(x),
n—oo

donc le Théoreme 3.7 de convergence bornée assure que :

/gnyzo g.
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Mais par construction on a aussi g,, < f,, pourtoutn > 1,d’ou :

/gn</fn,

et en prenant la limite a gauche, méme si le membre de droite n’a pas de limite, sa limite
inférieure lui demeure nécessairement supérieure :

/g < liminf [ f,.
n—oo

Enfin, en prenant le supremum a gauche sur toutes les fonctions g, on trouve bien par

application de la Définition 5.1 :
/f < |iminf/fn,
n—o0

ce qui est la conclusion. O

Du Lemme de Fatou, on peut déduire les résultats les plus importants de la Théorie de
I’Intégration de Lebesgue.

Théoréme 5.7. Soit f: R — R, U {co} une fonction mesurable positive, et soit une

suite :
(fn) s

de fonctions mesurables encadrées en presque tout point x € R? :

0 < fulz) < f(2),

et qui convergent presque partout ponctuellement vers f :

Jm/ﬂ—/f

Démonstration. Puisque f,(z) < f(x) presque partout, on a instantanément :

/ s [
d’ ol découle (exercice mental) :

“Tfolip/f" < /f-

Par ailleurs, le Lemme de Fatou qui précede complete ceci :

Iimsup/fn < /f < |iminf/fn7
n—00 n—oo

et comme une limite supérieure ne peut se trouver en-dessous d’une limite inférieure que
lorsque toutes deux coincident, ¢’est bien que la limite existe et vaut [ f! U

Alors :

Ensuite, nous récoltons aussi comme fruit mir un résultat trés important de convergence
pour les suites monotones de fonctions positives.
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Théoreme 5.8. [Convergence monotone, Beppo-Levi] Soit une suite de fonctions mesu-
rables positives :

(0<) fur R* — RyU {0},
qui est ponctuellement croissante :
(0 < ) fo() < for1(x) (en presque tout point x € R%),
donc qui converge vers une certaine fonction-limite mesurable :
f = lim f,
n—o0

RY — R, U {oo}

[ [

Il est particulierement important de noter que I’éventualité [ f = oo n’est pas exclue ici.
Bien entendu, un énoncé analogue vaut aussi pour les suites de fonctions presque partout
ponctuellement décroissantes de fonctions a valeurs dans {—oco} UR_.

Alorsona:

Démonstration. 11 s’agit juste d’un corollaire immédiat du théoreme qui précede ! U

Ce magnifique théoréeme de convergence monotone possede de nombreuses consé-
quences utiles. Par exemple, voici un énoncé spectaculaire qui produit de la convergence.

Théoreme 5.9. Soit une série :
oo

Z ag(x),

k=1
de fonctions mesurables positives sur RY :

Ak (IL') >0 (V k =1, presque partout).

Alors pourvu seulement qu’on ait la finitude :

Z / ag(z) dx < oo,
k=1
la série : .
D a(@)
k=1

converge presque partout vers une certaine fonction-limite mesurable finie.

Démonstration. Introduisons en effet les sommes partielles d’ordre n :

n

fule) =Y aula).

k=1
ainsi que la somme infinie complete :

fl@) =) alw).

Bien entendu, les fonctions f,, sont mesurables, leur suite est croissante :

fn ([E) < fn+1 (CL’) (VY k> 1, presque partout),
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et I’on a en admettant toujours la valeur oo pour les fonctions :

lim fn (33 ) = f (l’ ) (presque partout).
n—00

/fn = z::/ak(x)d%

le Théoreme de convergence monotone assure que :

g/ak(x)df = /gak(x)dx.

Si donc on a comme cela a été supposé dans 1’énoncé qu’il faut démontrer :

; / ap(z) dz < oo,

cette derniere équation implique la finitude de I'intégrale :

/; ap(z) dz < oo,

ce qui signifie précisément que la fonction-limite :

Mais alors puisque :

flx) = ayl@)

k=1

o0
est Lebesgue-intégrable, et nous avons déja vu que toute fonction positive Lebesgue-
intégrable prend presque partout des valeurs finies. U
Donnons encore deux belles illustrations de ce dernier énoncé.
Théoreme 5.10. [Borel-Cantelli] Si une collection infinie dénombrable :
Ei, Es, ..., E, ...,
de sous-ensembles E) C R? satisfait :

Z m(Ek) < 00,

00
k=1

alors I’ensemble des points © € R? qui appartiennent & une infinité de E, est de mesure
nulle.
Démonstration. Introduisons en effet les fonctions indicatrices de ces ensembles :

ag(z) = 1g, (2),

et observons alors qu’un point x € R appartient a une infinité de £}, précisément lorsque :
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Mais par contraste, notre hypothese que la somme des mesures de £y, est finie se ré-exprime

comme la finitude :
Z / ag(x)dr < oo,
k=1

et nous venons a I’instant de voir dans le théoreme qui précede que cela forgait la série
o . o0 < . 7

positive > _;~ ; aj(z) a prendre des valeurs finies excepté sur un ensemble de mesure nulle,

et ainsi, Borel-Cantelli tombe de I’arbre mathématique comme une pomme de Newton! [

La seconde illustration servira ultérieurement dans de nombreux contextes.

Proposition 5.11. La fonction :
1
f(x) — |:E|d+1

0 lorsque = =0,

lorsque x # 0,

est Lebesgue-intégrable hors de toute boule de rayon € > 0, et son intégrale correspon-
dante satisfait I’inégalité :

3

/ I < <

pour une certaine constante C' > (.
Démonstration. En partant de I’anneau ouvert :
o ={xeR% 1< |z| <2},
pour tout entier k£ > 1, introduisons ses dilatés d’un facteur ok=1g .
= {z e RY: 2 e  |z] < 2%¢},

dont la réunion infinie est disjointe et remplit :
o0
{e < 2| < o0} = %
k=1
Introduisons aussi la série infinie :
oo
g9(x) ==Y gi(x),
k=1

constituée des fonctions :
1

gr(x) = gy 1y, (2).
Comme la fonction |z| — Iarlﬁ est décroissante, on se convainc aisément qu’en restric-
tion a &7, on a :
f(z) < gi(z) (z € ,),
puis :
flz) < g(@) (e <zl < o0),
d’ou:
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D’un autre c6té, grace aux propriétés d’invariance par dilatation de la mesure de Le-
besgue, on a :

m(ssz) = (2k’1€)dm(¢2f) (k>1),

et comme ¢ est manifestement une fonction étagée :

/ o _mlet)
2] > 9 = (2k71€)d+1

k=1
00 (Qk—lg)d
= m(«) Z (2k—1g)d+1
k=1
m() e 1
- Z ok—1
k=1
_ 2m(e)
= —
ce qui explicite une constante possible C' > 0! O

Concluons la présentation de cette floppée de théoremes de convergence par celui qui
les chapeaute tous.

Théoréme 5.12. [Inégalité généralissime de Fatou] Etant donné une suite quelconque
(fn)S2, de fonctions mesurables positives sur R® :

fn>07

a valeurs dans R U {oc}, la fonction limite inférieure (positive) :
liminf f,,(z),
n—oo

est toujours automatiquement mesurable, et on a en toute généralité maximalissime :

/ liminf f,,(x)dz < liminf fu(z)dx
R4 R4

n—o0 n—oo

La force extréme de cet énoncé, en effet, c’est qu’absolument aucune hypothese de
convergence n’est faite : il est vrai dans toutes les situations imaginables !

Démonstration. D’apres les propriétés standard de la notion de limite inférieure (exercice :
aréviser!) d’une suite de nombres réels, on a :

i [ 1=t (g [ 0 )

€0 oo] suite croissante
en fonction de k

De maniere similaire, la limite inférieure de la suite de fonctions :

(fal2)),,
se détermine comme :

liminf f,(z) = lim (mf fo( ))

n—00 k—oo \ n>k
N——
=:gp(x)
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Il est alors avisé d’introduire la suite auxiliaire de fonctions définies pour k£ > 1 entier par :
x) = inf f,(x
gu(x) = inf fulo),
qui satisfait donc :
lim gr(xz) = liminf f,(x),
k—o0 n—00

et qui est manifestement positive croissante :

(0<) g < Gent (k>1).

Mais alors, tel le fantome phosphorescent d’un Lucky-Luke solitaire perdu au milieu des
elfes radioactifs du Plateau de Saclay, en dégainant infiniment plus vite que I’ombre in-
saisissable de notre intuition mathématique intime, qu’avons-nous de mieux a faire que
d’appliquer a une vitesse supérieure a celle de la lumiere le Théoréme 5.8 de convergence
monotone ?

Oui, dégainons Beppo-Levi calibre 58 :

lim ge = i !
/kL“Qog’“ kL”QO/g’“

Ensuite, comme pour tout n > k,ona:

/gk < /fn (Vn>k),
<
/gk < ;lgc/fm

ce qui, en prenant la limite quand k tend vers I’infini, donne justement parce que Beppo-

Levi s’applique :
l < i inf n |
[ jim < jim (1ot [ 15.)

ce qui est bien (exercice visuel) ’inégalité établie par le Général en Chef, Fatou, de notre
Grande Armée de I’Intégration théorique (sans blaguer, Fatou était un mathématicien tres
profond, qui n’a peut-tre pas bénéficié de toute la reconnaissance qu’il méritait de son
vivant). ]

une intégration donne :

puis :

Corollaire 5.13. [Inégalité de Fatou inverse] Etant donné une suite quelconque de fonc-
tions mesurables négatives sur R? :

fa <0
a valeurs dans {—oo} UR_, ona :
lim sup folz)dr < / limsup f,.
n— oo R4 Rd n—o0
Démonstration. Appliquons le théoreme précédent a la suite de fonctions — f,, > 0:

/R liminf ( — fu(z)) dz < liminf /]Rd (= fa()) da.

4 n— o0 n — oo
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Lemme 5.14. Pour toute suite (a,,)°; de nombres réels a,, € R, ona :

liminf (—a,) = —limsupan,,

n— 00 n— oo
ainsi que :

Iimsup(—an) = —Iliminfa,.

n — 00 n—00

Démonstration. Rappelons que les limites inférieures et supérieures d’une suite numérique
quelconque (b,,)%°; sont définies par :

liminfb, = lim (inf bm) et limsupb, = lim <supbm>,
n — 0o n—o0o0 \m2=n n— 0o n—00 \;m>n
ou les deux suites :
inf b, et sup b,
mzn m>n

ont chacune une limite, puisqu’elles sont respectivement croissantes et décroissantes avec
n (exercice mental).

Ici appliquée a la suite b,, := — a,, cette définition de la limite inférieure peut étre
transformée en le premier résultat annoncé :

Iiminf(—an) = lim <inf —am>

n— oo n—o0o0 \m=n
= lim <— sup am>
n— 00 m>n

= — lim <supam>

n— 00 m>n

= —limsupa,,
n— oo

le second se vérifiant ensuite de maniére similaire. O

Grace a ce lemme élémentaire, 1’inégalité en cours de travaux devient :

/ —limsup f,, < —limsup fulz) dz,
R4 Rd

n— oo n— o0

et pour conclure il suffit alors d’infliger a cette derniere inégalité imparfaite la foudre trans-
percante d’une inversion de signe ! U
6. Etape 4 : Fonctions Lebesgue-intégrables au sens le plus général possible
Définition 6.1. Une fonction mesurable réelle quelconque :
f: RY — {—c0}URU {+00},
est dite Lebesgue-intégrable lorsque sa valeur absolue :
fl: RT — Ry U{co}

— une fonction elle aussi mesurable —, est Lebesgue-intégrable d’intégrale finie :

1< e,

au sens de la Définition 5.1 qui précede.
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En fait, on peut donner un sens précis et naturel a la valeur de I’intégrale de f en intro-
duisant les deux fonctions auxiliaires positives :

fH(z) == max(0, f(z)) et f~(z) == —min(f(2),0),
lesquelles sont mesurables ; en effet, on a déja vu dans le chapitre sur I’intégrale de Riemann
que I’on peut écrire simultanément :

f=r-r,
fl=f"+f.
de telle sorte qu’en tenant compte aussi des deux majorations :
0< f~ <If] et 0< f<If],

montrant que f~ et fT sont Lebesgue-intégrables lorsque f i.e. | f| I'est, la définition sui-
vante apparait comme étant parfaitement naturelle.

Définition 6.2. La valeur de I’intégrale de Lebesgue d’une fonction Lebesgue-intégrable

[r=]r]r

En vérité, on peut rencontrer dans la pratique de multiples décompositions :

f=h—1/,
ou fi et f5 sont deux fonctions mesurables positives, et alors il est 1égitime de se demander
si I’on est toujours en droit d’écrire :

fs-[ 1]

Oui, c’est bien le cas, parce que si f jouit d’une autre telle décomposition :

[ =91 — 9,
avec g1 = 0et gy > 0, il vient :

fi+g92= g1+ fo,

et comme les deux cotés de cette équation consistent en des fonctions mesurables positives,
la linéarité déja vue de I’'intégrale sur les fonctions positives donne :

/f1+/ggz/gl+/f2,

ce qui, puisque toutes ces intégrales sont des nombres réels finis, donne bien 1’indépendance

escomptée :
/fl—/f2:/91—/92-

Intermede spéculatif crucial. Maintenant, lorsqu’on parcourt en arriere mentalement, syn-
thétiquement et intelligemment toute la théorie qui a été développée jusqu’a présent, il
importe d’effectuer une mise au point capitale concernant la pensée interne relative au
concept intuitif de « presque partout ».

Tout d’abord, nous savons que I’intégrabilité d’une fonction f et la valeur de son inté-
grale | f restent inchangées lorsqu’on modifie a souhait f sur des ensembles de mesure
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nulle. Par conséquent, il est a la fois naturel et utile dans le contexte de la Théorie de I'inté-
gration d’adopter la convention fondamentale que les fonctions seront essentiellement non
définies sur les ensembles de mesure nulle.

Qui plus est, puisque nous savons aussi qu’'une fonction Lebesgue-intégrable f prend
des valeurs finies presque partout, on prolonge cette convention fondamentale en admettant,
par exemple, que 1’addition f + g de deux fonctions intégrables f et g est toujours possible,
puisque 1’ambiguité causée par la non-définition de f et de g sur certains ensembles de
mesure nulle, et aussi le fait que f et g peuvent éventuellement prendre des valeurs infinies,
ces deux difficultés ne concernent au total qu’un ensemble négligeable et [ -invisible parce
que de mesure nulle.

Enfin, lorsqu’on parle d’une fonction f, il devient alors naturel d’admettre par conven-
tion qu’on considere simultanément la collection de toutes les fonctions qui différent de f
seulement sur un ensemble de mesure nulle.

De simples applications des définitions, accompagnées des résultats obtenus jusqu’a
présent, montrent que les propriétés élémentaires de 1’intégrale sont héritées par la Défini-
tion 6.1 la plus générale.

Proposition 6.3. L’intégrale de Lebesgue des fonctions Lebesgue-intégrables est linéaire,
additive, monotone, et elle satisfait I’inégalité du triangle. U

Rassemblons maintenant deux résultats qui non seulement sont instructifs, éclairants et
intéressants en eux-mémes, mais s’avéreront aussi utiles pour la démonstration du célébris-
sime Théoreme de la convergence dominée de Lebesgue qui va suivre.

Théoréme 6.4. Si f est une fonction Lebesgue-intégrable sur R?, alors pour tout € > 0, il
existe un ensemble de mesure finie B — une boule assez grande par exemple — tel que :

/ Ifl < e
R\ B

Démonstration. Aprées remplacement de f par | f|, on peut supposer que f > 0.
Si By désigne la boule fermée centrée a I’origine de rayon un entier N > 1, introduisons
la suite de fonctions mesurables positives « tronquées » :

fN(x) = f(l?) ’ ]‘BN(‘T>7

qui est manifestement croissante :

0 < fN(I'> < fN—I—l(:E)?

et qui converge ponctuellement vers f partout :
lim fy(z) = f(z).
N—oco
Or grace au Théoreme 5.8 de convergence monotone, on a :

lim = .
N—oo /Rd fN R4 f

Autrement dit, pour tout £ > 0 arbitrairement petit, il existe un entier N = N_. > 1 assez

grand pour que :
0<) [ -] 5 <e
R4 R4
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et alors puisque :
1Rd\BN - 1Rd - ]‘BN7

/ f <,
R By

comme nous nous étions proposé de le faire voir. U

il vient :

Intuitivement, les fonctions intégrables doivent en un certain sens s’annuler a I’infini,
puisque leurs intégrables sont finies, mais attention ! une telle annulation n’est valable qu’au
sens intégral, et elle est en général fausse au sens ponctuel — penser en effet a une fonction
qui contient une infinité de pics s’enfuyant vers I’infini dont les contributions intégrales
deviennent de plus en plus petites telle que par exemple (exercice) la fonction :

f: R' — R,
définie précisément par :
n lorsque x € [n, n—+ %} avec n > 2 entier,
flz) = .
0 ailleurs.

Théoréme 6.5. Si f est une fonction Lebesgue-intégrable sur RY, alors pour tout € > 0, il
existe § = 6, > 0 tel que pour tout sous-ensemble mesurable E C R? avec :

m(E) < 4,

f <

Cette derniere condition est connue sous le nom d’absolue continuité de 1’intégrale
d’une fonction par rapport a la mesure de Lebesgue.

ona:

Démonstration. Aprés remplacement de f par | f], on peut & nouveau supposer que f > 0.
Pour N > 1 entier, introduisons I’ensemble :

Fy = {z e R": f(z) < N},
et la suite de fonctions :
fn(x) = f(x)  1py(2) (N>1),
satisfaisant visiblement :
0 < fv < N

Comme dans la démonstration du théoreme qui précede, cette suite de fonctions positives
est croissante :

0 < fa(@) < fyaa(o),
avec de plus sur R\ {f = oo} la convergence presque partout :

f(l‘) = Nli_rpoofN(x)v

donc le Théoreme 5.8 de convergence monotone assure, pour tout € > 0 arbitrairement
petit, ’existence d’un entier N = N, > 0 assez grand pour que :

(0<) /R (f=fv) < 5
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Si maintenant nous prenons § = J. > 0 avec :

15
No < <,
2

alors pour fout sous-ensemble mesurable £ C R? de mesure petite :
m(E) < 0,

(0<) Lf—éﬁ—mw%;N

on peut majorer :

<[ =g+ [ g
R E
<%+Nm@)
€ n €
S22
ce qui conclut! U

Nous sommes enfin parvenus au terme de ce long périple théorique dévolu a I’intégrale
de Lebesgue, et c’est pour féter ensemble ce moment intellectuel important que nous of-
frons au lecteur comme bouquet final le théoreme le plus frappant et le plus utile de toute
la théorie.

Théoreme 6.6. [Théoreme dit de la convergence dominée dii a Lebesgue] Si une suite
(fn)o2, de fonctions mesurables :

fu: RY — {—00} URU {+o0}
converge ponctuellement vers une certaine fonction-limite :
fn ({L’) — f(CL’) (pour presque tout x € R?),
n—oo

tout en restant constamment majorée presque partout en valeur absolue par une fonction
positive fixe g: R4 — R, U {oo} :

| ful2)] < gl2) (vn>1),
qui est Lebesgue-intégrable :
[oem
Rd

alorsona:

lim / |fo—f|] =0,

n—oo
d’ou aussi :

im [ i = [

Bien entendu, 1’énoncé est tout aussi valable lorsque les fonctions f,, et g sont définies
sur un sous-ensemble mesurable fixé £ C R?. L intérét phénoménal de ce théoréme, par
rapport a ceux de la théorie de Riemann qui exigaient en général d’abondantes doses de
convergence uniforme, c’est que la seule hypothése de domination par une fonction d’inté-
grale finie suffit a justifier rigoureusement 1’interversion entre limite et intégrale !

Rendez-vous compte! L’exigence de convergence uniforme part en fumée !
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Lebesgue, bien a tort, se montra confus des dieux qu’il avait destitués, des statues qu'il avait
renversées de leur socle. Arnaud DENJOY

Démonstration. Pour tout entier N > 1, introduisons I’ensemble simultanément tronqué a
I’horizontale et a la verticale :

Gy :={z eR?: |z < Netg(z) <N},
ainsi que la suite de fonctions croissantes :

gn(z) = g(x) - 1oy
Une convergence monotone de ces g vers g entierement analogue a celle qui avait lieu

dans la démonstration du Théoreme 6.4 assure alors (« petit » exercice) que pour tout € > 0
arbitrairement petit, il existe un entier N = N. > 1 assez grand pour que :

/ g < ¢,
RIANG N

mais pour la clarté et la complétude de ce cours, mieux vaut résoudre cet exercice pas si
«petit» que cela... Ces détails peuvent étre sautés en premiere lecture.

Commencons par un préliminaire classique qui peut étre effectué dans de nombreuses situations.

Comme [ g < oo, 'ensemble { g = oo} est de mesure nulle. Modifions les valeurs de g sur
cet ensemble en posant g(x) := 0 si g(x) = oo, ce qui ne change pas la valeur finie positive de
I’intégrale de notre fonction dominatrice intégrable g.

Modifions aussi les valeurs de chacune des fonctions f,, 1a ol nous avions g(x) = oo, en posant
de méme f, () := 0, ce qui ne change pas les valeurs des intégrales [ f,.

Observons que ces modifications (mineures) de valeurs préservent aussi notre hypotheése des
inégalités ponctuelles | f,,(z)| < g(z).

Evidemment, chaque f,, est intégrable, puisque | fn| < g et puisque g est intégrable !

Ensuite, comme on vérifie en revenant a la définition de la suite de fonctions { gN }?21 qu’elle
est ponctuellement croissante :

0 < 9N < gN+15

et comme on vérifie mentalement qu’en tout point 2 € R on a :

gn(@) = g(2),

le Théoreme 5.8 de convergence monotone nous donne :

/ gN N:ZO 9
c’est-a-dire :
/ g — 9,
G N—oco  JRrd
d’ou par soustraction ensembliste :

0 <—— g,
oo+ N RNGy

et ainsi, pour IV > 1 assez grand, cette intégrale peut effectivement étre rendue plus petite qu’un
epsilon de la moitié d’un quart d’'une demi-miette. O

Par ailleurs, pour un tel V fixé, la suite de fonctions :

o 1ay (n>1)
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reste bornée par N en valeur absolue puisque | f,| < g < N sur G, et comme cette suite
reste de plus a support contenu dans 1’ensemble de mesure finie G, le Théoreme 3.7 de
convergence bornée s’applique et fournit un entier n = n. > 1 assez grand pour que :

n>=n - ’fn—f‘ée.
GnN

Grace a ces deux inégalités, nous pouvons alors aisément majorer :

/Rd o 1] =/GN !fn—f}+/Rd\GN o 1]

< / lfn—f\+2/ g
Gn RGN
< e42¢
toujours pour n > n., ce qui achéve la démonstration de ce grand théoreme. U

Pour terminer cette section capitale, mettons en lumiere une conséquence facile du
Théoreme 6.6 majeur de convergence dominée, ainsi que du Théoreme 5.8 — tout aussi
majeur! — de convergence monotone, sous la forme d’un « théoreme-corollaire », hyper-
fréquemment utilisé dans les applications, et qui renforce le Théoreme 5.9 sans supposer la
positivité des fonctions considérées.

Abrégeons ici :

R := {~o0} URU {o0}.

Théoreéme 6.7. Si une suite { fk(x)};ozl de fonctions mesurables intégrables sur R a va-
leurs dans R est telle que :

Z /Rd ‘fk(a:)}dw < 00,

alors en presque tout point x € RY, la série numérique :
(o)
fl) = fulw),
k=1

converge absolument vers une valeur finie appartenant a R, elle définit une fonction me-
surable intégrable f: RY — R, et surtout, elle satisfait I’interversion entre intégration et
sommation infinie dénombrable :

[ f)de = /R (g fk(x)> dz

= Z fr(x) dzx.

d
k=1 YR

Démonstration. Comme les fj, sont intégrables, nous pouvons changer a I’avance leurs va-
leurs sur une réunion dénombrable d’ensembles de mesure nulle de maniere a ce qu’aucune
fonction fj,: R? — R ne prenne les valeurs —oo et co.



6. Etape 4 : Fonctions Lebesgue-intégrables au sens le plus général possible 33

Ensuite, pour n > 1 entier, posons :

Fu(x) = Y fulx) (eR),

1<k<n

Go() = Y |file)

1<k<n

g(@) =) |ful2)| (€R+),

9 (6R+)7

R+ = R U {OO}
D’apres le Théoreme 5.8 de convergence monotone, nous pouvons écrire :

/ g(x)dx —/ lim G,(x)dx
Rd Rd n—oo
< lim / Gn(z)dz
n—oo R4

= TJLmOO Z /]Rd | fr(z)| d

1<k<n

= i:: /Rd | fi(2)| da

< 00,

quantité qui est finie, grace a I’hypothese principale du théoreme en cours de démonstration.
Alors puisque [ g < oo, la Proposition 5.4 (v) offre pour presque tout = € R? la finitude
des valeurs g(x) € Ry, la valeur oo étant ainsi exclue. C’est exactement la convergence

absolue :
o0

g(x) = Z |fk<x>‘ < 0 (presque partout),
k=1
de notre série initiale de fonctions :

> flz) = f(x)
k=1

= lim F,(x),

n—oo
qui converge donc aussi presque partounette !
. o0 , . ,
Enfin, notre suite { },(x)} | étant par nature dominée :

S @< Y h@)] = Gula)

1<k<n 1<k<n

|Fu)] =

< g(x),
par notre fonction-plafond positive g dont nous venons de dire qu’elle est Lebesgue-
intégrable, le Théoreme 6.6 de convergence dominée de Lebesgue — le benét qui bé-

gallle T .
/Rd (TL ( ) /Rd ( )
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nous offre la conclusion annoncée :
fk(x)) dr = / fr(x)dx O
[(% 2 ).

7. Fonctions a valeurs complexes

Lorsque les fonctions f que I’on consideére sont a valeurs complexes, elles se décom-
posent :
f(@) = u(z) +iv(z),
en partie réelle u et en partie imaginaire v. Bien entendu, la fonction f est mesurable si et
seulement si u et v le sont.

Définition 7.1. On dit qu’une fonction a valeurs complexes f = u + i v définie sur R¢ est
Lebesgue-intégrable lorsque son module :

|[f(2)] = Vu(z)? +v()?

est Lebesgue-intégrable d’intégrale finie :

11 <.

Rappelons les inégalités élémentaires :

|u(z)| < |f(2)] et v(@)] < [f(2)

ainsi que :
[f(@)] < Ju(@)| + Jv(@)],
cette derniére découlant de 1'inégalité (a + b)'/?2 < a'/? + b'/2, valable pour a,b > 0
(exercice).
Ces inégalités extrémement simples font d’ailleurs voir qu’une fonction a valeurs com-
plexes est Lebesgue-intégrable si et seulement si ses parties réelle et imaginaire le sont, et

dans ce cas /f(g;)dx = /u(af)dx—i-i/v(iﬂ)dx'

Définition 7.2. Etant donné un sous-ensemble mesurable quelconque £ C RY on dit
qu’une fonction mesurable :
fi EFE—C

est Lebesgue-intégrable lorsque f - 1z I’est sur R? au sens de la définition qui précede, et

dans ce cas, on note :
/ f:/ f-1g.
E Rd

La collection de toutes les fonctions a valeurs complexes intégrables sur un ensemble
mesurable £ C RY forme un C-espace vectoriel, comme on s’en convainc aisément; en
effet, si f et g sont intégrables, alors f + g I’est aussi puisque 1’inégalité du triangle donne :

|(f +9)(@)] < |[f(@)|+ |g(x)

et puisque la monotonie de I’intégrale donne :

[ lr+al< [ 101+ [ 1ol < oo,

I
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Enfin, il est clair que pour A € C, si f est intégrable, \ f 1’est aussi.

8. Intégrale de Riemann généralisée versus intégrale de Lebesgue

Cherchons maintenant a comparer 1’intégrale de Lebesgue avec I’intégrale de Riemann
généralisée.

Sur un intervalle ouvert Ja, b[ avec —0o < a < b < o0, soit donc f: ]Ja,b] — R une
fonction localement Riemann-intégrable, a savoir qui, sur tout intervalle compact [c, d] C
|a, b[, est bornée et Riemann-intégrable, d’ou griace au Théoreme 4.1 :

R L
flz)dx = f(z)dx.
[e,d] [c,d]
Rappelons que f est dite intégrable au sens généralisé de Riemann lorsque, avec ¢ € |a, b|
fixé :
c b—e

lim / f(z)dx et lim f(z)dx

5;>0 ate 5?0 c
existent toutes deux, i.e. pour toutes paires de suites a <— a, décroissante et b, —> b
croissante :

bn b
lim f(x)dx ::/ f(x)dr existe.

n—o0
an

Lemme 8.1. Sous ces hypotheéses, si [ est Lebesgue-intégrable sur]a,b| :

L
/} |f(z)|dz < oo,

a,b|

alors | f| est intégrable au sens généralisé de Riemann, et f aussi.

Preuve. Le Théoreme 6.6 de convergence dominée tout récemment démontré qui sort du
four comme un croissant chaud nous offre pour la premiere fois son croustillant instantané :

R L L
/ ‘f(:v)’dx—/ |f(x)|de —— |f(x)|dz < oo,
[an,bn] [an,bn] o0 Jla

ou alors, pour ceux qui préferent déguster lentement le beurré délicieux de la vérification
scrupuleuse des hypotheses, comme la suite f,, := f - 14, ,] est majorée |f,| < |f]| par
la fonction-dominatrice ¢ := f elle-méme qui est Lebesgue-intégrable sur [a, b], on peut
effectivement intervertir limite et intégration !

Que cette premiere viennoiserie ne nous décoive jamais ! car dans I’avenir, nous aurons
d’innombrable occasions de constater la puissance incomparable qu’offre la convergence
dominée, toujours rapide comme 1’éclair ! U

Toutefois, la réciproque est fausse : la fonction ¢ — S'T”t sur [0, oo[ nous a déja fait voir,

a la fin du chapitre sur I’intégrale de Riemann, qu’elle admet une intégrale de Riemann
généralisée, tandis que :

L H R .
t t
lim / st — i / sint] oo

0,nm] [0,n7]
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9. Espace L' des fonctions intégrables : complétude ; séparabilité

Le fait que les fonctions intégrables forment un C-espace vectoriel constitue une pro-
priété fondamentale qui est de type algébrique.

Une propriété de type analytique encore plus importante mais bien moins élémen-
taire — et qui n’était absolument pas satisfaite en théorie de Riemann —, est que ce C-
espace vectoriel est complet pour la quantité positive naturelle :

/111

Définition 9.1. La norme d’une fonction Lebesgue-intégrable f: R? — C est la quantité :

7l = s = [ | 17 da.

La collection de toutes les fonctions Lebesgue-intégrables munie de cette norme consti-
tue un espace noté :

laquelle va s’avérer €tre une vraie norme.

L'(RY),
dont il s’agit maintenant de préciser rigoureusement la définition. En fait, on sait déja par
la Propositon 5.4 que :
HfHLI(Rd) =0 = f =0 presque partout,

et cette propriété reflete la pratique intuitive que nous avons déja implicitement adoptée de
ne pas distinguer deux fonctions qui coincident en presque tout point. Avec cela en téte,
nous pouvons fournir le concept rigoureux attendu.

Définition 9.2. L’espace L!(R?) est I’espace des classes d’équivalence de fonction mesu-
rables

f: Rt — C
Lebesgue-intégrables :

Il = [, 111 < oo,

ou deux telles fonctions f; et f, sont équivalentes :

fi~ fo
si et seulement si elles sont égales en presque tout point x € R%.
Toutefois, il est fréquemment admis de considérer qu'un élément f € L'(R?) est une
fonction intégrable spécifique, méme si en toute rigueur, on devrait parler de la classe

d’équivalence d’une telle f.
Bien entendu, la norme | f| ;1 re) ne dépend pas du choix d’un représentant dans une

classe d’équivalence. De plus, L!(R?) hérite la propriété d’étre un espace vectoriel. Les
propriétés élémentaires de L'(R?) sont résumées dans 1’énoncé suivant.

Proposition 9.3. Si f et g sont deux fonctions appartenant a L*(R?, C), alors :

@) | flor ey = M| fll22 (rey pour tout A € C;

(D) [/ + 9lor @y < | flor@e + 9]0 @y

(iii) | f] L1 (rey = O si et seulement si f = 0 presque partout ;

Gv) d(f,9) == |f — gl 11 (we) définit une métrique sur L'(R?).
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Démonstration. Pour ce qui concerne (iv), il s’agit de vérifier que d( f, g) satisfait les trois
axiomes d’une métrique, ce qui est manifestement aisé. U

Définition 9.4. Un C-espace vectoriel V muni d’une métrique d(-, -) est dit complet lorsque
toute suite de Cauchy (x,,)>; de points z,, € V' admet une limite z., € V' qui appartient
encore a V', a savoir plus précisément toute cauchycité :

Ve>0 3IN(E)>1 (n, m = N(e) = d(zn, ) < 5),
implique convergence interne a 1’espace :

dze €V lim 2z, = 2.
n—oo

Notre objectif principal est de montrer maintenant que la Théorie de I’intégration de
Lebesgue complete celle de Riemann, en un sens qui est simultanément fort et signifiant
mathématiquement.

Théoréme 9.5. [Riesz-Fischer] Le C-espace vectoriel L' (]Rd, (C) muni de la métrique
dérivée de sa norme :

A(.9) = [ 17 =9] = 1f = gluriue
R
est complet.

Démonstration. Etant donné une suite de Cauchy quelconque (f,)>° , dans L'(R?, C) :
Ve>0 dN()>1 (n, m = N() = |fn— meLl(Rd) S 5)?

il s’agit donc d’établir qu’il existe une fonction mesurable intégrable — a posteriori
unique — :
fro € LY(R%,C),

laquelle est donc encore d’intégrale finie, telle que :
0= lim | £n — fOOHLl(Rd)'

Le plan de la démonstration consiste a extraire une sous-suite appropriée (f,, )5, de
(f2)52, qui convergera presque partout ponctuellement vers une certaine fonction f €
L*(RY), et a faire voir ensuite que cette sous-suite converge aussi vers f en norme L', ce
qui produira la fonction f., := f recherchée.

Or dans des circonstances idéales, on pourrait espérer que la suite compléte (f,,)>2
elle-méme converge presque partout vers une limite f € L'(R?), mais malheureusement,
une telle convergence n’a pas toujours lieu pour les suites de Cauchy quelconques dans
LY(RY), voir a ce sujet I’Exercice 14. Cependant, il va se trouver que si la convergence au
sens de Cauchy est assez rapide en norme L' (R?), alors la convergence ponctuelle presque
partout va devenir garantie.

Ce sera donc pour accélérer la convergence au sens de Cauchy que nous devons extraire
une certaine sous-suite (f,,, )52, de (fn)5,.

Plus précisément, pour k = 1,2, 3, ..., choisissons successivement des ¢, = 2% de plus
en plus petits auxquels sont associés des entiers :

N(L), N(&), N(&). ... CN(L). ,
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garantissant que :
n,m > N(z) = an - meLl(Rd) < o
et introduisons la sous-suite d’entiers :
m = max (N (), -0 N(F)),
qui est manifestement croissante :
I < ng < N
Grace a ce choix, on produit donc une sous-suite (f,,, )52, de (f,)o, qui satisfait :
ank+1 - fnkHLl(Rd) < 2% (Vk>1).

Quitte a augmenter légerement n; en posant plutdt par exemple :

=k max (N(3), -y N()),
on peut supposer la croissance stricte :

nE < Ngt1,

ce qui est certainement avis€ pour avoir une vraie sous-suite.

Introduisons ensuite une série de fonctions dont la convergence sera établie ultérieure-
ment :

(9.6) F@) = fo, (@) + D (farpr (@) = fur (1)),
k=1

ainsi que la série majorante associée, via I’inégalité triangulaire infinie :

9.7) F(z) = | fo (x \+Z|fm€+1 — fu ().

Introduisons aussi, pour tout entier X > 1, les sommes partielles d’ordre K :

Sk ()(@) = foy(x +Z (foer (2) = frp(2))
= fw(x),

qui se contractent par téléscopie, et aussi les majorantes de ces sommes partielles :

) = }fnl }"’Z |fnk+1 fnk( )

lesquelles ne se simplifient en général pas.
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En tout cas, I’inégalité triangulaire donne au moins :

K
”SK(f)HLl(Rd) S ”FKHLl(Rd) - anlHLl(Rd) + Z ankﬂ - f”kHLl(Rd)
k=1
“1
< anl HLI(Rd) + Z ok
k=1

1
< anl HLl(Rd) + Z ok
k=1

- anlHLl(Rd) +1
< 00,

ce dernier majorant étant uniforme, i.e. indépendant de K > 1.
Considérons maintenant la suite de fonctions :

o

(F K ) K=1’
qui est manifestement positive croissante :

0 < Fr < Fiy1,
et qui tend par définition vers la fonction :

F(z) = lim Fi(z),

a valeurs dans [0, +00]. On peut alors appliquer le Théoréme 5.8 de convergence monotone

qui nous donne :
F = lim Fr
R4 K—oo Rd

< [l gy + 1
< 00,
ce qui fait voir que F’ est Lebesgue-intégrable — information fort agréable !
Immédiatement, de 1’inégalité :
fl < F,

on tire que :
f € L'RY.
Ensuite, en se référant au Théoreme 5.9, on déduit aussi que la série (9.7) ci-dessus qui
définit f converge ponctuellement presque partout vers une fonction mesurable presque
partout finie, et donc en revenant a (9.6), f elle-méme est bien définie, mesurable, presque
partout finie.
Dit autrement, les sommes partielles de cette série (9.6) :

Sk-1(f)(x) = fu,(z)

convergent presque partout ponctuellement vers :
f(x) = lim fnk (;U) (pour presque tout z € R%).
k—o0

Nous affirmons alors que cette fonction f est la fonction f., € L'(R?) recherchée vers
laquelle converge la suite de Cauchy (f,)°%, dans L*(R?) dont nous sommes partis.
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En effet, pour établir d’abord la convergence dans L' de notre sous-suite :
fu. — f dans L'(R%),
k—o0

a savoir pour vérifier que :
0= k“—>moo Hf - fnk ”Ll(Rd)’
on remarque que 1’inégalité valable par construction presque partout :
1+ [Se=1(f)]
< |fI+1F)
< 2F,

assure la domination uniforme :
”f - fnkHLl(Rd) < 2 “F”Ll(Rd)
< o0,
et alors grace au Théoreme 6.6 de convergence dominée, on conclut que la sous-suite
(fni ) k=1 de la suite (f,,),>1 converge en norme L' vers la fonction f € L'(R?) :

0= kILmOO ”f — fu HLl(Rd)'

Mais il s’agit en fait d’établir la convergence vers f de la suite entiere (f,)>;, pas
seulement d’une sous-suite !
Or comme ( f,,)° est par hypothese de Cauchy :
n, m > N(3) = Hf”_meLl(Rd) < %

en choisissant un entier de la sous-suite n; > 1 assez grand pour que grice a ce que nous
venons de voir :

ank o fHLl(Rd)

<
un entier satisfaisant aussi, quitte a 1’augmenter, n;, > N(3), on peut intercaler ce f,,, dans
une inégalité triangulaire terminale :

Hf” - f“Ll(Rd)

£
29

S |fn o fnkHLl(Rd) + Hf"k o fHLl(Rd)
< 5+4,

valable pour tout . > N(5), qui conclut la démonstration de ce grand théoréme de com-
plétude tres souvent utilisée en Analyse. U

Puisque toute suite qui converge en norme L' est une suite de Cauchy dans cette norme,
les arguments de la démonstration précédente ont fait voir un énoncé suivant qui s’avere
tres souvent utile.

Théoreme 9.8. Si (f,)°°, est une suite de fonctions appartenant a L'(R?) qui converge
en norme L' vers une certaine fonction f., € L*(R?) :

0= n||—>n;o an - fOOHLl(Rd)7

alors il existe une sous-suite :

(for) o
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qui converge ponctuellement vers f.. :
lim f,, () = fo(x)
k—o00

en presque tout point v € R%,

Définition 9.9. On dit qu’une famille & de fonctions g appartenant a L' (R?) est dense dans
(L*(RY), | - | 11 (ray) lorsque :

VfeL'(RY) Ve>0 3ge¥ Hf—g”Ll(Rd)ga.

Naturellement, nous sommes déja familiers avec certaines familles de fonctions qui sont
denses dans des espaces fonctionnels : par exemple, le théoreme de Weierstrass montre que
les polyndmes sont denses dans I’espace des fonctions continues 4 ([0, 1], | - [4o(0.17))
munies de la norme de la convergence uniforme.

Le théoréme qui suit décrit d’autres familles denses qui s’avéreront tres utiles lorsqu’il
s’agira d’établir des propriétés et des identités satisfaites par les fonctions intégrables quel-
conques. Dans un tel objectif, le principe général c’est que le résultat est souvent plus
facile a démontrer pour une classe restreinte de fonctions, telles que par exemple les fonc-
tions étagées, et ensuite, un argument de densité ou de passage a la limite permet d’obtenir
le résultat général.

Théoréme 9.10. Dans I’espace L'(R?) des fonctions Lebesgue-intégrables sur RY, les trois
familles suivantes de fonctions sont denses :

(i) les fonctions étagées ;
(ii) les fonctions en escalier;

(iii) les fonctions continues a support compact.

Démonstration. Soit f € L'(R?, C). On peut supposer que f est a valeurs réelles, en trai-
tant séparément Re f et Im f. Si donc f € L'(R? R), en écrivant f = f© — f~ avec
f~ > 0et fT >0, on peut aussi supposer que f > 0.

Maintenant, pour ce qui concerne (i), un théoreme du chapitre qui précede garantit
I’existence d’une suite (¢)72, de fonctions étagées positives ¢, > 0 qui tendent ponc-
tuellement vers f en tout point. Mais alors le Théoreme 5.8 de convergence monotone
donne :

0= k"_[‘;o ”f - SOkHLl(Rd)a

ce qui montre bien qu’il existe des fonctions étagées arbitrairement proches de f en norme
L

Quant a (ii), grace a (i) obtenue a I’instant, il suffit d’approximer les fonctions étagées
par des fonctions en escalier. Or par définition, les fonctions étagées sont combinaisons
linéaires finies de fonctions indicatrices d’ensembles mesurables de mesure finie. Donc il
suffit de faire voir que la fonction indicatrice 1z d’un unique ensemble mesurable £/ C R?
est approximable par des escaliers.

Sie > 0 est arbitrairement petit, il s’agit de trouver une fonction en escalier 1) telle que :

- wHLl(Rd) S €

Mais il se trouve que nous avons déja effectué cette tiche sans nous en rendre compte.
En effet, un théoreme du chapitre qui précede a fait voir qu’il existe une famille finie de
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rectangles fermés presque disjoints Ry, ..., R tels que :
J

m(EA U Rj> < e
j=1

Mais alors en passant aux intérieurs des rectangles (leurs bords étant de mesure nulle), les
deux fonctions :

1g et Y= Z lintr;

J=1
different seulement sur un ensemble de mesure < ¢, sont égales a 0 ou a 1 en tout point, ce
qui assure que :
HlE - ¢HL1(R‘1) S &

Enfin pour obtenir (iii), grace a (ii) obtenu a I’instant, en jonglant avec des € > 0 pour
embrasser des combinaisons linéaires finies comme on a déja réussi maintes fois a le faire,
on se ramene (exercice du poignet) a démontrer que la fonction indicatrice d’un unique
rectangle fermé borné :

1z = H 1[ai7bi] (—oo<a; <b; <),
1<i<d

est approximable, en norme | - |1 ray @ € > 0 arbitrairement petit pres, par des fonctions
continues a support compact.
Tous les apprentis-menuisiers de Licence 3 en Mathématiques Fondamentales et Appli-
quées savent déja comment raboter les arétes d’un gratte-ciel en modifiant peu son volume.
Avec ¢ > 0 tres petit, gonflons plutot 1égerement le rectangle R en :

R’ = H [ai — 0, bi+5},
1<i<d
ce qui ne change que tres peu son volume :
IR = J] (i—ai+20) = J] (bi—a;)+0O(8) = |R| +O(©).
1<i<d 1<i<d

1

1ia;,0;)

a,;75

Dans chaque i-¢me dimension, introduisons ensuite la fonction continue affine par mor-
ceaux simplette :

X([Saubi](x) € cgc() (Rv [07 1])7

dont le graphe vient d’étre représenté, égale a 1 sur [a;, b;], et nulle hors de [a; — §, b; + ¢].
Alors la fonction-produit :

1<i<d
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est a support compact dans R?, est continue, et puisque 0 < X‘SR < 1avec X‘SR =1lsur R, la

différence :
[ 1tn) =@ de < [ 1
Rd RO\R
- |®|- IR
= 0(9),
peut effectivement étre rendue < € pour § = §(g) > 0 suffisamment petit. U

Nous pouvons maintenant dévoiler une propriété troublante — et pourtant mathémati-
quement vraie ! — de I’ensemble L'(R?) des fonctions intégrables. Nous venons de voir
que dans I’espace vectoriel normé (complet) :

1(mpd
(LR, 1+ 1),
I’ensemble des fonctions en escalier est dense. Toutefois, cet ensemble n’est certainement
pas dénombrable, puisqu’une seule combinaison linéaire avec un seul coefficient A € R
donne déja une famille de cardinal égal a celui de R, non dénombrable. Mais en approxi-

mant ces A € R par des rationnels \g € Q, tout va devenir possible ! Commencons alors
par conceptualiser 1’objectif.

Définition 9.11. [Espace séparable] Un espace vectoriel normé (E, | - |z) — pas néces-
sairement complet — est dit séparable s’il existe une suite (f,,)>%; — dénombrable ! —
de vecteurs f,, € E qui est dense :

VgeE Ve>0 3fyg € (fu), telleque |lg—fyg], < e

Théoréme 9.12. [Séparabilité de L'] Dans L'(R?), il existe une suite (f,)°°., de fonctions
fn intégrables qui est dense.

Le phénomene est troublant en ceci qu’un espace de fonctions aussi vaste et aussi com-
plexe que celui des fonctions mesurables intégrables aurait pu sembler, au moment ol on a
dépensé tant d’efforts a le construire, ne jamais pouvoir étre « capturé » comme 1’adhérence
d’une suite dénombrable.

Démonstration. D’apres le Théoreme 9.10 (ii), il existe une combinaison linéaire finie de
fonctions indicatrices de rectangles compacts :

R = [a1,b1] x - X [ag, bg] C R? (—00 < a; < b; < o0),
telle que :
g
li-> ) <5

finie L

Or puisque Q@ C R est dense, il existe des rationnels extrémement proches a; ~ a;,

(2
b, ~ b;, N ~ X tels qu’avec les rectangles perturbés :
R' = [a},b}] x -+ x [al, b])] (—o0 < a} < b, < o0),
on maintient I’approximation :

ZA-1R—ZX-1R,

finie finie

<

€
L1(R4) 2’



44 Frangois DE MARCAY, Département de Mathématiques d’Orsay, Université Paris-Saclay, France

d’ou par inégalité triangulaire :

Mais I’ensemble des coefficients rationnels A’ € Q + i Q, en nombre fini, et I’ensemble
des coordonnées a;, b, € Q, aussi en nombre fini, sont dénombrables, ce qui permet, par un

1) 71

procédé de renumérotation quelconque d’organiser :

PIRETTEIANS

finie

comme une suite de fonctions, et ainsi, |g — fN(E) |2+ < e, comme voulu. O

Les résultats de densité dans L' (IR?) conduisent tout naturellement & une généralisation
immédiate pour laquelle R? est remplacé par un sous-ensemble mesurables £ C R<. En
fait, on peut introduire et définir L'(E) comme L'(R?), pour développer la théorie de
maniére entierement similaire. A vrai dire, on peut aussi de maniére alternative prolonger
a 0 toute fonction f définie sur £ en posant :

~ [ sur E,
/= 0 sur RU\E,

puis déclarer que :

10z = 170 e
Les versions sur £ des propositions et théoremes de cette section sont alors parfaitement

réalisées.
10. Propriétés d’invariance

Définition 10.1. Etant donné une fonction f: R — C, pour un vecteur fixe h € R% 1a
fonction :

T(f)(x) == f(z = h)

est appelée la translation de f par h.

Comme en théorie de Riemann, I’intégrale de Lebesgue sur R¢ tout entier est invariante
par translation.

Lemme 10.2. Si f € LY(RY), alors 71,(f) € L*(RY) est aussi intégrable et de plus :
f(x —h)de = f(z)dzx.
R R

Démonstration. Largument est une illustration du principe de réduction a des fonctions
simples, complémenté par la densité. En effet, lorsque :

=1
est la fonction indicatrice d’un ensemble mesurable £ C R? on a :
Th(f) = ]-Eh7

ou naturellement :
E, = {x+h: er},
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et comme on sait que la mesure de Lebesgue est invariante par translation :
m(Ey) = m(E),

le résultat est immédiat dans ce cas :

[ th) = miE) =mie) = [ s

Ensuite par linéarité de I'intégrale, le résultat est encore valable pour toute fonction
étagée.

Enfin, soit f € L'(R% R, ) une fonction intégrable quelconque a valeurs réelles posi-
tives, puisque 1’on peut toujours se ramener a ce cas (exercice mental). Nous savons pour
’avoir utilisé il y a trés peu de temps qu’il existe une suite croissante (¢ )72, de fonctions
étagées positives :

0 < v < g1 < f= lim gy,
k—oo

qui convergent ponctuellement vers la fonction f tout en lui restant inférieures, et le Théo-
reme 5.8 de convergence monotone assure donc que :

k—oo
Mais alors la suite des fonctions translatées :
(k) — (f)
k—o0

converge (exercice mental) de maniere monotone et bornée vers la translatée de f, et donc
le Théoreme de convergence monotone donne a nouveau

/Th(f) = kILngo/Th(SOk)
- jim [ =
- [

ce qu’il fallait faire voir. U

En utilisant I’invariance par dilatation de la mesure de Lebesgue, on peut aussi établir
I’énoncé élémentaire suivant, laissé€ en exercice.

Théoréme 10.3. Si f € LY(R?), alors pour § > 0, la fonction :
r — f(dx)

appartient aussi a L'(R?) avec de plus :

54 f(oz)dx = f(z)dx.
R4

Rd
Enfin :

f(—x)dz = f(z)dz. O
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Conséquemment, pour tout @ > d et pour toute > 0,on a:

/ dr 5_a+d/ dx
|x|>e |x|a |z|>1 |$|a’

tandis que pour tout a < d et pour toute > (,ona :

/ dr 5_aer/ dz
lz|<e |m|a |z|<1 |$|a'

En fait, comme en théorie de Riemann — a laquelle se ramenent toutes ces considérations
fort élémentaires ! —, lorsque a > d, on a la finitude :

/ dx
e < 00,
lz|>1 ||

/ dx
lz|<1 ||

Plus important encore que tous ces enfantillages, nous allons maintenant examiner les
propriétés de continuité des translatées 7, ( f) d’une fonction arbitraire f € L!(R?) par des
vecteurs i — 0 qui tendent vers zéro. Rappelons qu’en un point z € R¢, la convergence
ponctuelle :

et lorsque a < d, la finitude :

() — f()

a lieu lorsque et seulement lorsque f est continue en x.

Mais hélas, comme nous I’avons fait savoir a plusieurs reprises, il est hors de ques-
tion d’esperer avoir une telle convergence ponctuelle pour les fonctions qui sont seulement
intégrables au sens de Lebesgue, puisque ces fonctions présentent en général de trés nom-
breux points de discontinuité. Pire encore, on peut montrer par un exemple (voir a ce sujet
I’Exercice 18) que méme apres correction sur un ensemble de mesure nulle, une fonction
intégrable peut avoir des points de discontinuité sur un ensemble de mesure strictement
positive, et méme parfois, en tout point !

Heureusement, il existe une propriété de continuité dont jouissent les fonctions f €
L*(R%), celle qui est en relation naturelle avec la norme L.

Théoréme 10.4. Pour toute fonction f € L'(R?), ona :
0= fILILnO HTh(f) - f”Ll(Rd)'

Démonstration. Ce résultat est une conséquence relativement élémentaire de 1’approxima-
bilité des fonctions intégrables par des fonctions continues a support compact, déja vue
dans le Théoréme 9.10.

En effet, pour tout € > 0, il existe une fonction g € € (IR?) continue a support compact
telle que :

|f B gHLl(Rd) S €
Mais alors, puisque ¢ est continue a support compact, il est aisé de se convaincre que elle

au moins, parce qu’elle est bien élevée, satisfait sans mal la propriété attendue (exercice !
exploiter la continuité uniforme de g) :

36.>0 |n[ <0 = |7(9) _gHLl(Rd) < e
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Bien que cela puisse paraitre quelque peu contre-intuitif, ce qui vaut pour g continue vaut
alors pour f possiblement tres discontinue, puisqu’une simple inégalité triangulaire précé-
dée d’insertions astucieuses :

|7 (F) = Fll gy = Nl (F) = 709) + 7(9) — 9+ 9 = f| 1 oy

HTh(f) - Th(g)”Ll(Rd) + HTh(g) - gHLl(Rd) + Hg - fHLl(]Rd)
HTh(f - g)HLl(Rd) + HTh(g) - g”Ll(Rd) + Hg - fHLl(Rd)

- Hf - g”Ll(Rd) + HTh(g) - gHLl(Rd) + Hg - fHLl(]Rd)

< e+e+e,

le tout agrémenté de I’invariance de I’intégrale par translations donne effectivement la peti-
tesse de la norme L' de la différence entre 7,(f) et f, pourvu seulement que |h| < 6.. O

N

11. Exercices

Exercice 1. Etablir rigoureusement I’affirmation laissée en exercice dans la démonstration du Théoreme 6.6
de convergence dominée de Lebesgue.

Exercice 2. Montrer que si une fonction f € L'(R?, C) est Lebesgue-intégrable, alors :
0= (!T;]l Hf(x) - f((sx)”Ll(Rd)

Exercice 3. Soit une fonction :
1
feL(]-m, 7))
que I’on prolonge comme fonction 27-périodique sur R. Montrer que pour tout intervalle I de longueur 27,
ona:

/If(a:)da:: :f f(x)dx.

Exercice 4. Avec b > 0, a une fonction :
f € L'([0,0)),
on associe la fonction définie pour 0 < x < b par :

b
o) = [ L ar

Montrer que g est Lebesgue-intégrable sur [0, b] et que I'on a :

/Ob g(z)dx = /Ob f(t)dt.

Exercice 5. Soit un sous-ensemble fermé F' C R dont le complémentaire est de mesure finie :
m(R\F) < oo.
On note ¢(+) la fonction distance a F, définie par :
§(z) = dist(z, F) = inf{|z —y|: y € F},

et on introduit la fonction définie par une intégrale :

I(x) ::/]R o) dy.

|z —y[?

(a) Montrer que 0 est continue, et méme mieux, montrer que J satisfait la condition de 1-lipschitzianité :
0(x) = d(y)| < |z —yl.
(b) Montrer que I(x) = oo pour tout = ¢ F'.

(c) Montrer que I(x) < oo pour presque tout x € F'. Certes, cela peut paraitre surprenant, eu égard au fait
que la condition de Lipschitz ne ‘tue’ qu’une puissance de |z — y| dans I’intégrande de I(z) !
Indication: Etudier [}, I(z) da.
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Exercice 6. Comme en théorie de Riemann (généralisée), I’intégrabilité d’une fonction positive f sur R
n’implique nullement que f(x) tende vers 0 lorsque £ — oo.

(a) Montrer qu’il existe une fonction réelle continue strictement positive f définie sur R telle que f est
Lebesgue-intégrable sur R, bien que :

oo = limsup f(x).

Tr— 00

(b) Toutefois, quand f est supposée uniformément continue sur R et intégrable (au sens de Riemann ou de
Lebesgue), montrer que :

0= lim f(z).

z—00
Exercice 7. A une fonction mesurable f: R? — R, on associe son graphe :
{(z,y) e R x R: y = f(x)}.
Montrer que I est un sous-ensemble mesurable de R? x R, et que sa mesure est nulle :
m(T") = 0.

Exercice 8. Soit f: R — {—o00} UR U {oc} une fonction mesurable Lebesgue-intégrable. Montrer, pour
tout n > 1, que ’ensemble :

A, = f_l([m oo]),
est de mesure finie, et qu’il satisfait :
0= lim n-m(A4,).

n— oo

Exercice 9. Si f: R — R est une fonction Lebesgue-intégrable, montrer que la fonction définie par :

xT
F(z) = / f(t)dt
—o0
est uniformément continue.

Exercice 10. [Inégalité de Tchebychev] Soit f: R? — R, une fonction intégrable a valeurs positives.
Pour o > 0, on pose :

E, = {z eR% f(z)>a}.

Montrer que :
1

Exercice 11. Soit une fonction f: RY — R U {oco} mesurable a valeurs positives. Pour k > 1 entier, on
pose :

Eor = {xERd: f(z) >2k},
ainsi que :
Fy = {x eRY: 2% < f(x) < 2’”1}7

(a) Lorsque f prend presque partout des valeurs < oo, vérifier que :

U Fr = {f(z) >0},

k=—oc0
cette réunion étant disjointe.

(b) Montrer que f est Lebesgue-intégrable si et seulement si :

o

Z ka(Fk) < o0,

k=—o00

si et seulement si :
o0

Z 2km(E2k) < 00.

k=—o0
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(¢) On introduit les deux fonctions :

fa) = |x1|“ pour 0 < |z| <1,
0 autrement,
et:
o(z) = G pour |z| > 1,
0 autrement.

Déduire de (b) que f est Lebesgue-intégrable sur R? exactement lorsque a < d, et aussi, que g est Lebesgue-
intégrable sur R? exactement lorsque b > d.

1 1\n
lim / (cos f) dz.
n—oo Jq €T
Exercice 13. Si f: R — R est une fonction satisfaisant | i f(x)dx > 0 pour tout sous-ensemble mesu-
rable E C RY, montrer que f > 0 presque partout; avec | [ =0, montrer f = 0 p.p.

Exercice 12. Etudier :

Exercice 14. Montrer qu’il existe une fonction f € L'(R?) et une suite (f,,)>; de fonctions f,, € L'(R9)
telles que :

0= lim ||f_fn||L1(]Rd)7

n—oo

bien que f,, () ne tende vers f(z) pour aucun x € R%.
Indication: En dimension d = 1, choisir f,, = 17, , ou les I,, C R sont des intervalles appropriés dont les
mesures m([,) — 0 tendent vers zéro.

Exercice 15. Trouver deux ensembles mesurables A et B tels que A + B n’est pas mesurable.
Indication: Dans R, prendre A := {0} x [0,1] et B := .4 x {0}, ou A C [0, 1] est le sous-ensemble non
mesurable construit par Vitali.

Exercice 16. On se propose d’évaluer la mesure de la boule unité ouverte — ou fermée, cela reviendrait au
méme — de R :
Vg 1= m({x eRY: |z < 1})

(a) En dimension d = 2, montrer que :

1
v2:2/ V1-—2z2dzx,
1

puis en déduire que vy = 7.

(b) Montrer que :

d—1

1
Vg = 2’[}(171/ (1—$2)Td$

0
(¢) Avec la fonction I'(z) = [;° ¢*~! e~" dt d’Euler, obtenir le résultat :
Y

Y Fap T

Exercice 17. Soit f: R? — R une fonction intégrable. Pour un d-uplet quelconque § = (01, ...,64) €
(R*)¢ de nombres réels non nuls, on pose :

f‘s(a:) = f(élxl, PN ,5da:d).
Montrer que la fonction f? est intégrable et qu’elle satisfait :
1

5 —
y fo(x)dx = Br - 3a] e f(z)dx.
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Exercice 18. Soit la fonction définie sur R par :
1
— lorsque 0 <z < 1,
fla) = vV

0 ailleurs.

Soit une énumération (r,, )52 ; des nombres rationnels Q C R. On introduit la fonction définie par une série :

oo

F(z) = Z %f(a:—rn).

n=1

(a) Montrer que F' est Lebesgue-intégrable sur R.

(b) Montrer que la série qui définit F' converge presque partout vers une valeur finie.

(¢) Montrer que F' est non bornée sur tout intervalle d’intérieur non vide.

(d) Montrer que toute fonction égale a F' presque partout est non bornée dans tout intervalle d’intérieur non

vide.

Exercice 19. Soit (f,,)nez une suite paramétrée par Z de fonctions mesurables positives f,,: R — R..

f(Z#)- % [

n=—oo n=—oo

(a) Montrer que :

(b) Soit une fonction mesurable positive f: R — R, et soit sa 1-périodisation :
fla) =) fln+u),
nez

a valeurs dans Ry U {oo}. Montrer que :

/01 g(x)dx = /::) f(z)dz.

(c) Montrer que si f: R — R est mesurable intégrable, i.e. si fR f < oo, alors pour presque tout x € R,
ona:

0= lim f(n+z).

|n|—o0
(d) Toujours avec f > 0 intégrable, montrer qu’on n’a pas nécessairement :

0= lim f(t).

|t] =00
Indication: Penser & des gratte-ciels fuyant vers I’infini en s’amaigrissant.

(e) Soit E C R un sous-ensemble mesurable de mesure m(FE) < 1. Etablir le non-recouvrement :

U (n+E) 2 R

nez

Exercice 20. Soit (f,)52; une suite de fonctions mesurables intégrables R — R, U {oo} qui converge
ponctuellement presque partout vers une certaine fonction-limite :

foolz) := nIme fn(2).

Montrer que :

(nimoo/an(x)dx = /Rfoo(x)dx> = (OZn'L“lo/R |fn(x)—foo(a:)|dx>.

Indication: Introduire (foo — fn)+ = max (0, foo — fn)-



11. Exercices 51

Exercice 21. (a) Pour n > 0 entier, calculer fol z" log x dzx, et en déduire que :

o0

1
logx 1
dr = —.
/0 c 1 Z n?

n=1

(b) Pour n > 0 entier, calculer fol x2n (1 — ) dz, et en déduire la valeur de la série alternée :
n=1 n

(c) Montrer que la fonction R — R définie par la série :

(oo}

2n
Z 2n _ 9qn)2
= 1+3 (2 - 37)

est intégrable, et calculer la valeur de son intégrale.

Exercice 22. Soit f: R — R une fonction mesurable intégrable d’intégrale 0 < fR f (< o00),soita>0
un parametre réel, et soit la suite numérique (a,, )52, définie par :

a, = / n log (1 + (f(a:))a) dx (n>1),
R n
avec a, € Ry U {oo}.

(a) Lorsque 0 < a < 1, montrer, a 1’aide du théoréme de Fatou, que a,, — 0. Indication: Travailler sur

n— oo
Es:={x € R%: f(x) > d} pourund > 0 tel que m(Ejs) > 0.
(b) Lorsque @ = 1, montrer que a,, — fR f.
n—o0

(¢) Lorsque a > 1, montrer que a,, — 0. Indication: Etablir Iinégalité 1 +x* < (1+)® pour tout z > 0,

n—oo

log(14+2<)
x

et montrer que la fonction x — est bornée sur R .

Exercice 23. Etudier I’existence des trois limites suivantes, et les déterminer le cas échéant :

i / nsin () e
0

n—o00 €T (]_ + grz)
. Y pasing
lim ——dx (discuter selon o € R),
n—oo Jo 14+ n*zx®
) °° nx® arctan (nx)
lim ———dx (discuter selon o € R).
n—oo [y 1+na2

Exercice 24. [Exemple de fonction intégrable nulle part bornée] Soit (7)72; une énumération des
nombres rationnels Q C R, i.e. une bijection N* -~ Q. Avec :

1
p(r) = N 130,1(2),
on définit la suite (f,,)2°; de fonctions :
1
falz) = Z 27¢($ka) (n>1)
k=1

(a) Montrer que ¢ est intégrable sur R.

(b) Montrer que, en tout point x € R, la suite numérique ( fn(:v))zozl converge vers une valeur appartenant
aRy U {oo}. Onnote f(z) cette limite.

(¢) Montrer que f est intégrable sur R.

(d) Calculer [, f.

(e) Montrer que f(z) < oo pour presque tout 2 € R.

(f) Montrer que f est non-bornée sur tout intervalle ouvert non vide de R.

(g) Existe-t-il un ensemble mesurable de mesure strictement positive sur lequel f est bornée ?



