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Introduction.

Let M be a smooth generic submanifold of Cn. Several authors have studied the property of CR functions

on M to extend locally to manifolds with boundary attached to M and holomorphically to generic wedges

with edge M (cf. [14], [67], [68]). In a recent work ([69]), Tumanov has showed that CR-extendibility of CR

functions on M propagates along curves that run in complex tangential directions to M. His main result

appears as a natural generalization of results by Trépreau on propagation of singularities of CR functions

([61]). Indeed, Theorem 5.1 in [69] states that the direction of CR-extendibility moves parallelly with

respect to a certain differential geometric partial connection in a quotient bundle of the normal bundle to

M , and this variation is dual to the one introduced by Trépreau, according to Proposition 7.3 in [69].

In this paper we give a new and simplified presentation of the connection introduced in Tumanov’s

work. Let M be a real manifold and N a submanifold of M , K a subbundle of TM with the property that

K|N ⊂ TN . Then by means of the Lie bracket, we can define a K-partial connection on the normal bundle

of N in M (Proposition 1.1). In general, the parallel translation associated with that partial connection will

be induced by the flow of K-tangent sections of TM (Proposition 1.2). When M is a generic submanifold

of Cn containing a CR submanifold S with the same CR dimension we recover in section 2 the T cS-partial

connection constructed by Tumanov in [69].

Recall that the CR-orbit of a point z ∈ M is the set of points that can be reached by piecewise smooth

integral curves of complex tangent vector fields. We then say that M is globally minimal at a point z ∈ M

if the CR-orbit of z contains a neighborhood of z in M . Using previous results, we show that vector space

generated by the directions of CR-extendibility of CR functions on M exchanges by the induced composed

flow between two points in a same CR-orbit (Lemma 3.5). As an application, we prove the main result of

this paper, conjectured by Trépreau in [61] : for wedge extendibility of CR functions to hold at every point

in the CR-orbit of z ∈ M it is sufficient that M be globally minimal at z (Theorem 3.4). Up till now we

can only conjecture the converse (for a local result, see [6]).
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I wish to thank J.-M. Trépreau for helpful critical and simplifying remarks.

Remark : After this paper was completed, we have received a preprint by B. Jöricke Deformation

of CR-manifolds, minimal points and CR-manifolds with the microlocal analytic extension property, which

contains also a proof of Theorem 3.4 and Theorem 3.6. Our proof seems quite different since we obtain

these results relying on Tumanov’s propagation theorems, the generic manifold M being fixed, whereas B.

Jöricke works with conic perturbations of the base manifold so as to produce minimal points.

§1. Partial connections associated with a system of vector fields.

Let M be a real differentiable manifold of class C2 of dimension n and H → M a r-dimensional vector

bundle over M . Recall that a connection ∇ on the bundle H → M is a bilinear mapping which assigns to

each pair of a vector field X with domain U and a section η of H over U a section ∇Xη of H over U and

satisfy

∇φX = φ∇X , ∇X(φη) = φ∇Xη + (Xφ)η, φ ∈ C1(M,R).

When the covariant derivative ∇Xη can only be defined for vectors X that belong to a subbundle K of

TM , we call the connection ∇ a K-partial connection (cf. [69]).

If N is a submanifold of M , let TNM be the normal bundle of N in M, i.e.

TNM = TM |N/TN.

Proposition 1.1. Let M be a real manifold of class C2, N ⊂ M a submanifold of class C2 too and let K be

a C1 subbundle of TM with the property that K|N ⊂ TN . Then there exists a natural K-partial connection

∇ on the bundle TNM which is defined as follows. If x ∈ N ,X ∈ K[x] and η is a local section of TNM

over a neighborhood of x, then take

∇Xη = [X̃, Ỹ ](x) mod TxN

where X̃ is a C1 local section of K extending X and Ỹ is a lifting of η in TM in a neighborhood of x.

Proof. We first check that the definition is independent of the lifting Ỹ . In fact, when Ỹ is tangent

to N , as X̃ is tangent to N too, the Lie bracket [X̃, Ỹ ] remains tangent to N hence is zero in the quotient

bundle.

Next we have to check that the definition of ∇ is independent of the chosen section X̃ or, to rephrase,

that if X̃(x) = 0 then [X̃, Ỹ ](x) belongs to TxN . Since K is a fiber bundle we can write

X̃ =
r∑

j=1

fjX̃j fj(0) = 0 j = 1, ..., r

where r = rank K, (X̃j)j=1,...,r
is a frame for K near x and the fj are C1 real valued functions defined

near x. Noting that

[fX̃, Ỹ ] ≡ f [X̃, Ỹ ] − (Ỹ f)X̃ ≡ f [X̃, Ỹ ] mod TN

the result follows and the mapping ∇ is well-defined. Moreover the preceding implies that if φ ∈ C1(M,R)

∇φXη ≡ φ∇Xη.

Last, we check that ∇X is a derivation. Indeed

∇X(φη) ≡ [X̃, φỸ ](x) ≡ (X̃.φ)Ỹ + φ[X̃, Ỹ ] ≡ (Xφ)η + φ∇Xη
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and the proof is complete.

With the connection ∇ it is associated the parallel translation of fibers of TNM along smooth curves on

the base N that run in directions tangent to K. Let I ∋ t be a subinterval of R and γ : I → N be a smooth

curve with the property that γ̇(t) ∈ K[γ(t)], where γ̇ = d
dt

γ(t). A curve η(t) ∈ TNM [γ(t)] is a horizontal

lift of γ if ∇γ̇η = 0. Existence and uniqueness of horizontal lifts provide linear isomorphisms

Φt0,t : TNM [γ(t0)] → TNM [γ(t)]

obtained by moving elements of K along horizontal lifts of γ.

Recall (cf. [58]) that the Lie bracket [X̃, Ỹ ] is defined as the Lie derivative LX̃ Ỹ of Ỹ with respect to X̃

[X̃, Ỹ ](x) = LX̃ Ỹ = lim
h→0

[Ỹ (x) − dX̃−h(Ỹ (X̃h(x)))]

where X̃t is the local flow on M generated in a neighborhood of x by the vector field X̃, and dX̃t denotes

its differential. In the assumptions of Proposition 1.1, X̃ is of class C1 so the mapping x → X̃t(x) is of

class C1 and the differential is a well-defined continuous mapping. When X̃ is K-tangent its flow (and

more generally any piecewise smooth composition of such flows) stabilizes the tangent bundle TN of the

manifold N , hence its differential induces isomorphisms of fibers of TNM , which we denote by dXt. Assume

moreover that the curve γ is an integral curve of a C1 K-tangent vector field X̃, (which cannot be true for

most general smooth curves γ but is sufficient enough for the applications) : γ(0) = x and γ(t) = X̃t(x).

Then we claim that the mapping

dXt : TNM [x] → TNM [γ(t)]

provides the parallel translation Φ0,t. Indeed let η0 ∈ TNM [x] and take η(t) = dXt(η0). Then by the

definition of the partial connection ∇ and the definition of the Lie bracket we have

∇γ̇η(t) ≡ 0.

By uniqueness of solutions of linear differential equations of order one it must be that

η(t) = Φ0,t(η0).

Proposition 1.2. Under the hypotheses of Proposition 1.1, let γ(t) = Xt(x1) be a smooth (piecewise

smooth) integral curve of a K-tangent vector field X (a finite number of K-tangent vector fields) running

from x1 ∈ N to x2 ∈ N . Then the parallel translation along γ associated with the K-partial connection ∇

is induced by the differential of the flow of X (composed flow).

In order to give an expression of the covariant derivatives induced by the partial connection ∇, we

choose coordinates on M , x = (x′, x′′) ∈ Rl × Rm such that the base point corresponds to x = 0 and the

submanifold N is defined by the equation x′′ = 0. Let (x, η) = (x′, x′′, η′, η′′) be the canonical coordinates

on TM , and (x′, η′′) ∈ Rl × Rm the associated coordinates on TNM .

If X =
∑l+m

j=1 aj(x) ∂
∂xj

is a C1 section of K, it must be tangent to N, so aj(x
′, 0) = 0, j = l+1, ..., l+m.

We choose a local section η of TNM over a neighborhood of 0 in N , in fact a section Ỹ of TM of the form

Ỹ =

l+m∑

j=l+1

ηj(x
′)

∂

∂xj

,
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Recalling Proposition 1.1 we have the following expression for the covariant derivative of η in the direction

of X

∇Xη =

l+m∑

j=l+1

l∑

k=1

ak(x′, 0)
∂ηj

∂xk

(x′)
∂

∂xj

−

l+m∑

j,k=l+1

ηk(x′)
∂aj

∂xk

(x′, 0)
∂

∂xj

.

Given an integral curve γ(t) = (γ′(t), 0) of the field X , the equations for the horizontal lifts look like

X.ηj = η̇j(t) =

k=l+m∑

k=l+1

∂aj

∂xk

(γ′(t), 0)ηk(t) j = l + 1, ..., l + m

so the curve (γ′(t), η′′(t)) is the integral curve of the following vector field X̌ on TNM

X̌(x′, η′′) =

l∑

j=1

aj(x
′, 0)

∂

∂xj

+

l+m∑

j,k=l+1

∂aj

∂xk

(x′, 0)ηk(x′)
∂

∂ηj

.

Alternately, the partial connection ∇ can be defined by the family of horizontal subspaces H(η) ⊂ Tη(TNM)

generated by vectors of the form X̌.

Let us consider the dual connection ∇∗ to the connection ∇ on the dual bundle T ∗

NM . Recall that the

conormal bundle of N in M , T ∗

NM , consists of forms in T ∗M that vanish on TN . It has fiber over a point

x ∈ N

T ∗

NM [x] = {φ ∈ T ∗

xM ; φ|TxN = 0}.

The dual connection ∇∗ is defined by the following relation : if X is a K-tangent vector to N at x, η is any

section of TNM near x and φ is any section of T ∗

NM

X < φ, η > = < ∇∗

Xφ, η > + < φ,∇Xη > .

It is easily checked that such a relation defines a K-partial connection on T ∗

NM .

Along with the coordinates on TNM we introduced before we can introduce the canonical coordinates

(x′, ξ′′) on the conormal bundle T ∗

NM . These are dual to the coordinates (x′, η′′) for the canonical duality

<, > between TNM and T ∗

NM :

<
l+m∑

j=l+1

ξjdxj ,
l+m∑

j=l+1

ηj

∂

∂xj

> =
l+m∑

j=l+1

ξjηj .

Using the previous definition of the dual connection we can then compute the covariant derivative of a

section
∑

ξjdxj = φ of T ∗

NM . One easily shows

∇∗

Xφ =
l+m∑

j=l+1

(X.ξj +
l+m∑

k=l+1

ξk

∂ak

∂xj

) dxj .

Hence, under the assumption of Proposition 1.2, the parallel translation associated with the connection ∇∗

is given by means of the integral curves of the following vector field on T ∗

NM

X̂ =

l∑

j=1

aj(x
′, 0)

∂

∂xj

−

l+m∑

j,k=l+1

∂aj

∂xk

(x′, 0)ξj

∂

∂ξk

.

There is another way of thinking the connection ∇∗ dual to the partial connection ∇ which has been

considered by Trépreau in [61].
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To a general vector field X on M it is associated its symbol σ(X) which is an invariantly defined function

on the cotangent bundle T ∗M of M . To a function f of class C1 on T ∗M it is associated its hamiltonian

field Hf .

Let Xj , j = 1, ..., r be a local basis of K-tangent sections of TM . Let ΣK be the orthogonal complement

of K in T ∗M . If X =
∑r

j=1 φjXj is a C1 section of K we have

Hσ(X)|ΣK
=

r∑

j=1

φjHσ(Xj)|ΣK
+

r∑

j=1

σ(Xj)Hφj
|ΣK

.

Since σ(Xj), j = 1, ..., r is zero on ΣK , we deduce that the restricted hamiltonian field

Hσ(X)|ΣK
=

r∑

j=1

φjHσ(Xj)|ΣK

depends only on the value of X at the base point and not on the chosen section. If X is tangent to N ,

Hσ(X) when restricted to T ∗

NM is tangent to T ∗

NM . Hence we have constructed another vector field on

T ∗

NM which is in fact the same as the one associated with the connection dual to the partial connection ∇.

Indeed, let as before (x′, ξ′′) be the canonical coordinates on the conormal bundle T ∗

NM . Recall that

the hamiltonian field of a function f = f(x, ξ) just looks like

Hf =

j,k=l+1∑

j,k=1

∂f

∂ξk

∂

∂xj

−
∂f

∂xj

∂

∂ξk

.

The symbol of the section

X =
l+m∑

j=1

aj

∂

∂xj

aj(x
′, 0) = 0, j = l + 1, ..., l + m

of K being σ(X) =
∑

ajξj we can compute

Hσ(X)|T∗

N
M =

l∑

j=1

aj(x
′, 0)

∂

∂xj

−

l+m∑

j,k=l+1

∂aj

∂xk

(x′, 0)ξj

∂

∂ξk

and the last expression proves that Hσ(X) is the same vector field on T ∗

NM as X̂ computed previously, so

the set of restricted hamiltonian fields Hσ(X)|T∗

N
M defines the same family of horizontal subspaces for the

partial connection ∇∗.

The next section is devoted to the application of the preceding results to the geometry of CR submani-

folds of Cn.

§2. Application to generic submanifolds of Cn

In this section we apply results of section 1 in the context of differential geometry in the complex

euclidean space Cn. Afterwards we check that our definitions recover those of Trépreau [61] and Tumanov

[62].

Let TCn be the real tangent bundle of Cn and J be the standard complex structure operator on

TCn. Let T ∗Cn be the bundle of holomorphic (C-linear) 1-forms on Cn. In the canonical coordinates

z = (z1, ..., zn) its fiber over a point z consists of (1,0)-forms ω =
∑n

j=1 ζjdzj , ζj ∈ C, j = 1, ..., n. Then

5



T ∗Cn is a complex manifold. It can be (and it is usually) identified with the real dual bundle of TCn

introducing the real duality defined by

(ω, X) ∈ T ∗Cn × TCn (ω, X) 7−→ Im < ω, X > .

In other words we identify real and holomorphic forms by Im ω ↔ ω.

Now, let M be a real submanifold of Cn. In this identification, the conormal bundle T ∗

MCn is a subbundle

of T ∗Cn and it has fiber spaces

T ∗

MCn[z] = {ω ∈ T ∗Cn; Im ω |TzM = 0 }.

Hence the bundles TMCn = TCn|M/TM and T ∗

MCn are in duality by

(ω, X mod TM) 7−→ Im < ω, X > .

Assume moreover that M is generic (that is TM + JTM = TCn|M ) and let ΣM be the orthogonal

complement of the complex tangent bundle T cM in the cotangent bundle T ∗M . In the terminology of linear

partial differential equations it is the characteristic set (and since T cM is a fiber bundle, the characteristic

manifold) of the system of CR vector fields. It is easily checked that ΣM and TM/T cM are in duality in

the same way.

Since M is CR, ΣM is a fiber bundle and there is a canonical bundle epimorphism

θ : T ∗

MCn → ΣM ,

defined by θ(ω) = ı∗Mω where ıM : M → Cn is the natural injection. Since M is generic, θ is an

isomorphism.

On the other hand the complex structure J induces an isomorphism, still denoted by J

J : TM/T cM → TMCn.

Lemma 2.1. θ is the transposed of J, i.e.

(ω, JX) = (θ(ω), X)

for every ω, X .

(Indeed < ω, JX >= i < ω, X >).

From now on we let S ⊂ M be a CR submanifold of M with the property that CRdim S = CRdim M .

Equivalently it is required that T cS = T cM |S. By restriction analogous pairs of bundles remain isomorphic

when TM/T cM is replaced by TSM , ΣM is replaced by T ∗

SM , TMCn is replaced by TCn|S / (TM |S +

JTS) = E, and T ∗

MCn is replaced by T ∗

MCn ∩ iT ∗

NCn = E∗, but now T cS-partial connections can be

defined by means of the isomorphisms J and θ on the two new bundles E and E∗. Note that the duplication

essentialy deals with complex differential geometry.

First, the results of the previous section apply with K = T cM = TM ∩ JTM and N = S and produce

a T cS-partial connection ∇ on TSM together with the dual connection ∇∗ on T ∗

SM . On the other hand,

the push forward by J of ∇ defines a T cS-partial connection Θ on E ; its action on a section ϑ of E in the

direction of a complex tangent vector X is simply

ΘXϑ := J ∇X (J−1 ϑ).

6



Similarly, the pull-back of the T cS-partial connection ∇∗ by θ defines a T cS-partial connection Θ∗ on

E∗, and Θ∗ is the connection dual to Θ since θ is the transposed of J (lemma 2.1).

Recall from section 1 that if X is a section of T cM then X̂ = Hσ(X)|T∗

S
M is tangent to T ∗

SM . In [61],

Trépreau showed that E∗ is a CR manifold, using a lemma which states that given such a vector field X̂

tangent to T ∗

SM with horizontal part X complex tangent to M , there exists a unique vector field X̃ complex

tangent to E∗ with the same horizontal part X . Moreover Trépreau states that

X̂ = dθ(X̃)

Hence we deduce that the T cS-partial connection Θ∗ = θ∗∇∗ can alternately be given, as is originally

done in [61], by means of the vector fields of the form X̃, i.e. horizontal subspaces of Θ∗ are spanned by

tangent vectors to integral curves of X̃ . We then have checked that the parallel translation in E∗ introduced

by Trépreau with the assumption of Proposition 1.2 is the same as the one associated with the T cS-partial

connection Θ∗ previously defined starting, as in section 1, with the partial connection associated with the

bundle of complex tangents to M , K = T cM . Moreover, since X̃ is complex tangent to E∗, we see that

T cE∗ is the set of horizontal subspaces for the T cS-partial connection Θ∗ . This has been noticed in [69]

and will be usefull in the next section when proving Theorem 3.4.

§3. Orbits and the extension of CR functions.

In this section, it is assumed that M is a generic submanifold of Cn of smoothness class C2, and we

let X be the set of C1 sections over open subsets of M of T cM . If z ∈ M , the subset of M consisting of

points of M which can be reached by piecewise C1-smooth integral curves of elements of X, starting at z,

is called the CR-orbit of z, and is denoted by O [z].

If U is an open subset of M, X|U denotes the set of elements of X restricted to U . It is well-known (cf.

[59], [6], [61]) that

−→
lim

U

O(X|U , ‡)

where U runs over the open neighborhoods of z in M defines the germ at z of the unique CR-submanifold

of M with the same CR dimension as M of minimal dimension passing through z, which is called the local

CR-orbit of z and is denoted by Oloc [z]. When considering Oloc [z] in the following we shall mean such

a submanifold of a neighborhood of z in M , i.e. an actual representative of the germ. It plays the crucial

role in the study of automatic extendibility of CR functions (cf. Theorem 3.1 below).

Recall that a smooth complex-valued function on M is called a CR function if it is annihilated by every

antiholomorphic tangent vector field on M . A continuous function can be thought CR in the sense of

distribution theory. We denote by CR(M) the set of all continous CR functions on M .

For completeness we recall definitions from [61] and [69]. We say that a manifold M̃ with boundary is

attached to M at (m,u), m ∈ M , u 6= 0, u ∈ TMCn[m] if bM̃ ∩ U = M ∩ U for some neighborhood U of m,

and u is represented by a vector u1 ∈ TmM̃ directed inside M̃ .

Let f be a CR function on M ; we say that f is CR-extendible at (m, u) if it extends continuously to

be CR on some M̃ attached to M at (m, u). When there is a CR submanifold S of M through m and a

manifold M̃ attached to M at (m, u), u ∈ TMCn[m], we also say that M̃ is attached to M at (m, η), if

u represents η ∈ Em, η 6= 0 (E is the bundle defined in section 2). Similarly it makes sense to consider

CR-extendibility at (m, η), m ∈ S, η ∈ Em. But it should be noted that given η 6= 0 in Em does not

determine M̃ unambiguously unless S is complex

7



From now on we will require that M belong to the class C(k,α), k ≥ 2, 0 < α < 1. This regularity

assumption can be justified since it behaves well when proving the strongest local results on CR-extendibility

(In fact, it behaves well through the so-called Bishop equation, [68], Theorem 1.), and constructing wedges

with ribs and an egde having such a regularity (cf. [4]). Moreover, we need manifolds of class at least C2

in order to apply Proposition 1.1. Since it will be of use in the proof of Theorem 3.4 we recall the following

theorem due to Tumanov ([68])

Theorem 3.1. (A. E. Tumanov) Let M be a generic submanifold of Cn, n = p + q, with dim M =

2p + q, CRdim M = p, and of smoothness class Ck,α (k ≥ 2), 0 < α < 1. For every point z ∈ M there exist

r = r(z) = dim Oloc
[z] − 2 CRdimM manifolds with boundary M̃1, ..., M̃r attached to M at z, of class C(k,β)

whenever 0 < β < α such that

(a) Every CR function on M is CR-extendible to M̃1, ..., M̃r

(b)
∑r

j=1 Tz′M̃j = Tz′M + JTz′Oloc
[z] z’ close to z in Oloc

[z] .

Moreover the manifold germ Oloc
[z] is of class C(k,β) whenever 0 < β < α.

Note that Oloc
[z] is at least of class C2 so it can play the role of N in Propositions 1 and 2. Using the

connections constructed in section 2 we can reinterpret the main result on propagation of analyticity for

CR functions recently proved by Tumanov.

According to Tumanov ([69], Proposition 7.3), the connection dual to the one that is constructed during

the paper has the property that its horizontal subspaces are exactly fibers of the complex tangent bundle

T cE∗, hence, concludes Tumanov, the induced parallel translation need be the same as the one introduced

on E∗ by Trépreau. We have shown in section 2 that our connection Θ has as a dual connection a connection

Θ∗ with the same property; so Θ = J∗∇ coincides with the connection constructed by Tumanov.

Proposition 1.2 together with Theorem 5.1 in [69] leads to

Theorem 3.2. Let M ⊂ Cn be a generic manifold and S ⊂ M a CR submanifold of M with the property

that CRdim S = CRdim M. Let γ be a piecewise smooth integral curve of T cM running from z′ ∈ S to

z′′ ∈ S and let Φγ be the associated composed flow. Then for every ǫ > 0, every η′ ∈ Ez′ and every manifold

M̃ ′ attached to M at (z′, η′), there exists another manifold M̃ ′ attached to M at (z′′, η′′), η′′ ∈ Ez′′ such

that

(a) |η′′ − JdΦγ(z).J−1η′| < ǫ

(b) if a CR function on M extends to be CR on M̃ ′ it extends to be CR on M̃ ′′

(c) if M, M̃ ′ belong to Ck,α (k ≥ 2), 0 < γ < α < 1 then there exists such a M̃ ′′ ∈ C(k,γ).

Theorem 3.2 shows that the so-called propagation of analyticity for CR functions is intrinsically related

to the geometry of the base manifold M. Moreover, it fundamentally means that the study of extendibility

for CR functions is closely related to the study of sections of the complex tangent space to M .

Following Sussmann ([59]), we begin with some adapted terminology and recalls. Let X ∈ X be a local

section of T cM . The C1 integral curves t → γ(t) of X generate local diffeomorphisms of M where they

are defined (the so-called flow of X) which we will denote by z → Xtz. Composites of several maps of the

form Xt can produce local diffeomorphisms of neighborhoods of points that are far from each other in a

same CR-orbit. If X = (X1, ..., Xm) is an element of Xm such that for t = (t1, ..., tm) ∈ Rm, the map

z → Xm,tm
· · ·X1,t1z is well defined in a neighborhood of z, we will still denote it for convenience by Xt or

Φ (cf. Proposition 1.2).

Let ∆X be the distribution spanned by X, i.e. the mapping which to z ∈ M assigns the linear hull of

vectors X(z) where X belongs to X : it is just the distribution associated with the complex tangent bundle

of M . We let PX denote the smallest distribution which contains ∆X and is invariant under complex-flow
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diffeomorphisms, or for short the smallest X-invariant distribution which contains ∆X. Precisely, PX(z) is

the linear hull of vectors of the form dXt(v) where v ∈ ∆X(z′) and z = Xtz
′. A C1 distribution P on M

has the maximal integral manifold property if for every z ∈ M there exists a submanifold S of M such that

z ∈ S and for every z′ ∈ S, Tz′S = P (z′). Moreover, S is said to be a maximal integral manifold of P if S

is an integral manifold of P such that every connected integral manifold of P which intersects S is an open

submanifold of S.

Then the results of Sussmann, which extend to the C2 case tell us that O [z] is a (connected) maximal

integral submanifold of PX (perharps with a finer topology) and admits a unique differentiable structure

making the injection i : O [z] → M an immersion of class C1.

We now introduce the following definitions.

Definition 3.3. Let M be a generic submanifold of Cn and z ∈ M . M is called minimal at z if Oloc [z]

contains a neighborhood of z in M . It is called globally minimal at z if O [z] contains a neighborhood of z.

In view of the global results of Sussmann definition 3.3 means that the generic manifold M is globally

minimal at a point z if and only if there exist a finite number of points z
′

l , l = 1, ..., d in the CR-orbit of z

and composed flow diffeomorphisms Φ
′

l, l = 1, ..., d of a neighborhood of z
′

l in M on a neighborhood of z

in M respectively such that

TzM =
d∑

l=1

dΦl(z
′

l). (T c

z
′

l

M).

We are now able to prove the theorem conjectured by Trépreau in [61] which is the natural generalization

of a celebrated theorem of Tumanov ([67]). Here is the substance of this paper.

Theorem 3.4. Let M be a generic submanifold of Cn of smoothness class C(k,α), k ≥ 2, 0 < α < 1

which is globally minimal at a point z ∈ M . Then for every z’ in the CR-orbit of z there exists a wedge W

of edge M at z’ such that

(∗) every CR function on M extends holomorphically into W .

Proof. We shall make use of the following abuse of langage : we will say that a CR-function u is

CR-extendible in the direction v ∈ TM/T cM [z] if it is in fact CR-extendible in the direction of Jv. Let us

consider the set

Hz = V ect {v ∈ TzM/T c
z M ; u is CR − extendible at (z, v) }

and its preimage under the natural surjection π : TM → TM/T cM

Ĥz = π−1 (Hz) ⊂ TzM.

Lemma 3.5. Let X be a C1 section of T cM over a neighborhood of z ∈ M and let Φt be the flow of X

and Φ = Φt for some t. Then, if v ∈ TzM ,

v ∈ Ĥz ⇐⇒ dΦ(z).v ∈ ĤΦ(z).

Proof. Since the statement is a symetric and a transitive one we can assume that z and z′ are so close

that z′ := Φ(z) is contained in a CR submanifold S of M with CRdimS = CRdimM which is minimal at z

(for instance take for S the local CR-orbit of z) and such that z′ belongs to the boundary of the manifolds

whose existence comes from Theorem 3.1. Hence

(∗) Ĥz′ ⊃ Tz′S.
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So if v belongs to TzS there is nothing to add. On the other hand, if ξ = prTSMv 6= 0 we apply the

propagation result Theorem 3.2 and obtain that for every ǫ > 0 u is CR-extendible at (z′, ξ′′), where ξ′′ is

ǫ-close in euclidean norm to ξ′ = dΦ(x).ξ ; so letting ǫ decrease to zero, since every finite-dimensional vector

space is closed, we have ξ′ ∈ prTSM (Hz′). Because of (∗) the indetermination on the specific representative

of ξ′ is removed whence

dΦ(z).v ∈ Ĥz′

and the lemma is proved.

end of proof of theorem 3.4. The global lemma 3.5 and the condition of global minimality implie

immediately that

Ĥz′ = Tz′M

for every z′ in the (global) CR-orbit of z. The conclusion follows by the edge-of-the-wedge theorem and the

proof is complete.

Theorem 4.1 admits an obvious generalization which involves the concept of Wr-wedges. Recall that a

Wr-wedge at z with edge M is locally the general intersection of a wedge of edge M at z and a generic

manifold containing M as a submanifold of codimension r.

Theorem 3.6. Let M be a generic submanifold of Cn of smoothness class C(k,α), k ≥ 2, 0 < α < 1,

and let r = dimO [z] −2CRdim M . Then for every z’ in the CR-orbit of z, every γ with 0 < γ < α, there

exists a Wr-wedge W of edge M at z’ and of smoothness class Ck,γ such that

(∗) every CR function on M extends to be CR on W .

Moreover, the tangent space to W at z′ spans Tz′M + JTz′ O [z].

Proof. The same argument runs in proving that Ĥz′ contains Tz′M + JTz′ O [z] and the conclusion

then follows by the edge-of-the wedge theorem of Ayrapetyan ([4]), in the classes C(k,α), k ≥ 2, 0 < α < 1 .
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