Orsay 2013-2014

Contrôle n°3 du 8 avril 2014

Durée 1 heure 30

La qualité de la rédaction interviendra dans l'appréciation de la copie. Les documents, calculatrices et téléphones portables sont interdits.

Exercice 1 - On considère les deux sous-espaces vectoriels de \mathbb{R}^4 :

$$E = \{ \overrightarrow{v} = (x, y, z, t) \in \mathbb{R}^4, \ x + y + t = 0 \} \text{ et } F = \{ \overrightarrow{v} = (x, y, z, t) \in \mathbb{R}^4, \ y + z = 0 = x - 2t \}.$$

- 1. Déterminer la dimension et une base de E et F.
- **2.** Déterminer la dimension de $E \cap F$.
- **3.** Que vaut $\dim(E+F)$? Les espaces E et F sont-ils supplémentaires?
- **4.** Donner une base de \mathbb{R}^4 constituée de vecteurs de E et F.

Exercice 2 - Pour a réel donné, on considère la matrice $A = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & -2 \\ 2 & -1 & a \end{pmatrix}$. On note

 $f: X \mapsto AX$ l'application linéaire associée.

- 1. Déterminer, en fonction de a, le rang de f et une base de l'image de f. Pour quelles valeurs de a, l'application f est-elle surjective?
- **2.** Pour quels a l'application f est-elle injective? Donner une base de ker f si cet espace n'est pas nul.
- **3.** Pour quels a la matrice A est-elle inversible?
- **4.** Soit $X_0 = (x_0, y_0, z_0)$ un vecteur donné de \mathbb{R}^3 . Résoudre l'équation $AX = AX_0$ en fonction de a.

Exercice 3 - On considère la matrice $A = \begin{pmatrix} 1 & -2 & -3 \\ 2 & -4 & -6 \\ -1 & 2 & 3 \end{pmatrix}$ et l'application linéaire f:

 $X \mapsto AX$ associée.

- 1. Déterminer le rang de A et une base de l'image de A.
- **2.** Montrer que Im $A \subset \ker A$.
- **3.** Que peut-on en déduire pour $f \circ f$?

Exercice 4 - Dans \mathbb{R}^2 , on considère les deux vecteurs $\overrightarrow{v_1} = (1,1)$ et $\overrightarrow{v_2} = (1,2)$.

1. Vérifier que $B = (\overrightarrow{v_1}, \overrightarrow{v_2})$ est une base de \mathbb{R}^2 et déterminer les coordonnées de $\overrightarrow{e_1} = (1, 0)$ et $\overrightarrow{e_2} = (0, 1)$ dans la base B.

Soit s l'unique application linéaire $\mathbb{R}^2 \to \mathbb{R}^2$ telle que $s(\overrightarrow{v_1}) = \overrightarrow{v_1}$ et $s(\overrightarrow{v_2}) = -\overrightarrow{v_2}$.

- **2.** Quelle est la matrice M de s dans la base B?
- **3.** Calculer à l'aide de 1 les vecteurs $s(\overrightarrow{e_1})$ et $s(\overrightarrow{e_2})$. En déduire la matrice N de s dans la base canonique.