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Abstract. We relate a recently introduced non-local invariant of compact strictly pseu-
doconvex Cauchy-Riemann (CR) manifolds of dimension 3 to various η-invariants: on the
one hand a renormalized η-invariant appearing when considering a sequence of metrics
converging to the CR structure by expanding the size of the Reeb field; on the other hand
the η-invariant of the middle degree operator of the contact complex. We then provide
explicit computations for transverse circle invariant CR structures on Seifert manifolds.
This yields obstructions to filling a CR manifold by complex hyperbolic, Kähler-Einstein,
or Einstein manifolds.

Résumé. Nous relions un nouvel invariant non local des variétés Cauchy-Riemann (CR)
strictement pseudoconvexes et compactes de dimension 3 à d’autres invariants de type
η en géométrie CR : d’une part celui obtenu en considérant une suite de métriques rie-
manniennes adaptées à la structure CR et en faisant tendre vers l’infini la longueur du
champ de Reeb, d’autre part l’invariant η de l’opérateur apparaissant en degré moitié dans
le complexe de contact. Nous les calculons ensuite sur les variétés de Seifert admettant
une structure CR invariante par l’action transverse d’un cercle. Les résultats fournissent
des obstructions au remplissage d’une variété CR par une variété hyperbolique complexe,
Kähler-Einstein ou d’Einstein.
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1. Introduction

In [11] the first two authors of this paper introduced a new invariant, called the ν-
invariant, of strictly pseudoconvex Cauchy-Riemann (CR) compact 3-manifolds. This in-
variant was obtained by taking the limit of the η-invariants of an adequately defined (but
quite complicated) sequence of Riemannian metrics approximating the CR structure, af-
ter cancellation of the possibly diverging terms by adding well-chosen local contributions.
We claimed in [11] that this invariant may have an analogous role in CR geometry of as
the η-invariant has in conformal geometry. However, its rather abstract definition makes
it difficult to compute explicit expressions for it or to get a further understanding of its
properties. The goal of this paper is then to provide links between ν and other natural
η-invariants in CR geometry.

In a first step, we introduce a renormalized η-invariant that takes into account the fact
that CR geometry can be seen as a limit of a sequence of conformal structures that diverges
outside the contact distribution. If a compatible contact form θ is fixed on the CR manifold
M , one considers the family of metrics

(1) hε = ε−1θ2 + γ,

where γ = dθ(·, J ·) and J is the underlying complex structure on the contact distribution.
When ε goes to 0 the metrics hε blow up except in the contact distribution, and therefore
the metric geometry of hε converges to the Carnot-Carathéodory metric associated to the
CR structure and the contact form (this is one of the main motivation for considering
this kind of sequences). A natural object one can consider is the constant term η0 in an
asymptotic expansion for (η(hε)) in powers of ε, when ε goes to 0. This always exists, as we
shall see, and we shall call it the renormalized η-invariant of the pseudohermitian manifold
(M, θ, J). This invariant is of course much more easily studied than the ν-invariant, because
it is built from the sequence (1) of metrics that is much simpler than the one used to build
ν in [11]. Note however that it is a pseudohermitian invariant, i.e. it depends on the choice
of θ and J , contrarily to ν which depends only on the choice of the contact distribution H
(and of course on J).

In the other direction, i.e. when ε goes to ∞, one can also obtain another natural
invariant in case the Tanaka-Webster torsion of (M, θ) vanishes, that is when the action of
the Reeb vector field is isometric. In this case, η(hε) converges and its limit ηad is the so
called adiabatic limit. It has attracted much attention in the past few years, see [12, 23]
for instance. We shall call the reverse process of taking a limit when ε goes to 0 a diabatic
limit. When torsion vanishes, it turns out that the diabatic η0 equals the adiabatic ηad.

Our first result shows that the difference between the CR invariant ν and the pseudoher-
mitian η0 is an integral of a local contribution involving the square of the Tanaka-Webster
curvature.
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1.1. Theorem. For any compact strictly pseudoconvex Cauchy-Riemann 3-manifold M ,
and any choice θ of contact form, one has

(2) ν(M) = − 3 η0(M, θ) +
1

16π2

∫
M

R2θ ∧ dθ ,

where R is the Tanaka-Webster curvature of (M, θ).

This yields a new definition of the ν-invariant, see Remark 4.2, together with some
explicit computations: they can be done on manifolds on which η0 is computable. We are
then able to apply this to transverse S1-invariant CR structures on Seifert manifolds. The
CR manifolds we are interested in come with a locally free action of S1 that is transverse to
the contact distribution, and preserves both the contact and the complex structures. We
shall call them Cauchy-Riemann-Seifert manifolds (in short CR Seifert). We refer to [31]
for more information on the more general class of S1-invariant CR structures. CR Seifert
manifolds can be efficiently described as orbifold S1-bundles over 2-dimensional orbifolds.
At each orbifold point on the base, the orbifold bundle data consists of the following: if
the local fundamental group is Z/αZ (α ∈ N∗), a generator acts on a local chart around
p on the basis manifold as ei

2π
α and on the fiber as ei

2πβ
α with β prime to α. The orbifold

S1-bundles are topologically classified by their degrees (first Chern numbers), which are
in this case rational numbers. One then endows the manifold with an invariant strictly
pseudoconvex CR structure as follows: the underlying contact structure is provided by an
equivariant connection 1-form on the bundle, whereas the complex structure is induced
from the basis (orbifold) Riemann surface; the strict pseudoconvexity condition constrains
the degrees d of these S1-bundles to be negative.

Building on computations done by Ouyang [41] and Komuro [33], we get the following:

1.2. Theorem. Let M be a compact strictly pseudoconvex CR Seifert 3-manifold, of degree
d over the orbifold surface Σ, and with S1-action generated by the Reeb field of a contact
form θ. If R is the Tanaka-Webster curvature of (M, θ), then

(3) ν(M) = −d− 3− 12

p∑
j=1

s(αj, 1, βj) +
1

8π

∫
Σ

R2dθ ,

where s(α, ρ, β) is the Rademacher-Dedekind sum 1
4α

α−1∑
k=1

cot
(
kρπ
α

)
cot
(
kβπ
α

)
.

The Tanaka-Webster curvature R of such an (M, θ) actually coincides with Riemannian
curvature of the base Σ, if it is endowed with the metric γ = dθ(·, J ·). When this curvature
is constant, (3) specializes into the following interesting formula, which shows that the ν-
invariant is a topological invariant in this case:
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1.3. Corollary. Let M be a CR Seifert manifold as above, with constant Tanaka-Webster
curvature. Let χ be the rational Euler characteristic of Σ. Then,

(4) ν(M) = −d− 3− χ2

4d
− 12

p∑
j=1

s(αj, 1, βj) .

Similar formulas in the case of a smooth circle bundle over a smooth Riemann surface
have been computed by Burns-Epstein for their µ-invariant [14]. The µ-invariant also is a
CR invariant, but it is only defined on compact 3-dimensional strictly pseudoconvex CR
manifolds whose holomorphic tangent bundle’s first Chern class is a torsion element in
homology with integer coefficients. In some sense, our ν-invariant appears as the general
Atiyah-Patodi-Singer invariant for 3-dimensional CR geometry that reduces to the Chern-
Simons invariant µ in the case some characteristic tangent bundle is trivial (up to a finite
covering).

However, Theorem 1.1 is not entirely satisfactory, as it provides a link between the CR
invariant ν and the diabatic invariant η0; one would instead prefer a relationship between ν
and invariants defined directly in terms of the CR or pseudohermitian geometry. One such
object is the contact-de Rham complex [46], and especially the η-invariant of the middle
degree operator appearing there.

The relevant operator (denoted by D∗ henceforth) is the analogue in this setting of
the boundary operator for the signature ±(d ∗ − ∗ d) that gives rise to the η-invariant
on 3-dimensional Riemannian manifolds. It is known that the spectrum of the operator
D∗ appears in the rescaled limit of the collapsing spectrum of Pε = ±(d ∗ε − ∗ε d) for
the metrics hε of (1), when performing the diabatic limit [47]. However, this limit is not
uniform enough to yield a direct relation between the η-invariants. In this paper, we prove
a general relation between ν and η(D∗) in the special case provided by our CR Seifert
manifolds. In effect, we show that η(D∗) and ν differ only by a simple local term in the
Tanaka-Webster curvature of any chosen pseudohermitian structure. Our second main set
of results then reads:

1.4. Theorem. Let M be a compact strictly pseudoconvex CR Seifert 3-manifold, with S1-
action generated by the Reeb field of an S1-invariant contact form θ. If R is the Tanaka-
Webster curvature of (M, θ) and D is the middle operator of the contact complex, then

(5) η0(M, θ) = η(D∗) +
1

512

∫
M

R2θ ∧ dθ.

1.5. Corollary. Let M be a CR Seifert 3-manifold as above, then for the S1-invariant
contact form θ one has:

(6) ν(M) = − 3 η(D∗) +

(
1

16π2
− 3

512

) ∫
M

R2 θ ∧ dθ .
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The philosophy underlying our results is indeed the following: whereas ν is easily related
to η0, η(D∗) compares itself more easily with η0 rather than to ν. This somehow “explains”
the quite strange combination of constants appearing in front of the curvature term in (6)
in Theorem 1.5: it is a sum of diabatic contribution stemming from Theorem 1.1 and a
purely spectral term linking η(D∗) and η0, as will be apparent from Section 7.

For general CR manifolds, we expect that when we take the diabatic limit ε → 0, the
collapsing spectrum of Pε gives the contribution η(D∗) in the limit, while the remaining
part of the spectrum, after renormalization, gives only an integral of local terms. This
leads to the following conjecture.

1.6. Conjecture. There exists a constant C such that, for any compact strictly pseudo-
convex Cauchy-Riemann 3-manifold M and any choice θ of contact form, one has

(7) ν(M) = − 3 η(D∗) +

(
1

16π2
− 3

512

) ∫
M

R2θ ∧ dθ + C

∫
M

|τ |2 θ ∧ dθ ,

with R and τ the Tanaka-Webster curvature and torsion of (M, θ).

As a first indication for the conjecture, we shall give in Theorem 9.4 an abstract argument
that shows that there exists a CR invariant of the form η(D∗) + C1

∫
R2 + C2

∫
|τ |2.

Unfortunately, we are unable to calculate the constants completely, see Remark 9.6.
It is known that the η-invariant of the boundary operator for signature is conformally

invariant. If the conjecture is true, then this is no more the case for η(D∗), which is a
priori an invariant of the pseudohermitian structure only: it depends on the choice of a
metric in the conformal class adapted to the CR structure. (Note that formula (6) alone
is not enough to conclude that η(D∗) is not a CR invariant, since it is a priori true only
for a specific choice of contact form on CR Seifert manifold.)

A third goal of this paper is to provide some geometric applications on CR Seifert
manifolds, mainly with constant curvature. They are spherical (locally isomorphic to the
standard CR sphere S3), hence are the boundary at infinity of a complex hyperbolic metric
defined in a neighbourhood (0, ε)×M of M (in the case of the 3-sphere we can of course
extend the metric globally to get the Bergman metric on the 4-ball). From [11, Theorem
1.2] and Theorem 1.3, we get the following obstruction for this neighbourhood to have a
global extension to a smooth complex hyperbolic surface (with only one end):

1.7. Corollary. If a CR Seifert manifold M3 is the boundary at infinity of a complex
hyperbolic metric defined on the interior of a smooth compact manifold N4 with boundary
M , then one has necessarily ν(M) = −χ(N) + 3τ(N), where χ(N) and τ(N) denote the
Euler characteristic and signature of N . In particular, ν(M), as provided by the formula
(3), is an integer.

This is a topological constraint on a filling, which we can restate in the smooth case (no
orbifold singularities):
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1.8. Corollary. Let M be a S1-bundle of degree d over a Riemann surface Σ of Euler
characteristic χ, with a S1-invariant spherical CR structure. If χ2

4d
is not an integer then

M is not the boundary at infinity of a complex hyperbolic metric.

The case d = χ
2
yields an integer, and indeed, if Σ is hyperbolic, N can be taken to be

the disk bundle of a square root of the tangent bundle of Σ, which is well known to carry
a complex hyperbolic metric issued from a representation of π1(Σ) in SU(1, 1) ⊂ SU(1, 2).
Our obstruction then gives an interesting hint on whether a spherical CR Seifert 3-manifold
may appear as the quotient of the complement of the limit set in the 3-sphere of some
discrete fixed point-free subgroup of SU(1, 2) [1]. Similar results were proved by Burns-
Epstein with their µ-invariant [15]; since both invariants, although sharing some properties,
are truly different, it turns out that our results are more precise and forbid existence of a
complex hyperbolic filling in cases that are not obstructed by Burns-Epstein’s µ-invariant.
A detailed study of this point is done in Section 10 below.

More generally, the calculation in Theorem 1.2 gives an obstruction for M to be the
boundary at infinity of a Kähler-Einstein or Einstein metric. The manifolds considered
in this paper are known to bound a complex Stein space with at most a finite number
of singular points [27] and one may wish to endow it with a Kähler-Einstein metric as
in Cheng-Yau [20]. The type of metric to be considered has the same kind of asymptotic
expansion near the boundaryM as the Bergman metric [10]; we called them “asymptotically
complex hyperbolic” (ACH) in [11]. If no singular points are present and if the Cheng-Yau
metric exists, one gets from the Miyaoka-Yau inequality proved in [45] the following:

1.9. Corollary. Let M be as in Theorem 1.2. If M is the boundary at infinity of an ACH
Einstein metric on N , such that a Kronheimer-Mrowka invariant of (N,M) is non-zero
(in particular, if M is the boundary at infinity of a Kähler-Einstein metric on N), then

χ(N)− 3τ(N) > −ν(M) = d+ 3 + 12

p∑
j=1

s(αj, 1, βj)−
1

8π

∫
Σ

R2 dθ .

For more information on Stein fillings, see [38, 52]. The Kronheimer-Mrowka invariants
are Seiberg-Witten type invariants defined for a compact 4-manifold with contact bound-
ary; in particular, they do not vanish if N carries a symplectic form compatible with the
contact structure on the boundary, and this implies the Miyaoka-Yau inequality [45]. This
inequality can of course be obtained directly for Kähler-Einstein metrics.

The paper is organized as follows. After recalling the definition of the ν-invariant in
Section 2, we define the renormalized η-invariant η0 and compare it to ν in Sections 3 and
4. The proof relies on relatively simple considerations on η-invariants and Chern-Simons
theory, that prove that the difference between ν + 3 η0 is necessarily of the expected form:
an integral term in the square of the curvature and the squared norm of the torsion. The
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constants in front of these local terms are then computed by considering sufficiently many
examples: left invariant structures on the 3-sphere.

The reader will then find in Section 5 the explicit computations of ν on CR Seifert
manifolds.

Taking one step further, Sections 6 to 8 lead to the relation between η0 and η(D∗) in
the case of transverse S1-invariant CR structures. The proof of Theorem 1.5 relies on an
explicit study of the spectra of theD∗ operator and the boundary operator for the signature
±(dε ∗ − ∗ dε) on closed 2-forms for the sequence of Riemannian metrics hε that performs
the diabatic limit in (1). This can be done only for S1-invariant structures and index theory
shows once again that a relation of the expected type must exist. One then has again to
evaluate the constant in front of the integral term by looking at explicit computations of
both η(D∗) and ν on the standard sphere.

The existence of a CR invariant of the form η(D∗) + C1

∫
R2 + C2

∫
|τ |2 is considered

in Section 9. We also present a proof of the existence of η(D∗) on any compact strictly
pseudoconvex CR manifold of dimension 3, a fact certainly known to specialists but whose
proof seems to have never been published so far.

The paper ends with a short Section 10 devoted to the proof of the corollaries and to
some generalizations, and also to a comparison with the results one can get in the Kähler-
Einstein case using the µ-invariant of Burns and Epstein [14].

2. The ν-invariant

Cauchy-Riemann and pseudohermitian geometry. Let M be a 3-dimensional com-
pact strictly pseudoconvex CR manifold, i.e. a compact manifold M endowed with a
complex structure J defined on a contact distribution H in TM . A pseudohermitian
structure on M consists in the additional choice of a contact form θ. It induces a metric
γ = dθ(·, J ·) on H. The CR structure is said to be strictly pseudoconvex if this metric is
definite (positive or negative) for some choice of contact form (and, hence, any choice). The
choice of a pseudo-hermitian structure also induces a splitting of both TM and T ∗M by
means of the Reeb vector field T defined by θ(T ) = 1 and ιTdθ = 0. The Tanaka-Webster
connection is then defined by working in a local coframe (θ, θ1, θ1̄) such that dθ = iθ1 ∧ θ1̄:
the connection form is a purely imaginary 1-form ω1

1, and the torsion τ 1 is a (0, 1)-form
such that

dθ1 = θ1 ∧ ω1
1 + θ ∧ τ 1,

and the curvature R is defined by

dω1
1 = −iR dθ + (τ 1̄

,1̄ − τ
1
,1) ∧ θ.

In more invariant terms, it is the only metric and complex compatible connection ∇ on H
such that the torsion τ = T∇(T, ·)|H anticommutes with J .
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Fillings of 3-dimensional CR manifolds. The ν-invariant was first defined in [11]
by considering Einstein asymptotically complex hyperbolic (ACHE, in short) fillings of 3-
dimensional strictly pseudoconvex compact CR manifolds. We now review the necessary
elements for this definition.

Given a pseudohermitian manifold (M, θ), we first consider the product space N =

R+ ×M . One can then define a metric g0 on N by

(8) g0 = dr2 + h0(r), with h0(r) = e2r θ2 + er γ.

To understand properly what is done here, one must think of the initial M as a boundary
of N at infinity (i.e. when r goes to infinity); when conformally changing θ into θ′ = fθ,
one gets a metric g′0 = (dr′)2 + e2r′ f 2θ2 + er

′
fγ, and the difference g′0 − g0 goes to zero at

infinity after the coordinate change r = r′ + log f . Therefore the asymptotic behaviour of
the metric g0 depends only on the CR structure. We note moreover that

h0(r) = er (er θ2 + γ) = ε−1hε,

where hε is the metric introduced in equation (1), with ε = e−r.
We can now also extend J , initially defined on M , to an almost complex structure J0

on the whole N . Indeed, Catlin [18] showed that a strictly pseudoconvex CR structure
always determines the infinite jet of a complex structure of N along M . One can perform
this explicitly as follows: first define

J0∂r = e−r T,

where T is the Reeb field associated to θ. A (formal) integrable complex structure on N
can then be deduced as a series in powers of e−r step by step by requiring the Nijenhuis
tensor to vanish at all orders. More precisely, one finds an infinite series J(r) = J0 +

J1 e−r +J2 e−2r + · · · on N , whose coefficients are given in terms of the covariant derivatives
of Tanaka-Webster curvature R and torsion τ of the pseudohermitian manifold (M, θ). The
first terms are

J(r) = J0 − 2 e−r τ + e−2r(2|τ |2 − J0∇T τ) + · · · .

This construction is in fact independent of the choice of the pseudohermitian structure:
following classical ideas in complex analysis, it is easily shown that conformally changing
the contact form on the boundary leads to an equivalent complex structure in the inside
which is related to the original one by a diffeomorphism continuously extending as the
identity on the boundary, see [11, proposition 3.5] for details.

This data can be complemented by that of a (formal) Kähler-Einstein metric on N whose
dominant term is given by the metric g0 described above: as explained in [11, Section 2],
g0 is an asymptotically Kähler metric, and its curvature is asymptotic when r goes to +∞
to the curvature of the complex hyperbolic plane with holomorphic sectional curvature −1.
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It is then asymptotically Einstein, in the sense that

Ric(g0) +
3

2
g0 = O(e−r).

One can now add higher order corrections (in powers of e−r) to g0 to get a uniquely defined
jet of a Kähler-Einstein metric gKE up to order e−2r (relatively to g0), when r tends to
infinity. This development is again expressed with the covariant derivatives of Tanaka-
Webster curvature R and torsion τ of the pseudohermitian manifold (M, θ), and has been
calculated in [11, Theorem 3.3 and Corollary 3.4]: given some choice of coframe θ1 ∈ Ω1,0H,
the expression of its Kähler form ω is

ω = er(dr ∧ θ + dθ)− R

2
dθ

+
4

3

( i
8
R,1̄ϑ

0 ∧ θ1̄ − i

8
R,1ϑ

0̄ ∧ θ1 − 1

2
τ 1

1̄,1ϑ
0 ∧ θ1̄ − 1

2
τ 1̄

1,1̄ϑ
0̄ ∧ θ1

)
− ∆HR

2
e−r dθ − 2

3

(R2

8
− |τ |2 − ∆HR

6
+

2i

3
(τ 1

1̄,11 − τ
1̄
1,1̄1̄)

)
e−r dr ∧ θ

+
2

3

(R2

8
− |τ |2 − ∆HR

12
− i

3
(τ 1

1̄,11 − τ
1̄
1,1̄1̄)

)
e−r dθ + o(e−2r),

(9)

where {
ϑ0 = e−r dr + iθ,

ϑ1 = θ1 + i e−r τ 1 + · · ·
is a coframe of Ω1,0N associated to J(r).

We will denote by gKE the metric on N given by this second order jet of Kähler metric:
gKE = ω(·, J(r)·). Its development may be pursued further (at least up to order 3), but it
is explained in [11] why terms in ω (resp. gKE) of order strictly higher than 2 are irrelevant
in all that concerns the ν-invariant to be defined below. Roughly speaking, the ν-invariant
will be defined by taking a limit of Riemannian invariants associated with gKE when r goes
to infinity, and it is shown in [11] that any extra term in gKE that is o(e−2r) contributes
to 0 in the limit.

We now observe that gKE has an universal polynomial expression in the powers of er,
with coefficients that are tensorial in the covariant derivatives of R and τ . By construction
the leading term of gKE is g0 as given in (8), and the family of metrics h(r) induced on

Mr = {r} ×M 'M

is asymptotic to h0(r) in (8). Finally, an important point here is that, although we have
chosen a contact form to write down the formulas for gKE, actually it does depend only
on the CR structure, not on the pseudohermitian structure. This is because the filling
complex structure on N depends only on J , as does the zeroth order term of g0, and the
finite development of the Kähler-Einstein metric that we need is uniquely determined by
requiring it to be Kähler-Einstein, see [11, Theorem 3.6].
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Definition of the ν-invariant. According to [11], the ν-invariant is obtained by taking
the limit as r goes to infinity (i.e. by taking the diabatic limit) of the boundary contribution
on Mr of the Atiyah-Patodi-Singer formula for the characteristic number χ−3τ of [r0, r]×
M ⊂ N , with respect to the metric gKE. More precisely, recall that the Euler characteristic
and signature formulas for a closed Riemannian manifold with boundary (Y, h) are given
by

χ(Y ) =

∫
Y

Pχ(h) +

∫
∂Y

Bχ(h), τ(Y ) =

∫
Y

Pτ (h) +

∫
∂Y

Bτ (h) + η(h∂Y ),

where Pχ(h), Pτ (h) Bχ(h), Bτ (h) are universal polynomial expressions in the curvature of
h (and second fundamental form of the boundary for Bχ and Bτ ), and η(h∂Y ) is the η-
invariant of the boundary operator for the signature S = (−1)p(∗d−d∗) on Ω2p∂Y with the
metric h restricted to ∂Y (see [2]). The explicit expressions of the universal polynomials
involved in the above formulas, taken from [11, Section 7, p. 86–88], are given as follows:
we denote R, W , Ric0, and Scal, the Riemann, Weyl, tracefree Ricci, and scalar curvatures
of h, and I = ∇hn the second fundamental form of ∂Y (n being its outer unit normal). For
1-forms α and α′, a 2-form β, and a 3-tensor F in ⊗3T ∗M , we let

α ∧ α′ (X, Y ) = α(X)α′(Y )− α′(X)α(Y ) ,

α ∧ β (X, Y, Z) = α(X) β(Y, Z) + α(Y ) β(Z,X) + α(Z) β(X, Y ) ,

S(F )(X, Y, Z) = F (X, Y, Z) + F (Y, Z,X) + F (Z,X, Y ) ;

if µ and ν are forms with values in bundles E and F , µ ∧ ν is the obviously defined form
with values in E ⊗ F ; last, if ρ is a 3-form and X1, X2, X3 are three vectors, we define (a
definition that immediately extends to any 3-form with values in ⊗3TM):

T (ρ⊗X1 ⊗X2 ⊗X3) = dvol∂Y (X1, X2, X3) ρ.

The desired formulas for the Euler characteristic and signature then read:

Pχ(h) =
1

8π2

(
|W |2 − 1

2
|Ric0 |2 +

1

24
Scal2

)
Bχ(h) =

1

12π2
(T (I ∧ I ∧ I) + 3 T (I ∧R))

Pτ (h) =
1

12π2

(
|W+|2 − |W−|2

)
Bτ (h) =

1

12π2
(S(I(., R(., .)n))

where the second fundamental form and the curvature must be seen as a 1- or 2-form
with values in vectors or 2-vectors in the second line, and the second form as a quadratic
form and the curvature as a 2-form with values in endomorphisms in the last line. For
simplicity’s sake, we shall now denote, in the setting adapted to 3-dimensional strictly
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pseudoconvex CR manifolds described above,

B(gKE,Mr) =

∫
Mr

Bχ(h(r)) − 3

∫
Mr

Bτ (h(r)) .

Note however that we will not need the precise form of B(gKE,Mr) in this paper, and
will only use the fact that it is tensorially constructed from the curvature of gKE and the
second fundamental form of Mr in N .

2.1. Definition. The ν-invariant of M is

ν(M) = lim
r→+∞

ν(r) = lim
r→+∞

B(gKE,Mr)− 3 η(h(r)) .

It is shown in [11, Section 7] that this limit always exists for any 3-dimensional strictly
pseudoconvex compact CR manifold M , and actually gives rise to a CR invariant of M
(independent of the choice of the contact form θ).

3. The renormalized η-invariant

From its very definition, the invariant ν is a renormalisation of η-invariants of a jet h(r)

of the very natural Kähler metric gKE restricted to slices of large radii Mr. However, these
metrics are quite intricate (as formula (9) obviously shows), and ν itself is given by a limit
of some complicated expressions built from these metrics. For these reasons we would like
to describe how ν is related to the η-invariants of the much simpler contact-rescaling family
of metrics of formula (1):

hε = ε−1θ2 + γ.

This can be done by relying onto the following simple observation: although η is a priori
not locally computable from the metric, its variation is. Indeed from the Atiyah-Patodi-
Singer formula [2] and Chern-Simons’ theory [22] one has

(10) η(hε1)− η(hε0) =
1

3

∫
M

Tp1(∇ε1 ,∇ε0),

where Tp1(∇ε1 ,∇ε0) is the Chern-Simons’ transgression form of the first Pontrjagin class
relative to the Levi-Civita connections of the product metrics

g̃ε = dr2 + hε on N = R×M.

If ∇ε1 = ∇ε0 + α and Ωt is the curvature 2-form of ∇ε0 + tα, then

(11) Tp1(∇ε1 ,∇ε0) = 2

∫ 1

0

P1(α,Ωt)dt = − 1

4π2

∫ 1

0

Tr(α ∧ Ωt)dt.

Calculating the integral gives the usual formula

(12) η(hε1)− η(hε0) = − 1

24π2

∫ 1

0

Tr
(
2Ω0 ∧ α + d∇ε0α ∧ α +

2

3
α ∧ α ∧ α

)
.
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This leads quickly to the following lemma.

3.1. Lemma. Let (M3, J, θ) be a strictly pseudoconvex pseudohermitian manifold, with
metric γ = dθ(·, J ·) on the contact distribution. Then the η-invariants of the family of
metrics hε = ε−1θ2 + γ have a decomposition in homogeneous terms:

(13) η(hε) =
2∑

i=−2

ηi(M, θ)εi.

The terms ηi for i 6= 0 are integral of local pseudohermitian invariants of (M, θ), and the
ηi for i > 0 vanish when the torsion vanishes.

Proof. Denote by ∇ the Tanaka-Webster connection, with τ being the torsion seen as a
trace-free symmetric endomorphism of H = ker θ, τ 1 (resp. τ 1̄) being its expression as a
(0, 1)-form (resp (1, 0)-form) relative to a choice of complex coframe θ1. One computes
easily the difference a = ∇ε − ∇ (see the formulas in [46, page 316]), and the result is a
decomposition into homogeneous terms of degrees −1, 0 and 1:

(14) ∇ε −∇ = a =
1∑
−1

a(i)εi,

where each a(i) is locally defined by the pseudohermitian structure: a(0) and a(−1) are
horizontal, but a(1) is vertical, more precisely, for horizontal X, Y ∈ H one has

a
(1)
X Y = −γ(τ(X), Y )T,

a
(0)
X T = τ(X),

a
(−1)
T Y =

1

2
JY.

The output is the following decomposition for the curvature

Ω(∇ε) = Ω(∇) + d∇a+ a ∧ a(15)

=
1∑
−1

Ω(i)εi.(16)

Indeed, the terms Ω(±2) = a(±1) ∧ a(±1) clearly vanish. Moreover,

Ω(1) = da(1) + a(1) ∧ a(0) + a(0) ∧ a(1)

vanishes when the torsion vanishes. The existence of a decomposition in terms of powers
of ε now follows from (12). From equation (11) one has

ε
d

dε
η(hε) = − 1

12π2

∫
M

Tr(Ω ∧ εda
dε

) =
∑
−26i62
i 6=0

i ηi ε
i
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where the ηi (i 6= 0) are local pseudohermitian invariants. When the torsion vanishes, a(1)

and Ω(1) vanish, so that ηi vanishes for each i > 0. �

From the conformal invariance of the η-invariant, one deduces moreover immediately
that, for a real number λ > 0,

(17) ηi(M,λθ) = λ−i ηi(M, θ).

so that η0(M, θ) is scale (but not conformally) invariant.

3.2. Definition. Let (M3, θ) be a compact strictly pseudoconvex pseudohermitian 3-
dimensional manifold. The renormalized η-invariant of (M, θ) is the constant term η0(M, θ)

in the expansion (13) for the η-invariants of the family of metrics hε = ε−1θ2 + dθ(·, J ·).

In the case where the torsion of (M, θ) vanishes, the terms ηi(M, θ) in (13) for i > 0

vanish, so that, when ε goes to infinity instead of 0, one has

(18) η0(M, θ) = lim
ε→∞

η(hε) := ηad.

This corresponds to the geometric situation when the Reeb flow preserves the metric. Then,
when ε → ∞, the family of metrics hε collapses with bounded connection and curvature.
This is the well-known adiabatic limit, and η0(M, θ) is then the adiabatic limit ηad of the η-
invariant. It has been much studied, in particular in the geometrically meaningful situation
when the Riemannian flow comes from some fibration in circles over a surface [12, 23]. The
renormalized η-invariant depends on the choice of θ (as well, of course, on that of J).

However, we are more interested in this paper in the opposite direction: the diabatic
limit, or equivalently the case where ε goes to 0. Although we will not need its precise
expression, making the calculations in the proof of lemma 3.1 explicit shows the term
η−2(M, θ) never vanishes on contact manifolds, and is a non-zero multiple of

∫
M
θ ∧ dθ.

Therefore η(hε) always diverges at speed ε−2 in the diabatic limit, but the constant term
η0(M, θ) is still well-defined. We called it the renormalized η-invariant, as it is reminiscent
of other similar contexts where renormalized invariants have been defined [26, 28, 42, 49].

4. The relation between ν and η0

Our goal now is to prove Theorem 1.1, i.e. to show that on any CR manifold the
ν-invariant is related to η0 in a simple way.

4.1. Lemma. There exist two constants C1 and C2 such that for any CR strictly pseudo-
convex pseudohermitian manifold (M3, J, θ), one has

(19) ν(M) + 3 η0(M, θ) = C1

∫
M

R2 θ ∧ dθ + C2

∫
M

|τ |2 θ ∧ dθ,
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where η0(M, θ) is the renormalized η-invariant of (M, θ), and R, τ are the Tanaka-Webster
curvature and torsion of M .

One can therefore look at −ν(M)/3 as a local CR-conformal invariant correction of
η0(M, θ) (recall that η0(M, θ) is a priori only invariant under the rescaling θ → λθ for λ
constant).

Proof. The metrics gKE and h(r) = gKE|{r}×M issued from (9) are quite complicated, but
are corrections of the model metrics g0 and h0(r) defined in (8). More precisely, their
expressions are universal polynomials in er and pseudohermitian invariant of (M, θ), and
they do not actually depend on the choice of framing (except θ) and the constants in
front of each such term are universal, i.e. independent of the manifold. Therefore, using
a transgression formula as in (10) and (11), but between h(r) and h0(r), we see that
η(h(r))− η(h0(r)) has to be an invariant universal expression of type

(20)
n∑

k=−n

ekr
∫
M

Pk(R, τ,∇R,∇τ, . . .).

From Lemma 3.1, and the fact that the metric h0(r) is ε−1hε with ε = e−r, the same holds
true for η(h(r))− η0(M, θ).

Moreover, the boundary contribution B(gKE,Mr) arising in definition 2.1 of ν is the in-
tegral of a secondary class built from the curvature of gKE and has therefore a development
of the same type as (20). The expression

ν(r) + 3 η0(M, θ) = B(gKE,Mr)− 3 (η(h(r))− η0(M, θ))

has then a development of the same kind. Note that this expression is void of terms in
ekr for k > 0 since we already know from definition 2.1 and [11] that it converges when
r goes to infinity. As a result, the local boundary contribution necessarily cancels all
divergent terms, and adds (still local) convergent terms. Identifying the constant terms we
get eventually:

ν(M) + 3η0(M, θ) =

∫
M

Pθ(R, τ,∇R,∇τ, . . .) θ ∧ dθ

where Pθ is some pseudohermitian local tensorial invariant. The invariance under the
rescaling θ → λ2θ shows that the polynomial Pθ must satisfy

Pλ2θ = λ−4Pθ.

The list of all possible expressions is easily established. Indeed, elementary invariant theory
yields that such U(1)-invariant polynomials have to be sums of full contractions. Curvature
R and torsion τ (here we see the torsion τ as a tensor of type τ = A11θ

1 ⊗ θ1 using some
coframe θ1 of T 1,0H) are homogeneous of weight −2 with respect to the previous rescaling,
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while a covariant differentiation along T decreases the weight by 2, and an horizontal one
by 1. Following Proposition 5.13 in [51], we find that Pθ is a combination of

(21)
R2 , |τ |2 = |A11|2 , R,0 = dR(T ) , ∆HR ,

(∇0,1)2 τ = A11,1̄1̄ , (∇1,0)2 τ̄ = A1̄1̄,11

where∇ is the Tanaka-Webster connection and∇1,0, resp. ∇0,1, is its restriction to horizon-
tal vectors of type (1, 0), resp. (0, 1). Full divergences do not contribute after integration
over M , so that one may forget the last four expressions, and the proof of Lemma 4.1 is
over. �

Computation of the constants. We are left with the determination of C1 and C2 in
Lemma 4.1. This shall come from an explicit study of left-invariant CR structures on the
3-dimensional sphere.

Choose a basis (α1, α2, α3) of left-invariant 1-forms on the sphere S3, such that dα1 =

α2 ∧ α3, etc. The η-invariant of the left-invariant metric λ2
1α

2
1 + λ2

2α
2
2 + λ2

3α
2
3 has been

computed1 by Hitchin [29, formula (10)]:

(22) η(λ2
1α

2
1 + λ2

2α
2
2 + λ2

3α
2
3) =

2

3

(
s3

1 − 4s1s2

s3

+ 9

)
where the si are the symmetric polynomials in the λ2

i . As a result, we get

η(α2
1 + λ2

2α
2
2 + λ2

3α
2
3)

=
2

3λ2
2λ

2
3

(
λ6

3 − (1 + λ2
2)λ4

3 − (λ4
2 − 3λ2

2 + 1)λ2
3 + (λ6

2 − λ4
2 − λ2

2 + 1)
)

and taking the constant term in the diabatic limit λ3 →∞ (i.e. taking θ = α3) leads to

(23) η0(S3, α2
1 + λ2α2

2) =
2

3λ2
(−λ4 + 3λ2 − 1).

On the other hand, the ν-invariant can be estimated from the µ-invariant introduced by
Burns and Epstein for embeddable CR structures, or more generally CR manifolds with
trivial holomorphic part of the contact bundle [14]: for the contact form θ = α3 and a
metric γ = λ−1(α1)2 + λ(α2)2, µ is calculated in [14, 4.1.A]. Since

(24) R =
1 + λ2

2λ
, |τ | = 1− λ2

2λ
,

one has

µ(λ−1α2
1 + λα2

2) = − 1

16π2

∫
S3

(4|τ |2 −R2)θ ∧ dθ = −1 +
3(1− λ2)2

4λ2
.

1There is a slight mistake in [29] by a factor 2, as can be seen by comparing the results in [29] for
the standard sphere to those of Theorem 5.2 below: one must find η0(S3, std) = 2

3 as computed by the
equation (23), rather than 4

3 as computed by [29].
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It is proved in [11] that, for a deformation of the standard CR 3-sphere, one has ν = 3µ+2,
and therefore

(25) ν(λ−1α2
1 + λα2

2) = −1 +
9(1− λ2)2

4λ2
.

From equations (23), (24), and (25), we deduce

(ν + 3η0)(λ−1α2
1 + λα2

2) =
(1 + λ2)2

4λ2
=

1

16π2

∫
S3

R2 θ ∧ dθ .

This yields 16π2C1 = 1 and C2 = 0 and the proof of Theorem 1.1 is done. �

4.2. Remark. From Theorem 1.1, we see that

−3 η0 +
1

16π2

∫
M

R2θ ∧ dθ

is a CR invariant. This fact can be proved directly: standard calculations in pseudohermi-
tian geometry lead easily to the conclusion that it is invariant under conformal transfor-
mations θ → fθ.

This remark provides an alternative (and independent) definition of the ν-invariant. The
latest is clearly simpler than the one explained in Section 2: this is useful for computations
and theoretical aspects, in particular the relation with the η-invariant of the pseudoher-
mitian operator D∗ on vertical 2-forms, as we shall see in the following sections. On the
other hand, very important for the applications is the fact that ν arises as a boundary
term in the integral of characteristic classes (see for example Corollary 1.9), and this can
be obtained only through the first definition and the work done in [11].

One may also think that this remark could serve as a basis for defining a version of ν in
higher dimensions, by looking for local corrections of η0 that would lead to a CR invariant.
However, this seems a very difficult task, as the range of possible terms of the right weight
is in general much larger than in (21), even in the next relevant dimension 7.

5. Computation of the ν-invariant on Seifert manifolds

This section is devoted to explicit computations of the ν-invariant on S1-invariant CR
manifolds of dimension 3. Although certainly a digression from our main route towards
Theorems 1.4 and 1.5, this appears as a nice direct application of the results obtained in
the previous section. We have thus chosen to interrupt the pace of our proofs, and to offer
this section as a refreshing intermezzo before the analytical technicalities that will follow.

We first describe our family of spherical 3-dimensional compact strictly pseudoconvex
CR manifolds in greater detail.
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5.1.Definition. A CR Seifert manifold is a 3-dimensional compact manifold endowed with
both a pseudoconvex CR structure (H, J) and a Seifert structure, that are compatible in
the following sense: the circle action ϕ : S1 → Diff(M) preserves the CR structure and is
generated by a Reeb field T .

Any S1-invariant CR structure admits a S1-invariant contact form θ if the manifold
is orientable (this is proved in [31]). Moreover it is easily proved that existence of a
Reeb field T (defined by θ(T ) = 1 and ιTdθ = 0) satisfying ϕ∗( ddt) = T and LT θ = 0,
LTJ = 0, is equivalent to the existence of a locally free action of S1 whose (never vanishing)
infinitesimal generator preserves H and J and is transverse everywhere to H. Hence,
our CR Seifert manifolds could also be called transverse S1-invariant CR manifolds ; note
moreover that there exists a much larger class of S1-invariant CR manifolds, with the
infinitesimal generator being sometimes tangent to the contact distribution [31, 39].

As we do not assume the action to be free but only locally free, the quotient space
Σ = M/S1 is a surface with possibly conical singularities. Each CR Seifert manifold is
then an orbifold bundle over the compact Riemannian orbifold surface Σ. If Σ is such
a surface, endowed with a complex structure, orbifold S1-bundles are classified by their
(rational) degrees d. Singularities of the bundle are located above the singularities of Σ in
such a way that the resulting 3-manifold is smooth: if the local fundamental group is Z/αZ
(α ∈ N∗), a generator acts on a local chart around p of the basis manifold as ei

2ρπ
α and on

the fiber as ei
2πβ
α with ρ and β prime to α (the extra parameter ρ may seem pointless as it

is always possible to reduce oneself to two parameters by taking ρ′ = 1 and β′ = βρ−1 mod.
α, but this extended description will prove useful when specializing our computations to
the case of lens spaces in Section 10). Any choice of equivariant connection 1-form θ on
M endows it with an invariant CR structure, H being chosen as the horizontal space for
the connection and J being pulled back from the base. It is strictly pseudoconvex if d < 0.
The interested reader is referred to [40] for a very readable account on orbifold bundles
over orbifold surfaces. Note moreover that, taking the length of the fiber to be 2π, one has∫

M

θ ∧ dθ = −4π2d,

and that the metric γ = dθ(·, J ·) projects downwards to a metric on Σ of volume∫
Σ

dθ = −2πd,

(see [40] again for integration of forms over orbifolds). Its curvature R equals the Tanaka-
Webster curvature of (M, θ) and Gauss-Bonnet reads∫

Σ

Rdθ = 2π χ,

where χ is the (rational) Euler characteristic of Σ.
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Computations in constant curvature. In the first half of this section, we moreover
assume that γ has constant curvature R. In this case, the CR structure is spherical, that
is M is locally isomorphic to the standard 3-sphere. Conversely, it is known that spherical
CR Seifert manifolds are exactly those of constant Tanaka-Webster curvature R, except if
the base is a sphere, see for instance [7].

The computations now rely on the explicit derivation of the η-invariant of (orbifold)
circle bundles over (orbifold) Riemannian surfaces with constant curvature that have been
done by Komuro [33] and more generally by Ouyang [41]. In our conventions and notations,
their results read:

5.2. Theorem (Ouyang). The η-invariant of the metric t2 θ2 + γ on M is equal to

1

3

(
d+ 3 + 2d

(
πt2

V
χ− π2t4

V 2
d2

))
+ 4

p∑
j=1

s(αj, ρj, γj),

where s(α, ρ, γ) = 1
4α

∑α−1
k=1 cot(kρπ

α
) cot(kβπ

α
) is the classical Rademacher-Dedekind sum.

We can now proceed to the computation of ν in the constant curvature case. We have
to show Corollary 1.3, which we restate here:

5.3. Corollary. Let M be a compact S1-orbifold bundle of rational degree d < 0 over
a compact orbifold surface Σ of constant curvature and rational Euler characteristic χ.
Then,

(26) ν(M) = −d− 3− χ2

4d
− 12

p∑
j=1

s(αj, ρj, βj).

Let us remark that the ν-invariant depends only on the topology for this class of CR
manifolds, and not, for instance, on the complex structure of Σ. This is a priori known,
since the gradient of ν is the Cartan curvature [11, Theorem 8.1], which vanishes for
spherical CR manifolds.

Proof. According to Theorem 1.1, the ν-invariant is given by adding a local term to the
renormalized η-invariant. On S1-invariant CR manifolds with constant curvature, the
renormalized invariant is easily read from Ouyang’s theorem 5.2 above:

(27) η0 = 1 +
d

3
+ 4

p∑
j=1

s(αj, ρj, βj) .

Moreover, the integral term is just

1

16π2

∫
M

R2θ ∧ dθ =
−4π2d

(
−χ
d

)2

16π2
= − χ

2

4d
,

which shows also Theorem 1.3 in the constant curvature case. �
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5.4. Remark. Corollary 1.3 can also be obtained by direct calculation from the original
definition of ν and Ouyang’s formula. Indeed the asymptotically Kähler-Einstein metric
gKE on [r0,+∞[×M can be handled with bare hands in this simple situation, and the
boundary contribution counterbalancing the divergence of the sequence of η-invariants can
be explicitly derived. Putting together Ouyang’s theorem 5.2 and these local computations
yield the value of ν, see [28] for similar computations. This is of course a painful method,
but it is still a reasonably simple case where the cancellation of divergences by local terms
can be observed in detail.

Extension to cases of non-constant curvature. We now extend the computations of ν
to an (almost) complete proof of Theorem 1.2. It is shown in [31, 39] that there always exist
a unique (up to equivalence) transverse S1-contact form on an orientable Seifert manifold
(careful: this might be wrong for a non-transverse action). Given the natural contact
form that fixes the length of the regular fibers to 2π, the choice of a CR structure is then
equivalent to the choice of a downwards orbifold Riemannian metric γ of fixed volume dθ,
and this metric might or might not be of constant curvature.

In case the base is smooth (no orbifold singularities), it is known that the adiabatic
limit ηad does not depend on the underlying metric on Σ, see e.g. [55]. As one can always
find a constant curvature metric of volume dθ (easy consequence of Moser’s lemma on
volume forms), the previous formula (27) for η0 = ηad applies. Then Theorem 1.1 enables
to conclude that

(28) ν(M) = −d− 3− 12

p∑
j=1

s(αj, ρj, βj) +
1

8π

∫
Σ

R2 dθ.

If orbifolds singularities are present, it is known that every orbifold surface has a constant
curvature metric, except some exceptional cases on the sphere described in [8]. As the
set of compatible complex structures with a given contact structure is contractible, this
means that, except on the exceptional cases we have just alluded to, it suffices to check
the following:

5.5. Lemma. Without any assumption on the quotient structure of M by the Reeb flow,
the variations of η0 with respect to the complex structure vanish when the torsion is zero.

Proof. From Theorem 1.1, η0 has the same variation as

−ν
3

+
1

48π2

∫
M

R2 θ ∧ dθ.

The variation of ν with respect to J has been computed in [11, Theorem 8.1], namely

(29)
dν

dJ
=
−3

8π2

∫
M

〈QJ , J̇〉 θ ∧ dθ ,
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where QJ = iQ1
1̄θ1⊗Z1̄− iQ1̄

1θ1̄⊗Z1 ∈ End(H) is Cartan’s tensor. Its expression in term
of derivatives of Tanaka-Webster curvature and torsion is given by

(30) Q1
1̄ =

1

6
R,1

1̄ +
i

2
RA1

1̄ − A1
1̄
, 0 −

2i

3
A1

1̄
,1̄

1̄ .

On the other hand the variation of the Tanaka-Webster curvature is computed e.g in [19,
(2.20)], and is given by

(31) Ṙ = i(E 1̄
1 ,1̄

1 − E 1
1̄ ,1

1̄)− (A1
1̄E 1

1̄ + A 1
1̄ E

1̄
1 ) ,

where

(32) J̇ = 2E 1̄
1 θ

1 ⊗ Z1̄ + 2E 1
1̄ θ

1̄ ⊗ Z1̄.

Putting everything together and integrating by parts shows that, in vanishing torsion, η0

does not depend on the complex structure as needed. �

5.6. Remark. This computation of variations may be seen as an alternative mean to deter-
mine the constant C1 = 1

16π2 in Lemma 4.1, independently of the computations of examples
done in Section 4. Moreover, we stress that η0 is independent of J (whenever the torsion
vanishes) without any assumption on the quotient structure of M by the Reeb flow (smooth
or not). This last fact will be used in Section 9.

In the remaining exceptional cases over S2 described in [8], the results stay the same but
the proof above does not apply anymore and one has to rely on a different technique: this
will be done below in Section 8.

6. The contact complex and the diabatic limit.

Theorem 1.1 gives a simple formula relating the ν-invariant and the renormalized η-
invariant η0 of the contact-rescaling. According to (18), η0 coincides with the adiabatic
limit of η in the case the CR manifold has vanishing torsion, and this enables computations,
for explicit expressions of the adiabatic limit are known in a number of cases. But a deeper
question is to relate directly the ν-invariant to the geometry and spectral theory of the CR
or pseudohermitian manifold.

In the sequel we shall consider a natural η-invariant arising in pseudohermitian geometry.
One actually knows by [47] a candidate for this, coming from the contact-de Rham complex.
We shall briefly recall its construction in dimension 3 and its relation with the diabatic
limit.

Let M be a 3-dimensional contact manifold and H its contact distribution. We denote
by Ω∗H the space of horizontal forms, i.e. the space of sections of the alternating algebra
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over the dual of the bundle H. Let also Ω∗V be the subspace of vertical forms on M , by
which we mean “true” forms in Ω∗M vanishing on H. Equivalently, one has

Ω∗V = {θ ∧ α , α ∈ Ω∗M} = θ ∧ Ω∗H

for any local choice of contact form θ. The contact-de Rham complex is then the following:

(33) C∞(M)
dH−→ Ω1H

D−→ Ω2V
dH−→ Ω3M,

where for f ∈ C∞(M), dHf ∈ Ω1H stands for the restriction of df to H, while

dH : Ω2V → Ω3M

is just de Rham’s differential restricted to Ω2V in Ω2M , and D is defined as follows: since
d induces an isomorphism

d0 : Ω1V → Ω2H with d0(fθ) = f dθ|Λ2H ,

then any α in Ω1H admits a unique extension `(α) in Ω1M such that d`(α) belongs to
Ω2V ; namely, given any initial extension α of α, one has

(34) `(α) = α− d−1
0 (dα)|Λ2H .

We then define

(35) Dα = d`(α).

This differential D is a second order operator, since the lifting ` : Ω1H → Ω1M is a first
order one. Moreover one sees easily that ` induces an homotopy equivalence between the
contact and de Rham complexes, together with the natural restrictions, and the retraction
`′ : Ω2M −→ Ω2V defined by

`′(α) = α− dd−1
0 α|Λ2H .

From now on we will suppose moreover that the contact manifold M is endowed with a
strictly pseudoconvex CR structure J , together with some choice of contact form θ. We
consider the contact-rescaling sequence of metrics of (8)

h0(r) = e2r θ2 + er dθ(·, J ·).

Let ε = e−r, as before, and define

(36) gε = ε−2θ2 + ε−1dθ(·, J ·) = h0(r).

This metric induces an orthogonal splitting TM = H ⊕ RT where T is the Reeb field
of θ, and one can identifies Ω1H with “true” 1-forms on M vanishing on T . Observing
that Hodge ∗-operator exchanges Ω1H and Ω2V and one can consider D∗ acting on closed
vertical 2-forms Ω2

DV = Ω2V ∩ imD.
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Following [2, Theorem 4.14], we define the boundary operator for the signature attached
to the Riemannian metric gε as

Sε = (−1)p(∗εd− d∗ε),

acting on Ω2pM = C∞M ⊕ Ω2M . As observed in [2, Prop. 4.20], one may remove some
spectral symmetry, and its η-function

(37) η(Sε)(s) = Tr∗(Sε|Sε|−(s+1)) =
∑

λi∈spec(Sε)\{0}

λi
|λi|s+1

actually coincides with that of d∗ε when restricted to Ω2
dM = Ω2M ∩ im d. Note that

we have used Tr∗ to denote a trace taken outside the 0-eigenspace. In the same vein, the
notation spec∗ used below will denote a spectrum where the 0-eigenvalue has been removed.

From [4, p. 74] or [25, Chap. 1.10], the series (37) is absolutely convergent for Re s > 3

and has a meromorphic extension to C, with possibly simple poles at s = 3 − n, n ∈ N.
By Atiyah-Patodi-Singer’s theorem [2], η(Sε)(s) is actually regular at s = 0 and its value
there is called the η-invariant of (M, gε). Similarly, an η-function and its value at 0 can
be defined for the operator D∗ in dimension 3. This mainly follows by applying the same
ideas, but with the adequate symbolic calculus for hypoelliptic operators, see Section 9.

In order to compare them, let us now compute d∗ε and D∗ε using the decomposition of
Ω2M into vertical and horizontal 2-forms:

α = θ ∧ αT + αH ,

with αT ∈ Ω1H, αH ∈ Ω2H. From (36) one sees that

∗εα = θ ∧ ∗HαH + ε ∗H αT
where ∗H denotes the induced Hodge duality on H. In matrix form, one gets

(38) d∗ε =

(
εLT ∗H −dH ∗H
ε dH ∗H 1

)
on Ω2M , where LT is the Lie derivative along T .

We now consider D∗ε. Using (34) and (35) one finds that

`(β) = β − (∗H dHβ)θ

on Ω1H, so that
Dβ = θ ∧ (LT + dH ∗H dH)β ,

and hence

(39) D ∗ε (θ ∧ αT ) = ε θ ∧ (LT + dH ∗H dH) ∗H αT
on Ω2V = θ ∧ Ω1H.

The whole spectrum of D∗ε = εD∗1 then collapses at speed ε in the diabatic limit ε→ 0,
whereas part of the spectrum of d∗ε is not collapsing: for instance (d∗ε)(dθ) = dθ. Hence
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the diabatic behaviour of the whole spectrum of d∗ε cannot be related to D∗ε alone, and
indeed only the collapsing spectra are related. This shows up in the following formulae,
which are direct consequences of (38) and (39), or even more directly from the definitions
(34) and (35) of ` and D. If Pε = ε−1d∗ε,

Pε = ε−1d∗ε =

(
D∗1 0

0 0

)
+

(
−(dH ∗H)2 −ε−1dH ∗H
dH ∗H ε−1

)
= ΠΩ2V (D∗1)ΠΩ2V + εPεΠΩ2HPε.

(40)

It follows that in the diabatic limit ε → 0 all the eventually bounded spectrum of Pε =

ε−1d∗ε converges, at least weakly, towards the spectrum of D∗1. Actually its turns out
that this spectral convergence is uniform over bounded intervals, as a consequence of the
uniform convergence in the diabatic limit of the resolvents (λ − Pε)

−1 on ker d towards
(λ−D∗1)−1, for λ ∈ C \ R [47, Theorem 3.6].

Such a spectral convergence is unfortunately only a first step in the study of a global
spectral invariant like η. To illustrate this, recall that by [13] an equivalent expression of
the Riemannian η-invariant is given by

(41) η(Pε)(0) = π−1/2

∫ ∞
0

Tr
(
Pε e−tP

2
ε
) dt√

t
.

Now by [47, Theorem 7.1] the following global trace convergence holds

Tr(Pε e−tP
2
ε ) −→ Tr(D ∗ e−tDD

∗
),

when ε goes to 0, but uniformly on t only for t > t0 > 0. It cannot be true for small
t since the η-invariants and the integrals (41) diverge in the diabatic limit (although one
knows by transgression formulas that these divergences of η(Pε)(0) are given by local
expressions). From the analytic viewpoint, these divergences are rooted in the transition
from elliptic towards hypoelliptic operators, that cannot be uniform in all (t, ε) regimes.
For instance, the asymptotic spectral densities (Weyl’s laws), or the powers of t occurring
in the asymptotic expansions of the heat kernels for t→ 0 are not the same for the elliptic
Pε and the hypoelliptic D∗. However it is possible, as is usual in such asymptotic spectral
problems, that the divergences occurring in the (d∗ε, D∗) transition when ε and t go to
0, are ruled again by local expressions in the curvature, see also Remark 8.6. This would
provide directly a relation like (7) between the finite part η0 of η(Pε) in the diabatic limit
and the pseudohermitian η-invariant η(D∗). Unfortunately, the techniques used in [47]
cannot handle these problems in the general case. The analysis can however be done in
the particular case of CR Seifert manifolds, and we will now restrict ourselves to this case.
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7. Spectral analysis on Seifert manifolds.

As explained above, we will now deal with CR-manifolds endowed with both a Seifert and
a CR structure compatible in the sense that the circle action ϕ : S1 → Diff(M) preserves
the CR structure (H, J) and is generated by a Reeb field T . An invariant contact form θ

has then been chosen, and we note that in this section, in opposite to Section 5, we will
never assume the Webster curvature to be constant.

The circle action allows to perform a Fourier decomposition of functions or forms on M
without referring to the quotient structure. For instance, given n ∈ Z and f ∈ C0(M), its
n-th component is the function on M defined by

πnf =
1

2π

∫ 2π

0

e−int(f ◦ ϕt)dt.

It satisfies (πnf)◦ϕt = eint(πnf), so that LT (πnf) = inπnf on C1(M). The projections πn
preserve and are clearly bounded on all Cp(M), Lp(M) or Sobolev spaces. Moreover, the
Hilbert sum of all πn for n in Z is the identity on L2(M). Last, this circle action preserves
all structures and operators related to the above choice of contact form, so that we will be
able to split their spectra into Fourier components.

We can now study the spectral aspects of the contact rescaling gε in (36) on a CR Seifert
manifold M . Of course the adiabatic limit exists in this situation, and has already been
much studied, see e.g. [12, 23], but we will need a different approach here, focusing on the
diabatic behaviour of d∗ε and η(d∗ε), and their relations with the spectrum of D∗ and its
η-invariant.

One computes easily the Laplacian on Ω2M , relatively to the splitting

Ω2M = θ ∧ Ω1H ⊕ Ω2H,

namely

(42) ∆ε =

(
ε∆H − ε2T 2 −dH ∗H
εdH ∗H 1 + ε∆H − ε2T 2

)
,

where ∆H = dHδH +δHdH is the horizontal Laplacian (not to be confused with the contact
Laplacian introduced in [46, 47]), T denotes here the Lie derivative along T , and we have
used that T ∗ = −T and [T, δH ] = 0 since T is a Killing Reeb field on the CR Seifert
manifold. We observe from (38) that the non-diagonal part of ∆ε is the same as that of
d∗ε, so that

∆ε = d ∗ε + ε

(
∆H − T ∗H 0

0 ∆H

)
− ε2T 2.

When studying spectral asymmetry, we shall now restrict ourselves to the subspace Ω2
dM =

im d of Ω2M , on which ∆ε = (d∗ε)2. We get therefore the following expression relating
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pairwise commuting operators:

(43) (d∗ε)2 = d ∗ε + εK − ε2T 2 ,

with

K =

(
∆H − T ∗H 0

0 ∆H

)
.

Therefore if α ∈ Ω2
dM \ {0} satisfies

(44) (d∗ε)α = λεα , Kα = kα and T 2α = −n2α,

for λε a non-zero eigenvalue of d∗ε, then (43) gives

(45) λ2
ε = λε + εk + ε2n2 6= 0 ,

and, necessarily,

(46) λε = λ+
ε or λ−ε with λ±ε =

1±
√

1 + 4ε(k + εn2)

2
.

Hence the spectrum of d∗ε splits in two families which behave differently in the diabatic
limit ε→ 0. Eigenvalues of type λ−ε all collapse, while those of type λ+

ε all converge to 1.
According to the general results of [47] discussed in Section 6, only eigenvalues of type λ−ε
are related to D∗, after rescaling by ε−1.

The previous eigenvalue equation (46) is only a necessary condition and we have to
determine which of the possible λ±ε are effectively present in spec(d∗ε) and to compute
their multiplicities. To do this, we use the splitting induced by the choice of the Reeb field:
suppose α = θ ∧ αT + αH is a 2-form in the image of d. By (38), the system (d∗ε)α = λεα

is

(λε − εT∗H)αT = −dH ∗H αH(47)

(λε − 1)αH = ε dH ∗H αT .(48)

Suppose now that

(49) (d∗ε)α = λεα , Kα = kα and T 2α = −n2α.

Then we observe that ∗H = −J on Ω1H and (T∗H)2 = −T 2 = n2. Therefore (47) gives

(50) (λ2
ε − ε2n2)αT = −(λε + εT∗H) dH ∗H αH ,

so that αH determines uniquely αT when λ2
ε 6= ε2n2. A first (quite large) part of the

non-zero spectrum is then handled as follows.

7.1. Proposition. • Forms α = θ ∧ αT + αH in Ω2
dM satisfying

(51) (d∗ε)α = λ+
ε α , Kα = kα and T 2α = −n2α
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such that (λ+
ε )2 6= ε2n2 are in one-to-one linear correspondence with forms αH in Ω2H

satisfying

(52) ∆HαH = kαH and T 2αH = −n2αH .

• Forms α = θ ∧ αT + αH in Ω2
dM satisfying

(53) (d∗ε)α = λ−ε α , Kα = kα and T 2α = −n2α

such that (λ−ε )2 6= ε2n2 are in one-to-one linear correspondence with forms αH in Ω2H

satisfying

(54) ∆HαH = kαH and T 2αH = −n2αH

with k 6= |n|.

Proof. In the case λ2
ε 6= ε2n2, αH determines α by (50). Hence one always has αH 6= 0 here,

and, by ∆HαH = kαH , k is necessarily non-negative. Moreover by (45) one has λ2
ε 6= ε2n2

if and only if λε 6= −εk. This is always satisfied in our case k > 0 when λε = λ+
ε > 0, and

only for k 6= |n| when λε = λ−ε .

Conversely, suppose now given αH , n, k, λε as needed. From (50), one defines

αT = −(λ2
ε − ε2n2)−1(λε + εT∗H) dH ∗H αH ,

which satisfies (47). To check (48), recall that

δH = − ∗H dH ∗H and d2
H = −LT = −TL,

where L(f) = f dθ (the last equation being a consequence of d2 = 0 see e.g. [47, p. 415]).
One finds

(λ2
ε − ε2n2) dH ∗H αT = (λεdHδHαH + εd2

HT ∗H αH)

= (λε∆H − εT 2)αH

= (λεk + εn2)αH .

The eigenvalue equation (45) then easily leads to (48). �

For later use, note that the choice (k, n) = (0, 0) in the positive case leads to αH = C dθ

and λε = 1, hence αT = 0 by (47), and this is the only case where this might happen by
(48).

Proposition 7.1 and (46) show that a large part of spec∗(d∗ε) is symmetric with respect
to 1

2
and is parametrised by the spectrum {k + εn2} of the non-negative elliptic Laplacian

Lε,H = ∆H − εT 2 acting on Ω2H, or, equivalently via Hodge duality, by the spectrum of

(55) ∆ε = ∆H − εT 2
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acting on functions. However from (54) there are “holes” in this symmetry corresponding
to the eigenvalues λ−ε = −εk when k = |n|. This means that in the case λε = λ−ε , we have
to remove from the parameter space the horizontal forms αH in

(56) H0 = ker(∆2
H + T 2).

This space has a simple description using the complex structure J and the associated
splitting Ω1H ⊗ C = Ω1,0H ⊕ Ω0,1H. We recall that the component d0,1

H of dH from
functions to Ω0,1H is called the ∂b operator, and its kernel is the space of CR functions.

7.2. Proposition. On a CR Seifert manifold, the space ∗HH0 is the space of pluri-CR
functions, i.e. real parts of CR functions.

Proof. Consider the Kohn Laplacians �b = ∂
∗
b∂b and �b = ∂∗b∂b acting on functions.

Following, say, [35, Theorem 2.3], one has in dimension 3

(57) ∆H = �b +�b and iT = �b −�b.

Since T commutes with everything here one gets

∆2
H + T 2 = 4�b�b = 4�b�b.

If f is a real function in H0 then g = �bf is CR since its image by �b is zero, and is in
the image of ∆H since its integral vanishes. Hence

∆Hf = �bf +�bf = ḡ + g = 2 Re g,

and f = 2 Reh with h = ∆−1
H g is a CR function as needed. �

7.3. Remark. CR Seifert manifolds arise as boundaries of Seifert disk bundles, hence the ∂b
operator has closed range and infinite dimensional kernel. We shall see this very explicitly
in Section 8.

We now study the missing case λ2
ε = ε2n2. We first recall that complex vertical forms

Ω∗V ⊗C ' θ∧Ω∗H⊗C also have a natural bigrading inherited from J on H, independently
from θ. Of particular interest here is the

7.4. Definition. The bundle KM ' θ ∧ Ω1,0H of 2-forms vanishing on H0,1 is called
the canonical CR bundle. We denote by H2,0 its subspace of closed sections, also called
holomorphic (2, 0)-forms, and H2

+ the real part of H2,0.

When the CR manifoldM can be locally embedded in a 4-dimensional complex manifold
N , KM is the restriction toM of the canonical bundle KN = Ω2,0N of N , and holomorphic
forms are local restrictions of holomorphic (2, 0)-forms in N , see [35] for instance. This
explains the notation in the previous definition, as H2,0 (resp. H2

+) is related to the space
of holomorphic (2, 0)-forms in the usual sense on N (resp. to the space of self-dual 2-
forms, orthogonal to the Kähler form). Note that this is indeed the case for our CR Seifert
manifolds for one can take N = M × R with the extension of J considered in Section 2.
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We now show that the remaining spectrum of d∗ε is entirely given by holomorphic forms.

7.5. Proposition. A 2-form α ∈ Ω2
dM satisfies

(58) (d∗ε)α = λεα , Kα = kα and T 2α = −n2α

with λ2
ε = ε2n2 if and only if αH = 0 and α = θ ∧ αT belongs to H2

+.

Proof. Let α = θ∧αT +αH in Ω2
dM be a eigenfunction of d∗ε satisfying (58) with λ2

ε = ε2n2.
By (45) one has also λε = −εk. We first show that αH = 0.

Since (T∗H)2 = −T 2 = n2 = k2 on Ω1H, one can split

αT = α+
T + α−T with (T∗H)α±T = ±kα±T .

Then (47) and (48) are equivalent to

2ε k α+
T = dH ∗H αH(59)

−(εk + 1)αH = ε dH ∗H αT(60)

MoreoverKα = kα gives (∆H−T∗H)αT = kαT , which implies ∆Hα
−
T = 0 since [∆H , T∗H ] =

0 on Ω1H. Therefore α−T lives in ker δH , so that (60) becomes

−(εk + 1)αH = ε dH ∗H α+
T ,

leading by (59) to

(61) ∆HαH = −2εk dH ∗H α+
T = 2k(εk + 1)αH .

But Kα = kα gives ∆HαH = kαH . This together with (61) implies that αH = 0 since
otherwise one would have both k > 0 and εk = −1/2. Hence α = θ ∧ αT is a vertical form
as claimed.

Now (60) reads δHαT = 0, or equivalently

dH(JαT ) = 0.

Moreover α belongs to Ω2
dM , hence is closed. The (1, 0)-part of αT is then in ker dH and

α = θ ∧ αT lives in H2
+ as needed.

Conversely, H2
+ is preserved by J and T . Thus it can be split in eigenspaces of T ∗H =

−JT = k, on which d∗ε = εk by definition, see (38). �

We now summarize our spectral study of d∗ε in relation to the diabatic limit ε→ 0.

7.6. Corollary. The spectrum of d∗ε splits into the following families:
(i) A converging part Λ+

ε , converging to 1 and parametrised by the whole spectrum of
∆ε = ∆H − εT 2 (acting on functions) by the formula

Λ+
ε = spec

(
1 +
√

1 + 4ε∆ε

2

)
.

(ii) A collapsing part, converging to 0, itself divided into two families:
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(a) the first one Λ−ε , nearly symmetric to Λ+
ε :

Λ−ε = spec

(
1−
√

1 + 4ε∆ε

2

)
,

but ∆ε has here to be restricted to the orthogonal of the space of pluri-CR
functions H0.

(b) the spectrum Λ0
ε of εT ∗H = −εJT acting on H2

+, the real parts of holomorphic
forms in the canonical CR bundle.

The signs of the eigenvalues in the first two families are clear. About the third one, we
can notice:

7.7. Proposition. Up to some finite dimensional space, d∗ε is positive on H2
+.

Proof. Recall that d∗ε = −JT on H2
+. Consider then the splitting of the Tanaka-Webster

connection ∇H = ∇1,0 +∇0,1 on H ⊗C. Then on KM = θ∧Ω1,0H one has in dimension 3,

R = ∇∗0,1∇0,1 −∇∗1,0∇1,0 − i∇T .

On holomorphic forms H2,0 in KM , the Lie derivative in T equals ∇T and the previous
equation reduces to

−iT = R +∇∗1,0∇1,0,

which implies that −(iT+R) is a non-negative operator. As the spectrum of d∗ε (on closed
forms) is discrete and without accumulation points, there is only a finite dimensional space
of eigenvectors with non-positive eigenvalues. �

In order to get more symmetry in the spectral decomposition of d∗ε, one can fill in the
holes in Λ−ε by adding ∆ε on H0. As already discussed, this corresponds to adding the
cases k = |n| and λε = −εk 6= 0. Given k, the multiplicity of each added virtual eigenvalue
−εk is equal to 2h0(k) by Proposition 7.2, where we have denoted

h0(k) = dimC
{
CR functions f such that iTf = −kf

}
.

Observe that by (57), h0(k) = 0 if k < 0. In the same spirit, the holomorphic part Λ0
ε

above consists in {εk | k ∈ Z∗}, with multiplicity 2h2(k) given by

h2(k) = dimC
{
holomorphic (2, 0)-forms α ∈ H2,0 such that iTα = −kα

}
.

Considering the positive operators

Q±ε =
±1 +

√
1 + 4ε∆ε

2ε
,

leads to the more suggestive decomposition:

(62) spec∗
(
d∗ε
ε

)
= ± spec∗

(
Q±ε
)
∪ 2× spec∗

(
−iT|H2,0

)
\ 2× spec∗

(
iT|ker ∂b

)
.
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This formula shows that the virtual spectrum of d∗ε consists in two completely different
parts: a (nearly) symmetric part to 1/2, that varies with ε, and a constant holomorphic
part. We will see in Lemma 8.5 that the symmetric part always contributes to 1 in the
renormalized η-invariant η0 when torsion vanishes. Hence the computation of η0 finally
reduces to counting holomorphic objects, as will be done in Section 8. This phenomenon
has already been observed on a smooth base in [55] and over orbifolds, in the adiabatic
context and constant curvature, in [40].

8. The spectrum of D∗ and comparison of the η-invariants

Our goal is now to relate our description of the spectrum of Pε = ε−1d∗ε to the spectrum
of the middle operator of the contact complex D∗. We already know (see the discussion
at the end of Section 6) that the bounded spectrum of Pε converges towards that of D∗ in
the diabatic limit [47]. Therefore from Corollary 7.6 the non-zero spectrum of D∗ has to
split as follows

(63) spec∗(D∗) = spec∗(−∆H |(H0)⊥) ∪ spec∗(−JT |H2
+

)

(note the lack of uniformity already noted in the introduction in the convergence of Λ−ε when
ε→ 0, as each eigenvalue µ in the spectrum of ∆H is approached at a speed approximately
εµ). This is enough to compare the needed η-invariant to η0 and conclude (see (67) below
and the discussion following it), but we would like first to spend a few lines to reinterpret
this more precisely in the CR Seifert context.

The spectrum of D∗ from the CR viewpoint. First of all, the second spectral family
of eigenvalues in (63) is clearly embedded in spec∗(D∗), as (39) shows that D∗ = −TJ on
H2

+. To understand where the first one comes from, we consider the closure in L2 of the
following operator

Q = dHJ : ker dH ⊂ Ω2V −→ Ω3M.

By definition H2
+ = kerQ. We also remark that

(Q∗)∗M = (Πker dHJδH)∗M = − ∗M (Πker δHJdH)

so that kerQ∗ = ∗MH0 and imQ = ∗M (H0)
⊥. To complete the landscape, we of course

define H2
− = imQ∗, so that

(64) ker dH ∩ Ω2V = kerQ⊕ imQ∗ = H2
+ ⊕H2

−.

Then in vanishing Webster torsion, one has by (39) that

Q(D∗) = dHJ(−TJ − (dH ∗H)2) = TdH + (dH ∗H)3

= −∆HQ,
(65)
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on ker dH ⊂ Ω2V , where ∆H = dHδH is the contact Laplacian on Ω3M , conjugate to ∆H

on functions through ∗M . This shows that D∗ is conjugate to −∆H on ∗M (H0)
⊥ by Q, and

that D∗ preserves the splitting (64). We therefore recover the decomposition of spec(D∗)
in two families (63), but now entirely seen within Ω2V :

(66) spec∗(D∗) = spec∗(D ∗ |H2
−=imQ∗) ∪ spec∗(D ∗ |H2

+=kerQ).

The space H2
− is actually a CR invariant, as is H2

+. Indeed ∆H is surjective on Ω3M up
to “constant” 3-forms Cθ ∧ dθ; as Q∗ is zero on these,

H2
− = imQ∗ = imQ∗∆H

= imD ∗ JδH , by (65),

= imDJdH .

We now have two splittings of Ω2V ∩ imD : the spectral splitting

imD = E+ ⊕ E−

in the positive and negative eigenspaces of D∗, and the CR invariant splitting given by

imD = (H2
+ ∩ imD)⊕H2

− .

It follows from prop. 7.7, (63) and (64) that, on a CR Seifert manifold, the pair (E+, E−)

is in Fredholm position with respect to (H2
+,H2

−). More precisely,

H2
+ = E+ ⊕ V ⊕H2(M,R) and E− = H2

− ⊕ V

with the finite dimensional space V = H2
+ ∩ E−. This enlightens the CR meaning of the

spectral asymmetry of D∗ we are studying here.
Observe however that if the formal definitions of H2

± make sense on any 3-dim CR
manifold, their use is highly problematic in general. For instance, if M does not bound
a Stein manifold, the spaces E+ and E− still exist and keep their nice analytic features
by hypoellipticity of D∗ on imD, while H2

+ may be null as the range of ∂b may not
be closed. The previous Fredholm picture then definitely breaks down. Anyway, from
the pseudodifferential viewpoint, the projection on E+ is a natural quantization of the real
part of the Szegö projector on holomorphic (2, 0)-forms, as seen at the Heisenberg symbolic
level, see e.g [5, Chap. 4] for more details on this notion.

We now come back to the comparison between the Riemannian and contact spectra.
In (63), we can proceed as in (62) by “filling the holes” in the spectrum of −∆H on H0.
From (57) we still have ∆H = −iT on CR functions, and this leads to the following
decomposition:

(67) spec∗(D∗) = spec∗(−∆H) ∪ 2× spec∗(−iT|H2,0) \ 2× spec∗(iT|ker ∂b
).
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8.1. Remark. In a slightly more tricky way, one can add spec∗(∆H) to both sides of (67):
the operator ∆H on functions is conjugate to ∆H = dHδH on Ω3M and, wedging by θ, to
δHdH on Ω2V . The spectrum of the contact Laplacian

∆2 = D ∗+δHdH on Ω2V

(see Section 9 for more on this one) appears then in a very symmetric manner, namely

spec∗(∆2) = spec∗(D∗) ∪ spec∗(∆H)

= spec∗(∆H) ∪ spec∗(−∆H)⋃
2 × spec∗(−iT |H2,0) \ 2 × spec∗(iT |ker ∂b

) .

(68)

This spectral symmetry can also be seen directly. Equation (39) yields

∆2 = T ∗H −dHδH + δHdH = T ∗H +P

on Ω2V = θ ∧ Ω1H. As [∗H , T∗H ] = 0 while ∗H P = −P ∗H , ∆2(∗HP ) = −(∗HP )∆2 and
spec(∆2) is symmetric except maybe on kerP , where ∆2 = T∗H = −TJ . It is then easily
seen that the kernel splits into

(kerP )2,0 = H2,0 ⊕ ∂b
−1

(∗M ker ∂b),

yielding (68).

8.2. Remark. Let us mention that this decomposition and the spectral symmetry of ∆2

also hold on contact manifolds of any dimension, in vanishing Tanaka-Webster torsion, see
[46, Prop. 8]. This leads to the same kind of formulae as (68), with a “residual spectrum”
given by sum of η-functions counting holomorphic objects.

Comparison of pseudohermitian and Riemannian η-invariants. Comparing the
spectrum of Pε given by (62) with that of D∗ in (67) yields an immediate relation between
their η-functions, up to combinations of ζ-functions of positive operators:

8.3. Proposition. On a CR Seifert manifold,

(69) η(Pε)− η(D∗) = ζ(∆H) + ζ(Q+
ε )− ζ(Q−ε ),

where Q±ε =
1

2ε
(±1 +

√
1 + 4ε∆ε), and ∆ε = ∆H − εT 2 on functions.

8.4. Remark. Note that here and in the sequel we include the eigenvalue 0 in the definition
of zeta functions of non-negative operators P . This means we take

ζ(P )(s) =
∑
λi>0

λ−si + dim kerP = ζ∗(P )(s) + dim kerP .
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The reason for this convention is that ζ(P )(0), defined in this way, is local for large classes
of non-negative operators, as seen by considering P + h with h → 0+, see also [4]. In
particular in (69), one has

ζ∗(∆H) + ζ∗(Q+
ε )− ζ∗(Q−ε ) = ζ(∆H) + ζ(Q+

ε )− ζ(Q−ε ) ,

since Q+
ε > 0 and dim ker ∆H = dim kerQ−ε = 1, being achieved by constant functions.

Following Definition 3.2, the renormalized η-invariant η0(M, θ) is the constant term in
the development of η(Pε)(0) = η(M, gε) in powers of ε. It is then immediately extracted
from (69) as follows:

(70) η0(M, θ) = η(D∗)(0) + ζ(∆H)(0) + ζ0(Q),

where ζ0(Q) is the constant term in the development in powers of ε

(71) ζ(Q+
ε )(0)− ζ(Q−ε )(0) =

2∑
i=−2

ζi(Q) εi,

which we already know to exist by (13) and (69), since it is the same as that of η(Pε)

except for the constant term. Moreover, it turns out that ζ0(Q) can be evaluated without
too much harm on arbitrary CR manifolds of dimension 3.

8.5. Lemma. On any 3-dimensional CR manifold,

ζ(Q+
ε )(0) = −ζ(Q−ε )(0),

and
ζ0(Q) =

1

24π2

∫
M

|τ |2θ ∧ dθ.

where τ = −1
2
JLTJ is the Tanaka-Webster torsion.

Proof. In view of
2εQ±ε = ±1 +

√
1 + 4ε∆ε,

we consider for λ > −1 the family of positive operators

Q(λ) = λ+
√

1 + 4ε∆ε,

where actually
ε∆ε = ε∆H − ε2T 2 = ∆gε

is the standard Laplacian on functions for the rescaled metric gε = ε−2θ2 + ε−1γH we use
here.

Seeley’s classical results [48] imply that Q(λ) is a smooth family of positive elliptic
pseudo-differential operators of order 1, and that their ζ-functions

P (λ)(s) := ζ(λ+
√

1 + 4∆gε)(s)
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are meromorphic with possibly simple poles at s = 1, 2 and 3. According to [4, Prop. 2.9]
or [25, Lemma 1.10.2] one can differentiate P (λ)(s) with respect to λ to get

d

dλ
P (λ)(s) = −sP (λ)(s+ 1).

Therefore
d4

dλ4
P (λ)(0) = 0 since P (λ) is regular at s = 4, and P (λ)(0) is a polynomial of

degree 3 in λ:

(72) P (λ) = R0 − λR1 + λ2R2

2
− λ3R3

3
,

where R0 = ζ(
√

1 + 4∆gε)(0) and Rn for n > 0 stands for the residue at s = n of

ζ(
√

1 + 4∆gε)(s) = ζ(1 + 4∆gε)(s/2).

Actually these residues are related to the development of the heat kernel of ∆gε on functions
in a simple way. Let

Tr(e−t∆gε )
t→0+∼ a0(gε)

t3/2
+
a2(gε)

t1/2
+ · · · .

According to [25, Theorem 4.8.18d], the constants are computed in terms of the volume
and the Riemannian scalar curvature of gε as:

(73) a0(gε) =
Vol(M, gε)

(4π)3/2
and a2(gε) =

1

6(4π)3/2

∫
M

Scal(gε)d volgε .

This yields

Tr(e−t(1+4∆gε )) = e−t Tr(e−4t∆gε ) ∼ a0(gε)

8t3/2
+

4a2(gε)− a0(gε)

8t1/2
+ · · · ,

and by Mellin’s transform [25, Lemma 1.10.1],

Γ(s/2) ζ(1 + ∆gε)(s/2) =
a0(gε)

4(s− 3)
+

4a2(gε)− a0(gε)

4(s− 1)
+ h(s),

with h holomorphic for Re s > −1. Hence

R0 = ζ((1 + 4∆gε)
1/2)(0) = 0

as this is the only way to cancel the simple pole of the Γ-function at s = 0, and

R2 = 0,

(because the Γ-function does not vanish at s = 2 and the r.h.s. has no pole at this point)
so that P (λ) is an odd polynomial. This gives P (1) = −P (−1) or, equivalently,

ζ(Q+
ε )(0) = −ζ(Q−ε )(0)

as announced. Moreover one has

R1 =
4 a2(gε)− a0(gε)

4
√
π

and R3 =
a0(gε)

2
√
π
,
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and thus by (72) and (73)

ζ(Q+
ε )(0) = −R1 −R3/3

=
1√
π

(
a0(gε)

12
− a2(gε))

=
1

48π2ε2

(1

2

∫
M

θ ∧ dθ −
∫
M

Scal(gε) θ ∧ dθ
)
.

(74)

The Riemannian curvature of gε can be developed in powers of ε using the links between
Tanaka-Webster and Levi-Civita connections underlined in (14). According to e.g. [46, p
318], one finds in dimension 3 that

Scal(gε) = −1

2
+ 2εR− ε2 |τ |2,

where R and τ are Tanaka-Webster curvature and torsion. The constant term in the full
development of ζ(Q+

ε ) is then necessarily equal to the integral of 1
48π2 |τ |2 on M . �

8.6. Remark. According to (62), Q+
ε describes the non-collapsing spectrum of d∗ε, on Seifert

CR manifolds. We have seen that this spectrum only contributes by a local expression
ζ(Q+

ε )(0) to η(d∗ε). We expect this to hold in the general case. Indeed on any CR manifold,
the non-collapsing spectrum is always strictly positive, since it converges to 1 and d∗ε has
no spectral flow. It therefore always contributes through a zeta function, whose value at 0

is local for a wide class of operators.

A computation of η0. The previous Lemma 8.5, together with the spectral decomposition
(62), leads to a general computation of the renormalized η-invariant on all CR Seifert
manifolds, including the still missing exceptional cases of Section 5. Indeed, one has using
our convention for zeta in Remark 8.4

ζ∗(Q+
ε )− ζ∗(Q−ε ) = ζ(Q+

ε )− ζ(Q−ε ) + 1,

since 0 belongs to spec(Q−ε ) with multiplicity 1 (corresponding to the constant functions).
It follows then from (62) that

(75) η0(d∗) = ηad(d∗) = 1 + 2
(
η(−iT|H2,0)(0)− η(iT|ker ∂b

)(0)
)
.

These holomorphic counting functions can be nicely expressed as dimensions of spaces of
sections on adequate orbifold line bundles over the basis orbifold Riemann surface, which in
turn are easily computed with the help of Riemann-Roch-Kawasaki’s theorem [32]. Note
that this has already been observed in the adiabatic setting and constant curvature by
L. Nicolaescu in [40, Sec. 1]. We give below only a short description of the computation,
and refer to [40] for more details.

Following Section 5, the CR Seifert manifold M may be seen as the unit circle bundle
of some orbifold line bundle L over Σ, with singular data (αi, ρi, βi) at points mi ∈ Σ. Let
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KΣ = Λ1,0T ∗Σ denotes the orbifold canonical bundle of Σ. Now, given a Fourier component
iT = n ∈ Z, the space of CR functions f such that f ◦ ϕt = e−intf are interpreted as the
space of holomorphic sections of Ln, and we denote by h0(Ln) its dimension. Moreover
the space of holomorphic forms σ in the canonical CR bundle KM ' θ ∧ KΣ ⊗ L such
that −iTσ = nσ may be seen as the space of holomorphic sections of KΣ ⊗ Ln, i.e. (1, 0)-
holomorphic forms in Ln. Let h1(Ln) denotes its dimension. Hence we get

(76)

η(−iT|H2,0)(s)− η(iT|ker ∂b
)(s) = −

∑
n∈Z∗

sgn(n)
h0(Ln)− h1(Ln)

|n|s

=
∑
n∈Z∗

sgn(n)
χ∂(L

−n)

|n|s
.

Following the method in [40, Sec. 1], this sum can be computed explicitly using Riemann-
Roch-Kawasaki theorem (extension of the classical Riemann-Roch to the orbifold case)
[32]. Using the (rational) orbifold Euler characteristic χ of the base Σ and the (rational)
degree d of L, it reads

(77) χ∂(L
−n) =

χ

2
− nd+

∑
i

1

2

(
1− 1

αi

)
−
{−nβiρ′i

αi

}
,

where {x} = x − [x] denotes the fractional part of x, and ρ′i is the inverse of ρi mod. αi.
This purely topological formula holds true, irrespective of the curvature value. The result
should then be the same in the constant and non-constant curvature cases, so that Ouyang’s
formula (27) for η0 holds true on any CR Seifert manifold.

To get explicitly the formula, one can argue as follows: the constant terms in (77) do
not contribute to the sum (76), whereas∑

n∈Z∗
−d|n|−s+1 = −2d ζ(s− 1)

has value d
6
at s = 0. The Dedekind-Rademacher sums s(αi, 1, βiρ′i) = s(αi, ρi, βi) ap-

pear from the periodic orbifold contribution in (77), as in Nicolaescu’s work using [40,
Proposition 1.4]. Inserting in (75) leads to the desired expression (27) for η0.

8.7. Remark. This last computation shows that Theorem 1.4 could have been proved in a
quicker way on constant curvature CR Seifert manifolds: applying the previous formulae
and using the computation of ζ(∆H)(0) given below leads to an expression for η(D∗) that
can be compared directly to Ouyang’s formula for η0. We have however omitted this proof
since the links between η(D∗) and η0 proved in this way would have appeared as the result of
a possibly completely fortuitous or miraculous equality between explicitly known numerical
expressions. On the contrary, our proof stresses the fact that the relation between D∗ and
d∗ is deeply rooted in the nature of CR geometry and the diabatic limit. Moreover, it
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applies to the whole family of CR Seifert manifolds, irrespective of their curvature, and
especially the exceptional cases that do not admit constant curvature contact forms.

We now complete the comparison between the renormalized η-invariant η0(M, θ) and the
pseudohermitian η-invariant η(D∗).

8.8. Theorem. Let M be a CR Seifert manifold. Then,

(78) η0(M, θ) = η(D∗)(0) + ζ(∆H)(0)

with

(79) ζ(∆H)(0) =
1

512

∫
M

R2 θ ∧ dθ .

Proof. From Proposition 8.3 and Lemma 8.5 it remains to compute ζ(∆H)(0). The devel-
opment of the heat kernel e−t∆H of the Kohn Laplacian ∆H has been studied by Beals,
Greiner and Stanton in [6, Theorem 7.30]. On any CR manifold of dimension 3,

Tr(e−t∆H ) ∼
∞∑
n=0

tn−2bn(M, θ) as t→ 0+,

where bn(M, θ) are integrals on M of polynomials of covariant derivatives of Tanaka-
Webster curvature and torsion. Mellin’s transform yields again

Γ(s) ζ(∆H)(s) =
∑
n6N

bn(M, θ)

s− 2 + n
+ hN(s)

with hN holomorphic for Re s > N − 2, and hence

ζ(∆H)(0) = b2(M, θ).

As ζ(∆H)(0) stays unchanged when θ becomes kθ, one must have b2(M,kθ) = b2(M, θ),
and the same argument as in Lemma 4.1 gives that

b2(M, θ) = C1

∫
M

R2 θ ∧ dθ + C2

∫
M

|τ |2 θ ∧ dθ,

for some constants C1, C2.
Thanks to N. Stanton’s work [51] it is possible to determine C1 on the sphere S3. Indeed,

let L = 4∆H + R be the CR-conformal Laplacian on S3. Stanton states in [51, Theorem
4.34] that for the contact form θ = i∂r = i

2
(z1dz̄1 + z2dz̄2),

Tr(e−tL) =
π2

256t2
+ O

( 1

t2
e−π

2/4t
)

as t→ 0+.

Now Tanaka-Webster curvature R equals 4 here, so that the heat development of ∆H is

Tr(e−t∆H ) = et Tr(e−tL/4) = et
π2

16t2
+ O

( 1

t2
e−π

2/4t
)
,
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and the constant term b2(M, θ) has value π2

32
. Hence

ζ(∆H)(0) =
π2

32
= C1

∫
S3
R2 θ ∧ dθ = 16π2C1

yields C1 = 1
32×16

on the sphere, hence on any CR Seifert manifold. �

Putting together this last result and Theorem 1.1 leads to Corollary 1.5.

9. The pseudohermitian η-invariant and its CR invariant correction

We first begin by showing existence of the pseudohermitian η-invariant in dimension 3.
It follows mostly the classical method of Chapter 1 of [25], using pseudo-differential calculi
developed on contact manifolds. As a consequence, we shall put below the emphasis mainly
on the steps where the hypoelliptic context introduces differences with the well-known
elliptic theory.

9.1. Theorem. Let (M,H, J) be a compact 3-dimensional strictly pseudoconvex CR man-
ifold endowed with a compatible contact form θ and the associated horizontal metric g1 =

θ2 + dθ(·, J ·). Then the series

η(D∗)(s) = Tr∗(D ∗ |D ∗ |−(s+1)) =
∑

λi∈spec(D∗)\{0}

λi
|λi|s+1

converges absolutely for Re s > 2, and has an meromorphic extension with possible simple
poles at s = 2− n/2 for n ∈ N. Moreover η(D∗)(s) is regular at s = 0; its value η(D∗)(0)

is the pseudohermitian η-invariant.

Proof. From [46] the two Laplacians

∆2 = D ∗ + δHdH on Ω2V and ∆3 = dHδH on Ω3M,

are maximally hypoelliptic (be careful: ∆3 is non-negative, but ∆2 is not, despite the
notation). This means that they control two horizontal derivatives in L2 norms (and one
vertical derivative). By the associated Sobolev embeddings, their resolvents are compact
and their spectra are discrete. By orthogonality and conjugation, the non-zero spectrum
of ∆2 splits into

(80) spec∗(∆2) = spec∗(D∗) ∪ spec∗(∆3) ,

and D∗ has discrete pure point spectrum with finite multiplicities on imD. Sobolev em-
beddings also yields that (i + ∆2)−n, (i + ∆3)−n are trace class for n large enough, hence
the same for (D∗)−n. The series η(D∗)(s) is then well defined and holomorphic for Re s

large.
Getting more information on η relies in the Riemannian (elliptic) case on the use of

the classical pseudo-differential calculus for elliptic operators. Such a symbolic calculus
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has also been developed on contact manifold by Beals, Greiner and Stanton in [5, 6] or
Taylor in [53], a concise account may also be found in [24]. The symbols of the hypoelliptic
operators ∆2 and ∆3 are invertible in this calculus: this follows from [30, Lemmas 5.18,
5.19], or else by observing that in dimension 3 their principal symbols are sums of invertible
Folland-Stein ones.

The parameter calculus adapted to the Heisenberg setting developed in Propositions 5.20
to 5.26 of [30] yields pseudo-differential approximations R(λ) of the resolvents ((∆2)2−λ)−1,
when λ /∈ R+. This uses the classical iteration process described in [25, p. 51] or [50,
Sec. 9.1] for instance, where the standard pseudo-differential symbolic product has to
be replaced by the Heisenberg one, see [6, 24]. The symbol of these R(λ) are universal
expressions involving the symbol of (∆2)2 − λ, its inverse, and tensorial expressions of the
Webster-Tanaka curvature and its derivatives.

Then, as explained in [25, Sec. 1.7], R(λ) can be used in place of ((∆2)2 − λ)−1 in the
contour integral

∆2 e−t(∆2)2 =
1

2iπ

∫
γ

e−tλ ∆2(∆2
2 − λ)−1 dλ,

with γ ⊂ C \ R+ the correctly oriented boundary of the cone {Imλ 6 Reλ + 1}, in order
to get good approximations of ∆2 e−t(∆2)2 when t goes to 0. Following Lemma 1.7.7 of [25],
homogeneity arguments then easily lead to the asymptotic development of Tr(∆2 e−t∆

2
2)

when t→ 0+. Namely,

(81) Tr(∆2 e−t∆
2
2) ∼

∞∑
n=0

t(n−6)/4Rn(M, θ),

where Rn(M, θ) are integrals overM of universal polynomials in Tanaka-Webster curvature
and covariant derivatives (with respect to the classical elliptic development given in [25,
Lemma 1.7.7], the only changes here concern the powers of t: this is due to the fact that,
in the Heisenberg calculus, horizontal directions have weight 1, while T is of weight 2. For
instance, this implies that the “Heisenberg-dimension” of M is 4 instead of 3).

9.2. Remark. Another more direct track, if steeper, also leads to such kernel developments.
One can follow Beals-Greiner-Stanton’s approach to heat kernels asymptotics in the contact
setting. In [6] they have extended their symbolic calculus on M × R to include the heat
operator ∂t + P for some positive sub-Laplacians P . They show that in the case P is
a positive Folland-Stein type operator, one can inverse the symbol of ∂t + P inside this
calculus, which gives rather directly developments like (81) for Tr(Q e−tP ) from the symbol
of Q(∂t+P )−1, see also [24, Sec 4]. By R. Ponge’s recent work [43, 44], this approach leads
to a relatively simple proof of the index theorem, and also applies to more general positive
hypoelliptic P as (∆2)2.

Let us now complete the proof of Theorem 9.1. Mellin transform and the functional
calculus relate the asymptotic development in small time of the heat kernel to η and ζ
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functions [25, Section 1.10]. In particular, [25, p 81] and (81) yield:

η(∆2, s) Γ((s+ 1)/2) =
N∑
n=0

4

2s+ n− 4
Rn(M, θ) + hN(s)

where hN is an holomorphic function for s > 2−N/2. Hence we get the required meromor-
phic extension of η(∆2)(s). The same technique applies to ∆3 on Ω3M , but this is a positive
operator whose heat kernel development has been extensively treated in [6, Theorem 7.30]:
the η-function is here a ζ-function which is regular at s = 0.

Using the spectral decomposition (80), we get that η(D∗)(s) is meromorphic with s = 0

being possibly a simple pole. It remains to show that this function is regular at s = 0. We
first note that the value of the residue of η(D∗) at s = 0 is 2R4(M, θ). It is easily seen
in (39) that D∗ becomes k D∗ in the contact rescaling θ → kθ. Therefore, η(D∗kθ)(s) =

ksη(D∗θ)(s) and
R4(M,kθ) = R4(M, θ).

Following the proof of Lemma 4.1, this implies that, in dimension 3,

(82) R4(M, θ) = C1

∫
M

R2 θ ∧ dθ + C2

∫
M

|τ |2 θ ∧ dθ

where R and τ are Tanaka-Webster curvature and torsion and C1, C2 are universal con-
stants.

The residue is moreover invariant under smooth deformation of the pseudohermitian and
CR structures (i.e. both θ and J): as underlined in [25, Lemma 1.10.2] this general feature
stems from the existence of a local variation formula for η-functions, namely in the absence
of spectral flow here:

η̇(∆2)(s) = −s Tr(∆̇2|∆2|−(s+1)).

The point here is that the trace on the right has a meromorphic extension coming from the
development of Tr(∆̇2 e−t(∆2)2), but the possible simple pole at s = 0 is actually cancelled
out by the s in front of the whole expression.

The conclusion is that the integrals in (82) have to be independent of variations of θ and
J , and this implies C1 = C2 = 0: indeed, the variations of R2 and |τ |2 when θ → θf = e2f θ

have been computed in [35, Sec. 5]. One finds that

(83)
d

df
(R2 θ ∧ dθ) = 8R (∆Hf) θ ∧ dθ

while (if τ = A11θ
1 ⊗ θ1)

(84)
d

df
(|τ |2 θ ∧ dθ) = 2i(A1̄1̄f,11 − A11f,1̄1̄) θ ∧ dθ.

After integration by parts, this yields

(85)
d

df
R4(M, θ) = 8C1

∫
M

f∆HRθ ∧ dθ + 2iC2

∫
M

f(A1̄1̄,11 − A11,1̄1̄) θ ∧ dθ.
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Testing on a circle bundle (with vanishing torsion) over a Riemann surface of non-constant
curvature cancels out C1. General expression for torsion of hypersurfaces in [54, Sec. 4]
shows that A1̄1̄,11 − A11,1̄1̄ does not vanish identically: actually, following [36] the only
Bianchi identity of order 2 between R and τ in dimension 3 is R,0 = A11,1̄1̄ +A1̄1̄,11, which
does not occur in (85) so that C2 = 0. �

9.3. Remark. The contact-de Rham complex exists on contact manifolds of any dimension,
and the pseudohermitian signature operator D∗ is still self-adjoint in dimension 4n − 1.
Therefore the properties of η(D∗)(s) stated in Theorem 9.1 make sense on contact manifolds
of any dimension. Most of the previous discussion, and its conclusions, still applies, but
the last argument about the regularity at s = 0 of η(D∗). The residue is still both a
contact invariant, independent of the choices of θ and J , and an integral of some universal
pseudohermitian polynomial of the right weight. But many possibilities are now left, which
cannot be so easily analysed (even in the next relevant dimension 7, the algebra becomes
quite complicated). At the present time, one still ignores whether this residue always
vanishes or not.

The CR invariant correction of η(D∗). Having now a well-defined object at hand, we
can proceed to the construction of a modified pseudohermitian η-invariant.

9.4. Theorem. There exists a unique choice of universal constants C1 and C2 such that,
for any compact strictly pseudoconvex CR 3-manifold M , the following pseudohermitian
invariant

(86) η(D∗) = η(D∗) + C1

∫
M

R2θ ∧ dθ + C2

∫
M

|τ |2 θ ∧ dθ ,

formed from a contact form θ, its Tanaka-Webster curvature R and torsion τ , is in fact a
CR invariant of M , which we shall call the modified pseudohermitian η-invariant.

The key point for the proof of Theorem 9.4 is the following: on an oriented CR 3-manifold
M , the space of adapted contact forms for the contact structure (let us denote it by Θ)
is contractible and non empty. Then, for a pseudohermitian invariant, being CR invariant
simply means being independent of the choice of the contact form, i.e. having a vanishing
derivative in the direction of any variation in θ.

Using the analysis above, we get that η(D∗), seen as a function on the space Θ of contact
forms adapted to a given CR structure, has the following features :

(i) η(D∗kθ) = η(D∗θ) for any positive k;
(ii) its derivative is local: if θt = (1 + tf)θ is a small variation of contact forms,

d

dt
η(D∗θt)t=0 =

∫
M

f Eθ θ ∧ dθ ,
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where Eθ is a local pseudohermitian invariant of θ built algebraically and universally
from a finite jet of θ and its Tanaka-Webster curvature R and torsion τ .

One then deduces from (i) and (ii) that, necessarily,

(87) Ekθ = k−4Eθ ,

and moreover

(88)
∫
M

Eθ θ ∧ dθ = 0 .

Said otherwise, Eθ is of weight −4 and vanishing integral. One can then remark a basic
fact:

9.5. Lemma. Let α be a smooth closed, and real 1-form on Θ where TθΘ is identified to
the space of functions on M through f → d

dt
(1 + tf)θ. If α is of the type

(89) αθ : f ∈ C∞(M) 7−→ αθ(f) =

∫
M

f Aθ θ ∧ dθ

where Aθ is an universal local pseudohermitian invariant of a finite jet of θ. If Aθ is of
weight −4 and of vanishing integral, then α is a linear combination of the derivatives in θ
of ∫

M

R2θ ∧ dθ and
∫
M

|τ |2θ ∧ dθ .

Proof. We argue as in Section 4, classifying local pseudohermitian invariants that are real
and of weight 4. We have seen that the sole possibilities are the linear combinations:

Aθ = c1R
2 + c2|τ |2 + c3R,0 + c4∆HR + c5i(A11,1̄1̄ − A1̄1̄,11)

for some real constants c1, . . . , c5. Now∫
M

Aθ θ ∧ dθ =

∫
M

(c1R
2 + c2|τ |2) θ ∧ dθ,

and this integral does not vanish in general, so that c1 = c2 = 0.
From (83) and (84), the expression∫

M

f
(
c4∆HR + c5i(A11,1̄1̄ − A1̄1̄,11)

)
θ ∧ dθ

is the variation of ∫
M

(
c4
R2

8
− c5
|τ |2

2

)
θ ∧ dθ.

In particular it induces a closed 1-form on on Θ.
The lemma will now follow from the vanishing of c3. It suffices to check that the term

R,0 = A11,1̄1̄ +A1̄1̄,11 does not yield a closed form on Θ. According to [35, Sec. 5], a change
of contact form θ → θf = efθ induces the following changes

Rf = e−f (R + 2∆Hf − 2|f,1̄|2) and Tf = e−f (T + if1Z1̄ − if1̄Z1),
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and therefore
d

df
(R,0θ ∧ dθ) =

(
−f,0R + if,1R,1̄ − if,1̄R,1 + 2(∆Hf),0

)
θ ∧ dθ .

When restricted on the sphere S3 with its constant curvature pseudohermitian structure
this gives ∫

M

(g
d

df
− f d

dg
)(R,0 θ ∧ dθ) = 2

∫
M

((∆Hf),0g − (∆Hg),0f)θ ∧ dθ

= −4

∫
M

(∆Hf)(T.g) θ ∧ dθ.

This expression does not vanish identically: for instance when taking any non T -invariant
function g and f such that ∆Hf = T.g. This completes the proof. �

This shows Theorem 9.4, exhibiting a new CR invariant

(90) η(D∗) = η(D∗) + C1

∫
M

R2 θ ∧ dθ + C2

∫
M

|τ |2 θ ∧ dθ .

Uniqueness in the choice of the constants is obtained because no linear combination in the
integrals of R2 and |τ |2 can be a CR invariant. �

9.6. Remark. An analogous line of reasoning yields: there exists a universal constant C ′

such that, for any compact strictly pseudoconvex Cauchy-Riemann 3-manifold M ,

(91) η(D∗) − C ′ ν(M)

is a contact invariant, i.e. is independent of the choice of the complex structure. The proof
(left to the reader) consists in proving that the only tensorial choice for the differential of
the CR invariant η is (up to some multiplicative constant) the Cartan curvature like in
(29) and (30).

The best one can get is the following: it has already been remarked earlier that the value
of the renormalized η-invariant η0 is purely topological on CR Seifert manifolds. Keeping
the contact form fixed, this means that it has to be independent of the complex structure.
As η(D∗) = η0 − 1

512

∫
R2θ ∧ dθ and

η − C ′ν = (1 + 3C ′)η0 + (C1 −
1

512
− C ′

16π2
)

∫
R2θ ∧ dθ

must be a contact invariant, this implies that

C1 −
1

512
− C ′

16π2
= 0,

since the integral of R2 has non-zero variations with respect to the complex structures.
Guessing the values of C in Conjecture 1.6 and C2 in Theorem 9.4 seems much harder.

Having a precise value for them would (for instance) involve a precise computation of the
spectrum of η(D∗) in a case where the torsion does not vanish. This seems difficult to
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achieve either with our methods, which rely on Fourier decomposition under the circle
action, or with classical tools of representation theory, which require a high degree of
homogeneity.

Of course, one knows that the derivative of η(D∗) is given by algebraic expressions of
the jet of the hypoelliptic symbols of the involved operators. However these expressions
are so intricate that the constants are only computable this way “in theory”, and not in
practice.

9.7. Remark. The same arguments also apply to the renormalized η-invariant η0 introduced
in Section 3, instead of η(D∗). This explains a priori the existence of some local correction
of η0 leading to a CR invariant, itself related (up to some contact invariant) to a multiple
of ν; this might be compared with Lemma 4.1.

10. Applications

Corollaries 1.7 and 1.9 rely on the formula discovered by the first and second authors
[11, Theorem 1.2]: for any Einstein asymptotically hyperbolic manifold (N4, g),

(92)
1

8π2

∫
N

(
3|W−|2 − |W+|2 +

1

24
Scal2

)
− χ(N) + 3 τ(N) = ν(M).

For complex hyperbolic surfaces, the integral term is zero. If N̄ is smooth, with M as
the only end, then the topological contributions always are integers. Corollary 1.7 is then
proved.

It is instructive to check the results for a holomorphic disk bundle over a hyperbolic
Riemann surface Σ, with M as its boundary. Clearly one has χ(N) = χ(Σ) = χ and
τ(N) = −1. If N carries a complex hyperbolic metric with M as its boundary at infinity,
then Corollary 1.7 gives the equation

χ − 3 τ = − ν(M) = d+ 3 +
χ2

4d

and the only solution is d = χ
2
. We then recover the well-known fact that the only disk

bundles carrying a complex hyperbolic metric are the square roots of the (complex) tangent
bundle.

Corollary 1.9 is again a direct consequence of (92), since for a Kähler-Einstein metric, the
integral term is non-negative. For an Einstein metric, the story is more complicated, but
positivity is achieved if solutions of the Seiberg-Witten equations exist, and it is proved in
[45, Corollary 31] that it is a consequence of the nonvanishing of the Kronheimer-Mrowka
invariants [34].

From [17, Theorem 5.12], one knows that pseudoconvex complex hyperbolic surfaces N
have vanishing third homology group H3(N,Z). Hence no multiple ends can occur, but
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one expects orbifold singularities or cusps to appear in the interior of a complex hyperbolic
filling. The complex hyperbolic cusps can be compactified to yield a complex orbifold
surface that we note again N , by adding at the infinity of each cusp a quotient Σi of a 2-
torus. The corollaries 1.7 and 1.9 remain true in this case, with the Euler characteristic and
the signature of N being replaced by their orbifold versions: In case ` cusps are present,
there is an additional contribution in the signature coming from the self-intersection of
each 2-torus at infinity. Namely, one has to consider the modified signature [9, Proposition
3.4]

τcusp(N) = τ(N)− 1

3

∑̀
1

[Σi] · [Σi].

Of course, Corollary 1.8 is no more true, since the characteristic numbers are now rational;
the denominator of ν only gives an hint on the order of the singularities needed to fill M .

Explicitation for lens spaces. We now specialize the formula obtained in Corollary 1.3
to the lens space L(p, q) obtained as a quotient of the 3-sphere S3 in C2 by Z/pZ, with
its generator acting on C2 by (e

2iπ
p , e

2iqπ
p ), where q is prime with p. They are interesting

in connection with filling by Einstein metrics, since some of them appear as boundary at
infinity of selfdual Einstein metrics [16]. On the other hand, it has been shown that large
families of them admit symplectic fillings [37], so that Corollary 1.9 may be applied to
these.

10.1. Proposition. One has: ν(L(p, q)) = −1
p

+ 12 s(p, q, 1).

For sake of comparison, we recall to the interested reader the value of the classical
η-invariant on lens spaces with the standard round metric, as computed by Atiyah-Patodi-
Singer [3, Proposition 2.12]:

(93) η(L(p, q)) = −4 s(p, q, 1).

Proof. For simplicity, we shall assume that (q− 1) is prime with p (as a matter of fact this
implies that we take q 6= 1), and we leave the general case to the reader. Let us see the
3-sphere as the bundle O(−1) over the projective line CP 1. The induced action on CP 1

has two fixed points: the two antipodal points, with action of Z/pZ generated by e±i2π
q−1
p ,

and action in the fiber by ei
2π
p and ei2π

q
p respectively. Therefore L(p, q) is a S1-orbifold

bundle over an orbifold projective line with two orbifold points with angle 2π
p
. The Euler

characteristic is χ = 2
p
and the degree (first Chern number) is d = −1

p
. Now Corollary 1.3

and Ouyang’s theorem 5.2 give the formulae

ν(L(p, q)) = −3 +
2

p
− 12

(
s(p, q − 1, 1) + s(p, 1− q, q)

)
,

η(L(p, q)) = 1− 1

p
+ 4
(
s(p, q − 1, 1) + s(p, 1− q, q)

)
,
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(note that the extra parameter ρ in Theorem 5.2 appears naturally on lens spaces), so that
ν(L(p, q)) = −1

p
− 3η(L(p, q)). The proposition then follows from (93). �

Comparison with the Burns-Epstein invariant. Another interesting point is to com-
pare these results with those obtained by use of the Burns-Epstein µ-invariant [14, 15]
(it is already suggested at the end of [15] that obstructions follow from computations of
µ). The µ-invariant is only defined on strictly pseudoconvex CR 3-manifolds whose tan-
gent holomorphic bundle is a torsion class in homology. Roughly speaking, it comes from
Chern-Simons-type constructions (integration of a local formula), whereas the ν-invariant
is extracted from the Atiyah-Patodi-Singer η-invariant. The relation between µ and ν is
similar to that between the η and the Chern-Simons invariants: more precisely, when µ is
defined, then for a CR structure J one has

ν(J) = 3µ(J) + constant,

with the constant depending only of the underlying contact structure [11, Theorem 1.3].
Burns-Epstein’s version of Miyaoka-Yau [15] then reads, if M is the boundary at infinity
of a Kähler-Einstein N :

(94) χ(N)− 1

3
c̄1(N)2 > −µ(M),

with equality if the metric is complex hyperbolic; here c̄1 is a lift in H2(N,M) of c1(N).
A first important difference here is that our obstruction in Corollary 1.9 (filling by an

ACH Einstein metric) is purely topological, whereas (94) involves a complex structure and
a Kähler-Einstein metric.

Another important fact to be noticed, at least in the case when the quotient has no
orbifold singularities, is that the obstructions obtained by both methods are different: if
M is a S1-bundle over the Riemann surface Σ, then the µ-invariant, being defined by a
local formula, is multiplicative on finite coverings [14, 15]. Hence the values are

(95) µ =
χ2

4d
whereas ν = −χ

2

4d
− d− 3.

Equation (94) implies that 3µ must be an integer, i.e. 3χ2

4d
must belong to Z, a condition

that is weaker than Corollary 1.8, by a factor 3.
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