BALANCED
DISTRIBUTION-ENERGY INEQUALITIES
AND RELATED ENTROPY BOUNDS

MICHEL RUMIN

ABSTRACT. Let A be a self-adjoint operator acting over a space X endowed with a partition.
We give lower bounds on the energy of a mixed state p from its distribution in the partition
and the spectral density of A. These bounds improve with the refinement of the partition,
and generalize inequalities by Li-Yau and Lieb-Thirring for the Laplacian in R". They imply
an uncertainty principle, giving a lower bound on the sum of the spatial entropy of p, as
measured from X, and some spectral entropy, with respect to its energy distribution. On
R™, this yields lower bounds on the sum of the entropy of the densities of p and its Fourier
transform. A general log-Sobolev inequality is also shown. It holds on mixed states, without
Markovian or positivity assumption on A.

1. INTRODUCTION AND MAIN RESULTS

Let (X, pu) be a o-finite measure space, V' a separable Hilbert space and A a self-adjoint

operator acting on
H=L*X,V)=L*(X,n) V.
The inequalities we will consider concern mized states, that is positive trace class operators
on H. From the quantum-mechanical viewpoint, they are positive linear combination of pure
states, which are the orthogonal projections on functions in H; see [18, §23| or [19]. More
precisely, as in [I5], we are looking for integral controls on the density of a state p from its
energy given by the trace
Ealp) = 7(Ap) .

The density function of the state, or more generally of a bounded positive operator P on
‘H, is a notion that extends the restriction to the diagonal of X of the V-trace of the kernel of
P. It may be defined as follows (see e.g. [I5 §1.2]): given a measurable set Q C X, the trace

(1) vp(Q) = T(xaPxa) = 7(P'?xoP'/?)
defines a measure on X. For any Hilbert basis (e;) of #, it holds that
(2) vp(@) = [ Durp(@)dn(e) where  Dywp(a) = 3 I(P2e) @)l

is called the density function of P. For instance, in the case of a pure state P = 7y with
| fll% = 1, one has D,vp(z) = || f(x)||}. Also, when V is finite dimensional, as for operators
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acting on scalar valued functions, it turns out that D,vp is bounded if and only if P is
ultracontractive from L'(X) to L>(X) with

(3) [Pll1.00 < Du(P) = supess Dyvp(z) < (dim V)| P|1,00,

see e.g. [15, Prop. 1.4].
The inequalities studied here depend on the spectral measure associated to A. It is defined
as follows.

Definition 1.1. Let A be a self-adjoint operator on H and consider the spectral projections
II, = H]—oo,A[(A)- Given A, we define the spectral measure of a measurable set 2 C X by

(4) FQ()\) = VH/\ (Q) = T(H)\XQH)\) s
and the spectral density by
(5) Fo(A) = DHVHA(x)-

Note that in the case A is a translation invariant operator over a group X = I', the spectral
measure Fo(\) is proportional to the Haar measure of €2, i.e. Fqo(\) = pu(2)F(X). This F(\)
is called an integrated density of states (IDS) in mathematical physics. When I' is discrete,
F () is also known as the I'-trace of I, or von Neumann’s I'-dimension of E) = II\(H).

In general, the functions A — F,(\) are positive increasing (in the large sense) and left
continuous. In the sequel, if ¢ : R — R™ is an increasing function, and y > 0, we will set

v~ (y) = sup{z € R | p(z) <y} € [~o00,+o0].
It is a pseudo-inverse of ¢, and right continuous when finite.

1.1. Energy of a confined state and spectral bounds. Our first purpose is to give an
inequality between the trace of a state supported in a domain €2 and its energy.

Theorem 1.2. Let A be a self-adjoint operator acting on H = L*(X,V), and let p be a
non-zero state (positive trace class operator) supported in a set Q C X. Suppose that

Exp) = 7(p"/? max(A,0)p'/?) is finite.
Then the integral involved below has a finite positive part and it holds that

(© lollepa( 7)< Ealr).

y
where pq(y) = / Fo'(w)du and ||p||os denotes the L* — L? norm of p.
0

When applied to projections onto NN-dimensional spaces L of functions supported in €2,
Theorem [1.2] gives a lower bound on the sum of the N-first Dirichlet eigenvalues of £4 in Q,
namely

(7) ) < ZAk < Ea(I).

Here the Dirichlet spectrum is defined using the min-max principle

An(92) = Llnﬁf r}lax(EA( YIIFIZ)  with £, = {suppL C Q| dim L = n}.
€Ly
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Such lower bounds for the Dirichlet spectrum are already known in many cases. As we
shall see in §2.2] they coincide for the Laplacian in R™ with inequalities due to Berezin and
Li-Yau (|3, 12] or [I3, Thm. 12.3|); and which are sharp in the semiclassical limit, i.e. when N
goes to co. More generally, similar results have been proved by Laptev [11] for other invariant
positive pseudodifferential operators on R™, by Strichartz [I7] for positive invariant differential
operators on homogeneous manifolds, and also by Erd&s-Loss-Vougalter [9] for the Laplacian
in a constant magnetic field.

The Berezin-Li-Yau inequality implies the following uniform controls of the whole Diri-
chlet spectral distribution in 2.

Corollary 1.3. Let A and 2 as above, and let
Nao(\) = sup{dim V' | suppV C Q and Ea(f) < A||f]|3 on V}

denotes the Dirichlet spectral distribution function of A in 2. Then one has
(8) pa(Na(A) < ANa(A) .

If moreover A is positive, then

9) Na(\) < 2Fq(2)).

Hence in the positive case, the confined spectral distribution in €2 is controlled by twice the
free spectral measure of ) at twice energy level, i.e. by Fq(2)\) = 7(xqllsy). Indeed there,
II,) is the free (or unconstrained) spectral space of A on the whole X.

One feature of the sharpness of inequalities like @ or , that will be used in their proofs,
lies in the fact they stay equivalent under an energy shift of A in A+ k. Indeed, one has then

Fo(\) = Fo(A—k) thus Fy' = Fo'+k and  a(y) — valy) + ky.

Hence both sides of () shift by k7(p), while stays unchanged up to a parameter shift.
This implies in particular that one can’t improve @ or by a fixed multiplicative factor for
any (even positive) operator and state. Indeed, suppose that for any positive operator and
state it holds

(L+e)llpllcpalr(p)/lpllec) < Ealp) -
Then one would get by a positive energy shift A — A + k that

0 < (1+¢)lpllcpal(r(p)/lplloc) < Eaie(p) <O

for k large enough. Of course another stronger inequality than @ may hold however.

In the sequel, we shall say that an inequality is balanced if, like @ or , it stays equivalent
through energy shift. None of the inequalities given in [I5] is balanced; that precludes them
to hold for operators of indefinite sign.

1.2. A balanced Lieb-Thirring inequality. We now state a version of (@, that gives lower
bounds on £4(p) knowing the distribution of the state in a partition of X into LI;Q;, i.e. given

vp(84i) = T(xq:pX)-
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Theorem 1.4. Let A be a self-adjoint operator on H = L*(X,V), and p a non-zero state
such that £ (p) is finite. Let P = {Q;} be a measurable partition of X.
e Then the sums and integral involved below have a finite positive part, and it holds that

(10) —Hpnoozz/m(” D) < #0) = e [ (22 Yauta) < i,

where
1 y

(11) vo.(0) = [ vouit with o) = [ @0
0 0

and similarly
1 y

(12) Uz (y) :/0 e t(y)dt  with  ¢g4(y) :/0 Fz_l(tQU)du.

o Moreover if P' = {Q’} is a finer partition of X than P = {Q;}, then Hp(p) < Hp/(p).

These balanced inequalities improve the unbalanced ones given in [15, Thm. 1.6-1.7] for
positive operators. They extend an inequality due to Lieb and Thirring in the case of the
Laplacian on R"; see [14], [I3, Thm. 12.5] and §3.3]

To clarify its relation with the previous result, we first remark that since F, lis increasing,
one has

(13) Yo < pa = a1 -

Hence if the state is confined in a single domain €2 of the partition, the bound @ is stronger
than Hp(p) < Ea(p) in (10). Conversely, we will see in §3.1] that if A is positive, one has

(14) SOQ(2) < va(r),

thus in the confined case actually gives ||p||coq (QHP(Ho)o) < &a(p), close to (6), but weaker.

From the quantum-mechanical viewpoint, gives a lower bound on the energy that had
a state p before the measure of its distribution in the partition, given by v,(£%;) = 7(xa, Px0;),
is performed. Equivalently, one gets an a priori control, through Hp(p), on the possible
outcomes of a measure of the distribution of a state of known energy, before this measure is
done. Indeed, in quantum physics (see e.g. [18, [19]), an actual measure of this distribution
collapses p into

p= Z XQ:PXQ;
7

which is a sum of localized states p; in ;. By (@ and convexity of ¢q,, one has then

15) 7l Y pn (|| T ) < Zumoso( ) D2 E(e) = Ea(p).

This is stronger than . 10]) by (13] ., but applies only to collapsed states as p.

The monotonicity of Hp(p) in the partition makes it behave like an information quantity
on the state. It increases with a finer knowledge of the distribution of p, and is dominated by
the continuous integral H(p) associated to the “infinitesimal” distribution of p. Actually these

inequalities imply other information-type inequalities like entropy bounds, as we see now.
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1.3. Spatial versus spectral entropy and uncertainty principle. One interesting feature
of the Lieb—Thirring inequality lies in its simple behaviour under the change of A into
f(A) for an increasing right continuous function f. Indeed, one has IIy 4)(] — 00, A[) C
H4(] — oo, f7H(N)]), and thus for the spectral measures

(16) FrayaA) < Fago fH(N),

This allows to change the integrals H(p) in into many expressions, while using the cor-

responding energy E¢(4)(p) = T(f(zi)p) B
An attractive choice is to use In F'4(A), where F 4(\) is the right limit of

FA(X) = supess, F'a z(A).

For this application, it is crucial that holds for non-positive operator, since In F 4(A) is
not positive in general, even if A is. This leads to entropy bounds.

Theorem 1.5. Let A be a self-adjoint operator and p a state such that 51—1:?,4(,4) (p) is finite.
Then the integral S,(p) below has a finite negative part and it holds that

17 S3(9) + Su(p) = —7(p)(3 + I [Ip]).
where
(18) 5)0) = Euryo ) and S,(0) == [ (DL ).

The quantity S,(p) is related to the “spatial entropy” of the state p, as seen from the
measure space (X, pu). Actually, when u(X) = 7(p) = 1, it is minus the Kullback-Leibler
divergence from v, to u, or relative entropy of v, to u. On the other hand,

(19) &wzmmmmmzémmmwwmx

deals with the “spectral entropy” of p, as seen from its distribution within the spectrum of
A. Indeed In F4()) is an analytical ersatz for Indim Ey with E\ = Ej_q »(A). Namely, for
invariant operators acting on groups, one has F 4(A) = dimp(Ey) = 70 (Ij_ »(4)) with the
notion of von Neumann’s I'-dimension; see e.g. [15 §1].

This spectral entropy and the inequality have a striking property: they are invariant
under the change of A into f(A) for any increasing homeomorphism f of R. Indeed the
operator F 4(A) stays unchanged under such transforms, since they give equality in (16)).
Thus, the spectral entropy is not sensitive to the actual energy levels; it depends only on the
ordered set {II,}, not its parametrization.

The quantities S, x(p) measure the indeterminacy in position and energy of the state. They
decrease respectively when p is concentrated in a set of small measure, or in small energies.
Notice that in the general case, if X is not discrete and y(X) infinite, neither S,,(p) nor Sx(p)
are bounded from below, even on pure states. Still, the lower bound for their sum in
means that a state can’t be arbitrarily localized both in position and energy. This may be
seen as a general statement of the uncertainty principle from the entropy viewpoint.
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1.4. Log-Sobolev inequalities. The previous Theorem is also related to more classical
log-Sobolev inequalities, as stated for instance in [7, 13} [8] for the Laplacian. Indeed applying
Jensen inequality on the spectral entropy in leads to the following entropy-energy bound.

Corollary 1.6. Let A be a self-adjoint operator and p a state such that EX(p) is finite and
7(p) = 1. Then it holds that

(20) Su(p) + (I Fa)*(€alp)) = =3 — In|p[loo ,

where (In F4)¢ is the concave hull of In Fy.

This improves and extends Theorem 1.9 in [I5], proved there for positive operators and
with a larger energy term. The inequality is balanced and even invariant under an affine
rescaling of energy A — k1A + ko with ky > 0. It is also equivalent to the following family of
parametric log-Sobolev inequalities

(21) Su(p) +m(t)7(p) +t€a(p) = —7(p)(3 +In|lpllec) ,

where m(t) = infy>o(In F(A) — tA) is minus the concave-Legendre transform of In F'. Such
inequalities actually hold on mixed states, without Markovian or positivity assumption on A.

1.5. Fourier transform and entropy. We now describe consequences of Theorem [I.5] on
Fourier transform. Given a state p on X = R" with Lebesgue’s measure dz, we define its

o~

Fourier transform p by p(f) = p(f). Here our convention is

for = [ r@ea.

We shall see, by optimizing the choice of A in , the following bound on the sum of the
entropy of the density of p and the entropy of the distribution of its Fourier transform.

Theorem 1.7. Let vol* be the (Plancherel) measure d*§ = (27)~"d§ on R™, and p as above.
Consider the distribution function of v; relatively to d*§

Oz .

(22) Fp(y) = vol"({§ € R™ |

Suppose that the positive part of

+oo
Sp(p) = / In(F5(y)) F3(y)dy

is finite. Then the negative part of the spatial entropy
dv
Sialp) = = [ W(2)dny(o)
s finite and it holds that
(23) Saz(p) + Sr(p) = =7(p)(2 +In|pl|oc) -

This gives an operator free version of the classical uncertainty principle stating that a
function (pure state) can’t be both arbitrarily localized in position and momentum. As will
be seen in , the bound is equivalent to the previous one , with A = A, for
states such that p has a decaying radial density, but improves it otherwise. For instance, the
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repartition entropy Sr(p) may be much smaller than the spectral entropy Sy (p) associated to
A, if p is concentrated in a set of small measure but scattered far from the origin in ]Rg.

Still, the inequality is not symmetric in the roles of p and its Fourier transform p,
because two kinds of entropies are used at the space and frequency sides. However it implies
the following symmetric inequality. It extends a result proved by Hirschman [I0] on pure
states (p = my).

Corollary 1.8. It holds that

21) Sulp)+ Sirc(@) == | ()~ [ (G2 )dy = (o)) + o).

provided the positive part of one of these integrals is finite.

Besides its symmetry, this inequality has another interesting property: it is additive on
tensor products of unit trace states.

As a concluding remark, we shall observe in that at least on projections on finite
dimensional spaces, the lower bounds occurring in the entropy inequalities obtained here are
also related to another important entropy notion: namely to von Neumann’s proper entropy,
defined by S(p) = —7(plnp). This suggests a possible improvement of Corollary using
S(p) in the lower bound instead. This will be discussed in

2. THE CONFINED STATES INEQUALITIES

2.1. Proof of Theorem We first show Theorem for positive operator, and use after
the invariance through energy shift to extend it in the general case.

The proof in the positive case is actually an improvement of an argument given in [15]
§3.1]. It is also close to the approach followed in [9]. Let II>y = IIj\ ;o[(A) = Id —II,. Using

A= f0+oo II> \dX, we observe that

+oo
(25) Ealp) = 7(p"*Ap'/?) :/0 (p' Tz pp'?)dA.

Since supp p C 2, one has p < ||p|lcoXxn. Hence, assuming by homogeneity in p that ||p|lcc = 1
in the sequel, it holds that

T(pl/zﬂz)\plﬂ) —1(p) — T(pl/QH)\pl/Q) = 7(p) — T(IL\pILy)
7(p) — 7(Iaxlly)
7(p) — Fa()) .

Y
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Using it in for A < Fﬁl(T(p)) = sup{u | Fqo(u) < 7(p)} yields

1/21—[ )\,01/2)d>\

— Fo(N))dA

Q (T 7(p)
(26) :/ / du d\ = // dud\
0 FQ (\) {0<Fa (M) <u<7(p)}
7(p)
- / / )\)du

7(p)
= [ Fattwdu = alr (o).

=]

as needed.
For a general self-adjoint operator, we consider Ay = All>,. By positivity of Ay — &k and
the behaviour of @ in such a shift, it holds for any k that

(27) pa(T(p) < Ea,(p).-

In particular, for £ = 0, one has max(FXl, 0) < FXOI and thus

7(p)
/0 p max(Fj* (u), 0)du < pa,0(7(p)) < Ea,(p) = EF(p) < 00

by hypothesis. Hence the integral w4 o(T fo u)du makes sense in [—oo, +oo]. If
vaa(T(p)) = —oo there is nothing more to prove and we assume henceforth that vaa(r(p))
is finite. This implies that the increasing function ng(u) is finite for v < 7(p). In particular,
one has necessarily F4 o(k) finite for k < 0, and thus by dominated convergence

(28) Fao(k) = 7(xelll_co k(A)xa) 0 when &\, —oc.
Since, for k < A, one has ITy(Ag) = TIj, z\[(A) = I1\(A) — [Ix(A), it holds that
(29) Fa,0\) =max(Fan(A\) — Faa(k),0).

This leads to Fiy' (u) = F o(u+ Faqo(k)), and finally

y y
goAbQ(y):/O FX,},Q(U)dU:/O FZ}Z(U‘FFA’Q(lﬁ))dU.

Together with and (27)), this shows that ¢a, o(7(p)) \« paa(7(p)) when k \, —oco; by

dominated convergence for the positive part, and monotone convergence for the negative one.
For the same reasons, one has €4, (p) \, £a(p) for k \, —oo, giving the result by ([27).

2.2. Illustrations in R™. As a first illustration of the previous result, we consider the case
of the Laplacian on X = R". By group invariance, the density F,()\) is a constant given by
the value at 0 of the kernel of IT). To compute it, we remark that the spectral spaces Fa())
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are functions whose Fourier transforms are supported in the ball B, (0, A/ 2). Tt follows easily
(see e.g. [15], §4.2]) that

Fx()‘) = X\Bn(O,Al/Q)(O) = Cn)\n/Q

30
(30) with  Cp = (21) "vol(B,(0, 1)) = (47T)fn/2r(g Iy
and thus
Y
(31) Wﬂ(y) — / Fél(U)du _ n (Cnvol(Q))—Q/nlerZ/n )
0 n—+2

Applying Theorem [I.2] to the orthogonal projection p on the first N Dirichlet eigenfunctions
of A in Q, yields the following inequality, due to Berezin and Li-Yau (see [12], [I3, Thm. 12.3])

N

(32) £xlp) = S N(Q) >

=1

n

' vol(Q —Z/nN1+2/n.
I (Cavol(©)

When €2 is a domain of finite boundary area, this bound is known to be sharp, up to lower
order term in N, in the semiclassical limit, i.e. for N goes to oo; see e.g. [13, Thm. 12.11].

We observe that the previous technique also applies to other translation invariant differential
operators D on R"; the spectral density F'(\) being still given by the volume of the level sets
{¢ ] a(D)(&) < A} of the symbol o(D) of D (see also §4.3)). Note that for invariant operators,
one has Fo(A) = u(2)F()N), hence

/1(82)
aly) = p(9) /0 T P wydu,

is ruled by the function ¥(z) = [ F~!(u)du, and the Berezin-Li-Yau inequality (7)) writes

M) =

(33) () < p(Q)S(V/ ().

k=1
This is easily seen to coincide with the estimate proved by Strichartz in [I7]. There ¥ is
defined for positive operators by

E(F(N)) = density(vam, ) = /[()/\[udF(u),

linearly interpolated between the discrete spectrum; see [17, Definition 4.1] and below.

Note that a similar discussion applies more generally for invariant operators on homogeneous
spaces, leading to inequalities of the same shape as . On symmetric spaces, where a Fourier
transform is available, one can still estimate F' and X in some classical cases, as the Laplacian,
using a Plancherel formula; see examples in [17] and [15], §4.1].

Finally we mention the case of the two-dimensional Laplacian in a constant magnetic field:
H = (—iV + A)?, where the (connection) one-form A is such that dA = B is constant. This
example is studied in [J]. It turns out that although H is not an invariant operator on R?,
translations act on H up to unitary conjugation. Hence H has a constant (in space) spectral
density F' anyway (the Landau staircase function), and still holds; see [9] for details.
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2.3. Equality case and bathtub filling. The proof of Theorem above shows that £4(p)
gets smaller and approaches the proposed lower bound ¢q(7(p)) when:

(1) p is the largest possible, i.e close to xq, on Iy for A < A\g = F, *(7(p));
(2) and p is the smallest possible, i.e. close to 0, on Il y,.

That means that p has to fill up, or saturate, as much as possible the lower energy levels it
can, under the constraint that p CC Q and until the volume 7(p) is reached. This kind of
idea, clear from the physical viewpoint, is actually quite similar to the bathtub principle used
in the proof of Berezin-Li-Yau inequality given by Lieb and Loss in [I3, Theorem 12.3],
see also |9, [17].

In general, one can’t have equality in @ unless p is pinched between ITy, = IIj_ Ao[(A) and
II T oo 0] (A) and supported in €. Hence, if the spectral spaces of A are not confined in
a proper subspace {2 of the ambient space X, the only remaining possibility is to take Q = X
itself. This requires of course that dim E\. = T(HAJ) < 7(p) be finite.

2.4. Asymptotic sharpness and amenability. One can go beyond the previous equality
case and describe situations with X infinite and where @ is asymptotically sharp. Given A
and €2, one considers the two states

po = xollaxe and po = Iyxell, .

Notice that pq is confined in £ while pq is not. Still, one has 7(pq) = 7(pa) = Fa(A) and we
claim that

(39 alr(po)) = ea(Fa) = [ wdFa(u) = (7).

if this converges. To see this we proceed as in , assuming first that A is positive. One
finds

Fo ' (Fa(N)
pa(Fa(N) = /0 (Fa(\) — Fo(u))du

A
- / (Fa(A) — Fa(w)du,
since Fo(u) = Fo()) for 0 <\ <u < Fy'(Fo(\)). Thus

pa(Fa(N) = / dFo(v)du

0<u<v<A

= / vdFq(v).
[0,A]

The general case follows by energy cut-off and shift as in

When Q is large, ||pallc is close to 1, and means that () is sharp for these states
pa. However they are not confined in Q. Still £4(pqn) may be compared to £4(pq) in the
following situation. If X is a discrete metric space, and A is a bounded local operator, i.e.
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Af(x) depends only on the value of f in the ball B(z, ), then one has
[€a(pa) — Ealpa)l = |T(Axallaxe) — T(AlL\xoll))|
= [7(ILixa(Axe — xa4))|
< 2| Al 0,2,
where |0,€| is the cardinal of 9, = {x € X | d(z,Q) < r and d(x,Q°) < r}. This leads to
the following asymptotic sharpness result for @

Proposition 2.1. Let X =T be a discrete amenable group, endowed with an invariant mea-
sure, and let A be a local translation invariant symmetric operator on X. Suppose that
is a Félner sequence such that |0,,|/|Q,] — 0 when n — +o00. Set F' = F, and ¢ = ¢y
(constant in x). Then it holds that

: : 7(pa.)
35 lim & Q.| = lim 0P, = Qnl = o(F(N)).
@) lm Ealon )19 = Tl loen, (T.2%0) /194 = o(POY)

This may be seen as the counterpart in the discrete setting to the semiclassical result recalled
in here the sharpness of @ is achieved on large domains and fixed energy, instead of
the contrary in the semiclassical limit. This statement applies for instance to the discrete
Laplacians on ¢?-cochains over amenable coverings of finite simplicial complex.

2.5. Faber—Krahn inequality and the heat technique. We can compare the lower bound
on the Dirichlet spectrum, or Faber-Krahn inequality, obtained in :

(36) A(€) = ea(l),

to the one shown in [5, Prop. I1.2] using a heat kernel technique. Namely, it follows from the
Nash inequality given there that if A is a positive operator, one has

(37) M) 2 0() =sup : ln(m;@) ,

where L(t) = ||e~*||1,00. This bound is actually weaker than (36), at least on scalar operators.
Indeed, by , it holds that

L(H)u(Q) > ve-ea(Q) = 7(xe “xq)

+oo
= / e M dFo(N)
0

> / e dFo(N)
0,F; " (1)]

with Fo(\) = Fo()) for A < Fgl(1) and Fo(Fg (1)) = 1. Notice that 0 < dF < dFq since
Fo(Fg'(1)) <1< Fo(Fy*(1)*) by left continuity of F. Then by Jensen,
—In(L(t)p(Q)) < t/ AdFo(N)
(0,7 (1)]

1
— /O (1 - Fo(A))du = tpa(1).

by (26]). This gives 8(Q) < pq(1) as claimed.
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2.6. Proof of Corollary When A is a positive operator, one has for ¢ € [0, 1],

(39) pol) = [ Ryt [ Ry

0 cy
> (1 c)yFy ' (ey).
Hence , that comes from , implies

A
1—0)’

giving @D in the case ¢ = 1/2. Unlike these inequalities are not balanced.
We remark that if F is a concave function, one can sharpen into Ng(A)

< 2Fq(M)

by Jensen. When Fq(A)/A is increasing, for instance when Fq is a convex function, one sees

easily that Ng(\) < Fo(2)).

3. THE BALANCED LIEB—THIRRING INEQUALITY

We now consider Theorem [I.4] and begin with the continuous case. The argument is an

improvement of [15], §3.2].

3.1. Proof of H(p) < E4(p). Let p be a state, 2 any measurable set in X, and let consider

the splitting
p?xa = p**Thxa + p/*Tspxa -

1/2 %2

Using Hilbert-Schmidt norm and assuming by homogeneity that |[p"/<|lc = | pl|

1/2

102 xallms < |0 Taxallgs + oY *Tsaxall s

< |Mxallas + [0/ axallms -
Since || P||gs = 7(P*P)Y/? = 7(PP*)'/?, one finds by () that
(39) V(Y <, ()2 + v 1, ()2
This implies a similar inequality almost everywhere at the local level, i.e.
(40) Duvy(@)? < Fo(NY2 + Dy, i (2)/2.
Indeed, using on the sets
Qupe={z € X | Dyvy(z) > a®, Fy(\) <b* and Dy, i, (7) < ¢}

with (a,b,c) € D = {a,b,c € Q" | a > b+ c}, gives that u(Qap.) = 0. Whence

{reX| fails} = | J Qap.c
D

=1 yield

is also negligible. The author is grateful to Guy David for suggesting this level set argument.
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We now suppose that A is positive, and uses ,

+00 +o0
Ealp) = / 7(p P \p'/?)dN = / 7(T2apTTz5)dA
0 0

oo

_A VHEAPHEA(X)d/\

_ / Dyt it (%) dpu()dA
X xR+

(41) > [ D @)du()in.
where Q = {(z,\) € X x RT | F;(\) < D,v,(z)}. Then, by a

Elr) > [ (Duryl@)!/? = Fu0)'?)d(a)ay

= /X Yo (Dpvp(@))dp(z)
with
Fr'(y) )
(12) w) = [ M = RO
0
We shall compare this expression to ¢, (y) = foy F1(t)dt. First, using

\/@‘\/ﬁzﬂg_u for 0<u<

and proceeding as in , one finds that

IR

13
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This shows the comparison ([14) claimed for positive operators. For the general expression

(12), one uses
Fo'(y) oy
:/ / (u1/2 _ Fm()\)l/z) du I\
0 () \/a

/Fz ') /y /“ dvdud\
o ) JE0) 2Vw
/ dvdud\
{0<Fy (A <’U<u<y} 2\/uv
- [ / S
2\/77 Vu
// dv du
Q\f Vu
/ / w)dtdu
- / poa(y)it,
0

with . ¢(y) = [ F u)du as needed. This shows that H(p) < E4(p) for positive operators.

Remark 3.1. The inequality Hp(p) < £a(p) for partitions can be proved along the same lines;
just replacing above by its discrete analogous

Q; (vp(€24))
SA(p) > Z/ VIT pIl, (Qi)d)‘v
—~ Jo
1
and using in place of . Furthermore, the previous computations on ¢, and v, apply
on g, and g, instead.

The case of general (non-positive) operators can be handled as in §2.1} using the cut-off

A, = max(A, k) and energy shift in these balanced inequalities. From the positive case, one

Duve(z) pl1
/ / / max(F, ! (t?u), 0) dtdudu(z) < E§(p) < o0,
xJo 0

Hence £} (p) controls the positive part of the integral H(p). Then taking k \, —oco yields
the result: by dominated convergence for the positive part and monotone convergence for the

has

negative one.

3.2. Behaviour of Hp under partition refinement. We shall now prove that
Hp < Hp <H

if P’ = {Q}} is a finer partition of X than P = {Q;}. This will actually follow by integration
in t €]0, 1] of the parametric inequalities

(43) Hp; < Hpy < H;
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where

Hralp) ||puoo2m,t(”“m) and 105) = olke [ pea (22 ).

1olloo 1Plloo

Remark 3.2. When t = 1, we have seen in that these expressions give energy lower bounds
of collapsed states, and means they also behave like an information quantity; actually
finer than the averaged H, but restricted to such states.

We start with the discrete vs. continuous inequality, in the positive case, i.e. F,(0) = 0,
and assume again that ||p|lcc = 1. Given t > 0,

Y Y
ot(y) = / Fo (Pw)du and gq,(y) = / Fy ! (t2u)du
0 0

are convex functions whose Legendre transforms are respectively

. z dv . z dv
) = [ P and )= [ P

0
Young’s inequality states that for any y,z >0
Yz < @ai(y) + r4(2) -
Integrating it over Q; with y = D,v,(x) yields

w2 < [ puaDupiute) + [ [ Gaute)

- /Q (D)) da(z) + 5, o(2)

by Fubini and . Then by Legendre duality, one has
(44) Pt (Vo () = Sgrg(zvp(ﬁz‘) —0,4(2)) < /Q Pt (Dyvp(x))dp(x) .

This gives Hp(p) < Hi(p) by summation. The discrete comparison Hp(p) < Hp/(p) follows
the same lines: just replacing the integration over §2; above by the discrete splitting of §2; into
smaller €2

We now consider the general (non-positive) situation. From the positive parts of Hy(£2)
and Hp,(p) are finite if £ (p) is. Moreover we shall assume that the negative part of Hp(p)
is finite, or is already satisfied. This implies in particular that Fg " (u 1( ) > —oo for any i
and u > 0, and thus the functions Fo,(\) = [, F (x) \¢ 0 when X\ N\, —oco. Whence,
fixing an 7, one has a.e. in Q; that Fj (A ) \ 0 When )\ \ —o0. We shall now apply (44] . to

Frz(X) = Fpy(A+ k) — Fp(k) and Fi,(\) = Fo,(A+ k) — Fo, (k).
This gives
Fip(u) = F (u+ Fo(k))) =k and  Fig (u) = Fo!(u+ Fo,(k)) — k,
and

vp (%) Duv,(x)
/ Fo (tPu+ Fy ! (K))du < / / HtPu + Fu(k))dudp(z)
0

leading to the result for k \, —oco.
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3.3. Illustration in R™. We consider again the case of the Laplacian on R". From , one
has

(45) Fl(w) = C2mMu?™ = 4nT(1 +n/2)¥ ™™
giving
/ / w)dudt = Dyy' 2™
with
D, = Am T(1+n/2)%".

(1+4/n)(1+2/n)
Thus, if p is a projection onto a N-dimensional space of orthonormal basis f;, reads

N /n N
(46) D, [ (X ia@r) e < S IVAIE.
=1 1=1

Such lower bound of the kinetic energy is due to Lieb-Thirring, see [13, Thm. 12.5] or [14],
and have important applications in quantum mechanics. The constant D,, given here is quite
sharp for large n. Indeed, by [13], §12.5], the (unknown) best constant has to be smaller than
B, = (1+4/n)D,,. This follows from the remark that

/ F *(u)du= B Lyl T2

Indeed by Jensen inequality (or ) and Berezin-Li-Yau inequality one has both

1+2/n

N N
onaN) = 1@ ou(V) < By [ (S I@)P) e and 3 IVAIB.
i=1 =1

for functions confined in a domain 2. As the second inequality is sharp in the semiclassical
limit N — +o00, the best constant in is smaller than B,, as claimed.

Similar bounds can also be obtained from for other examples of physical interest as
V| = A2 or the relativistic kinetic energy P = (A + m?)'/? —m; see [6, 13]. One replaces
F. ! above by respectively Fl%ll = (F;HY2 or Fpt = (F;7' +m?)Y2 —m. By ([@5), one finds
that ¢y = Epy' ™™ with

[(n/2 4 1)1/7
(1+2/n)(1+1/n)"

E, = (4m)'/?

In R3 this gives

S (91 ) )28 [ (Zm )

=1

with F3 ~ 1,754, which is slightly stronger than the constant 1,63 given in [0, eq. (3.4)]. The
author is grateful to the referee for this observation.
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4. ENTROPY BOUNDS

4.1. Proof of Theorem We deduce Theorem [I.5]on the entropy sum from Theorem [T.4]
Consider the functions

Faa(A _
F4(\) =sup 00 = supess, Fl4,(\) and Fa(A\) = lim Fa(A+¢).
Q ,U,(Q) ' e—=0t

We observe that Fy is increasing and left continuous, since the Fy o are, while F 4 is right
continuous. We shall assume that F4(\) is finite for A < 0, in order that the hypothesis of
Theorem hold for some state. This implies in particular by dominated convergence that

Fa(X\) \, 0 when A\, —oc. Then by (16)), one has

FoF,a)(A) < Fao (Fa) ' () < Fao Fit(et) < e,

by left continuity of F4. Hence by (12] @, it holds a.e. in X that

(47) PinTa(a) /(/lnﬁ Ydudt = ylny — 3y,
leading to Theorem

4.2. IMustration in R™. We make explicit Theorem in the case of the Laplacian on R".
Given a state p, we can express its spectral entropy Sy(p) using Fourier transform. Suppose
that p = >, p;lly, for orthonormal functions f;. Its Fourier transform p acts on L2(]Rg) by

ﬁ(f) = p/(\f); actually p = >, pill; using the Plancherel measure d*§ = (2m)7"dE. At the
density level, this writes

(48) dv,(x zz:ij} )[2dz and dv;(€) j{:ij; )|2d*€ .

By (30} ., C, "2 and the spectral entropy is
Sx(p) = 7(In(Fy(A))p) = sz‘@n(cnﬁn/z)fu fi)

-2 / In(Co €] 7€) 2"
- / (ol (B0, €] €)

Hence the entropy bound writes here

@) [ () < [ Inwol (B0, I61)dvp(€) + 7(p)(3 + n o]

To study the general sharpness of this bound, we first observe it implies a log-Sobolev
inequality. Indeed, Jensen inequality yields

dvy\ dvy() N o dv5(€) N
L omE S <, ([ 1622 + 5t
Ealp)

+3+1In|p||eo -
o) Iol

(50)

:mm(
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This in turn implies a Berezin—Li—Yau type inequality for confined states in finite measure
sets 2. Namely the convexity of y — yIny leads to

(51) 7(p) < 1@ ol (2 p)

This may be compared to (6) where po(y) = i5yF, (i) gives

() < @)l (2 2.

As recalled in (and also in a discrete setting) this inequality is sharp for all n, in the
semiclassical limit of large energy. It is indeed sharper than (51)), since

n+2)\) :Cn<n—|—2

As a consequence, the inequalities and are sharp except possibly for the constant 3
there, which can’t be taken smaller than 1 in this generality.

Fu

n/2
)\) 2 < em 0.

confined states result Theorem |1

Remark 4.1. We notice that (51)), with e instead of €3, is also an instance of the general
1.2 Indeed when apphed to In F4(A), one can use

O F yZ/lnduzyln -y,
1 FA(A),Q( ) 0 (M(Q)) (M(Q))
instead of the weaker (not confined) v version (47)).

We return to the log-Sobolev inequality and compare it with a similar one proved by
Dolbeault, Felmer, Loss and Paturel in [§]. Namely it holds on unit trace states

(52) [ (S @) < 5 n(5-Ea(0) - S(0),

where S(p) = —7(pIn p) is von Neumann’s entropy of p; see [I8, T9]. From F,(\) = C,\"/?
with

C,, = (2m)"vol(B,(0,1)) = (47r)_"/2F(n/2 +1)71
one finds that the difference between the right sides of (50)) and ( . is

A = S(p) +Inllplloc + 3 +In((5 )"/Q/F( +1)).

Omne has S(p) > —In||p|lec in general, with equality on normahzed projections on finite di-
mensional spaces p = IIyy/dim V. Moreover by Stirling formula

In((50)"/2/T(5 +1)) = —% In(7n) + o(1).

Hence is stronger than on uniformly distributed states like p = I/ / dim V' and high
ambient dimension n. On the contrary, is stronger than in fixed dimension on states
with irregular distributions. For instance given an integer N > 2, one can consider states py

on R with finite spectrum py = v and py = 2= for & € [1, N]. One has 7(py) = 1 and

—In||pn|loc = —Inpg = In(In N), while

—Zpilnpi ~InN> —In|pllc for large N.
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Another relationship between the two log-Sobolev inequalities and appears in the
following process. Given a state p on R™ with 7(p) = 1, one can apply to @V p on R™
for increasing N. One has

Sao(@™p) = NSus(p), €a(@"p) = NEa(p) and — ] @" pllo = ~N I plloc -

while
N N —2/Nn
In £y (Ea(8V0)) = 5 In((4m) '0(57 +1) 7 NEA())
~ N x gln(ﬁég(p)) for large N

by Stirling formula. Therefore, divided by N for N 7 400 implies a “stabilized” inequality

(53) /nln(‘il””)dup(x) < 2 n

e

zmgA(p)) —In [|p]|so-

X

which is closer to except for the weaker term — In ||p|| in place of S(p).

4.3. Proof of Theorem The right spectral term of the previous entropy bound
is associated to the level sets of the symbol oa (&) = ||€]|? of the Laplacian; namely at some
point &g, one has B, (0, [|£0]]) = {£ | oa(§) < oa(&o)}, whose volume gives the spectral density
Fa(M) at the energy A = ||€0|>. Given a state p, one can consider more general translation
invariant operators, associated to other fillings of R?, in order to minimize the spectral entropy
term Sy(p). We shall proceed as follows.

Let o be a bounded measurable function on RE, and A, be defined by

A (f)(&) = a(§) ().
Let QF = {£ € R" | 0(§) < A}. The spectral projection I14, () acts through Fourier transform
by multiplication by xq, and, following e.g. [I5, §4.1, §4.2|, the spectral density of A, is
Fa,(\) = [k, wll7z = HXQ;H%E = vol"(225) .

This leads to the following expression for the spectral entropy of a state p, as long these
integral have finite positive parts,

S, (p) = T(InFa, (As)p) = /R In(vol*(Q5))dr (I, (A)p)

In(vol*(€25))dr (xag )

In(vol* (25))du;(©2)

—

_ /R In(vol*(25))d(a. (v5)(] — 00, A])),

using the push-forward measure o,(v5). This yields

(54) Sag(p) = [ In(vol* (@ )dvp(©).
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The strong functional invariance of this entropy is clear here. It stays unchanged if replacing
the symbol o into f(o) for any strictly increasing function f on o(R"™), as comes from Qﬁg(g =
Qg(g). The following statement gives the minimum of these quantities and implies Theorem
Proposition 4.2. Given p, let g = Zi’g and F5(y) = vol*({£ | 9(&) > y}) as in [22)). Then

one has

+oo
Sa,(p) = Sr(p) —7(p) = ; Fa(y) In Fy(y)dy — 7(p) -
Equality holds if o is a decreasing regular filling of the level sets of g in the following sense:
e for each y, there exists \ such that

{€19(8) >y} QX ={¢|a(§) <A} {E [ 9(§) =y}
e for all \, vol*(c~1()\)) = 0.

Equivalently, the level sets Qf of a regular filling o are the sets {£ | g(§) > y} (up to
zero measure) for regular values of p, i.e. when vol*(g~1(y)) = 0, while on g~!(y) for the
(discrete) non-regular values, they interpolate continuously in measure between {¢ | g(¢) > y}
and {¢ | g(§) > y}. This can be achieved since the measure has no atom.

From Proposition 4.2 we notice that the use of the Laplacian is already optimal to minimize
the spectral entropy of states such that p has a decaying radial density; Theorems and
are equivalent on such states. On anisotropic states, one advantage of over appears in
its stronger invariance through general linear transforms f(x) — f(Ax) and p +— pa = ApA~1L.
In such cases, one checks easily that
dvgz

=€

dv PA
dx

_1dvp

t A—1
AT,

(z) = | det A|%(Aa:) while (€) = | det A]

giving that
Saz(pa) = Saz(p) — 7(p)In|det A] while Sr(pa)= Sr(p)+ 7(p)In|det 4|,
which keeps the entropy sum unchanged in .

Proof of Proposition[].2. Let v(§) = vol™ (€27 ) and Fy(2) = v4(v5)(]0, 2]). Then by

dy dy

“+00 1 “+00
(55)  Sa,(p) = / nydFy(y) = — / Foln) 2 + / (7(0) - o) 2

by Fubini, since F,,(+00) = 7(p) = 7(p). Hence Sa, (p) > Sa,,(p) if o, < F,,, and we have
to look for upper bounds for Fi, to minimize Sy, (p).
By definition, one has

Foly) = [ g©d with Df = {¢ | vol'(@q) < 0}
Yy
Clearly one has {£ | 0(§) < A} C Dy C Qf where \ = suppg o, and thus vol*(Dy) <y with

equality if vol*(6=(\)) = 0. Hence by the ’bathtub principle’ (see [13, Theorem 12.3]) one
has

(56) Foy) < F(y) = /{ iy MOTE F )~ FlF W),
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with Fi;l(y) = inf{z | F;(2) < y}. Indeed, this comes from the identity

Fy(y) — Fly) = 9(&) = F5 ' (y))d*¢

Jogrsers o
DgN{g<F5 (1)}

-/ L (9&) — F )+ F5 M (y)(vol' (D) — ).
(Dg){g>F5 " (y)}

Moreover this shows that equality holds in if vol*(Dy) = y and, up to zero measure sets,
{9 >F; Yy} ¢ Dy c{g=F; Y(4)}; which is fulfilled for regular fillings by the discussion
above.

We rewrite the function F(y) in a more convenient form. Since 7(p) = Jgn 9(§)d*E,
one has

/ . g(ﬁ)d*£=7(p)—/ o 9(©dre
{9>F5"(v)} {9<F; (y)}

(o)~ [ dud€

{0<u<g(O<F; ' ()}
() .
(Fﬁ(u) — Ff)(Fﬁ (y))du

J
/Fﬁl(y)
0

Then by ,

=7(p) — / dvdu,
{y<v<Fz(u)}

since by right continuity of F;, one has u < Fgl(y) iff F5(u) > y. Therefore

+o00 Y
657) Fo) =)= [ F o= [ R

since

+00
/ g(&)d*¢ = / dud* & = / Fs(u
Rn {0<u<g(&)}

+oo
/ dvdu = / Fl(v)dv.
0<v<Fs(u 0 P



22 MICHEL RUMIN

Finally, (55) and lead to

/ In ydzdy
{0<z<F;'(y)}

/ In ydydz
{0<y<Fj5(2)}

—+o00
= [ R Fy(e) = 1) = Se() = 7(0).
as claimed in Proposition |4.2 O

4.4. Proof of Corollary We deduce Corollary [I.8|from Theorem [I.7] This relies on the
following entropy comparison:

(58) SE(P) < Sare(p) + 7(p)(1 +In7(p)).

Indeed, one has

I dvs e
—Sawe(p) —7(p) = / ln(d*§>dVﬁ —7(p)
= / o Inydyd*¢
{0<y<dTg}

—+o0
=, Fy(y) Inydy,

thus
+o00
S#(7) — Sare () — 7(p) = /0 In(yF5()) Fa(y)dy
+oo
S/ In(7(p)) F5(y)dy = 7(p) InT(p),
0

. % dvs dvs 1% .
since yF5(y) = yvol{¢ | F£(§) >y} < Jgn 7ed" ¢ =7(p). Then, and give
Sax(p) + Sa=e(p) = =7(p)(3 + In7(p) +In|[plo) -

Then we observe that, except for the term —37(p), this expression is additive in taking

Q

tensor product of unit trace states. Therefore, applying it to @ p on R™ as in §4.2 and
dividing by N for N 7 +oo, gives on unit trace states, and the general statement by
homogeneity.

4.5. The role of von Neumann’s entropy. We finally discuss a possible improvement
of the last result Corollary using von Neumann’s entropy S(p) in the lower bound for
Saz(p) + Sa¢(p)- Following e.g. [I8, 9], this intrinsic entropy is defined for unit trace states
by

S(p) = —=7(pInp).
For such states, one has S(p) > —In||p[|co, with equality on normalized projections on finite
dimensional spaces p = IIy//dim V. Hence on these projections reads

(59) Saz(p) + Sa=¢(p) = S(p) (= ndim V).
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We don’t know whether this holds for general unit trace states. An interesting family of
examples here is given by the heat of the harmonic oscillator, which is the semigroup
pr = exp(—t(A +[|z]*))

acting on L2(R?). This state is the n-th tensor product of the one-dimensional case. Further-
more it is self-dual in Fourier transform, i.e. p; = p;. The kernel of p; is given by Mehler’s
formula (see |4, Chap. 4.2|):

. “n 1 . _
pe(,y) = (2m sinh 2) "/ eXp(*§(CO‘Eh 2) (]| + llyll*) + (sinh 2) "z, 9)) ,

so that its density and trace are

d
% = pi(z,2) = (2msinh 26) ™2 exp(—(tanh t)||z]|?) and 7(p¢) = (2sinht)™".
x
This leads easily to the entropies of the normalized states Ay = p;/7(p;), namely
tanht ~ tanht
Sae(M) = = — ZIn(220) while  Sgee(N) = = — = In(0) — nln(2n)
2 2 0 2 2 us

hence
Saz(At) + Sg=e(M) =n —nln2 — nin(tanht).

To compute von Neumann’s entropy of A, we recall that on R, the spectrum of p; is given by
pp = e~ kDt L e N. One finds that

S(A) =nS(Af) = —n > _(2sinht)p; In((2sinh t)py)
k>0

= —nln(2sinht) — 2ntsinht Y (—2k — 1)~ FH!
E>0

= —nlIn(2sinht) — 2ntsinht(2 - ht)/
sin

=ntcotht —nln2 — nln(sinht).
Therefore we obtain
Saz(Ae) + Sd*g(/):t) — S(At) =n(1 +1In(cosht) — tcotht),

which is easily seen to be increasing in ¢ and positive. Hence these states also satisfy the
entropy bound , even sharply when ¢ goes to 0. It is not sharp in the opposite limit ¢ goes
to 400. Indeed there A\; converges to the pure ground state of the harmonic oscillator. One
has S(A¢) — 0 while Sg,(A) + Sd*g(xt) — n(1 —1n2), which, following [I], 2, 20], is actually
the best lower bound for this entropy sum on pure states.

Another clue in favour of on general (unit trace) states is that it implies the log-Sobolev
inequality proved in [8]:

e

Saalp) + 5 (5-Ea(p)) = S(p).

2mn
Indeed by a classical inequality ([16} (10, 20]), a probability x in R always satisfies

2me

Sae(p) = — /R ln(flg)du < ZIn(Z=0(n),
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where o2(u) = Jgn 1€ — E,(&)|?du is the variance of p, and equality achieved on Gaussian

measures. Hence for y = v5, one has

Sav¢(p) = Sd&(/)) - nln( )

v3))

S ( 27m

with

7up) < [ elPdvy = (€12 = 7(Ap) = Ealo).
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