
AROUND A SOBOLEV–ORLICZ INEQUALITY
FOR OPERATORS OF GIVEN SPECTRAL DENSITY

MICHEL RUMIN

Abstract. We prove some general Sobolev–Orlicz, Nash–Moser and Faber–Krahn inequali-
ties for positive operators A of given ultracontractive spectral decay F (λ) = ‖χA(]0, λ])‖1,∞,
without assuming e−tA is submarkovian. For invariant operators on coverings of finite sim-
plicial complexes this function F is equivalent to von Neumann spectral density. This allows
to relate the Novikov–Shubin numbers of such coverings to Sobolev inequalities on exact
`2-cochains, and to the vanishing of the torsion of the `p,2-cohomology for some p ≥ 2.

1. Introduction and main results

Let A be a strictly positive self-adjoint operator on a measure space (X,µ). Suppose
moreover that the semigroup e−tA is equicontinuous on L1(X) (submarkovian for instance).
Then, according to Varopoulos [17, 7], a polynomial heat decay

‖e−tA‖1,∞ ≤ Ct−α/2 with α > 2 ,

is equivalent to the Sobolev inequality

(1) ‖f‖p ≤ C ′‖A1/2f‖2 for 1/p = 1/2− 1/α.

This result applies in particular in the case A is the Laplacian acting on scalar functions of a
complete manifold, either in the smooth or discrete graph setting.

The first purpose of this paper is to present short proofs of general Sobolev–Orlicz inequal-
ities that hold for positive self-adjoint operators, without equicontinuity or polynomial decay
assumption, knowing either their heat decay, as previously, or their “ultracontractive spectral
decay” F (λ) = ‖Πλ‖1,∞ of their spectral projectors Πλ = χA(]0, λ]) on Eλ. As will be seen
in Sections 4 and 5, the interest for this former F (λ) mostly comes from geometric considera-
tions. For instance if A is a scalar invariant operator over a discrete group Γ, or more generally
an unimodular one, then F (λ) coincides with von Neumann’s Γ-dimension of Eλ, and thus
F represents the non-zero spectral density function of A, see Proposition 4.2. In the general
setting the spectral decay F stays a right continuous increasing function as comes from the
identity

(2) ‖P ∗P‖1,∞ = ‖P‖21,2 = sup
‖f‖1,‖g‖1≤1

|〈Pf, Pg〉|.
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We state the Sobolev–Orlicz inequalities we shall prove. In the sequel, if ϕ is a monotonic
function, ϕ−1 will denote its right continuous inverse.

Theorem 1.1. Let A be a positive self-adjoint operator on (X,µ) with ultracontractive spectral
projections Πλ = χA(]0, λ]), i.e. F (λ) = ‖Πλ‖1,∞ < +∞.

Suppose moreover that the Stieljes integral G(λ) =
∫ λ

0

dF (u)
u

converges. Then any non

zero f ∈ L2(X) ∩ (kerA)⊥ of finite energy E(f) = 〈Af, f〉2 satisfies

(3)
∫
X
H
( |f(x)|2

4E(f)

)
dµ ≤ 1 ,

where H(y) = y G−1(y).

The heat version of this result has a similar statement (and proof).

Theorem 1.2. Let A be a positive self-adjoint operator on (X,µ) such that L(t) = ‖e−tAΠV ‖1,∞
is finite, with V = L2(X) ∩ (kerA)⊥.

Suppose moreover that M(t) =
∫ +∞

t
L(u)du < +∞. Then any non zero f ∈ V of finite

energy satisfies

(4)
∫
X
N
( |f(x)|2

4E(f)

)
dµ ≤ ln 2 ,

where N(y) = y/M−1(y)

Both results give (effective) Sobolev inequalities (1) in the polynomial decay case for F or
L. At first, one sees easily that the transform from F to G is increasing, see (14), while G to
H is decreasing. Therefore, if F (λ) ≤ Cλα for α > 1, then G(λ) ≤ C1λ

α−1 with C1 = Cα
α−1 ,

and H(y) ≥ C
1

1−α
1 y

α
α−1 . Hence (3) reads ‖f‖2α/(α−1) ≤ 2C

1
2α
1 ‖A1/2f‖2.

The Sobolev inequalities (3) and (4) imply some general Nash and Faber–Krahn inequalities,
see (28). However this approach also assumes some thinness of the near-zero spectrum, as
required by the convergence of G or M . As the classical Nash and Moser inequalities makes
sense for thick spectrum, one may look for a direct proof. From the heat decay to Nash,
such a derivation has already been obtained for general operators by Coulhon, see [7] and
the survey [8]. Therefore we will focus here on the relationship between the spectral density
F and Nash–Moser type inequalities. The starting point are inequalities resembling to the
“F-Sobolev” inequality introduced by Wang in [18] for some Schrödinger operators.

We give two close statements, depending whether one remove the kernel of A from the
spectral density and the functions, as needed above, or not.

Theorem 1.3. Let A be a positive self-adjoint operator on (X,µ). Suppose either

• f is a non-zero function in V = L2(X) ∩ (kerA)⊥ and F (λ) denotes ‖χA(]0, λ])‖1,∞
as above,
• or f is any non-zero function in L2(X), and F (λ) = ‖χA([0, λ])‖1,∞ .
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• Then the following generalised L2 Moser inequality holds

(5)
∫
X
|f(x)|2F−1

( |f(x)|2

4‖f‖22

)
dµ ≤ 4E(f) ,

and also

(6)
∫
X
|f(x)|2F−1

( |f(x)|
2‖f‖1

)
dµ ≤ 4E(f) .

• Both inequalities imply a Nash–type inequality (with weaker constants starting from (5))

(7) ‖f‖22F−1
( ‖f‖22

4‖f‖21

)
≤ 8E(f) .

• In particular if f is supported in a domain Ω of finite measure and has finite energy, the
following Faber–Krahn inequality, or “uncertainty principle”, is satisfied

(8) 4µ(Ω)F
(8E(f)
‖f‖22

)
≥ 1 .

On groups, the shape of (8) fits well with the interpretation of F (λ) as a renormalised
“density” of dimension of Eλ per volume. More concretely, for any invariant positive scalar
operator on a finite group Γ, one has by Proposition 4.2 that F (λ) = dimEλ/card(Γ). Then
(8) claims that if there exists a non-zero state f of energy E(f) ≤ λ‖f‖22 and support Ω, then

(9) 4 dimE8λ ≥ card(Γ)/card(Ω) .

Except for the multiplicative constants 4 and 8, this formula looks quite sharp in general.
Indeed it could happen in some case that Γ be tiled by N = card(Γ)/card(Ω) copies of such
domains Ω, implying by min-max principle that dimEλ ≥ N there.

We now describe an application of the Sobolev-like inequalities in Theorem 1.1 or 1.2 to
geometric analysis. As they are not restricted to Markovian operators, these results apply in
the following setting. Let K be a finite simplicial complex and X → K = X/Γ some covering.
One considers on X the complex of `2 k-cochains with the discrete coboundary

dk : `2Xk → `2Xk+1

dual to the usual boundary ∂ of simplexes, see e.g. [15, §3].
Its `2-cohomology Hk+1

2 = ker dk+1/ Im dk splits in two components :

• the reduced part Hk+1
2 = ker dk+1/Im dk, isomorphic to `2-harmonic cochains Hk+1

2 =
ker dk+1 ∩ ker d∗k,
• and the torsion T k+1

2 = Im dk/ Im dk.

Although this torsion is not a normed space, one can study it by “measuring” the unbound-
edness of d−1

k on Im dk. We will consider here two different means.

- A first one is inspired by `p,q-cohomology. One enlarges the space `2Xk to `pXk for p ≥ 2,
and asks whether, for p large enough, one has

(10) dk(`2Xk)
`2

⊂ dk(`pXk) ,
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This is satisfied in case the following Sobolev identity holds

(11) ∃C such that ‖α‖p ≤ C‖dkα‖2 for all α ∈ (ker dk)⊥ ⊂ `2 .

The geometric interest of the rougher formulation (10) lies in its stability under the change of
X into other bounded homotopy equivalent spaces, as stated in Proposition 5.2. Moreover if
H
k+1
2 (X) vanishes, then (10) is equivalent to the vanishing of the torsion of the `p,2-cohomology

of X, as will be seen in Section 5.

- The second approach is spectral and relies on von Neumann Γ-dimension. Consider the Γ-
invariant self-adjoint A = d∗kdk acting on (ker dk)⊥ and the spectral density FΓ,k(λ) = dimΓEλ
of its spectral spaces Eλ. This function vanishes near zero if and only if zero is isolated in
the spectrum of A, which is equivalent to the vanishing of the torsion T k+1

2 . The asymptotic
behaviour of FΓ,k(λ) when λ ↘ 0 has a geometric interest in general since, given Γ, it is an
homotopy invariant of the quotient space K, as shown by Efremov, Gromov and Shubin in
[11, 14, 13].

One can compare these two notions in the spirit of Varopoulos result (1) on functions. In
the case of polynomial decay one obtains.

Theorem 1.4. Let K be a finite simplicial space and X → K = X/Γ a covering. Let
FΓ,k(λ) = dimΓEλ denotes the spectral density function of A = d∗kdk on (ker dk)⊥.

If FΓ,k(λ) ≤ Cλα/2 for some α > 2, then the Sobolev inequality (11), and the inclusion
(10), hold for 1/p ≤ 1/2− 1/α.

If moreover the reduced `2-cohomology Hk+1
2 (X) vanishes, this implies the vanishing of the

`p,2-torsion of X, as stated in Corollary 5.4.
Other spectral decays than polynomial can be handled with Theorem 1.1, leading then to

a bounded inverse of dk from Im dk ∩ `2 into a more general Orlicz space given by H.

2. Proofs of main inequalities

The first step towards Theorems 1.1 and 1.2 is to consider the ultracontrativity of the
auxiliary operators A−1Πλ and A−1e−tAΠV .

Proposition 2.1. • Let A, F and G be given as in Theorem 1.1. Then A−1Πλ is ultracon-
tractive with

(12) ‖A−1Πλ‖1,∞ ≤ G(λ) =
∫ λ

0

dF (u)
u

.

• Let A, L and M be given as in Theorem 1.2. Then A−1e−tAΠV is ultracontractive with

(13) ‖A−1e−tAΠV ‖1,∞ ≤M(t) =
∫ +∞

t
L(s)ds .

Proof. • The spectral calculus gives

A−1(Πλ −Πε) =
∫

]ε,λ]
u−1dΠu = λ−1Πλ − ε−1Πε +

∫
]ε,λ]

u−2Πudu ,
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thus taking norms, one obtains

‖A−1(Πλ −Πε)‖1,∞ ≤ λ−1F (λ) + ε−1F (ε) +
∫

]ε,λ]
u−2F (u)du

= G(λ)−G(ε) + 2ε−1F (ε) .

Now by finiteness of G, one has ‖Πε/ε‖1,∞ = F (ε)/ε ≤ G(ε)→ 0 when ε↘ 0, hence by (2)

‖A−1Πλ‖1,∞ = ‖ΠλA
−1/2Πλ‖21,2

= lim
ε→0
‖(Πλ −Πε)A−1/2Πλ‖21,2 by Beppo-Levi,

= lim
ε→0
‖A−1(Πλ −Πε)‖1,∞ ≤ G(λ) .

We note that we also have

(14) G(λ) = λ−1F (λ) +
∫ λ

0
u−2F (u)du ,

which shows the useful monotonicity of the transform from F to G and H.
• The heat case (13) is clear since A−1e−tAΠV =

∫ +∞
t e−sAΠV ds by the spectral calculus.

�

The sequel of the proofs of Theorems 1.1, 1.2 and 1.3 relies on a classical technique from
real interpolation theory, as used for instance in the elementary proof of the L2 −Lp Sobolev
inequality in Rn given by Chemin and Xu in [6]. This consists here in estimating each level
set {x, |f(x)| > y} by using an appropriate spectral splitting of f ∈ V into

(15) f = χA(]0, λ])f + χA(]λ,+∞[)f = Πλf + Π>λf .

2.1. Proof of Theorem 1.1. By (2) and (12) one has ‖A−1/2Πλ‖22,∞ ≤ G(λ), hence

(16) ‖Πλf‖2∞ ≤ G(λ)‖A1/2f‖22 = G(λ)E(f) .

Then suppose that |f(x)| ≥ y, with y2 = 4G(λ)E(f). As |Πλf(x)| ≤ y/2 by (16), one has
necessarily by (15) that |Π>λf(x)| ≥ y/2 ≥ |Πλf(x)| and finally

(17) |f(x)|2 ≤ 4|Π>λf(x)|2 on
{
x ∈ X | |f(x)|2 ≥ 4G(λ)E(f)

}
.

Hence a first integration in x gives,∫
{x , |f(x)|2≥4E(f)G(λ)}

|f(x)|2dµ ≤ 4‖Π>λf‖22 ,

and a second integration in λ,∫
X

|f(x)|2

4E(f)
G−1

( |f(x)|2

4E(f)

)
dµ(x) ≤

∫ +∞

0

‖Π>λf‖22
E(f)

dλ ,

where G−1(y) = sup{λ | G(λ) ≤ y}. At last the spectral calculus provides∫ +∞

0
‖Π>λf‖22 dλ =

∫ +∞

0

∫ +∞

λ
〈dΠµf, f〉

=
∫ +∞

0
µ 〈dΠµf, f〉 = 〈Af, f〉 = E(f) ,



6 MICHEL RUMIN

proving Theorem 1.1.

2.2. Proof of Theorem 1.2. We follow the same lines as above. First by (2) and (13) one
has for f ∈ V

‖e−tA/2f‖∞ ≤M(t)E(f) ,

leading to

(18) |f(x)|2 ≤ 4|(1− e−tA/2)f(x)|2 on
{
x ∈ X | |f(x)|2 ≥ 4M(t)E(f)

}
.

Then integrations in x and dt/t2 give∫
X

|f(x)|2

4E(f)
/M−1

( |f(x)|2

4E(f)

)
dµ(x) ≤ 1

E(f)

∫ +∞

0
‖(1− e−tA/2)f‖22

dt

t2
,

where now M−1(y) = inf{t |M(t) ≤ y} for the decreasing M . The right integral is computed
by spectral calculus∫ +∞

0
‖(1− e−tA/2)f‖22

dt

t2
=
∫ +∞

0

∫ +∞

0
(1− e−tλ/2)2〈dΠλf, f〉

dt

t2

=
∫ +∞

0

(∫ +∞

0

(1− e−u)2

2u2
du
)
λ〈dΠλf, f〉

= IE(f) ,

where 2I =
∫ +∞

0

(1− e−u)2

u2
du = 2 ln 2 as seen developing Iε =

∫ +∞

ε

(1− e−u)2

u2
du when

ε↘ 0.

2.3. Proof of Theorem 1.3. Here one compares levels of f to ‖f‖2 or ‖f‖1 instead of
E(f). This does not rely on Proposition 2.1, and one can work either with f ∈ (kerA)⊥ and
F (λ) = ‖χA(]0, λ])‖1,∞, as before, or with a general f ∈ L2(X) and F (λ) = ‖χA([0, λ]‖1,∞.
In any case, one gets as previously

(19)
|f(x)|2 ≤ 4|Π>λf(x)|2 on{

x ∈ X | |f(x)|2 ≥ 4F (λ)‖f‖22
}

or
{
x ∈ X | |f(x)| ≥ 2F (λ)‖f‖1

}
.

This leads to the generalised Moser inequalities (5) and (6) by integrations as in Theorem 1.1.
Note that in the case one works without restriction on f and F (λ) = ‖Π[0,λ]‖1,+∞, one has

to complete the definition of F−1 by setting

(20) F−1(y) =

{
0 if y < F (0) ,

sup{λ | F (λ) ≤ y} elsewhere .

This means that the inequalities (5) and (6) cut off small values of f .
To deduce the Nash–type inequality (7), we argue as in [9, p. 97]. Observe that for all

non-negative s and t one has

(21) st ≤ sF (s) + tF−1(t) .
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Applying to t = |f(x)|
2‖f‖1 gives

s
|f(x)|
2‖f‖1

− sF (s) ≤ |f(x)|
2‖f‖1

F−1
( |f(x)|

2‖f‖1

)
.

By integration against the mesure |f(x)|dµ and using (6), this yields

s
‖f‖22
2‖f‖1

− sF (s)‖f‖1 ≤
∫
X

|f(x)|2

2‖f‖1
F−1

( |f(x)|
2‖f‖1

)
dµ ≤ 2E(f)

‖f‖1
.

Given ε ∈]0, 1/2[ and using

s↗ F−1
(ε‖f‖22
‖f‖21

)
= sup

{
s | F (s) ≤ ε‖f‖22

‖f‖21

}
,

one finds that

(22) (
1
2
− ε)‖f‖22F−1

(ε‖f‖22
‖f‖21

)
≤ 2E(f) .

This proves the generalised Nash inequality (7) for ε = 1/4, and shows that constants can be
“balanced” differently using other values of ε.

One can proceed similarly starting from the L2 Nash–type inequality (5) instead of (6).
One replaces (21) by

(23) st ≤ s
√
F (s) + tF−1(t2)

and applies it with t = |f(x)|
2‖f‖2 . Integrating against |f(x)|dµ and using s↗ F−1( ε

2‖f‖22
‖f‖21

) yields

(24) (
1
2
− ε)‖f‖22F−1

(ε2‖f‖22
‖f‖21

)
≤ 2E(f) ,

which is similar to (22), but with weaker constants.

When is f is supported in a domain Ω of finite measure, one has ‖f‖21 ≤ µ(Ω)‖f‖22, and
thus (22) implies that

(25) (
1
2
− ε)F−1

( ε

µ(Ω)

)
≤ 2E(f)
‖f‖22

.

If E(f) is finite, this leads to the Faber–Krahn inequality

(26)
ε

µ(Ω)
≤ F

( 4E(f)
(1− 2ε)‖f‖22

)
,

since by right continuity of F and (20), one has F (F−1(λ)) ≥ λ when F−1(λ) is finite.

2.4. Tightening constants in Theorem 1.3. To complete the previous discussion, we note
that the proof of the Nash inequality can be shortened, and its constants improved, under an
additional convexity assumption. Namely if the function y 7→ yF−1(y) is convex, then Jensen
inequality applied on (6) for the probability mesure dP = |f |dµ/‖f‖1 gives

‖f‖22F−1
( ‖f‖22

2‖f‖21

)
≤ 4E(f) and

1
2µ(Ω)

≤ F
(4E(f)
‖f‖22

)
,
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with sharper coefficients than in (22) and (26). Moreover one can balance differently the
inequalities, from the beginning of their proofs. Replacing for instance (19) by

|f(x)|2 ≤
(1 + ε

ε

)2
|Π>λf(x)|2 on

{
x ∈ X | |f(x)| ≥ (1 + ε)F (λ)‖f‖1

}
,

yields ∫
X
|f(x)|2F−1

( |f(x)|
(1 + ε)‖f‖1

)
dµ ≤

(1 + ε

ε

)2
E(f) ,

instead of (6) and leads to the Faber–Krahn inequality

(27)
1

(1 + ε)µ(Ω)
≤ F

((1 + ε)2E(f)
ε2‖f‖22

)
in the case yF−1(y) is convex. These inequalities are much closer than (26) to the “ideal one”
discussed in the introduction

1 ≤ µ(Ω)F
(E(f)
‖f‖22

)
.

Although one sees in (27) that tightening the energy coefficient to 1 blows up the volume one,
and reversely.

2.5. Remark. In the previous proofs, it appears clearly that the proposed controls of ultra-
contractive norms of spectral or heat decay are much stronger than the Sobolev and Nash-type
inequalities deduced. Indeed these inequalities are twice integrated versions, in space and
frequency, of the “local” inequalities (17), (18) and (19), that come directly from the ultracon-
tractive controls. Therefore it seems hopeless to get the converse statements in general.

However, we recall that one can get back from Sobolev or Nash to the heat decay, in the
case the heat is equicontinuous on L1 or L∞; as due to Varopoulos in [17] for the polynomial
case, and Coulhon in [7] for more general decays. This strong equicontinuity hypothesis holds
for the Laplacian on scalar functions, as comes for instance from the maximum principle, but
unfortunately only in a positive curvature setting for Hodge-de Rham Laplacians on higher
degree of forms.

3. Relationships between inequalities

3.1. From H-Sobolev to Nash. We compare and comment briefly the various results ob-
tained. At first, in the classical polynomial case, Sobolev inequality (1) implies Nash’ one

‖f‖1+2/α
2 ≤ C‖f‖2/α1 E(f)1/2

by Hölder, see e.g. [8]. One can get similarly a Nash–type inequality from the H and N-Sobolev
inequalities proposed here.

Indeed, replacing F by G in (23) and using t = |f(x)|
2E(f) and s ↗ G−1( ‖f‖42

16E(f)‖f‖21
) leads as

above to

G−1
( ‖f‖42

16E(f)‖f‖21

)
≤ 8E(f)
‖f‖22

and in finite energy to

(28)
‖f‖22
2‖f‖21

≤ 8E(f)
‖f‖22

G
(8E(f)
‖f‖22

)
.
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In comparison, the Nash inequality (7) reads

(29)
‖f‖22
4‖f‖21

≤ F
(8E(f)
‖f‖22

)
,

which, up to constants, is a priori sharper than (28), since F (λ) ≤ λG(λ) in general.
Observe that one may have F (λ)� λG(λ) for very thick near-zero spectrum, even when G

converges. For instance if F (λ) = λ/ ln2 λ then λG(λ) = (− lnλ + 1)F (λ). Except this “low
dimensional” phenomenon, one has λG(λ) �

0
F (λ) in the other cases, and thus the two Nash

inequalities (29) and (28) have same strength. For instance this holds if F (λ) ∼
0
λ1+εϕ(λ) for

some ε > 0 and an increasing ϕ > 0. This comes from the following remark.

Proposition 3.1. Suppose there exists ε > 0 such that, for small λ, F satisfies the growing
condition F (2λ) ≥ 2(1 + ε)F (λ), then (2 + ε−1)F (λ) ≥ λG(λ) ≥ F (λ).

Proof. By (14), one has

G(λ) =
∫ λ

0

dF (u)
u

=
F (λ)
λ

+
∫ λ

0

F (u)
u2

du

=
F (λ)
λ

+
(∫ λ/2

0
+
∫ λ

λ/2

)F (u)
u2

du

≤ 2F (λ)
λ

+
∫ λ/2

0

F (2u)
2(1 + ε)u2

du by hypothesis on F ,

≤ 2F (λ)
λ

+
1

1 + ε

(
G(λ)− F (λ)

λ

)
,

leading to λG(λ) ≤ (2 + ε−1)F (λ) . �

As a curiosity, we note that under the growing hypothesis on F above, the spectral density
of states F and the spatial repartition function H have symmetric expressions with respect to
G and G−1. Indeed, one has simply there

(30) F (λ) � λG(λ) while H(x) = xG−1(x) .

3.2. Spectral versus heat decay. One would like to compare the two Theorems 1.1 and 1.2.
They both lead to Sobolev inequalities starting either from the heat or spectral decay. One
can compare F and G to L and M through Laplace transform of associated measures.

Proposition 3.2. • In any case it holds that

L(t) ≤ L(dF )(t) =
∫ +∞

0
e−λtdF (λ)(31)

M(t) ≤ L(dG)(t) =
∫ +∞

0
e−λtdG(λ) .(32)

• If A is an invariant operator acting on L2-sections of an invariant vector bundle V

over a locally compact group Γ, then reverse inequalities hold up to the multiplicative factor
n = dimV , i.e.

L(dF ) ≤ nL and L(dG) ≤ nM .
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Moreover G(y) ≤ neM(y−1) and H-Sobolev inequality (3) implies N-Sobolev (4), up to multi-
plicative constants.
• Reversely, for any operator, if G satisfies the exponential growing condition :

∃C such that ∀u, y > 0 , G(uy) ≤ eCuG(y) ,

then M(y−1) ≤ 3G(2Cy). Hence H and N -Sobolev are equivalent on groups in that case.

Proof. • By spectral calculus e−tAΠV =
∫ +∞

0 e−tλdΠλ = t
∫ +∞

0 e−tλΠλdλ, hence

L(t) = ‖e−tAΠV ‖1,∞ ≤ t
∫ +∞

0
e−tλ‖Πλ‖1,∞dλ = L(dF )(t) ,

and thus

M(t) =
∫ +∞

t
L(s)ds ≤

∫ +∞

t

∫ +∞

0
e−λsdF (λ)ds =

∫ +∞

0

e−λt

λ
dF (λ) = L(dG)(t) .

• For positive invariant operators P on groups, we will see in Proposition 4.2 that the
ultracontractive norm ‖P‖1,∞ is pinched between the trace τΓ(P ) and nτΓ(P ). This gives the
reverse inequalities by linearity of τΓ. In particular one gets

nM(y−1) ≥
∫ +∞

0
e−λ/ydG(λ) = y−1

∫ +∞

0
e−λ/yG(λ)dλ

≥ y−1

∫ +∞

y
e−λ/yG(y)dλ = e−1G(y).

Therefore N(y) = y/M−1(y−1) ≤ yG−1(ey) = e−1H(ey) and H-Sobolev implies∫
X
N
( |f(x)|2

4eE(f)

)
dµ ≤ e−1 .

• If G satisfies the growing condition, one has by (32)

M(1/y) ≤
∫ +∞

0
e−λ/ydG(λ) =

∫ +∞

0
e−uG(uy)du

≤
∫ 2C

0
e−uG(2Cy)du+

∫ +∞

2C
e−u/2G(2Cy)du

≤ 3G(2Cy) .

�

We note that it may happen that N � H for very thin near–zero spectrum. In an extreme
case there may be a gap in the spectrum, i.e. A ≥ λ0 > 0, hence F = G = 0 on [0, λ0[ and
H(y) ≥ λ0y, while L(t) � Ce−ct, M(t) � C ′e−ct and N(y) � C ′′y/ ln(y/C ′).

4. Ultracontractive norms and Γ-trace.

For applications we now discuss some geometric aspect of the analytic spectral decay F (λ) =
‖Πλ‖1,∞ we consider.

In the case of operators invariant under the action of a group Γ, such hypercontractive
norms are related to von Neumann Γ-dimension and trace. We briefly recall these notions and
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refer for instance to [15, §2] for more details. However we will follow here a slightly different
approach, as in [16, §6.1] for instance, that covers also some non-discrete actions.

Suppose that a locally compact group Γ (discrete or not) acts by measure preserving trans-
forms on the space X with a finite quotient X/Γ. For instance, when Γ is discrete, X may be a
covering space over a finite simplicial complex. Equivalently one can also take a d–dimensional
invariant bundle V over a group Γ and set X = Γ× [1, d], so that L2(X) ' L2(Γ)⊗ Ve.

The following straightforward proposition, see e.g. [16, Prop. 6.4–6.6], leads to a definition
of a “Γ-trace” in this setting.

Proposition 4.1. Let Γ be a locally compact group and P be a Γ-invariant positive operator
on L2(Γ)⊗ Ve. For any D ⊂ Γ with Haar measure 0 < λ(D) < +∞, consider the trace

τD(P ) = λ(D)−1 Tr(χDPχD) .

• Let S be the positive square root of P . Then τD(P ) is finite iff SχD is an Hilbert–Schmidt
operator. In that case the kernel of S is KS(x, y) = kS(y−1x) with kS ∈ L2(Γ), while the
kernel of P is KP (x, y) = kP (y−1x) with kP = kS ∗ kS ∈ C0(Γ), and it holds that

τD(P ) =
∫

Γ
TrVe

(
k∗S(x)kS(x)

)
dλ(x) = TrVe(kP (e)) .

In particular this trace is independent of D. It will be denoted by τΓ and called (improperly)
the Γ–trace in the sequel.
• If moreover Γ is unimodular, and P is a (not necessarily positive) Γ–invariant bounded

operator, then τΓ(P ∗P ) = τΓ(PP ∗). Hence τΓ actually defines a faithful trace in that case.

We recall that this last trace property allows to get a meaningful notion of dimension for
closed Γ-invariant subspaces L ⊂ H = L2(Γ)⊗ Ve. Indeed, one sets then dimΓ L = TrΓ(ΠL).
This satisfies the key property dimΓ f(L) = dimΓ L for any closed densely defined invariant
injective operator f : L→ H, see e.g. [15, §2] or [16, §3.2].

On any locally compact group, the Γ-trace of P is easily compared to its ultracontractive
norm.

Proposition 4.2. Let P be a positive Γ-invariant operator acting on L2(X) = L2(Γ) ⊗ Ve
with kernel KP (x, y) = kP (y−1x), then

‖P‖1,∞ = ‖kP (e)‖ ≤ τΓ(P ) ≤ (dimVe)‖P‖1,∞ .

Proof. In general one has ‖P‖1,∞ = sup
x,y
‖KP (x, y)‖, and by positivity of P ,

2|〈KP (x, y)u, v〉| ≤ 〈KP (x, x)u, u〉+ 〈KP (y, y)v, v〉 .

Therefore ‖P‖1,∞ = sup
x
‖KP (x, x)‖ = ‖kP (e)‖ for an invariant operator. Here

‖kP (e)‖ = sup
‖v‖≤1

‖kP (e)v‖Ve = sup
‖v‖≤1

〈kP (e)v, v〉

for the positive kP (e), while τΓ(P ) = TrVe(kP (e)) by Proposition 4.1. �
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As a consequence, already used in Proposition 3.2, the norm ‖P‖1,∞ is, up to multiplicative
constants, a linear form on positive P . This gives also the converse inequalities to (12) and
(13) in Proposition 2.1 for invariant operators on groups. Indeed it holds in this case that

(33)
‖A−1Πλ‖1,∞ � τΓ(A−1Πλ) � G(λ)

‖A−1e−tA‖1,∞ � τΓ(A−1e−tA) �M(t) ,

due to the equalities τΓ(A−1e−tA) =
∫ +∞
t τΓ(e−sA)ds and

τΓ(A−1Πλ) =
∫ λ

0
u−1dτΓ(Πu) = λ−1τΓ(ΠΛ) +

∫ λ

0
u−2τΓ(Πu)du .

Its relation to the Γ-trace allows to estimate the ultracontractive spectral decay F (λ) of A
in some simple cases. Namely, following Dixmier [10, §18.8], if the group Γ is locally compact
unimodular and postliminaire, there exists a Plancherel measure µ on its unitary dual Γ̂,
together with a Plancherel formula that gives here

(34) F (λ) = ‖Πλ‖1,∞ � τΓ(Πλ) =
∫

bG Tr(Π̂λ(ξ))dµ(ξ) .

For instance, in the case of the Laplacian ∆ on Rn, the spectral space Eλ(∆) is the Fourier
transform of functions supported in the ball B(0,

√
λ) in (R̂n, dµ) ' (Rn, (2π)−ndx), hence

(35) F (λ) = µ(B(0,
√
λ)) = Cnλ

n/2,

with Cn = (2π)−nvol(Bn). This leads to

G(λ) =
nCn
n− 2

λn/2−1 and H(x) = xG−1(x) =
(n− 2
nCn

) 2
n−2

x
n
n−2 ,

so that finally (3) gives the classical Sobolev inequality in Rn

‖f‖2n/(n−2) ≤
1
π

(n vol(Bn)
n− 2

) 1
n ‖df‖2 = Dn‖df‖2 .

One finds that the constant Dn has the correct rate of decay in n, namely Dn ∼+∞

√
2e
nπ .

While according to [2], the best constant here is D∗n = 2(n(n − 2))−1/2area(Sn)−1/n, and

satisfies D∗n ∼+∞

√
2
nπe .

The L2-Moser inequality (5) also gives constants with the right decay in n on Rn. Indeed
from (35), one finds that

‖f‖2+4/n
2+4/n ≤ 41+2/nC2/n

n ‖f‖
4/n
2 ‖df‖

2
2 = En‖f‖4/n2 ‖df‖

2
2 ,

with En ∼+∞
2e
nπ while, following Beckner, see [3] or [9, Appendix], the best constants in the

L2-Moser inequality are asymptotic to 2
nπe .

Still on Rn, one can get some general algebraic expression of F (λ) for positive invariant
differential operatorA =

∑
I aI∂xI . Let σ(A)(ξ) =

∑
I aI(iξ)

I be its polynomial symbol. Then
again the spectral space Eλ(A) consists in functions whose Fourier transform is supported in

Dλ = {ξ ∈ Rn | σ(A)(ξ) ≤ λ}
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and as above
F (λ) = (2π)−nvol(Dλ).

The asymptotic behaviour of F (λ) when λ ↘ 0 can be obtained from the resolution of the
singularity of the polynomial σ(A) at 0. Indeed, there exists α ∈ Q+ and k ∈ [0, n − 1] ∩ N
such that

F (λ) ∼
λ→0+

Cλα| lnλ|k ,

see e.g. Theorem 7 in [1, §21.6]. Moreover, under a non-degeneracy hypothesis on σ(A), the
exponents α and k can be read from its Newton polyhedra. Then if α > 1, Proposition 3.1
yields that G(λ) �

0
λα−1| lnλ|k. Therefore G−1(u) �

0
u1/(α−1)| lnu|−k/(α−1) and finally the

H-Sobolev inequality (3) is governed in small energy by the function

H(u) � u
α
α−1 | ln(u)|−

k
α−1 for u� 1 .

5. Spectral density and cohomology

To apply the previous results, we suppose now that K is a finite simplicial complex and
consider a covering Γ→ X → K. Let dk be the coboundary operator on k-cochains Xk of X.
As a purely combinatorial and local operator, it acts boundedly on all `p-spaces of cochains
`pXk, see e.g. [4, 15].

Let FΓ,k(λ) denotes the Γ-trace of the spectral projector Πλ = χA(]0, λ]) of A = d∗kdk. By
Proposition 4.2 this function is equivalent, up to multiplicative constants, to the hypercontrac-
tive spectral decay F (λ) = ‖Πλ‖1,∞. Thus Theorem 1.4 is a direct application of Theorem 1.1
in the polynomial case. This statement compares two measurements of the torsion of `2-
cohomology T k+1

2 = dk(`2)
`2

/dk(`2) that share some geometric invariance. We describe this
more precisely.

We first recall the main invariance property of FΓ,k(λ). We say that two increasing functions
f, g : R+ → R+ are equivalent if there exists C ≥ 1 such that f(λ/C) ≤ g(λ) ≤ f(Cλ) for λ
small enough. According to [11, 14, 13] we have :

Theorem 5.1. Let K be a finite simplicial complex and Γ → X → K a covering. Then the
equivalence class of FΓ,k only depends on Γ and the homotopy class of the (k + 1)-skeleton of
K.

One tool in the proof is the observation that an homotopy of finite simplicial complexes
F and G induces bounded Γ-invariant homotopies between the Hilbert complexes (`2Xk, dk)
and (`2Y k, d′k). That means there exist Γ-invariant bounded maps

fk : `2Xk → `2Y k and gk : `2Y k → `2Xk

such that
fk+1dk = d′kfk and gk+1d

′
k = dkgk

and
gkfk = Id + dk−1hk + hk+1dk and fkgk = Id + d′k−1h

′
k + h′k+1d

′
k
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for some bounded maps

hk : `2Xk → `2Xk−1 and h′k : `2Y k → `2Y k−1.

All these maps are purely combinatorial and local, see e.g. [4, 16], and thus extend on all `p

spaces of cochains.
One can show a similar invariance property of the inclusion (10) we recall below, but that

holds more generally on uniformly locally finite simplicial complexes, without requiring a group
invariance. These are simplicial complexes such that each point lies in a bounded number N(k)
of k-simplexes.

Proposition 5.2. Let X and Y be uniformly locally finite simplicial complexes. Suppose that
they are boundedly homotopic in `2 and `p norms for some p ≥ 2. Then one has

(9) dk(`2Xk)
`2

⊂ dk(`pXk) ,

if and only if a similar inclusion holds on Y .

Proof. Suppose that dk(`2Xk)
`2

⊂ dk(`pXk) and consider a sequence αn = d′k(βn) ∈ d′k(`2Y k)

that converges to α ∈ dk(`2Y k)
`2

in `2.

Then gk+1αn = dk(gkβn) → gk+1α ∈ dk(`2Xk)
`2

. Therefore there exists β ∈ `pXk such
that gk+1α = dkβ. Then taking `2-limit in the sequence

fk+1gk+1αn = αn + d′kh
′
k+1αn + h′k+2d

′
k+1αn = αn + d′kh

′
k+1αn

gives
d′k(fkβ) = fk+1dkβ = α+ d′kh

′
k+1α ,

and finally α ∈ d′k(`pY k) since `2Y k ⊂ `pY k for p ≥ 2. �

The inclusion (10) we consider here is related to problems studied in `p,q cohomology. We
briefly recall this notion and refer for instance to [12] for details. If X is a simplicial complex
as above, one considers the spaces

Zkq (X) = ker dk ∩ `qXk and Bk
p,q(X) = dk−1(`pXk) ∩ `qXk .

Then the `p,q-cohomology of X is defined by

Hk
p,q(X) = Zkq (X)/Bk

p,q(X) .

Its reduced part is the Banach space

H
k
p,q(X) = Zkq (X)/Bk

p,q(X) ,

while its torsion part
T kp,q(X) = B

k
p,q(X)/Bk

p,q(X)

is not a Banach space. These spaces fit into the exact sequence

0→ T kp,q(X)→ Hk
p,q(X)→ H

k
p,q(X)→ 0 .

It is straightforward to check as above that, for p ≥ q, these spaces satisfy the same homo-
topical invariance property as in Proposition 5.2.
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Proposition 5.3. Let X and Y be uniformly locally finite simplicial complexes. Suppose that
they are boundedly homotopic in `p and `q norms for p ≥ q. Then the maps fk : `∗Xk → `∗Y k

and gk : `∗Y k → `∗Xk induce reciprocal isomorphisms between the `p,q cohomologies of X and
Y , as well as their reduced and torsion components.

In this setting, the vanishing of the `p,2-torsion T k+1
p,2 (X) is equivalent to the closeness of

Bk+1
p,2 (X) = dk(`pXk) ∩ `2Xk+1 in `2Xk+1, i.e to the inclusion

dk(`pXk) ∩ `2Xk+1
`2

⊂ dk(`pXk) ∩ `2Xk+1 .

This implies the weaker inclusion (10), but is stronger in general unless the following holds

(36) dk(`pXk) ∩ `2Xk+1 ⊂ dk(`2Xk)
`2

.

Now by Hodge decomposition in `2Xk+1, one has always

dk(`pXk) ∩ `2Xk+1 ⊂ ker dk+1 ∩ `2Xk+1 = H
k+1
2 (X)⊕⊥ dk(`2Xk)

`2

.

Hence (36) holds if the reduced `2-cohomology Hk+1
2 (X) vanishes, proving in that case the

equivalence of (10) to the vanishing of the `p,2-torsion, and even to the identity

(37) Bk+1
p,2 := dk(`pXk) ∩ `2Xk+1 = dk(`2Xk)

`2

,

which is clearly closed in `2.

Corollary 5.4. Let K be a finite simplicial space and Γ→ X → K a covering. Suppose that
the spectral distribution FΓ,k of A = d∗kdk on (ker dk)⊥ satisfies FΓ,k(λ) ≤ Cλα/2 for some
α > 2. Suppose moreover that the reduced `2-cohomology Hk+1

2 (X) vanishes.
Then (37) and the vanishing of the `p,2-torsion T k+1

p,2 (X) hold for 1/p ≤ 1/2− 1/α.

For instance, by [5], infinite amenable groups have vanishing reduced `2-cohomology in all
degrees.
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