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1 Introduction

Starting with a compact manifold M , or even a finite simplicial complex, one
can consider the large time behaviour of heat on forms (or cochains) on its
fundamental cover M̃ . The large time heat decay exponents, called Novikov-
Shubin numbers, are known to be homotopical invariants of M . On functions

1



this exponent is related to the growth of π1(M). Yet, in higher degrees very
few is known about their geometric signification.

We will consider the case of M̃ being a graded nilpotent group G (or Carnot
group), that is a nilpotent group with a dilation. We will show how the study
on one forms, or even on discrete one cochains, leads to introduce differential
operators of high orders, that fit into complexes. These constructions extend
to Carnot-Carathéodory spaces, that is manifolds with a bracket generating
distribution given in the their tangent bundle. The ideas and results will be
precised on examples.

This paper is based on (the two first) lectures given at the 24th Winter
School in Geometry and Physics that held at Srni, Czech Republic, January
2004. It is a pleasure to thank Vladimı́r Souček and the other organisers for
their invitation and welcome.

I have tried to follow an elementary and self-contained presentation, in or-
der to keep it the most accessible. Related developments around the topics pre-
sented here, but relying on more analytic techniques, may be found in [39, 40].

2 Some motivation from spectral geometry

2.1 Discrete groups, Cayley graphs and cochain complex

Discrete groups seen as graphs. The spectral geometric problem we want
to discuss actually makes sense not only on fundamental cover M̃ of smooth
compact manifolds M , but on any finitely presented discrete group Γ.

One says that a discrete group Γ has a finite presentation if

• Γ is generated by a finite set S = {s1, s2, · · · , sn}, meaning that any
element of Γ can be written as a word (product) of s±1

i ∈ S ∪ S−1,

• any relation in Γ, that is any word w in the s±1
i such that w = e neutral

element of Γ, can be factorized as a product of elements of the form
γ−1r±1

i γ, where the ri runs within a finite set R = {r1, r2, · · · , rk} of
“elementary” relations.

In other words, that means that we can identify Γ with the quotient of Free(S),
the free group on S, by the normal subgroup of relations generated by R.
The basic examples of such groups are fundamental groups π1(M) of compact
manifolds M .

Associated to any choice of generating set S of Γ is a graph C, called Cayley
graph, and defined as follows

• vertices of C are elements of Γ

• two elements γ, γ′ of Γ are related by an (oriented) edge in C if γ′ = γs±1
i

for some si ∈ S.

Figure 1 shows two Cayley graphs associated to Z2.
In the left one we see Z2 as generated by two elements, while three (!) are used
on the right one. (This academic example is just here to stress on the fact that
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Figure 1: Dupond and Dupont.

they are many Cayley graphs associated to a single group, and that in general
there is no preferred presentation.)

We observe that, given S, relations of Γ appears as closed loops in C. So one
can naturally complete C by adding two dimensional disks at any vertex γ, along
the chosen elementary relations ri ∈ R. One obtains then a two dimensional
polyhedra P called Cayley polyhedra. For instance, in the left part of fig 1,
one adds squares corresponding to the relation r1 = s1s2s

−1
1 s−1

2 , while one the
right one we have to choose two basic relations, for example r1 = s1s2s

−1
3 and

r2 = s2s1s
−1
3 , and glue corresponding triangles. For a general Γ, the polyhedra

P is simply-connected as comes from the fact that R generates all the relations
of Γ. In fact P can be seen as the fundamental cover of a finite two dimensional
polyhedra P/Γ where Γ acts on P by left translations.

The presentation complex. We now describe two natural operators asso-
ciated to P. Let `2(Γ), `2(S) and `2(R) denote respectively square integrable
functions on Γ, Γ× S and Γ×R. These interpret as the `2 functions spaces on
the vertices, edges and two cells of P (or basic loops of C).

The first operator d0 goes from `2(Γ) to `2(S) and is defined by

(d0f)(γ, s) = f(γs)− f(γ), (1)

this is the difference operator of the function f along the edges of P (or C).
One can also define a circulation operator d1 : `2(S)→ `2(R) by

(d1α)(γ, r) =
∮

(γ,γr)
α, (2)

to be understood as the finite sum of values of α encountered in the oriented
closed loop in P (or C) starting at γ and travelling along the elementary relation
r.

One sees that d1 ◦d0 = 0. Moreover one has, at least locally, ker d1 = Im d0,
as seen using the fact that any relation in Γ (closed loop in C) can be solved
by elementary relations (filled by two cells in P). The piece of complex we
described

`2(Γ) d0−→ `2(S) d1−→ `2(R) , (3)
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will be called the presentation complex in the sequel. It is the beginning of
the (`2) simplicial cochain complex one can introduce on the two dimensional
Cayley polyhedra P. The maps d0 and d1 are actually dual to the two boundary
operators ∂1 and ∂2 available here. These linear ∂1, ∂2 are defined respectively
on (`2) sums of oriented edges and two cells of P by

∂1(edge e) = end e− origin e ,

and
∂2(two cell r) =

∑
edges bounding r .

Then the formula (2) for the circulation operator d1 reads

〈d1α, two cell r〉 = 〈α, ∂2r〉 .

The simplicial cochain complex (3) may be extended if (locally finitely
many) higher dimensional cells are available. This happens for instance on
coverings of triangulations of smooth compact manifolds. Again the cobound-
ary maps are dual to the boundary operators on the extra simplexes.

2.2 Measuring the heat decay and the spectrum

Heat operators and spectra. Let δ0 : `2(S)→ `2(Γ) and δ1 : `2(R)→ `2(S)
denote the adjoints of the (bounded) simplicial differentials d0 and d1. We have
two positive self-adjoint Laplacians

∆0 = δ0d0 acting on `2(Γ) ,

and
∆1 = d0δ0 + δ1d1 acting on `2(S).

We can consider the associated heat operators. By spectral resolution (see
[37]) we have,

e−t∆ =
∫ ∞

0
e−tλdE∆(λ),

where E∆(λ) denotes the spectral projection associated to [0, λ] by ∆ = ∆0

or ∆1. We see that for t → +∞, the heat operators e−t∆0 and e−t∆1 strongly
converge towards orthogonal projections onto ker∆0 and ker∆1. (Recall that
Pn → P strongly if Pnf → f in norm, for any fixed f .) As there is no har-
monic `2 functions, if Γ is infinite, the first space actually vanishes. This is
not necessarily the case for the space of ∆1-harmonic `2 one cochains, which is
isomorphic to

`2H1
red(Γ) = (ker d1 ∩ `2)/Im d0 ,

called the first reduced `2-cohomology of Γ (see e.g. [34] for an introduction).
According to [8], this cohomology group vanishes on amenable groups and

in particular in the case of nilpotent groups we will study. In general anyway,
one can split the asymptotic analysis of e−t∆1 more precisely. Using Hodge
decomposition

`2(S) = ker∆1 ⊕ Im d0 ⊕ Im δ1,
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we see that e−t∆1 may be written

e−t∆1 = Πker∆1 + e−td0δ0ΠIm d0
+ e−tδ1d1ΠIm δ1

. (4)

Therefore the study of large time behaviour of e−t∆1 divides in two cases,

1. study of e−td0δ0 on Im d0 = (ker δ0)⊥, where in fact this heat is conjugated
by δ0 to e−t∆0 on functions,

2. study of e−tδ1d1 on Im δ1 = (ker δ1)⊥, which a priori contains the new
spectral information with respect to functions.

Γ-trace and the spectral density function. We now describe a way to
measure the speed of the strong convergences we faced. All the operators P we
met act on `2(Γ)⊗ V , for some finite dimensional space V , and are Γ-invariant
under left translations. So their (End(V ) valued) Schwartz kernels k(γ1, γ2) are
actually of the form k(γ−1

2 γ1, e). In particular they are determined by their
value on δe, the characteristic function of the neutral element e ∈ Γ, through
the formula

Pδe =
∑
γ∈Γ

k(γ, e)δγ .

Furthermore the single k(e, e) controls all the k(γ, e) since, by positivity and
symmetry of P , one sees that for all u, v ∈ V ,

|(k(γ, e)u, v)|2 ≤ (k(e, e)u, u)(k(γ, γ)v, v) = (k(e, e)u, u)(k(e, e)v, v) ,

and in particular using the trace on End(V ),

TrV (k∗(γ, e)k(γ, e)) ≤
(
TrV (k(e, e))

)2
.

Definition 2.1. Let P be a Γ-invariant bounded operator acting on some
`2(Γ)⊗ V , the number

τ(P ) = TrV (k(e, e)) = TrV

(
(Pδe)(e)

)
is called the Γ-trace of P .

We have seen that, for P positive symmetric, one has

• τ(P ) ≥ 0, and also τ(P ) = 0 iff P = 0.

We can use this τ to define the spectral density function of P by

FP (λ) = τ(EP (λ)) (5)

where EP (λ) is the spectral projection associated to [0, λ] by P . When Γ
is trivial, FP reduces to Weyl’s repartition function, counting the eigenvalues
lower than λ.

By the spectral theorem this increasing function is the building block to
express the trace of f(P ) as the Stieljes integral

τ(f(P )) =
∫

f(λ)dFP (λ).
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Applying this to f(λ) = e−tλ we have

τ(e−tP ) =
∫ +∞

0
e−tλdFP (λ), (6)

meaning that the function τ(e−tP ) is actually the Laplace transform of the
spectral density function of P . In particular by dominated convergence, we see
that when t→ +∞,

τ(e−tP )→ FP (0) = τ(Πker P ) .

More precisely it is a classical result (see appendix of [23]), that the asymptotics
of the two functions τ(e−tP ) when t→ +∞ and FP (λ) when λ→ 0+ are related
in the following way. There exists α ∈ [0,+∞] such that,

τ(e−tP )− FP (0) � t−α when t→ +∞

iff
FP (λ)− FP (0) � λα when λ→ 0+ ,

where f � g means ∃c, c′ > 0 such that cf ≤ g ≤ c′f . Observe that α = +∞ in
the case e−tP −Πker P has a super polynomial decay, for instance an exponential
one, which happens when P has a spectral gap around zero.

A more general definition of this exponent α is

α(P ) = lim inf
λ→0

( ln
(
FP (λ)− FP (0)

)
lnλ

)
(7)

which always exists in [0,+∞].

Remark 2.2. We could have considered a lim sup instead. All the results we
will mention here will be independent of this choice. Also, as far as we know,
there is no geometric example where these limits are distinct (for natural oper-
ators acting on Galois coverings of finite simplicial complex). Very few of these
exponents have been computed so far anyway!

Novikov-Shubin numbers. Going back to our problem, we can now define
two analytic exponents of the Cayley polyhedra P we have described in 2.1.

Definition 2.3. The Novikov-Shubin numbers of P are

α0(P) = 2α(∆0) and α1(P) = 2α(δ1d1),

describing respectively large-time heat decay on functions and one cochains in
Im δ1 = (ker d1)⊥.

Remark 2.4. According to (4) we could have also defined a third exponent
α(d0δ0), describing heat decay of e−t∆1 on one cochains in Im d0 = (ker δ0)⊥.
Yet, one always has α(d0δ0) = α(∆0), as will be seen in §3.2.
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As mentioned in §2.1 the presentation complex (3) can be continued if higher
dimensional cells exist. Namely, let K be a (p+1)-dimensional finite simplicial
complex K and K̃ denotes its universal cover, or even any Galois cover Γ →
K̃ → K with Γ a quotient group of π1(K).

Then for k ≤ p the kth Novikov-Shubin exponent αk(K̃) is defined by

αk(K̃) = 2α(δkdk) , (8)

where dk is dual to the boundary map between k + 1 and k-simplexes.

Remark 2.5. About the 2 factor in these formulas. This is a convenient nor-
malisation as we will see for α0. Also it disappears if one uses instead in the
definition |dk| = (δkdk)1/2, the symmetric part of the polar decomposition of
dk. Namely, one has

α(|dk|) = 2α(δkdk)

as follows from EP 2(λ2) = EP (λ) and FP 2(λ2) = FP (λ) for positive P , λ.

So far we have only considered analytic exponents associated to the discrete
simplicial cochain complex. One can do a similar work for the de Rham complex
on a smooth manifold. There is a notion of de Rham Novikov-Shubin numbers
that can be defined as follows.

Let M be a smooth compact manifold. De Rham differential d acts between
smooth p and p + 1-forms on the universal cover M̃ . One is interested again
in the bottom of the spectrum (or the speed of heat decay) of the essentially
self-adjoint Laplacian ∆ = dδ+δd, or more precisely of δd as acting on (ker d)⊥.

In order to get numerical invariants, one has to extend the function τ in-
troduced in the discrete setting in Definition 2.1. One uses again the Schwartz
kernels, but now doing some average of the values taken on the diagonal of
M̃ ×M̃ . Precisely it is well known, as a consequence of ellipticity, that the heat
operators e−t∆ and the spectral projections E∆(λ) are smoothing operators.
Therefore their Schwartz kernels k are smooth on M̃ × M̃ .

In general, let F ⊂ M̃ be some fundamental domain of the Γ = π1(M)
action and P be a smoothing Γ-invariant operator P acting on a Γ-invariant
bundle V over M̃ . Then following Atiyah [1] we define the Γ-trace of P as

τ(P ) or TrΓ(P ) =
∫
F

Tr(k(x, x))dx ,

where Tr represents the point wise trace on End(Vx). Finally the pth de Rham
Novikov-Shubin number of M̃ is defined (nearly) as in (7) and (8) by,

αdR
p (M̃) = 2 lim inf

λ→0

( lnF (λ)
lnλ

)
(9)

where
F (λ) = τ

(
Eδd(]0, λ])

)
is the Γ-trace of the spectral projection associated to ]0, λ] by δd acting on
p-forms (which is also the projection E∆p(λ) ◦ΠIm δ).
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2.3 Topological invariance and around

Basic results. It turns out that these various analytic exponents, as defined
on de Rham and discrete cochain complexes, tend to coincide for a given degree.
Even more they are known to be topological invariants.

Theorem 2.6. (Gromov-Shubin [23, 24], Efremov [17], Lott [29])

• Let K be a finite simplicial complex and Γ → K̃ → K some Galois cov-
ering. Then αp(K̃) only depends on the choice of Γ and the homotopy
class of the (p + 1)-skeleton of K (cells of K of dim ≤ p + 1).

• Let K be a triangulation of a compact smooth manifold M , and Γ some
covering group. Then the pth simplicial Novikov-Shubin number αp(K̃)
coincides with de Rham’s one αdR

p (M̃). In particular, given Γ, these num-
bers are homotopical invariants of M .

An interesting particular case here is the following, corresponding to K =
P/Γ, where P is a Cayley polyhedra of Γ (see §2.1).

Corollary 2.7. • Let P be a Cayley polyhedra associated to a presentation
of a discrete group Γ. Then the two Novikov-Shubin numbers α0(P) and
α1(P) actually do not depend on the choice of the presentation (and P)
but only on Γ.

• If M is any smooth compact manifold with π1(M) = Γ, then

α0(M) = α0(Γ) and α1(M) = α1(Γ).

We will describe the basic ideas and `2 tools involved in the proof of these
results in §2.

For the moment, we recall that the geometric signification of the first of
these analytic exponents, α0(Γ), describing large-time heat decay on functions,
is known.

Theorem 2.8. (Varopoulos [43], Gromov)

• α0(Γ) < +∞ iff Γ is a group of polynomial growth,

• that is iff Γ is virtually nilpotent (has a finite nilpotent cover), and then

α0(Γ) = growth (Γ) =def lim
N→+∞

ln
(
card(BS

Γ (N))
)

lnN

=
∑

n

n rankZ (Γn/Γn+1) ∈ N ,

where BS
Γ (N) stands for the set of elements of Γ that can be written as a

product of at most N terms from a generating set S of Γ,

and Γn is the lower central series : defined by Γ1 = Γ and Γn = (Γ,Γn−1).
This is the normal subgroup of Γ generated by iterated commutators

(γ1, (· · · (γn−1, γn))).
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From the geometric side, it appears clearly that the growth, and therefore
α0(Γ), is a large scale invariant of Γ. We can also easily see that the growth
does not depend on the choice of generators.

Indeed, suppose given two generating sets S = {s1, · · · , sp} and S′ =
{s′1, · · · , s′n}. One can write each si in a finite product of elements of S′ and
reversely. Let c and c′ the maximum lengths needed. This gives bounds to
translate words in S in S′, and reversely, so that one gets inclusions

BS
Γ (N) ⊂ BS′

Γ (cN) and BS′
Γ (N) ⊂ BS′

Γ (c′N),

from which follows the claim.

Analytic and geometric aspects. Hidden in the statement of the previous
theorem, but crucial in Varopoulos proof, is that α0 is also related to other
important analytic and geometric properties of Γ.

One of them is that α0 rules the Sobolev injections. Namely one has in `p

norm for p < α0,

‖f‖q ≤ C‖d0f‖p with
1
q

=
1
p
− 1

α0
, (10)

for functions with finite support on Γ. This provides a link to the geometrical
interpretation of α0. Indeed, using (10) with p = 1 and f = 1lΩ gives the
following isoperimetric inequality, between the size of sets Ω ⊂ Γ and their
boundaries ∂Ω,

card(Ω) ≤ C
(
card(∂Ω)

) α0
α0−1 . (11)

Applying this to the balls Ω = BS
Γ (N) and summing (see [11]), one obtains then

card
(
BS

Γ (N)
)
≤ C ′Nα0 ,

which gives the relation with the growth upper bound.
The relationships between large-time heat decay, Sobolev inequalities, iso-

perimetry and volume bounds has been much clarified and extended by many
authors since Varopoulos work, see for instance the survey [10]. In all these
approaches the use of `p spaces and analysis is required to translate the basic
`2 spectral invariant α0 into a geometric information, and reversely. Unfortu-
nately (or luckily for geometers), most of the interpolation techniques needed
deeply rely on the fact we are dealing with functions here, at least through
the maximum principle that heat operator e−t∆0 decays sup (or `1) norms.
(As was patiently explained to me by Thierry Coulhon.) They do not extend
automatically when working on forms.

Let us mention anyway that a more ’elementary’ approach (with respect
to analysis) exists in the particular case we will restrict of graded nilpotent
(Carnot) groups, that is nilpotent groups with dilations. Namely, we will see
there that a direct link of α0 with the volume growth can be obtained from an
homogeneity argument. The trick, from the geometric side, is to use a more
convenient (homogeneous) differential on functions, instead of the standard one,
to compute α0. This is suggested by the underlying idea, in Theorem 2.6 and
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Corollary 2.7, that α0 is a very ’stable’ number that can be computed using
many geometric approaches.

We will play a similar game, based on homogeneity of modified differentials,
to estimate the next Novikov-Shubin exponent α1(Γ) on such groups. This will
allow us to relate it to the depth of the relations necessary to present Γ from
the free group.

Yet, there are many examples where such an elementary approach only gives
a geometric pinching of α1(Γ). Going ahead, even in the case of Carnot groups,
should rely on `p techniques, or more powerful analytic tools, as was the case
for α0.

Some relevant analysis, based on hypoellipticity notion has been presented
in [38, 40]. Nevertheless, we would like to stress on the fact that the picture of
possible results, both from the geometric and analytic viewpoints, is still very
unclear. In particular, a large part of the `p machinery used on functions is
not available here, due as already observed, to the lack of basic tools like the
maximum principle on forms (or discrete cochains) in non-positive curvature.

Discrete time. We conclude with an alternative “discrete in time” presen-
tation of the exponent α1, more attractive from the numerical viewpoint.

Recall that α1 has been introduced as being twice the (continuous) large-
time heat decay exponent of e−tδ1d1 on the one-cochains in H = (ker d1)⊥ ⊂
`2(S). This abstract Hilbert space H is not so convenient to use numerically.
A first fact is that, on nilpotent groups, one can use instead the heat decay of
the full discrete Laplacian

∆1 = d0δ0 + δ1d1

acting on `2(S). This is because, as we will see (see also [31]), the heat decay
associated to d0δ0 (conjugated to ∆0 = δ0d0 on functions) is always quicker
that the one induced on H by δ1d1. From the numerical viewpoint, ∆1 is a Γ-
invariant linear operator acting on functions on the discrete space Γ×S (space
of edges of the Cayley graph of Γ associated to the generating set S). Moreover,
∆1 is a local operator in the sense that the value of ∆1α at (γ, s) ∈ Γ× S is a
linear combination of α(γ′, s′) with γ′γ−1 in a fixed finite neighbourhood of the
neutral element.

Now we describe the discrete time approach, starting with the case of func-
tions. Recall that for functions on Γ, the (continuous in time) heat decay can
also be obtained from the asymptotic return probability of random walk on Γ
(see [10]). This is due to the relation

∆0 = Id−Ps

where Ps is the Markov operator of the standard random walk on the Cayley
graph C (a particle on a vertex of C jumps to any of its neighbours with equal
probability). Using instead the more convenient random walk associated to

P =
Id+Ps

2
= Id−∆0

2
(12)
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(here the particle doesn’t move with probability 1/2), we see that the return to
origin probability after n steps is given by

Pn(δe)(e) = τ(Pn),

with notation of Definition 2.1. By the spectral theorem, and ‖Ps‖ ≤ 1, we
have

τ(Pn) =
∫ 2

0

(
1− λ

2
)n

dF∆0(λ), (13)

where, following (5), F∆0(λ) = τ(E∆0(λ)) is the spectral density function of
∆0. This gives that the rate decays of τ(Pn) when n→ +∞ and F∆0(λ) when
λ→ 0+ are the same, more precisely

lim inf
n→+∞

( ln τ(Pn)
− lnn

)
= lim inf

λ→0+

(F∆0(λ)
lnλ

)
= 2α0(Γ), (14)

(and the same for lim sup).

Proof. Cutting the integral (13) for λ ≤ λn = 2(1− 2−1/n), gives

τ(Pn) ≥ 1
2
F∆0(λn)

and a first inequality in (14), using lnλn ∼ − lnn when n→ +∞.
In the opposite direction, if F∆0(λ) ≤ Cλα, integration by parts gives

τ(Pn) =
∫ 2

0

n

2
(
1− λ

2
)n−1

F∆0(λ)dλ

≤ C

2

∫ 2

0
n
(
1− λ

2
)n−1

λαdλ

= C ′
∫ 2n

0

(
1− t

2n

)n−1( t

n

)α
dt

∼ C ′n−α

∫ +∞

0
e−t/2tαdt for n→ +∞.

This approach does not rely on probability techniques (except for its intu-
itive meaning) but only on the spectral theorem, and therefore applies also for
other combinations of operators. In particular, on discrete one cochains, one
can use instead of (12),

P = Id−k∆1,

for any k such that k ≤ ‖∆1‖−1
(2,2). Then using the trace at e,

τ(Pn) = Tr
(
(Pnδe)(e)

)
as defined in Definition 2.1, one obtains similarly that

lim inf
n→+∞

( ln τ(Pn)
− lnn

)
= lim inf

λ→0+

( ln(F∆1(λ))
lnλ

)
= 2α1(Γ), (15)
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which is also the large-time heat decay, as mentioned in §2.2.
From the numerical viewpoint, the computation of the iteration Pnδe on

a nilpotent group Γ uses a memory space polynomial in n (of degree α0(Γ) =
growth(Γ), since the kernel support of Pn spreads this way), and a polynomial
time. In practice however the convergence in (15) may be slow since this is a
ln / ln limit.

3 Quick review of the basic `2 tools

3.1 Homotopy of Hilbert complexes

Homotopies from the analytic viewpoint. We now present the basic ideas
leading to the homotopical invariance of the Novikov-Shubin numbers, as stated
in Theorem 2.6 and Corollary 2.7.

At first sight, it seems unlikely that exponents built from the spectrum may
possess a strong topological invariance. Indeed, spectrum of Laplacians depends
on the metric and thus should only be isometry invariants of the manifold.
This is (more or less) the case for the full spectrum, but we are only concern
here in the near-zero spectrum, more precisely in the asymptotic behaviour of
the spectral density function at zero. Then, the topological invariance of this
behaviour may be understood as an extension of the well known fact that the
kernel, or zero spectrum, of Laplacians has actually a topological sense, since
it represents cohomology.

The tools needed to grasp this idea have been introduced by Gromov and
Shubin in [23, 24]. The general setting of the problem is on Hilbert complexes.
Indeed we have met several sequences of Hilbert spaces Hk

(H, d) 0→ H0
d0−→ H1

d1−→ H2 · · ·

with closed densely defined operators dk such that dk+1 ◦ dk = 0 on the domain
D(dk) of dk. A relevant notion of homotopy here is the following.

Definition 3.1. Two Hilbert complexes (H, d) and (H ′, d′) are said homotopy
equivalent up to degree p, if there exists bounded maps

fk : Hk → H ′
k and gk : H ′

k → Hk

for k ≤ p + 1, such that for k ≤ p,

fk+1dk = d′k+1fk on D(dk) and gk+1d
′
k = dk+1gk on D(d′k),

with
gkfk = IdHk

+dk−1hk + hk+1dk on D(dk)

and
fkgk = IdH′

k
+d′k−1h

′
k + h′k+1d

′
k on D(d′k),
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for some bounded maps hk and h′k. The corresponding diagram is

Hk−1

dk−1 //

fk−1

��

Hk

dk //
hk

oo

fk

��

Hk+1
hk+1

oo

fk+1

��
H ′

k−1

d′k−1 //

gk−1

OO

H ′
k

d′k //
h′k

oo

gk

OO

H ′
k+1

gk+1

OO

h′k+1

oo

Remark 3.2. If moreover some discrete group Γ is acting both on H and H ′,
one asks that all involved operators commute with this action.

We give some examples useful to our study.

The case of the presentation complex. Consider first two Cayley poly-
hedras P and P ′ associated to two presentations of a finitely presented discrete
group Γ, as in §2.1. We have two presentation complexes as described in (3)

`2(Γ) d0−→ `2(S) d1−→ `2(R) and `2(Γ)
d′0−→ `2(S′)

d′1−→ `2(R′).

As a first step to Corollary 2.7, let us show:

Proposition 3.3. These Hilbert complexes are homotopy equivalent up to de-
gree one. In particular, their homotopy class only depends on Γ.

Proof. The required maps are maybe easier to see on the dual chain complexes

`2(Γ) ∂1←− `2(S) ∂2←− `2(R) and `2(Γ)
∂′1←− `2(S′)

∂′2←− `2(R′),

so that we focus on them.
Let S = {s1, · · · , sn}, S′ = {s′1, · · · , s′m} be the two generating sets of Γ.

Each s ∈ S can be written as a word f1(s) in elements of S′∪S
′−1, and reversely,

each s′ ∈ S′ is a word g1(s′) in S ∪ S−1. These f1(s) and g1(s′) correspond
to paths in the Cayley polyhedras P ′ and P (see §2.1). To these paths are
also associated one chains which are the sums of the edges encountered. The
boundaries of these chains satisfy

∂′1(f1(s)) = s− e = ∂1(s) and ∂1(g1(s′)) = s′ − e = ∂′1(s
′),

so that
∂′1f1 = ∂1 and ∂1g1 = ∂′1. (16)

We still denote by

f1 : `2(S)→ `2(S′) and g1 : `2(S′)→ `2(S)

the linear Γ left-invariant extensions of the previous maps.
For each s ∈ S, (16) gives that g1(f1(s)) has same endpoints (boundary)

than s . Therefore, by simple connectivity of P, one can fill the cycle g1(f1(s))−s
with a (finite) two chain h1(s) ∈ Vect(R) ⊂ `2(R), that is

g1(f1(s))− s = ∂2h1(s),
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which extends as before on `2(S) in

g1f1 = Id+∂2h1.

Lastly, for each two cell r ∈ R attached at e, one has by (16)

∂′1(f1∂2r) = ∂1∂2r = 0.

Again, one can choose some two chain f2(r) ∈ Vect(R′) ⊂ `2(R′) such that

f1∂2r = ∂′2(f2(r)).

Therefore by extension we have a map f2 : `2(R)→ `2(R′) satisfying

f1∂2 = ∂′2f2,

and a similar one g2 : `2(R′)→ `2(R), completing the picture

`2(Γ)

Id

0
// `2(S)

∂1oo
h1

//

f1

��

`2(R)
∂2oo

f2

��
`2(Γ)

0
// `2(S′)

∂′1oo
h′1

//

g1

OO

`2(R′)
∂′2oo

g2

OO

All these Γ-invariant maps are bounded and even local.

The previous proof is purely combinatorial and is indeed a special instance
of general topological constructions on simplicial complexes [42]. Here, the
analytic (partial) homotopies of these Hilbert complexes are induced from the
geometric ones, between the two finite simplicial complexes K = P/Γ and
K ′ = P ′/Γ. The existence of the latter is due to π1(K) = π1(K ′) = Γ.

More generally, if K and K ′ are two finite simplicial complexes which are
homotopy equivalent up to degree d, then there exists a simplicial map f :
Kd+1 → K ′

d+1 which formally induces an homotopy equivalence, up to degree
d, between the `2 cochain complexes of given regular covers of K and K ′.

From de Rham to simplicial complexes. The previous principle, that ho-
motopy in the topological sense implies homotopy of relevant Hilbert complexes,
also applies between L2-de Rham complexes on covers of smooth compact man-
ifolds. This was proved by Gromov and Shubin in [23, 22].

Theorem 3.4. Let M and N be homotopic smooth compact manifolds and Γ
some covering group. Then the L2-de Rham complexes on the Γ-coverings M̃
and Ñ are homotopy equivalent.

Given a triangulation K of a smooth manifold M , it remains to compare the
L2 de Rham complex of M̃ with the `2 simplicial cochain complex of K̃. They
are also homotopy equivalent. Some natural but delicate proof, working in Lp,
is given by Gol’dshtein, Kuz’minov and Shvedov in [19]. As in earlier work of
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Dodziuk [15], it relies on the use of (regularized) de Rham and Whitney maps,
between de Rham and cochain complexes.

Another approach, unifying these results, and much more elementary ana-
lytically, has been proposed by Pansu in [33] and [34, Chapter 4]. It consists in
adapting classical principles from sheaf theory (see eg [18] or [20, Chapter 0.3])
to complexes of Hilbert sheaves (or more generally Banach sheaves).

Loosely speaking (see [33, 34] for more precise and general statements), one
obtains that any Γ-invariant Hilbert complex of sheaves on a cover X̃ of a
metric space X, which is uniformly acyclic relatively to some open covering U
of X, is homotopy equivalent to the `2 Čhech complex of the covering Ũ of X̃,
also the `2-simplicial cochain complex of the nerve of the covering.

The uniformity assumption is easily checked on Alexander-Spanier cochain
complex of small size, but also on the de Rham complex, where it reduces to
the following local integration lemma.

Lemma 3.5. (L2 Poincaré Lemma on the unit ball, [33, 34])
Let Bn be the unit ball in Rn. There exists a constant C such that any

closed L2 form α on Bn can be written dβ for some β with ‖β‖2 ≤ C‖α‖2.

This is proved by averaging over the ball Poincaré’s integration formula.

3.2 Near-cohomology and Γ-trace

Quadratic forms versus spectra. Now we return to the presentation of the
tools leading to the homotopy invariance of the Novikov-Shubin numbers. Let
(H, d) and (H ′, d′) be homotopy equivalent Hilbert complexes.

By Definition 3.1, the maps f : H → H ′ and g : H ′ → H, induce inverse
topological isomorphisms between the cohomology spaces H = ker d/ Im d of H
and H ′, and also for the reduced cohomology Hr = ker d/Im d, but not at all
between the spectrum of say, the induced Laplacians ∆ and ∆′.

In comparison to these quite delicate analytic data, the (Dirichlet) quadratic
forms, defined on D(d) by

Qd(α) = ‖dα‖2,

better behave since one has obviously

Qd′(fα) ≤ C Qd(α) and Qd(gα) ≤ C ′Qd′(α),

for fixed constants C = ‖f‖2 and C ′ = ‖g‖2.
Taking account of this fact, Gromov and Shubin considered in [23, 24] the

family of closed cones for ε > 0,

Cd(ε) = {α ∈ Ĥ = H/ ker d | Qd(α) ≤ ε2‖α‖2}. (17)

These cones are shrinking to {0} when ε → 0+, and contains forms which
are ’nearly’ closed. One defines an equivalence relation called near-cohomology
on such families of cones.

Definition 3.6. Two Hilbert complexes (H, d′) and (H, d) have same near-
cohomology if for ε small enough there exists a constant k > 0 and bounded
injective maps f : Cd(ε)→ Cd′(kε) and g : Cd′(ε)→ Cd(kε).
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This notion is compatible with homotopy equivalence as defined in 3.1.

Theorem 3.7. ([23, 24]) Homotopy equivalent Hilbert complexes, up to degree
p, have the same near-cohomology, up to degree p.

Proof. We give the proof for completeness. With the notations of Definition
3.1, we want to show that f : H → H ′ induces an injective map from Cd(ε)
into Cd′(kε), for ε small enough and some k > 0. Let

f̂ : Ĥ = H/ ker d ' (ker d)⊥ −→ Ĥ ′ = H ′/ ker d′

be the quotient (or projection) map induced by f , and let α ∈ Cd(ε) ⊂ Ĥ, then

‖d′(f̂α)‖ = ‖d′(fα)‖ = ‖fdα‖
≤ ‖f‖‖dα‖ ≤ ε‖f‖‖α‖.

(18)

We need to control α by f̂α. One has f̂α = fα + β with β ∈ ker d′, so that
using the homotopy formula for g ◦ f (valid on Hk for k ≤ p),

g(f̂α) = g(fα) + gβ = α + dhα + hdα + gβ.

In this decomposition, α ∈ (ker d)⊥ is orthogonal to dhα + gβ ∈ ker d, and
therefore,

‖α‖ ≤ ‖α + dhα + gβ‖ = ‖g(f̂α)− hdα‖

≤ ‖g(f̂α)‖+ ‖h‖ε‖α‖.

Hence, for ε < ‖h‖−1,

‖α‖ ≤ ‖g‖
1− ε‖h‖

‖f̂α‖.

This proves the injectivity of f̂ acting on Cd(ε) and, together with (18), that
f̂(Cd(ε)) ⊂ Cd′(kε′) for ε = (2‖h‖)−1 and k = 2‖f‖‖g‖.

Basic properties of τ . We still have to relate this abstract notion to numer-
ical information as contained in the Novikov-Shubin invariants. This will rely
on properties of the Γ-trace τ introduced in §2.2. We briefly review them for
the reader’s convenience. More details can be found in Atiyah’s original work
[1], or the survey [34, Chapter 2].

Recall that we are working on Hilbert spaces H of the type `2(Γ)⊗V . Here
V is either finite dimensional, in the case of the `2 cochain complex, or for the
de Rham complex, an Hilbert space L2(F ,Λ∗M) of L2 sections of the exterior
bundle Λ∗M over a fundamental domain F of the Γ action. In any case, one
can define the trace TrV on positive operators acting on V by

TrV (P ) =
∑

j

(Pvj , vj) ∈ [0,+∞], (19)
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for any Hilbert basis vj of V . Let ie : V → H be the injection defined by
ie(v) = δe ⊗ v, and πe = i∗e : H → V be the evaluation map at e. Then (19)
extends on positive Γ-invariant operators P acting on H = `2(Γ)⊗ V , by

τ(P ) = TrV (πePie) =
∑

j

(P (δe ⊗ vj), δe ⊗ vj). (20)

Here the important facts about τ are the following.

Proposition 3.8. τ is a positive faithful trace, meaning that for Γ-invariant
bounded operators P

• τ(P ∗P ) ≥ 0 and τ(P ) = 0 iff P = 0,

• τ(P ∗P ) = τ(PP ∗).

Proof. The first property has already been seen in §2.2. For the second one, by
(20),

τ(P ∗P ) =
∑

j

‖P (δe ⊗ vj)‖2 =
∑
j,γ

|(P (δe ⊗ vj), δγ ⊗ vj)|2

=
∑
j,γ

|(P ∗(δγ ⊗ vj), δe ⊗ vj)|2

=
∑
j,γ

|(P ∗(δe ⊗ vj), δγ−1 ⊗ vj)|2, by Γ invariance,

=
∑

j

‖P ∗(δe ⊗ vj)‖2 = τ(PP ∗).

Using τ , we can ’measure’ a Γ-invariant subspace L ⊂ H. We define its
Γ-dimension by

dimΓL = τ(ΠL), (21)

where ΠL is the orthogonal projection on the closure L of L. A striking property
of dimΓ is the following invariance.

Proposition 3.9. Let L be a closed Γ-invariant subspace of H, and f : L→ H
be an injective closed densely defined Γ-invariant operator, then

dimΓ(f(L)) = dimΓ(L).

Proof. Let fΠL = US be the polar decomposition of fΠL (see [37, Section
VIII.9]). Recall that S = |fΠL| is positive and self-adjoint, while U is a partial
isometry from (ker(fΠL))⊥ = L (by injectivity of f on L here) to f(L). Hence

U∗U = ΠL and UU∗ = Πf(L),

and Proposition 3.8 gives

dimΓ(L) = τ(U∗U) = τ(UU∗) = dimΓ(f(L)).
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Example 3.10. As a first use, let us apply this to the problem in remark 2.4.
We want to show that the heat decay of e−t∆0 on functions is the same as
for e−tdδ on one forms Im d. By Laplace transform (6) we need to compare
the trace of the two spectral projectors E∆0(]0, λ]) and Eδd(]0, λ]). In fact by
Proposition 3.9 they are even equal, since d maps injectively Im E∆0(]0, λ]) into
Im Eδd(]0, λ]) and reversely for δ.

Measuring near-cohomology. We conclude by relating the near-cohomology
to the Novikov-Shubin exponents. Recall they were defined in §2.2 as the poly-
nomial decay when λ→ 0 of the spectral density function

Fδd(λ2) = τ(Πλ),

where Πλ = Eδd(]0, λ2]) is the spectral projection associated to ]0, λ2] by δd.
By the spectral theorem, the space Lλ = Im Πλ is a closed Γ-invariant linear

subspace of the (near-cohomology) cone

Cd(λ) = {α ∈ Ĥ = (ker d)⊥ | ‖dα‖2 = (δdα, α) ≤ λ2‖α‖2}.

It is in some sense the largest one. Namely, if L′ ⊂ Cd(λ) is another such space,
then it projects injectively on Lλ by Πλ, since the spectral theorem gives,

‖dα‖2 = (δdα, α) > λ2‖α‖2

for any non zero α ∈ ker Πλ∩Ĥ = Im Eδd(]λ2,+∞[). Using the Γ-dimension this
translates numerically into the following variational principle, due to Shubin.

Lemma 3.11. [23] Let Lλ be the set of all Γ-invariant linear subspace in Cλ(d).
Then

Fδd(λ2) = sup
L∈Lλ

dimΓL.

Proof. If L ∈ Lλ then by the previous argument and Proposition 3.9,

dimΓL = dimΓ(Πλ(L)) ≤ dimΓ(Im Πλ) = Fδd(λ2),

since dimΓ is an increasing function by positivity of τ .

Connecting this with Theorem 3.7, and using again Proposition 3.9, we can
now compare spectral functions of homotopy equivalent Hilbert complexes.

Theorem 3.12. [23, 24] Let (H, d) and (H ′, d′) be homotopy equivalent Hilbert
complexes (of type `2(Γ)⊗ V ). Then there exists C,C ′ > 0 such that

Fδd(Cλ) ≤ Fδ′d′(λ) ≤ Fδd(C ′λ),

and in particular (H, d) and (H ′, d′) have the same Novikov-Shubin numbers
(like any other dilatationally invariant limit built from Fδd(λ)).

This together with the results of §3.1, linking homotopy of Hilbert com-
plexes to homotopy of metric spaces, implies the topological invariance of these
numbers as stated in Theorem 2.6 and Corollary 2.7.

These general techniques will also be very useful in the particular case we
will restrict now of Carnot groups.
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4 The presentation complex seen from far

4.1 Carnot groups

Why? We would like to describe here some formal asymptotic rescaling of
the presentation complex (3) that can be done for discrete groups embedded in
nilpotent Lie groups with dilations.

Nilpotent groups provide an interesting class with respect to the study of
Novikov-Shubin numbers. Recall that by Theorem 2.8 they are, up to finite
coverings, the only one with finite first exponent α0 on functions. Moreover, on
forms or cochains of higher degree, one can show that for such groups, zero is
never isolated in the spectrum of the Laplacian [30, Prop. 20] : a first necessary
condition for finiteness of the next exponents αp.

Lastly by a theorem of Mal’cev [36, Chap. 2], any finitely generated torsion-
free nilpotent discrete group Γ can be cocompactly embedded into a nilpotent
Lie group G. This Lie group G, called Mal’cev completion of Γ, is such that
ln Γ spans g, even more, ln Γ is a finite index subgroup of a lattice (additive
subgroup) of g. Reversely, Mal’cev has shown that a nilpotent Lie group G
admits a cocompact discrete group Γ iff its Lie algebra g has a rational structure
gQ, i.e. admits a basis with brackets given by rational coefficients.

By Corollary 2.7 these contractible Lie groups G provide us natural smooth
models with the same Novikov-Shubin numbers as their discrete cocompact
Γ. Thus differential geometry, and even Lie group techniques, are available to
investigate the problem on nilpotent groups (a pity for the pure topologist but
a chance for us!).

We note that the irruption of smooth structures is not so artificial in this
study. After all these exponents are large scale invariants (stable under finite
coverings), and one knows for instance on Zd, that at large time the random
walk

Pn
s = (Id−∆simpl

0 )n

(see §2.2) do converges under appropriate rescaling to the kernel of the ’smooth
heat’ on Rd (the Gaussian law),

ndP [tn2]
s ([nx], [ny]) −−−−−→

n→+∞
e−t∆smooth

0 (x, y).

Such a rescaling (central limit) result actually holds on nilpotent groups with
dilations [13].

Definition 4.1. A connected nilpotent Lie group G is called a Carnot group
if its Lie algebra g splits in

g = g1 ⊕ · · · ⊕ gr with [g1, gk] = gk+1.

The one-parameter family of Lie group automorphisms induced by

hε = εk Id on gk

are called dilations of G.
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Remark 4.2. ’Carnot group’ seems to be a relatively recent terminology. In
other places, like in subelliptic theory, such groups have been called filtered
nilpotent Lie groups. This is a particular case of graded groups, where one only
asks

[g1, gk] ⊂ gk+1,

and which also possess dilations.

Shrinking d0. Suppose given now a rational Carnot group G together with
a discrete cocompact group Γ. We assume moreover that Γ is generated by
elements γi = expXi with Xi ∈ g1. Choose some ’elementary’ relations R =
{rj} associated to this generating set S = {γi} of Γ (see §2.1). We would like
to look at the presentation complex (see (3))

`2(Γ) d0−→ `2(S) d1−→ `2(R)

at large scale. Equivalently we can consider the presentation complexes of the
shrunk groups Γε = hεΓ at fixed scale. We don’t deal with analytical problems
here since we just want some formal hint of what’s happening when ε→ 0.

Recall that the first map d0 is the difference operator (1) so that for smooth
functions f restricted to Γε

dΓε
0 f(γ, hεγi) = f(γhε(γi))− f(γ)

= f(γ exp(εXi))− f(γ)
∼ ε(Xi.f)(γ) = εdf(γ)(Xi) when ε→ 0.

Hence ε−1dΓε
0 f converges to dHf : the differential of f along the horizontal

bundle H = g1 (= spanR(lnS) also here).
Our next issue will be to describe the asymptotic of the differential d1

dΓε
1 α(rε) =

∮
rε

α (22)

on a shrinking relation rε = hεr or Γε.

4.2 Discrete and infinitesimal relations

For free. In the treatment of shrinking relations, as in (22), it is useful to
introduce an analogous notion of infinitesimal relations for Lie algebras. These
are defined with respect to free Lie algebras. We briefly describe this framework.

The free associative algebra A(H) over the vector space H = g1 is the
direct sum of all tensor products ⊗pH. Given a basis {X1, · · · , Xn} of H,
A(H) identifies with the space of non-commutative polynomials in Xi. The
bracket

[P,Q]A = PQ−QP

defines a Lie algebra structure on A(H), and by (one possible) definition, the
Free Lie algebra generated by H is the Lie sub-algebra F(H) ⊂ A(H) generated
by H ⊂ A(H). In other words

F(H) =
⊕
p≥1

Fp
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with {
F1 = H

Fp+1 = [H,Fp]A = span{XP − PX | (X, P ) ∈ H × Fp}.

Now since our Carnot Lie algebra g is bracket generated by H = g1, it can
be naturally identifies with the quotient

g = F(H)/R(g) (23)

where the ideal R(g) stands for the infinitesimal relations of G. This is the Lie
version of the presentation of a discrete group by generators and relations as
described in §2.1, namely

Γ = Free(S)/R(Γ),

where S is a generating set, and R(Γ) is the normal subgroup generated by the
chosen ’elementary’ relations of Γ. We can take profit of the two viewpoints
here.

From discrete to infinitesimal relations. From the discrete side, a relation
r of Γ is a finite product of the generators γi ∈ S, equals to e in Γ. Since
S ⊂ exp g1 = expH here, r can be lifted as an element r̃ ∈ F(H) using Baker-
Campbell-Hausdorff formula. Namely this formula expresses

X ∗ Y = ln(expX expY )
= X + Y + (XY − Y X)/2 + · · ·

= X + Y +
1
2
[X, Y ]A + · · ·

(24)

as a formal polynomial series in brackets of X, Y , and provides a product on
F(H) compatible with the one on G = exp g. Since r = e in Γ ⊂ G, one has
necessarily r̃ ∈ R(g).

Actually this lifting map from R(Γ) into R(g) induces an isomorphism be-
tween the vector spaces

Rc(Γ) = R(Γ)/(F,R(Γ))⊗ R and Rc(g) = R(g)/[F(H),R(g)].

This comes from two classical facts (see e.g [4, Thm. 5.3] and [36, Prop. 7:18])

• Hopf’s formula identifying Rc(Γ) with H2(Γ, R) and Rc(g) with H2(g, R).

• The isomorphism H2(Γ, R) ' H2(g, R) coming from the cocompact em-
bedding of Γ in G.

Therefore in our situation, the lifts r̃ of the elementary relations r of Γ also
generate the infinitesimal relations ideal R(g).

Lastly we observe that the series r̃ may be decomposed into its homogeneous
components

r̃ =
∑

p≥d(r)

r̃p (25)

with r̃p ∈ Fp, and r̃d(r) 6= 0 or d(r) = +∞.
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Definition 4.3. We will call d(r) the order of r and D(r) = r̃d(r) its direction.

Since G is a graded Lie group, its relation ideal R(g) is too. In particular
the directions of elementary relations of Γ still belong to R(g) and generate it.

A few examples. We give simple examples to clarify previous things.

• Consider Γ = Zn ⊂ G = Rn. Since g = g1 = F1, the relation ideal of Rn

is R(Rn) =
⊕
p≥2

Fp. It is generated by

F2 = span{[X, Y ]A = XY − Y X | X, Y ∈ H = g1 = Rn}.

Given the canonical basis {ei} of Zn, the elementary relations

rij = (ei, ej) = eieje
−1
i e−1

j ,

describing closed rectangles in the Cayley graph of Zn, lift to

r̃ij = Xi ∗Xj ∗ (−Xi) ∗ (−Xj)
= [Xi, Xj ]A + · · · by (24).

Hence r̃ij are relations of order 2 (or quadratic) and their directions are the
previous infinitesimal relations D(rij) = [Xi, Xj ]A in F2.

• The Heisenberg group of dimension 2n + 1, denoted by H2n+1, can be
defined as R2n+1 = H × R with the product

(x, t) ∗ (x′, t′) = (x + x′, t + t′ +
1
2
ω(x, x′)) ,

where ω is a non-degenerated skew-symmetric two-form on H ' R2n. The
corresponding Lie bracket on h2n+1 = H ⊕ RT is given by

[X + tT,X ′ + t′T ] = ω(X, X ′)T. (26)

Hence H2n+1 is a 2-step Carnot group whose Lie algebra h2n+1 is generated by
H. Given a reduction basis {Xi, Yi} of ω in H, one gets the defining brackets

[Xi, Xj ] = [Yi, Yj ] = [H,T ] = 0 and [Xi, Yj ] = δijT. (27)

Let us see that, with respect to the free Lie algebra F(H), the infinitesimal
relation ideal R(H2n+1) is generated by elements of order 3 for n = 1, but only
2 for n ≥ 2.

H3 has no quadratic relation. Indeed T = [X, Y ] is not a relation, but rather
a notation, with respect to F(H) = F(X, Y ). In comparison all order 3 brackets
[X, [X, Y ]] and [Y, [X, Y ]] vanish in h3 and lift in F(X, Y ) as [X, [X, Y ]]A and
[Y, [X, Y ]]A spanning F3. Therefore R(H3) =

⊕
p≥3

Fp.

In contrary for H2n+1, (27) gives us a lot of true quadratic relations

[Xi, Xj ] = [Yi, Yj ] = 0 and [Xi, Yj ] = 0 if i 6= j.
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But they are also ’hidden’ ones, namely

[Xi, Yi]− [Xj , Yj ] = 0 for i 6= j.

Calling T the common value of [Xi, Yi] in h2n+1, one recovers easily the missing
defining brackets [H,T ] = 0 in (27). Indeed, given i, we can choose a j 6= i,
then using Jacobi identity

[Xi, T ] = [Xi, [Xj , Yj ]] = −[Yj , [Xi, Xj ]]− [Xj , [Yj , Xi]] = 0.

This gives that, for n ≥ 2, H2n+1 can be quadratically presented, meaning that
R(H2n+1) is generated by elements of order 2, namely

[Xi, Xj ]A , [Yi, Yj ]A , [Xi, Yj ]A (if i 6= j), (28)
[Xi, Yi]A − [Xj , Yj ]A. (29)

In fact we can see that the quadratic relations we gave span the hyperplane
ker ω in F2 = Λ2H, and finally

R(H2n+1) = (kerω)
⊕
p≥3

Fp. (30)

We now study the discrete viewpoint. The Heisenberg groups H2n+1 admit
discrete cocompact groups

H2n+1
Z =

{
n∑

i=1

xiXi + yiYi + tT/2 | xi, yi, t ∈ Z

}
.

Given the horizontal generating set Xi, Yi ∈ H, one gets again different types
of possible elementary relations in the Cayley graphs of H2n+1

Z .
For n = 1 a choice may be r1 = (X, (X, Y )) and r2 = (Y, (X, Y )). They

correspond to closed loops in the Cayley graph that look like a figure 8 as seen
in figure 2. Their directions are the order 3 previous infinitesimal relations
[X, [X, Y ]]A and [X, [X, Y ]]A. These loops span a zero area at order 2, but still
have an order 3 moment.

Y

X
−1

−1

X

XX
−1

X

Y

Y

−1

−1Y

X

Figure 2: (X, (X, Y )) in H3.
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For n ≥ 2, one can choose again relations (Xi, Xj), (Yi, Yj), (Xi, Yj) (i 6= j),
describing rectangles in the Cayley graph, and whose directions are the order 2
Lie relations in (28). We have to complete the list by adding

rij = (Xi, Yi)(Xj , Yj)−1,

which now look like a twisted figure 8 in the Cayley graph, see figure 3. Using
(24), they are still relations of order 2, with directions [Xi, Yi]A − [Xj , Yj ]A as
in (29).

X

−1
i

Y
j

X
−1

ij

Z

Y

Z

j

ji

i

X

i

Xj

jY

Y
−1
j

j

X

iY

−1

Figure 3: (Xi, Yi)(Xj , Yj)−1 and its horizontal filling.

To complete the picture, we remark that the directions D(rij) = [Xi, Yi]A−
[Xj , Yj ]A are not pure in F2 = Λ2H, and therefore are not directions of plane
loops (staying in an horizontal plane in H). Anyway one can find a presentation
of H2n+1

Z using only planar relations.
Namely, we can add the generators Zij = X−1

i ∗Yj with i 6= j to the previous
ones Xi, Yi. They are also horizontal (in H = g1) since Zij = −Xi+Yj as comes
from [Xi, Yj ] = 0. Then, as shown in figure 3, rij can be horizontally filled in this
extended Cayley graph, using the flat triangles (Xi, Yj , Zij) and the horizontal
rectangles spanned by the commuting Zij .

At the Lie level, the existence of this ’horizontal’ Cayley polyhedra for H2n+1
Z

is reflected by the fact that in (30),

R2(H2n+1) = kerω ⊂ F2 ' Λ2H,

is spanned by its pure forms X∧Y . This is not automatically satisfied for general
quadratically presented Carnot groups, so that such groups don’t always admit
’flat’ Cayley polyhedras. This subtle matter enters in the geometric problem
of horizontally filling horizontal loops (see §6.2), but not at the cohomological
level of the presentation complex we are studying.

4.3 The asymptotic of dΓε
1

From relations to differential operators. We now return to the asymp-
totic holonomy problem. A priori, in the circulation formula (22) :

dΓε
1 α(rε) =

∮
rε

α,
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the form α need only to be a discrete function on the horizontal edges of the
shrinking Cayley graph of Γε. However in order to estimate this sum, we will
assume that α actually comes from a smooth horizontal one form on G. We
note

Ω1H = C∞(G, Λ1H∗)

this space of smooth partial one forms on G.
We would like to use the direction D(r). Recall that it belongs to the free

associative algebra A(H) (and even to the free Lie algebra F(H)). There is a
canonical mean to transform an element P ∈ A(H) into an operator on Ω1H.

This follows from the remark that, given any basis {X1, · · · , Xn} of H, a
polynomial P ∈ A(H) uniquely factorizes in

P = c +
n∑

i=1

PiXi , (31)

with c scalar and Pi ∈ A(H). We can then define a differential operator iH(P )
acting on Ω1H by

iH(P )α =
n∑

i=1

Pi.α(Xi). (32)

More invariantly, using the splitting A(H) = R1⊕A(H)⊗H, we first define

iH : A(H)→ A(H)⊗ (Λ1H∗)′

by
iH(1) = 0 and iH(PX) = P ⊗ int(X) for X ∈ H,

where int(X)α = α(X). Then we view A(H)⊗(Λ1H∗)′ as differential operators
acting on Ω1H = C∞(G)⊗ Λ1H∗.

From the definition we note that

iH(P ) ◦ dH = P (33)

for any P ∈ A(H) without constant term, in particular for P ∈ F(H). Recall
that dH is the horizontal part of the differential on functions. We have also

iH(PQ) = PiH(Q) (34)

for any P,Q ∈ A(H) such that Q has no constant term.
Given a partial one-form α ∈ Ω1H, the components iH(P )α have a simple

geometric meaning when put all together. Let

α̃ ∈ Ω1F(H) = C∞(G, Λ1F(H)∗)

be defined on P ∈ F(H) by

α̃(P ) = iH(P )α . (35)

Proposition 4.4. α̃ is the unique closed extension of α in Ω1F(H).
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Proof. For X ∈ H one has α̃(X) = iH(X)α = α(X) so that α̃ extends α.
Also, given P and Q ∈ F(H) one has

dα̃(P,Q) = Pα̃(Q)−Qα̃(P )− α̃([P,Q])
= PiH(Q)α−QiH(P )α− iH([P,Q])α
= iH(PQ−QP − [P,Q])α by (34),
= 0.

Lastly, a closed form β ∈ Ω1F(H) satisfies β([P,Q]) = Pβ(Q)−Qβ(P ) and
is thus determined by its restriction to the bracket generating H.

Each individual component α̃(P ) may be considered as the “infinitesimal
holonomy” of α in the direction P . More precisely we can express the asymp-
totic of dΓε

1 along a shrinking relation rε.

Proposition 4.5. Let α ∈ Ω1H. Then for ε→ 0,

dΓε
1 α(rε) = εd(r)α̃(D(r)) + O(εd(r)+1)

= εd(r)iH(D(r))α + O(εd(r)+1)

where d(r) is the degree of r and D(r) its direction (see Definition 4.3).

Proof. Let α̃ be the closed extension of α, and r̃ε be the lifting in F(H) of the
loop rε (using Baker-Campbell-Hausdorff formula). Since rε is horizontal and
α̃ = α on H, one has

dΓε
1 α(rε) =

∮
rε

α =
∫
erε

α̃.

The form α̃ being closed, this last integral only depends on the ends of the path,
and is therefore the same as on the straight line tangent to r̃ε ∈ R(g), that is

dΓε
1 α(rε) = α̃(r̃ε)

= εd(r)α̃(D(r)) + O(εd(r)+1),

since r̃ε = εd(r)D(r) + O(εd(r)+1) by (25).
Of course these computations have to be taken in the sense of jets on the

infinite dimensional F(H). Anyway this asymptotic can also be obtained stay-
ing in finite dimensional groups. Given an n > d(r), one can restrict α̃ on the
’free’ n-step nilpotent group, whose Lie algebra is F(H)/Fn+1. The extension
α̃n is now only closed at order n, hence its use in the previous computations
gives the same asymptotic at order d(r).

Examples, continued. • On Zn ⊂ Rn, the discrete relations r = (X, Y )
have directions D(r) = [X, Y ]A = XY − Y X, for which by (32)

iH(D(r))α = Xα(Y )− Y α(X) = dα(X, Y ), (36)
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giving the comforting

d
(εZ)n

1 α(rε) =
∮

rectangle(εX,εY )
α ∼ ε2dα(X, Y ).

• In the same spirit, the Heisenberg groups H2n+1 and their discrete co-
compact Γ = H2n+1

Z are quadratically presented for n ≥ 2. We therefore find
again quadratic holonomy and first order iH(D(r)). For instance the twisted 8

rij = (Xi, Yi)(Xj , Yj)−1

of figure 3, gives

D(rij) = [Xi, Yi]A − [Xj , Yj ]A = XiYi − YiXi −XjYj + YjXj

so that

dΓε
1 α(hεrij) ∼ ε2

(
Xiα(Yi)− Yiα(Xi)−Xjα(Yj) + Yjα(Xj)

)
.

• For the 3 dimensional Heisenberg group H3 and its cocompact H3
Z, we

have cubical relations r1 = (X, (X, Y )) and r2 = (Y, (X, Y )) leading to{
D(r1) = [X, [X, Y ]]A = X(XY − Y X)− [X, Y ]X
D(r2) = [Y, [X, Y ]]A = Y (XY − Y X)− [X, Y ]Y,

(37)

so that by (32),{
iH(D(r1))α = X(Xα(Y )− Y α(X))− Tα(X)
iH(D(r2))α = Y (Xα(Y )− Y α(X))− Tα(Y ),

(38)

where T = [X, Y ]. This gives us the first term, in ε3, for the holonomy of
α along the shrinking 8-loops hεr1 and hεr2 seen in figure 2. Observe that
the limit of the ’rescaled differential’ ε−2dΓε

1 is now given by a second order
differential operator, to be compared to the function case, where ε−1dΓε

0 always
leads to a first order dH . That can be taken as a hint that, at large scale, dΓ

1

should more behave like a second order operator rather than a first order one.

Remarks 4.6. Note that in the computation of iH(P ), like in (38), one doesn’t
need to fully develop P , but only the relevant part giving the tails of the mono-
mials, as due to (34).

We remark also that, since the iH(P ) are used in Proposition 4.5 as dif-
ferential operators on G, one can identify in the final expression the A-bracket
with the one on g = F(H)/R(g). For instance T = [X, Y ] in (38), may be seen
as [X, Y ]h3 ∈ h3.
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4.4 The infinitesimal presentation complex

Summary. We sum up what has been seen. Given a cocompact discrete Γ,
horizontally generated in a Carnot Lie group G, the simplicial presentation
complex of the shrinking Γε = hεΓ

C(Γε)
dΓε
0−→ C(Sε)

dΓε
1−→ C(Rε) (39)

rescales, when restricted on smooth traces, towards an infinitesimal presentation
complex

C∞(G) dH−→ Ω1H
dR−→ Ω1R(g). (40)

where

• dH is the horizontal part of the differential d on functions,

• (dRα)(P ) = α̃(P ) = iH(P ).α for any infinitesimal relation P ∈ R(g) and
horizontal one form α.

We gather some features of this construction.

• The property dR◦dH = 0 can be seen either as a limit of the corresponding
fact on the presentation complex, or using (33) :

(dRdHf)(P ) = iH(P )dHf = Pf = 0,

since f , being a function on g = F(H)/R(g), is invariant along P ∈ R(g).

• Exactness. One has ker dH = constants and ker dR = Im dH .

Proof. If f ∈ C∞(G) is such that dHf = 0, then df = 0 along all brackets of
H, that spans g.

If dRα = 0, then the closed extension α̃ of α vanishes on R(g). Hence α̃ is
a closed one form on G itself. Then there exists f on G such that α̃ = df , and
in particular α = dHf .

• Actually, by Proposition 4.5, the only components of dR that appear in
the limit of (39) are (dRα)(D(ri)) for the finite set of directions D(ri) of the
chosen elementary relations ri of Γ. As already observed, these D(ri) generate
the ideal R(g). This implies that all the components of dRα are determined by
these (dRα)(D(ri)).

Indeed, given X ∈ H, P ∈ R(g) and α ∈ Ω1H, one has

dRα([X, P ]) = α̃([X, P ])
= Xα̃(P )− Pα̃(X) for α̃ is closed,

= X · dRα(P ) (41)

since α̃(X) = α(X), being a function on g, is constant along P ∈ R(g).
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Staying on G. Thanks to the previous remark and Hopf’s relation, one can
replace the last space Ω1R(g) in (40) by a more convenient bundle on G.

Recall that, in the Lie algebra setting, the second homology group H2(g, R)
is defined as follows. The Lie bracket on g induces a complex

Λ3g
∂g−→ Λ2g

∂g−→ g

with {
∂g(X ∧ Y ∧ Z) = X ∧ [Y, Z]g + Y ∧ [Z,X]g + Z ∧ [X, Y ]g

∂g(X ∧ Y ) = [X, Y ]g
leading to define

H2(g, R) = ker ∂g/ Im ∂g.

Moreover, since g = F(H)/R(g) here, one can consider the canonical map

∂̃ : H2(g, R) −→ Rc(g) = R(g)/[F(H),R(g)]

defined by

∂̃
(∑

aijXi ∧Xj / Im ∂
)

=
∑

aij [X̃i, X̃j ]A / [F(H),R(g)]

for any choice of lifts X̃i of Xi in F(H).

Hopf’s formula [4, 36], in this setting, states that ∂̃ is an isomorphism.
Therefore, given any supplementary subspace V of [F(H),R(g)] in R(g), one
can project the map dR by defining

dV : Ω1H → C∞(H2(g))

such that for Y ∈ H2(g, R)

(dV α)(Y ) = (dRα)(ΠV ∂̃Y ),

where ΠV is the projection of R(g) on V along [F(H),R(g)].
The reduction of the complex (40) given by

C∞(G) dH−→ Ω1H
dV−→ C∞(H2(g)), (42)

is still a resolution, since V generates the ideal R(g), but now depends on the
choice of V .

For instance, if some cocompact Γ ⊂ G is given, one can take for V the
subspace of R(g) spanned by the directions of chosen elementary relations of
Γ.

Also, it may happens that some invariant (with respect to automorphisms
of G) choice of V may be done. That’s the case for Carnot groups which are
homogeneously presented. That means that the graded relation ideal

R(g) =
⊕

d≥dmin

Rd(g)

is generated by its elements of lowest degree, so that we can take

V = Rdmin
(g).

The differential dV is not invariant in general. However, it is a convenient
reduction of the canonical dR : Ω1H → Ω1R(g), using a bundle over G of
minimal possible dimension dimH2(g).
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Connection with d. Even if dV may be an operator of high order (equals
to the maximal order of generating relations of G − 1), it is closely related to
the standard first order d, but now restricted to some particular space of forms
and directions.

Namely, pick some lifting map X → X from g into F(H), and extend it
from Λ2g into Λ2F(H). Choose also a subspace H2 ⊂ ker ∂g∩Λ2g isomorphic to
H2(g, R) (as for instance ∂g + ∂∗g harmonic vectors relatively to a given metric
on G). Then V = ∂F (H2) is supplementary to [H,R(g)] in R(g) by Hopf’s
formula.

Proposition 4.7. For α ∈ Ω1H, let α be the one form on G defined by

α(X) = α̃(X)

Then one has dV α = dα, in restriction to H2.

Proof. Let Y =
∑

aijXi ∧ Xj ∈ H2. Then since ∂gY =
∑

aij [Xi, Xj ]g = 0,
Cartan’s formula gives

dα(Y ) =
∑

aij

(
Xiα(Xj)−Xjα(Xi)

)
=

∑
aij

(
Xiα̃(Xj)−Xiα̃(Xj)

)
= α̃

(∑
aij [Xi, Xj ]A

)
since dα̃ = 0,

= α̃(∂FY ) = dV α(Y ).

Observe that more generally one obtains on Λ2H

dα(Y ) = α̃
(
∂F Y − ∂gY

)
, (43)

so that in particular dα vanishes on the kernel of the curvature map

R : Y ∈ Λ2g −→ ∂F Y − ∂gY ∈ R(g).

We finally point out that one can make some choice of lifting g → F(H)
that allows to characterize and compute α, and finally dV |H2 , while staying on
G, without referring to α̃ and the free Lie algebra F(H).

By Definition 4.1 we have gk+1 = [g1, gk]g and in particular

∂g : g1 ∧ gk ⊂ Λ2
k+1g −→ gk+1

is surjective. We can choose then a subspace Wk+1 ⊂ Λ2
k+1g such that ∂g

induces an isomorphism between Wk+1 and gk+1. A convenient choice may be
given by W = Im ∂∗g if some metric is fixed.

Now we can define a lifting map step by step, starting with X = X for
X ∈ g1 = H ⊂ F(H), and satisfying ∂gY = ∂FY for Y ∈ Wk+1. Then the one
form α on G, introduced in Proposition 4.7, satisfies the following properties.
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Proposition 4.8. α ∈ Ω1G is the unique extension of the horizontal α ∈ Ω1H,
such that dα = 0 on W . It can be computed step by step on gk+1 using

α(∂gY ) =
∑

aij

(
Xiα(Xj)−Xjα(Xi)

)
(44)

for Y =
∑

aijXi ∧Xj ∈Wk+1.

Proof. The vanishing of dα on W comes from (43) and the construction of the
lifting. Then (44) is just a rewriting of this property, showing in particular the
required uniqueness.

This aspects of dV will be convenient to generalize to any degree on the
large class of Carnot-Carathéodory manifolds in §4.

Examples. • G = Rn is quadratically presented and one can take V = F2 '
Λ2Rn. Of course H2(Rn, R) = Λ2Rn, and by (36), the complex (42) is just (the
beginning of) de Rham’s one.

• We know that the Heisenberg group H3 is cubically presented, with

R3(h3) = F3 = span([X, [X, Y ]]A, [Y, [X, Y ]]A).

One sees easily that H2(h3, R) = H ∧ T , where T = [X, Y ]. Dually, H2(h3, R)
identifies with the vertical 2-forms θ ∧H∗ (where ker θ = H). Taking V = F3

the map dV is given by (38), namely{
dV α(X ∧ T ) = X(Xα(Y )− Y α(X))− Tα(X)
dV α(Y ∧ T ) = Y (Xα(Y )− Y α(X))− Tα(Y ).

As stated in Proposition 4.7, we observe that in restriction to H ∧ T , one
has dV α = dα, where α is the extension of α to g such that

α(T ) = Xα(Y )− Y α(X) = α̃([X, Y ]A).

From Proposition 4.8, it is the unique extension of α such that dα(X ∧Y ) = 0.
Note that this is an invariant condition here, due to uniqueness of possible
choices of H2 = H ∧ T and W = Λ2H.

• By (30), the higher Heisenberg groups H2n+1 are quadratically presented
for n ≥ 2 with

R2(h2n+1) = kerω,

where ω ∈ Λ2H∗ is the non-degenerate form defining H2n+1 as in (26). One
finds that H2(h2n+1, R) = kerω∩Λ2H. Dually, H2(h2n+1, R) identifies with the
quotient space Λ2H∗/Rω of horizontal two forms modulo ω. Given V = ker ω,
and

Y =
∑

aijXi ∧Xj ∈ H2(h2n+1, R) = kerω ∩ Λ2H,

one gets that

ΠV ∂̃Y =
∑

aij [Xi, Xj ]A =
∑

aij(XiXj −XjXi),
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so that

dV α(Y ) = (dRα)(ΠV ∂̃Y ) = iH(ΠV ∂̃Y )α

=
∑

aij(Xiα(Xj)−Xjα(Xi))α by (32),

= dα(Y ),

for even any vertical extension α of α here.
This points out the fact that dV is also given by the action of the standard

d modulo the differential ideal I generated by vertical one forms.
Indeed let θ be the one form defined by θ(T ) = 1 and θ = 0 on H. By (26),

ω = −dθ, hence
I = {θ ∧ α + ω ∧ β},

giving the isomorphisms

Ω1H ' Ω1G/I1 dV 'd−−−−→ C∞(H2(g)) ' Ω2G/I2. (45)

From this viewpoint, it is clear that such a quotiented differential can be in-
variantly defined on contact manifolds. These are manifolds M endowed with
a codimension one subbundle H ⊂ TM such that, given locally (any) one form
θ satisfying ker θ = H, then ω = dθ is non-degenerate on H. (The ideal I is
independent of the choice of such a θ called contact form.)

• Consider now the following example G, called Engel’s group. It is the
(unique) three-step four dimensional Lie group, such that g is generated by
H = R(X, Y ) with the defining brackets{

[X, Y ] = Z , [X, Z] = T ,

[Y, Z] = [X, T ] = [Y, T ] = [Z, T ] = 0.
(46)

With respect to the free Lie algebra F(H) anyway, the first two brackets are
notations, while only the two relations [Y, Z] = [X, T ] = 0 are needed, since
then

[Y, T ] = [Y, [X, Z]] = [Z, [X, Y ]] + [X, [Y, Z]] = 0,

[Z, T ] = [[X, Y ], T ] = [[X, T ], Y ] + [[T, Y ], X] = 0.

That means that the infinitesimal relations ideal R(g) is generated by

r1 = [Y, [X, Y ]]A and r2 = [X, [X, [X, Y ]]]A, (47)

so that we can take V = R(r1, r2). This choice is not canonical this time.
Indeed the map X → X + cY and Y → Y induces an isomorphism of G, which
preserves r1, but replaces r2 by r2 + [2cX + c2Y, r1].

Using Hopf’s relation, or a direct (co)homological computation, one sees also
that Y ∧ Z and X ∧ T give a (non canonical) choice representing the quotient
H2(g, R) = ker ∂/ Im ∂. One can readily compute the differential here. Namely
developing (47) with remarks 4.6 gives

r1 = Y (XY − Y X)− [X, Y ]Y
r2 = X

(
X(XY − Y X)− [X, Y ]X

)
− [X, [X, Y ]]X
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so that by (32) and (34),

dV α(Y ∧ Z) = iH(r1)α = Y (Xα(Y )− Y α(X))− Zα(Y ) (48)

and

dV α(X ∧ T ) = iH(r2)α
= X

(
X(Xα(Y )− Y α(X))− Zα(X)

)
− Tα(X). (49)

Again as given by Proposition 4.7, we see that in restriction to Y ∧Z and X∧T
(representing H2(g, R)), dV α = dα for the extension α of α to g defined by{

α(Z) = Xα(Y )− Y α(X) = α̃([X, Y ]A)
α(T ) = Xα(Z)− Zα(X) = α̃([X, Z]A),

(50)

and which by Proposition 4.8 is also the unique extension of α such that

dα(X ∧ Y ) = dα(X ∧ Z) = 0.

5 Extension to Carnot-Carathéodory spaces

5.1 Carnot-Carathéodory geometry

Definition. The previous construction can be adapted to a class of manifolds
whose tangent space is “modelled” on Carnot groups.

A Carnot-Carathéodory (or C-C) structure on a smooth manifold M is, by
definition, a bracket generating subbundle H of the tangent bundle TM . This
gives an increasing filtration of TM by distributions

Hk+1 = [H,Hk] with Hr = TM (51)

for some minimal number of steps r. All C-C structures will be assumed regular
here, meaning that the Hk have constant dimensions over each point of M .
These Hk can then be seen as subbundles of TM .

To each point x0 ∈M is associated a tangent Carnot Lie group Gx0 in the
following way. The Lie bracket induces a quotient map

[ , ]0 : Hk/Hk−1 ×Hp/Hp−1 → Hk+p/Hk+p−1,

which turns out to be a zero order (algebraic) operator here since

[X, fY ] = f [X, Y ] + (X.f)Y = f [X, Y ] mod Hk+p−1.

Therefore, given any x0 ∈M , [ , ]0 defines at x0 a Lie algebra structure on the
graded tangent space at x0

gx0 = Gr(Tx0M) =
r⊕

k=1

Hk,x0/Hk−1,x0 .

By Definition 4.1, this Lie algebra defines a Carnot group Gx0 since it is graded,
nilpotent and generated by its first layer H. Details on the relationships between
C-C structures and their tangent Carnot groups may be found for instance in
[2, 32].
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Examples. • Any Carnot group is a C-C manifold everywhere tangent to
itself!

• The trivial C-C structure is H = TM , giving [ , ]0 = 0 and gx0 = Rn =
Tx0M , meaning that the tangent group is the tangent space.

• Contact structures have already been defined in the previous section. This
is the special instance of codimension one C-C structure H where, for any choice
of one form θ with ker θ = H, one has ω = dθ non-degenerate on H.

Given locally any T ∈ TM \H, and a contact form θ with θ(T ) = 1, one sees
that the tangent bracket [ , ]0 : H ×H → RT is [X, Y ]0 = −dθ(X, Y )T . This
implies by (26) that a contact structure is everywhere tangent in the previous
sense to the Heisenberg group H2n+1, with dimM = 2n + 1.

Even more here, by a classical result of Darboux, a contact structure can
be locally embedded into an Heisenberg group. But this is a very particular
case since in general, a C-C structure with a constant tangent group can’t be
embedded in it.

• A k-dimensional distribution Hk in Rn or TMn is generically locally
bracket generating, and thus defines a C-C structure. For instance the case
k = 2p and n = 2p + 1 corresponds to the previous contact structures. A
generic plane distribution H2 in R4 leads to a tangent 3-step 4-dimensional
Carnot group. It is the Engel’s group we considered in §4.4. Many other ex-
amples are given in [32].

5.2 Retracting de Rham complex

Filtrations. From Propositions 4.7 and 4.8, the infinitesimal presentation
complex (42) of a Carnot group, reduced to be some components of the standard
differential, but acting on a particular family of one forms. Counterparts of
these structures exist on C-C manifolds.

We will follow closely presentations given in [38, 40].
Firstly, the increasing sequence of bundles Hk in TM gives rise to a natural

decreasing filtration on p-forms by forms in Λp
(k)T

∗M vanishing on all p-vectors

of
p⊗

i=1

Hki
such that

p∑
i=1

ki < k. If we see vectors in Hk as being of weight ≤ k,

then forms in Λ∗(k)T
∗M are of weight ≥ k.

By Cartan’s formula and (51), each Ω∗(k)M = C∞(M,Λ∗(k)T
∗M) is preserved

by d. We get in particular that de Rham’s complex is filtered by these Ω∗(k)M ,
and one can consider the quotiented differential d0 induced from d on

Ω∗kM = Ω∗(k)M/Ω∗(k+1)M. (52)

Cartan’s formula again gives on Ωp
kM that

d0α(X1, · · · , Xp+1) = ∑
1≤i<j≤p+1

(−1)i+jα([Xi, Xj ]0, X1, · · · , X̂i,j , · · · , Xp+1),
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is a 0-order (algebraic) operator, with [ , ]0 the Lie algebra bracket on the tan-
gent Lie algebra gx0 of the C-C structure. This d0 is the Lie algebra coboundary
on Λ∗g∗x0

. It can be seen as de Rham differential acting on left invariant forms
on G, or also as dual maps to the boundaries ∂gx0

already met. Its cohomology
ker d0/ Im d0 is by definition the Lie algebra cohomology H∗(gx0 , R), dual to
the homology introduced in §4.4.

We will note H∗(gx0 , R) = E∗
0 , in reference to spectral sequence techniques

(see eg [20, Chapter 3.5]). Indeed, this E∗
0 is really the first space arising in the

spectral sequence associated to the natural filtered complex (Ω∗(k)M,d).
In order to get bundles on M , we will suppose that the C-C structure has

some extra regularity hypothesis (always satisfied at least on an open dense
set).

Definition 5.1. A C-C structure is called E0-regular if each Ep
0 has constant

dimension.

In that case we can consider the bundle, still called E0, of smooth sections
of these E0,x0 . We note that, since

H1(gx0 , R) = (g/[g, g])∗ = g∗1 = Λ1H∗,

one has E1
0 = Ω1H, while E2

0 = C∞(M,H2(gx0 , R)). They correspond, in
this varying tangent group situation, to the two bundles of the infinitesimal
presentation complex (42).

Extra choices. We would like now to adapt Propositions 4.7 and 4.8 to our
setting. We have to describe some relevant spaces of ”true” forms on which we
could restrict de Rham’s complex while staying a resolution. Such a result is
achieved when applying an homotopical equivalence r = Id−Ad− dA.

As in these propositions we first have to fix some choices of spaces repre-
senting the quotient spaces, gk = Hk/Hk−1, E0 = H∗(gx0 , R) and T ∗M/ ker d0.
Therefore we choose

• Vk such that V1 = H and Hk+1 = Hk ⊕ Vk+1,

• E0 such that ker d0 = Im d0 ⊕ E0,

• W such that Λ∗T ∗M = ker d0 ⊕W .

Here d0 is viewed as acting on true forms on M , as allowed by the choice of
Vk ' gk that fixes the weight of vectors and forms. Of course, if some metric is
available on M , one can take orthogonal spaces as supplementaries :

Vk+1 = Hk+1 ∩H⊥
k , E0 = ker δ0 ∩ ker d0 = H(gx0 , R) , W = Im δ0 , (53)

for δ0 = d∗0 adjoint of d0.
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Remarks 5.2. • There are no C-C invariant such choices in general (depend-
ing only on H ⊂ TM). Anyway, for the problems we are dealing with here,
one breaks the invariance sooner or later, when introducing a metric and use
adjoints.
• Anyway, there may be non (completely) invariant choices which, in some

particular situations, like contact geometry, quaternionic contact geometry (see
§5.3), and maybe more or less flat parabolic geometries (?), finally lead to
invariant operators.

We observe that d0, when seen as acting on Ω∗M is actually the component
of d which preserves the weight of forms :

d = d0 + d1 + · · ·+ dr (54)

where dk increases the weight by k. The fact that d0 is an algebraic operator
allows us to partially inverse it. Let d−1

0 be defined by

d−1
0 d0 = Id on W and d−1

0 = 0 on W ⊕ E0,

giving

d−1
0 d0 = ΠW/ ker d0

, d0d
−1
0 = ΠIm d0/E0⊕W ,

Id−d−1
0 d0 − d0d

−1
0 = ΠE0/ Im d0⊕W . (55)

An homotopy. We can now define a retraction of de Rham complex by

r = Id−d−1
0 d− dd−1

0 . (56)

This is by definition an homotopical equivalence, that (non-strictly) increases
the weight of forms. By (54) and (55), the component r0 of r preserving the
weight is ΠE0/ Im d0⊕W , the projection onto E0 relatively to Im d0 ⊕W .

In order to retract de Rham complex on the minimal possible space of forms,
we can iterate r. The basic fact is that these rk do stabilize for k large enough to
a map ΠE/F , which has to be both an homotopical equivalence, and a projection
onto a sub-complex (E, d) along another (F, d).

The following lemma is useful to identify E and F .

Lemma 5.3. The map d−1
0 d induces an isomorphism from W into itself, whose

inverse is a differential operator P .

Proof. On W , one can write

d−1
0 d = d−1

0 d0 + d−1
0 (d− d0) = Id +N, (57)

where N = d−1
0 (d − d0) is a nilpotent differential operator since it strictly

increases the weight.
Then P =

∑maxweight
k=0 (−1)kNk is the required inverse.

This lemma points out the fact that, when restricted to W , de Rham dif-
ferential itself has a left inverse Q = Pd−1

0 , meaning that Qd = Id on W . Thus
this subspace W can be cut out from de Rham complex, using the homotopical
equivalence Id−Qd. One can also get rid of dW and identify the remaining
space.
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Theorem 5.4. [38] Let (M,H) be a E0-regular C-C manifold with the above
structures and notations.

1. De Rham complex (Ω∗M,d) splits in the direct sum of two sub-complexes

E = ker d−1
0 ∩ ker(d−1

0 d) = {α ∈ E0 ⊕W | dα ∈ E0 ⊕W}
F = Im d−1

0 + Im dd−1
0 = W + dW.

The projection ΠE/F , onto E along F , is an homotopical equivalence given
by Id−Qd− dQ, with Q = Pd−1

0 as above.

2. The retractions rk stabilize to ΠE/F .

3. Let ΠE0 = ΠE0/ Im d0⊕W and ΠE = ΠE/F . One has

ΠE0ΠE = Id on E0 and ΠEΠE0 = Id on E.

In particular, the complex (E, d) is conjugated to the complex (E0, dc) with
dc = ΠE0dΠEΠE0.

These complexes are gathered in the following commutative diagram :

Ω∗M = E ⊕ F

ΠE

��

d // Ω∗M = E ⊕ F

ΠE

��
E

ΠE0
��

i

OO

//d // E

ΠE0
��

i

OO

E0

ΠE

OO

dc // E0

ΠE

OO

Proof. 1. We consider Π = Id−Qd− dQ and recognize it as a projection.
One has Q = Pd−1

0 = 0 on W . Moreover Qd = Id on W by Lemma 5.3.
Thus Π = 0 on W , but also on F = W + dW since Πd = dΠ, and finally
F ⊂ ker Π.

Reversely, Im Q ⊂ W and Im dQ = Im dPd−1
0 ⊂ dW by construction. This

gives that kerΠ ⊂ Im(Qd + dQ) ⊂W + dW = F and the equality kerΠ = F .
About Im Π, since d−1

0 Q = 0, we have

d−1
0 Π = d−1

0 − d−1
0 dQ = d−1

0 − (d−1
0 dP )d−1

0 = 0

by definition of P . We have then also d−1
0 dΠ = d−1

0 Πd = 0, and thus Im Π ⊂ E.
Lastly since Q = Pd−1

0 = 0 on ker d−1
0 , we have dQ + Qd = 0 on E = ker d−1

0 ∩
ker d−1

0 d so that ΠE = Id on E, and the conclusion Π = ΠE/F .

2. One has directly r = Id on E from the definitions.
By (57), we have r = Id−d−1

0 d = −N on W , with N = d−1
0 (d−d0) nilpotent.

Therefore rn = 0 on W for n large enough, but also on dW and F = W + dW
since rnd = drn.

3. Since E0 ⊂ ker Q = kerPd−1
0 and Im Q ⊂W ⊂ ker ΠE0 , we have that

ΠE0ΠEΠE0 = ΠE0(Id−Qd− dQ)ΠE0 = ΠE0 .

Lastly, we have ΠE = 0 on W ⊂ F . Therefore, we have ΠEΠE0 = ΠE = Id on
E ⊂ ker d−1

0 = W ⊕ E0.
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For convenience, this construction will be referred as “Carnot complex” in
the sequel, also we emphasize it is indeed de Rham complex, but restricted to
a particular subspace of forms.

Comparison to the presentation complex. In the case of M being a
Carnot group G, the two first steps

C∞(G) dc−→ E1
0

dc−→ E2
0

of the previous construction are actually equivalent to the infinitesimal presen-
tation complex, as considered in propositions 4.7 and 4.8

C∞(G) dH−→ Ω1H
dV−→ C∞(G,H∗2).

Indeed, we have already observed that E1
0 = Ω1H. Also by definition E2

0 =
C∞(G,H2(g)), where H2(g) is a choice of subspace of Λ2g∗ representing the
cohomology, dual to a H2(g) ⊂ Λ2g representing homology.

Now we show that dc = dV . Given α ∈ Ω1H, ΠEα is an extension of α to
Ω1G, since when restricted to H,

ΠEα = ΠE0ΠEα = α.

By definition of E, we have d(ΠEα) ∈ W ⊕ H2(g) which is supplementary to
Im d0 in Λ2g∗. This condition is equivalent to d(ΠEα) = 0 on W ′, dual space
to W ⊕ H2(g), and which is supplementary to ker ∂g in Λ2g. Therefore, by
proposition 4.8, ΠEα coincides with the special lifting α described there. And
by proposition 4.7, one has finally on H2(g),

dV α = dα = dΠEα = dcα.

Liftings and spectral sequence. The previous remark that for α ∈ E1
0 =

Ω1H, ΠEα may be seen as a particular extension of α in Ω1M , is true in any
degree, as comes again from the relation ΠE0ΠE = Id on E0. In the spirit of
Proposition 4.8, we have the following characterization :

Proposition 5.5. For α ∈ E0, ΠEα is the unique extension α of α modulo W
such that d−1

0 dα = 0.

Proof. On E0, ΠE reduces to Id−Qd since dQ = dPd−1
0 = 0 here. Moreover

Im Q ⊂ Im P ⊂ W by construction. Therefore ΠEα ∈ α + W is an extension
satisfying the conditions.

If α is another one, then d−1
0 dw = 0 with w = α−ΠEα ∈W , and w = 0 by

lemma 5.3.

In practice, computation of this extension may be done by iterating r which
reduces to Id−d−1

0 d on ker d−1
0 , to be compared with (44).

This viewpoint on liftings over E0 is also related to the natural spectral se-
quence associated with the filtration by weight (Ω∗(k)M,d) of de Rham complex.
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More precisely fix a p and an α ∈ Ep
0,k of maximal possible weight k. Then

given any lifting α of α in Ωp
(k)M , the class in Ep+1

0,k′ of the component of minimal
weight k′ of dcα is easily seen to be invariantly defined, independant of choices of
supplementaries and α. It is indeed the (k′−k)th differential of α arising in the
spectral sequence, and giving the first obstruction to finding a closed extension
α, as seen by diagram chasing. (If not working with p-forms α of maximal
possible weight in Ep

0 , quotients appear in the spectral sequence differentials.)
In particular, if the d0-cohomology bundles E0 have pure weights in degrees

p and p + 1, then dc : Ep
0 → E

p+1
0 actually represents a C-C invariant operator

[dc] : Ep
0 → Ep+1

0 .
This happens for instance for all degrees in contact geometry as we will

see in the next section. In general this happens between one and two forms
iff the tangent group is homogeneously presented. If not, it may be observed
that in constrast to general spectral sequences, components of high order of
differentials are always defined in the Carnot complex, and not only on kernels
of lower order ones. In the case of a fixed Carnot group, we recall that following
§4.4, dc interprets as giving the infinitesimal holonomy of an horizontal α ∈ Ω1H
along infinitesimal relations in R(g). Note that in this setting, looking for the
holonomy along any relation, whatever its order, actually makes sense (and can
indeed be obtained from Proposition 4.5), without requiring the vanishing of
holonomies along relations of lower order.

Duality. Although the definitions of E and F seem to break it, Hodge-∗
duality is preserved, if the choices of supplementaries are done like in (53) with
respect to a metric.

Proposition 5.6. [38, 40]

1. ∗δ0 = (−1)k+1d0∗ on Ek
0 and ∗ preserves E0.

2. ∗E = F⊥ or equivalently
∫
M E ∧ F = 0. The formal adjoint Π∗E of ΠE is

∗−1ΠE∗ = ΠF⊥/E⊥.

3. ∗δE = (−1)k+1dE∗ on ΩkM for dE = dΠE. Similarly ∗δc = (−1)k+1dc∗
on Ek

0 .

Proof. 1. Such pointwise duality formulas hold on unimodular Lie algebras,
in particular on the nilpotent tangent gx0 ' Tx0M .

2. Since E = ker δ0 ∩ ker δ0d, then

(∗E)⊥ = (ker d0 ∩ ker d0δ)⊥ = Im δ0 + Im dδ0 = F.

Therefore Π∗E = Π∗E/F = ΠF⊥/E⊥ = Π∗E/∗F = ∗−1(ΠE/F )∗. (∗2 = ±1)

3. From ∗δ = (−1)k+1d∗ and dE = dΠE = ΠEd, we get

∗δE = ∗Π∗Eδ = ΠE ∗ δ = (−1)k+1ΠEd∗ = (−1)k+1dE ∗ .
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Lastly from dc = ΠE0dEΠE0 , we get

∗δc = ΠE0 ∗ δEΠE0 = (−1)k+1ΠE0dE ∗ΠE0 = (−1)k+1dc∗,

using that ΠE0 is both an orthogonal and ∗ self-adjoint projection.

5.3 Some examples

Trivial C-C structure. Here H = TM with g = Rn and d0 = 0. Therefore
F = {0}, E = Ω∗M = E0, and dc = dE = d is de Rham complex (not restricted).

Contact manifolds. Let (M2n+1,H) be a contact manifold. We know from
§5.1, that the tangent structure is the Heisenberg group Gx0 = H2n+1. We first
compute d0.

Given a contact form θ ∈ Ω1M (with ker θ = H), one has a natural transver-
sal T , called a Reeb field, such that θ(T ) = 1 and iT dθ = 0. Now Ω∗M splits
in horizontal Ω∗H = ker iT and vertical forms θ ∧ Ω∗H. For α = αH + θ ∧ αT ,
we have

dα = dHαH + dθ ∧ αT + θ ∧ (LT αH + dHαH),

and the component that preserves the C-C weight is seen to be (the algebraic)

d0α = dθ ∧ αT .

Since dθ is non-degenerate on H, we find that

Ek
0 = Hk(g) =

{
ΛkH∗/ Im L if k ≤ n,

θ ∧ ker L if k > n,
(58)

where L : ΛkH∗ → Λk+2H∗ is defined by Lα = dθ ∧ α.
Note that these Ek

0 have pure C-C weights for all k, namely k if k ≤ n and
k + 1 if k > n. As previously observed, this implies that the differentials in the
dc-complex actually come from the (contact invariant) ones given by filtering de
Rham complex (see [39, §3] for details). In particular, one gets a second order
differential on En

0 , given by the usual formula for second order differential in
spectral sequences

dn
c = d2 − d1d

−1
0 d1 = θ ∧ (LT − dHL−1dH).

This is also de Rham differential of the extension

ΠEα = r(α) = α− d−1
0 dα = α− θ ∧ L−1dHα,

if α is seen (lift) in En
0 = ker iT ∩ (Im L)⊥, using a choice of θ and a metric.

We describe now some contact invariant choices of the sub-complexes E and
F used in Theorem 5.4, to split the (true) differential forms Ω∗M = E ⊕ F .
Recall that

E = {α ∈ V | dα ∈ V } and F = W + dW, (59)
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where W is supplementary to ker d0 and V (' W ⊕ E0) to Im d0. Given any
contact form θ and any almost complex structure J on H such that

gH = dθ(· , J ·)

is a metric on H, we can form the adjoint Λ : Λ∗H∗ → Λ∗H∗ of the above
multiplication L. By (58), one can take in degree k

V k =

{
{α ∈ ΩkM | ΛαH = 0} if k ≤ n,

{α = θ ∧ β} = vertical forms if k ≥ n + 1,
(60)

where αH is (now) the restriction of α to H. This is independent of the choice
of θ, by conformal invariance of L, but even of J , since from classical properties
of L (see e.g [44] or [39, Sec. 4]) one has

ker Λ = kerLn−k+1 on ΛkH∗. (61)

This choice of V , giving E by (59), is therefore contact invariant. One gets
finally that :

• for k ≥ n + 1,

Ek = {vertical forms α with dα vertical}
= {α = θ ∧ β | dθ ∧ β = 0 on H} (62)

= Ek
0 by (58),

• and for k ≤ n,

Ek = {α ∈ ΩkM | ΛαH = Λ(dα)H = 0}
= {α ∈ ΩkM | θ ∧ Ln−k+1α = θ ∧ Ln−kdα = 0},

with in particular d(En) ⊂ closed vertical forms ⊂ En+1, as needed.

About W (leading to F ), one can take in degree k

W k =

{
vertical forms if k ≤ n,

{θ ∧ Im Λ} if k ≥ n + 1,

which is again a contact invariant choice, since by duality from (61)

Im Λ = Im Ln−k+1 on Λ2n−kH∗.

To get more geometric feeling on E, let us describe the k-dimensional sub-
manifolds Nk of M whose associated intersection currents I(Nk) lie in E. That
means Nk is seen as a distribution acting on ΩkM by

〈Nk, α〉 =
∫

Nk

α =
∫

M
I(Nk) ∧ α,
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and we are looking for those ones satisfying I(Nk) ∈ E2n+1−k. Since by Stokes

dI(Nk) = (−1)k+1I(∂Nk),

and E = V ∩ d−1(V ), this condition is equivalent to

I(Nk) ∈ V 2n+1−k and I(∂Nk) ∈ V 2n−k. (63)

We recall that, from its definition, I(Nk) = α(Nk)µN , where

• µN is the superficial measure on N ,

• α(Nk) is the conormal volume form to Nk, that is the unitary oriented
section of Λmax(TNk)c, where the conormal bundle (TNk)c is the space
of one forms on TM vanishing on TNk. Given a metric, one has also
α(Nk) = ∗ d volTNk (up to sign).

Putting this together with (60) and (63), one sees that :

• for k ≤ n,

I(Nk) ∈ V 2n+1−k ⇔ α(Nk) is vertical⇔ TNk ⊂ H.

Therefore such (smooth) Nk, and their boundaries ∂Nk, are necessarily hori-
zontal submanifolds, meaning that their tangent spaces lie in the contact dis-
tribution H.

Note that by integrability of TNk, this implies moreover that TNk is a
Legendrian distribution of H, i.e. dθ = 0 on TNk. (Showing that such man-
ifolds don’t exist for k > n.) One can check that this last condition on TNk

translates, for the conormal volume α(Nk) (and I(Nk)), into dθ ∧ α(Nk) = 0,
which is one defining equation of Ek in (62).

• For k ≥ n + 1, one sees using a metric (as defined above) that

I(Nk) ∈ V 2n+1−k ⇐⇒ Λα(Nk) = 0 on H,

⇐⇒ dθ ∧ dvolTNk∩H = 0,

⇐⇒ dθ = 0 on (TNk)⊥ ∩H,

meaning that, this time, the distribution (TNk)⊥ ∩ H is Legendrian. Such
manifolds Nk can then be called co-Legendrian. Again, this is a contact notion,
since V 2n+1−k (and V 2n−k) can be given contact invariant definitions like in
(61).

In fact, the previous Legendrian condition on (TNk)⊥ ∩ H, is easily seen
to be equivalent to the following invariant one : the restriction to H of the
conormal bundle (TNk)c is Legendrian with respect to the dual symplectic
form ω∗, induced on H∗ from ω = dθ on H.

We observe also that for k = n + 1, a co-Legendrian Nn+1 has the prop-
erty that (TNn+1)∩H is (generically) a n-dimensional subbundle of H, and is
therefore itself Legendrian, being orthogonal to a Legendrian one in middle di-
mension. Therefore, such a Nn+1 is foliated by (integrable) n-dimensional hor-
izontal submanifolds. Then the condition ∂(Nn+1) ∈ V n means that ∂(Nn+1)
consists in some of these leaves.
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The conclusion of this discussion is that, at the level of currents induced
by submanifolds, the complex (E, d) is dual to these families of co-Legendrian
(in dim ≥ n + 1) and Legendrian manifolds (in dim ≤ n), with the standard
boundary operator ∂ relating them.

Since we know by Theorem 5.4 that, at the linear level of forms, one can
retract de Rham complex on (E, d), it looks tentative trying to represent homol-
ogy by the previous special manifolds. This much harder non-linear problem is
studied, at least at the level of horizontal submanifolds, in Gromov’s work [21].

Engel’s structures. Recall that an Engel’s structure is given by a three-step
two-plane field H in TM4. It’s tangent group has been described in §4.4. Let
θX , θY , θZ , θT ∈ Λ1g∗ be dual to (X, Y ) ∈ H = g1, Z ∈ g2 and T ∈ g3 as used
in (46). Then, d0 is given by

d0θX = d0θY = 0 , d0θZ = −θX ∧ θY and d0θT = −θX ∧ θZ ,

from which we get
E1

0 = g∗1 = span(θX , θY ),

E2
0 = span (θY ∧ θZ , θX ∧ θT ) = ∗E2

0 ,

E3
0 = ∗E1

0 = span (θY ∧ θZ ∧ θT , θX ∧ θZ ∧ θT )

E4
0 = Λ4g∗.

In degree one, dc = dV and ΠE have been computed on G in (48), (49) and
(50). The missing differentials can be obtained using ∗-duality. The results
are summarized in the following diagram, adding all possible travels between
points gives the various components of dc (within braces) and the liftings ΠE

(without braces)

(θY ) −Z //
X
""EEE

(θY ∧Z)

−X ''NNNN T

,,YYYYYYYYYYYYYYYYYYYY

(f)

Y ;;xxx

X
""FF

F
θZ

Y

::uuuu

X
$$III

II
θY ∧T

X %%LLLL −Z
// (θY ∧Z∧T )

X
''OOOO

(θX)

−Y <<yyy −Z //

−T ++XXXXXXXXXXXXXXXXX θT
X

&&NNN
NNN

θZ∧T
Y

77ppppp

X
''NNN

NN
(Ω4G)

(θX∧T )

−Y 99rrrr −Z // (θX∧Z∧T )

−Y 77oooo

(64)

A general Engel’s structure H ⊂ TM4 is not equivalent to its tangent G,
meaning that one can’t find vectors fields X, Y , Z, T ∈ TM4 satisfying the
structure brackets (46) of G. Anyway by definition of [ , ]0, brackets agree up
to vectors of lower C-C weights. That means that, for suitable local choices of
vectors fields in TM4, the differentials in the corresponding dc-complex on M4

will agree with the ones on G in (64), up to lower order terms. This is a general
feature of the construction.
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Quaternionic contact geometry. Let us consider now some attractive C-
C structure arising in various asymptotic analytic and geometric problems on
quaternion-Kähler manifolds (like in [3, 26]).

We first describe the Carnot group Q4n+3, called quaternionic Heisenberg
group, to which this particular C-C structure is tangent. Let H ' R4n and
an oriented V ' R3 be endowed with scalar products. Suppose given a linear
map J : V ∗ → End(H) such that for some, and then all, direct orthonormal
base (θ1, θ2, θ3) of V ∗, Ji = J(θi) defines a quaternionic structure on H. That
means the Ji are complex structures on H satisfying the imaginary quaternions
commutation relations J1J2 = −J2J1 = J3.

Consider then the 2-step 4n+3 dimensional Carnot group Q4n+3 whose Lie
algebra q4n+3 = H ⊕ V has a bracket [ , ]0 : H ×H → V defined by

θ([X, Y ]0) = −〈J(θ)X, Y 〉H .

Dually, the curvature d0 : V ∗ → Λ2H∗ of Q4n+3 is given by

(d0θ)(X, Y ) = 〈J(θ)X, Y 〉H . (65)

Geometrically this group (of Heisenberg-type [27, 12]) arises in the Iwasawa
decomposition of the rank 1 semi-simple Lie group Sp(n + 1, 1).

Definition 5.7. Given a a (4n + 3)-dimensional manifold M , a codimension 3
C-C structure H ⊂ TM is called a quaternionic contact structure if its tangent
Carnot group gx0 is everywhere isomorphic to Q4n+3.

For instance the sphere at infinity S4n+3 of the quaternionic hyperbolic space
Hn+1

H possesses such a structure, since it is indeed a (one point) compactification
of Q4n+3 itself. More interesting, this geometric structure has some flexibility
for there exist many non locally conformally flat examples.

For n ≥ 2, this is a consequence of works by C. Le Brun [28] and O. Biquard
[3], that the previous flat quaternionic contact structure on S4n+3 admits an
infinite dimensional space of deformations (asymptotic to deformations of the
quaternionic-Kähler metric on Hn+1

H ).
The 7-dimensional case is simpler, since being a quaternionic contact struc-

ture is even an open condition for a 4-dimensional distribution H ⊂ TM7.
Namely (see e.g [32]), we first note that in (65), the three dimensional Im d0

is the subspace of self-dual forms Λ2
+H∗, and the metric on V ∗ ' Im d0 is

induced by the intersection form q(ω)dvolH = ω2. Now a general 4-dimensional
2-step distribution H ⊂ TM7 is said elliptic if, at every point x0, q is positive
definite on the 3-dimensional L = Im d0 ⊂ Λ2H∗, where d0 : (TM/H)∗ → Λ2H∗

is again the curvature of the tangent Carnot group gx0 . In that case, it is a
classical algebraic fact that one can find a unique conformal class of metric on
H (and an induced one on V = TM/H), such that Im d0 = Λ2

+H∗ and d0 is
given by (65), showing finally that Gx0 is isomorphic to Q7.

We note also that, in any dimension, the conformal class of the metric on H
is actually determined by the quaternionic contact distribution H itself. This
is due to the fact that isomorphisms of Q4n+3 conformally preserves the 4-
fundamental form Ω =

∑3
i=1(d0θi)2, and following [41, Lemma 9.1], are up to

dilations and translations, induced by Sp(n)Sp(1) ⊂ SO(H).
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The C-C weights of the cohomology groups E0 of Q4n+3 have been computed
for instance in [25]. On p-forms,

Ep
0 has weight(s)


p for p ≤ n,

p and p + 1 for n + 1 ≤ p ≤ 2n

2n + 2 for p = 2n + 2,

(66)

and weights complementary to N(Q4n+3) = 4n + 6, in complementary degrees.
In dimension 7 (for n = 1), the pattern of the Carnot complex is the follow-

ing, with the degree of forms along x and (weight− degree) along y :

E5
0,8

dc // E6
0

dc// Ω7M

E4
0

dc //

dc ??~~~~
E5

0,7

dc

??~~~~

E2
0,3

dc // E3
0

dc
@@����

C∞(M)
dH // Ω1H

d− //

dc
;;wwwwww
Ω2
−H

dc

=={{{{{

(67)

where Ω2
−H = E2

0,2 ' Ω2H/ Im d0 is the space of anti-self dual partial 2-forms
on the 4-dimensional H. We can see that the bottom line looks like the half-
signature complex on H, except H is not integrable here.

We now discuss some invariance properties of this construction. Together
with analytic features developed in [38, 40], they have been used by Pierre
Julg in its proof of Baum-Connes conjecture for Sp(n, 1) in [26]. Although
the techniques we’ll follow look different, these invariance results are certainly
closed to general constructions proposed by Čap, Slovák and Souček in [5],
extending Bernstein-Gelfand-Gelfand sequences in parabolic geometries.

We first describe some (family of) transversal spaces T to H that we need to
fix supplementaries. Let again V ∗ be the space of vertical forms (i.e. vanishing
on H), on which we have our (conformal class of) metric. Given X ∈ TM , we
can define θX ∈ V ∗ by θ(X) = 〈θX , θ〉V ∗ . Mimicking the definition of Reeb field
in contact geometry, we consider the quadratic form Q : TM → Ω1H defined
by

Q(X) = d(‖θX‖2) + 2iXdθX restricted to H.

This is a tensor since

Q(fX) = d(f2‖θX‖2) + 2fiXd(fθX)

= f2Q(X) + ‖θX‖2d(f2) + 2f(X.f)θX − 2θX(X)fdf

= f2Q(X) on H.

Its symmetric bilinear form B satisfies, for (X, h) ∈ TM ×H,

B(X, h) = ihd0θX

= (J(θX)h)#gH by (65).
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Hence it induces, for X /∈ H fixed, an isomorphism from H into Λ1H∗. There-
fore, the quadric Q−1(0) splits into H ∪ T , where T is a cone transverse to H
and isomorphic to TM/H.

It turns out that this “Reeb cone” T is automatically a vector space if
dimM ≥ 11 (i.e. for n ≥ 2). Actually, this T is easily seen to coincide, in
these dimensions, with the vertical vector space associated to the connection
constructed by O. Biquard in [3, II.1]. In dimension 7, a connection has also
been given by D. Duchemin in [16]. In this dimension, the flatness of T is a
priori a non-vacuous condition on the quaternionic contact structure. Such 7-
dimensional quaternionic contact structures, with flat Reeb cone, will be called
integrable in the sequel.

In any case this T depends on the choice of a metric on H, within its
invariant conformal class. We compute its variation.

Proposition 5.8. If gH → g′H = efgH , then T → T ′ = (Id + ∆)(T ) with

∆(X) = −J(θX)∇Hf,

where ∇Hf = (dHf)#gH is the horizontal gradient of f .

Proof. From their definitions, if g′H = efgH , then

J ′ = e−fJ , g′V ∗ = e−2fgV ∗ and θ′X = e2fθX ,

from which one finds

Q′(X) = e2f (Q(X)− 2‖θX‖2dHf).

Hence if Q(X) = 0, then Q′(X + h) = 0 for some h ∈ H iff

B(X, h) = ‖θX‖2dHf ⇐⇒ h = −J(θX)∇Hf,

since B(X, h) = (J(θX)h)#gH and J2(θ) = −‖θ‖2 Id.

Remark 5.9. This shows in particular, as stated above, that the ’flatness’ of the
Reeb cone only depends on the quaternionic structure H : because ∆ is a linear
map. For instance T is flat on the sphere S4n+3, since it is locally equivalent
to the group model Q4n+3, for which T is q2 = [H,H]0.

Using these T , one can now extend (or lift) partially defined forms α into
’true’ ones α, by requiring their vanishing on vectors of higher C-C weight.
These extensions are not invariant, but induce invariant choices of ker δ0, Im δ0

and sub-complexes E and F in Theorem 5.4. This follows from the lemma.

Lemma 5.10. Let (M,H) be a quaternionic-contact structure, assumed inte-
grable if dim(M) = 7. Then, given two conformal gH and g′H , the induced
variation ∆ of vertical extensions of partial forms satisfies

∆(ker δ0) ⊂ Im δ0.
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Proof. As in (52), we note Ωp
kM the space of partially defined p-forms on p-

vectors of weight ≤ k. If g′H = efgH , we show that for α ∈ Ωp
kM , its variation

of vertical extension to Ωp
k+1M is given by

∆α = δ0(dHf ∧ α) + dHf ∧ δ0α. (68)

•We first check it on horizontal forms Ωp
pM = ΩpH. Fix orthonormal bases

(Tj)1≤j≤3 of T , dual to vertical one forms (θj)1≤j≤3. Given α =
∑3

j=1 θj ∧ αj

with αj ∈ Ωp−1H ⊂ ker d0, one has d0α =
∑3

j=1 d0θj ∧ αj , so that

d0 =
3∑

j=1

d0θj ∧ iTj on Ωp
p+1M.

Therefore, for any X ∈ H, one has on Ωp
p+1M ,

d0iX + iXd0 =
∑

j

(iXd0θj) ∧ iTj =
∑

j

(J(θj)X)# ∧ iTj .

Taking adjoints and X = ∇Hf , gives for α ∈ ΩpH,

δ0(dHf ∧ α) + dHf ∧ δ0α =
∑

j

θj ∧ iJ(θj)∇Hfα

= α(J(θ·)∇Hf, · · · )
= −i∆(·)α = ∆α,

as comes from Proposition 5.8.

• To get (68) in general, we observe that for vertical one forms θ,

∆(θ ∧ α) = θ ∧∆α,

since θ ∧ · commutes with vertical extension, while

δ0(θ ∧ α) = −θ ∧ δ0α,

which is dual to d0iT + iT d0 = 0 (= adq(T )) for vertical T .

As already mentioned, Lemma 5.10 gives that the splitting of de Rham
complex into the two sub-complexes

E = ker δ0 ∩ ker δ0d and F = Im δ0 + Im dδ0

is invariant, meaning it depends only on the (integrable) quaternionic contact
structure H. That’s not the case of the reduction of (E, d) to (E0, dc), as
presented in Theorem 5.4, because

E0 = ker d0 ∩ ker δ0,

where ker d0 is not invariant, when seen as acting on ’true’ forms like in (54).
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Anyway, one can correct this by adapting the construction. Let replace E0
by its graded version

Egr
0 =

⊕
k

Egr
0,k =

⊕
k

(
ker d0,k ∩ ker δ0,k

)
,

where d0,k is now the (invariant) quotient action of d on the graded (by weight)
exterior algebra Ω∗kM = Ω∗(k)M/Ω∗(k+1)M , as defined in (52). Then, since by
Lemma 5.10 vertical extensions are defined up to Im δ0 ⊂ F , their projections
on E along F are unique. In particular we get an invariant lifting map

ΠEgr
0 →E : Egr

0 → E.

In the opposite direction, we also have a natural projection

ΠE→Egr
0

: E → Egr
0 .

Indeed, one can extract successive homogeneous components of elements of E ⊂
ker δ0, which again are defined up to Im δ0 by Lemma 5.10. These components
therefore represent unique elements in Egr

0 ' (ker δ0/ Im δ0)gr.
As in Theorem 5.4, these maps ΠEgr

0 →E and ΠE→Egr
0

are inverse to each other.
One can then define a conjugated complex (Egr

0 , dc) to (E, d), by considering

dc = ΠE→Egr
0

dΠEgr
0 →E .

The advantage of this last reduction is that Egr
0 is a (now invariant) vector

bundle, while E consists in forms satisfying some differential equations. This
feature was useful in Julg’s work [26].

We close here this series of examples, and return to our primary study of
large time heat decays on Carnot groups. Recall that, in §4, we were led to
considering these differential complexes, by looking at the discrete presentation
complex of lattices at large scale. The link was rather formal anyway, and we
still have to check it is analytically relevant.

6 Back to spectral problems

6.1 Algebraic pinching of heat decay

Carnot complex and near-cohomology. Let (M,H) be any E0-regular
C-C manifold. We know by Theorem 5.4 that, from the topological viewpoint,
one can retract de Rham complex on the sub-complex (E, d), this one being
itself conjugated to (E0, dc). One can then use any of these homotopy equivalent
complexes to express the cohomology of M .

One can extend this principle to near-cohomology using the general ideas
presented in §3.

Theorem 6.1. [38, 40] Let (M,H) be a compact E0-regular C-C manifold
and M̃ some Galois covering. Then, de Rham complex, (E, d) and (E0, dc),
have isomorphic near-cohomologies on M̃ . In particular, they have the same
Novikov-Shubin exponents (twice the large time heat decay exponents on (ker d)⊥

by §2.2).
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Proof. The proof is straightforward, using the notions introduced in §3. By
Theorem 3.12, it suffices to show that these complexes are homotopy equivalent,
in the Hilbertian sense of Definition 3.1.

We first describe the underlying Hilbert complexes here. We work respec-
tively in “true” L2 forms on M̃ for de Rham complex, L2 sections of the bundle
E0 for dc, and the L2 closure E of E ∩ C∞

0 (Ω∗M) for (E, d).
Starting with smooth compactly supported forms as initial domains, one

then closes the differentials (i.e. their graphs) in these Hilbert spaces. This
is possible because the adjoints of these differential operators are also densely
defined (at least on C∞

0 ).
The basic homotopies ΠE and ΠE0ΠE , between de Rham complex, (E, d)

and (E0, dc), are not bounded in L2, being differential operators. They can’t
thus be used directly in Definition 3.1. Anyway, one can first cut-out high
frequencies, irrelevant in the near-zero spectral problem we are dealing with.
Namely, let E∆(1) be the spectral projector associated to [0, 1] by de Rham
Laplacian ∆. One has

E∆(1) = Id−E∆(]1,+∞[) = Id−Bd− dB

where B = δ∆−1E∆(]1,+∞[) is bounded in L2 by the spectral theorem. Thus
it induces a bounded homotopical equivalence between de Rham and the cut-
off de Rham complex on E∆(1) = Im E∆(1). Now, by elliptic regularity of de
Rham Laplacian, any (Γ-invariant) differential operator is bounded on E∆(1).
In particular the previous maps ΠE and ΠE0ΠE provide the required bounded
homotopies on this cut-off de Rham complex.

Previous result claims that for near-cohomology study, one can mod out
F , keeping only E. One can give some geometric flavour to this statement.
Consider the near-cohomology cones Cd(ε) of the cut-off de Rham complex
(E∆(1), d). Recall that by (17)

Cd(ε) = {α ∈ [E∆(1)] = E∆(1)/ ker d | ‖dα‖ ≤ ε‖α‖}.

The splitting of de Rham complex into E ⊕ F , induces a splitting [E]⊕ [F ] of
forms modulo ker d. Moreover, by Theorem 5.4, one has ΠF = Qd + dQ, where
Q becomes bounded as before, when restricted to E∆(1). Therefore, one gets
for α ∈ Cd(ε),

‖[ΠF α]‖ = ‖[Qdα]‖ ≤ C‖dα‖ ≤ Cε‖α‖,

meaning that, when ε → 0, the near-cohomology cones Cd(ε) of the cut-off de
Rham complex are actually shrinking around [E] relatively to [F ] (inside cones
of slope ≤ Cε). This is suggested in figure 4.

Theorem 6.1 is probably not very useful in the problem of studying Novikov-
Shubin numbers on general (C-C) manifolds. Actually we will only apply it on
nil-manifolds.

More precisely, let G be a rational Carnot Lie group (see §4.1), and con-
sider the quotient M = G/Γ where Γ is a discrete cocompact group in G. By
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[E]

[F]

Cd(ε)

Figure 4: The shrinking of near-cohomology cones Cd(ε).

contractibility of G, one has π1(M) = Γ, so that by Theorem 2.6 and Corollary
2.7, de Rham complex on the smooth group G may be used to compute the two
first Novikov-Shubin exponents α0(Γ) and α1(Γ). Then by Theorem 6.1, these
exponents are the same as for the complex (E0, dc). The advantage of this last
one is its better behaviour through the natural dilations hε available on G.

Indeed, recall that the first stages of the construction are

C∞(G) dH−→ Ω1H
dc−→ E2

0 . (69)

The first map dH is the differentiation along H, the first strata of g, and is
thus an homogeneous operator of order one with respect to the dilations hε.
For the second map E2

0 = L2(G, H2(g, R)) may have components of different
homogeneities, pinched by the order of generating relations of g relatively to
the free Lie algebra F(H), as comes from Hopf’s relation (see §4.3 and 4.4).

Dilations and Γ-dimension. To take profit of the previous remarks we have
first to check the behaviour of Γ-dimension and trace (see §3.2) under dilations.
They actually behave like densities on G.

Proposition 6.2. Let L be a Γ-invariant subspace of L2-differential forms on
G. Then for n ∈ N,

dimΓ(h∗nL) = dimhnΓ(L) = nN(G)dimΓ(L),

where N(G) =
r∑

i=1

idim(gi) is the growth of G.

Remark 6.3. In this statement we use dilations with integer coefficients, and
a lattice Γ horizontally generated, in order to have hn(Γ) ⊂ Γ, and L also
hnΓ-invariant. Another ’continuous’ approach is possible, for the G-invariant
operators we are actually dealing with (see next proposition).

Proof. Given an initial (invariant) metric g on G, the map hn induces an isom-
etry between L ⊂ L2

g(G, Λ∗G) and h∗nL ⊂ L2
h∗ng(G, Λ∗G), that conjugates re-

spectively the hnΓ and Γ actions. Then by definition of dimΓ (see §3.2), we
have

dimΓ,h∗ng(h∗nL) = dimhnΓ,g(L).
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Moreover, by the general invariance result Proposition 3.9, dimΓ actually does
not depend on the choice of Γ-invariant metrics on G and the bundle, and hence

dimΓ,h∗ng(h∗nL) = dimΓ,g(h∗nL) = dimΓ(h∗nL).

as needed.
The second equality is a particular case of the multiplicativity of dimΓ under

finite coverings, here

Γ/hnΓ→Mn = G/hnΓ→M = G/Γ.

If (ei) is an Hilbert base of L and F ⊂ G a fundamental domain of the Γ action,
we have by (20) and (21) that

dimΓL =
∑

i

∫
F
‖ei(x)‖2dx.

A fundamental domain for hnΓ consists in card(Γ/hnΓ) copies of F , so that

dimhnΓL = card(Γ/hnΓ)dimΓL.

Lastly, we recall that hn acts by multiplication by nk on gk, hence

card(Γ/hnΓ) = vol(hnF)/vol(F) = nN(G),

with N(G) =
∑

k

kdim(gk).

The previous result actually holds for any dilation and lattice Γ, if the
operators and spaces are G-invariant.

Proposition 6.4. Let P be a positive G-invariant operator acting on L2-
sections of a G-invariant vector bundle V . If P has a finite Γ-trace for some
lattice Γ, it has for any, and its kernel KP is a bounded continuous function
with

τΓ(P ) = vol(G/Γ) Tr(KP (e, e)),

where Tr is the trace on End(Ve).

We recover in particular the dependency of Γ-trace and Γ-dimension in
vol(G/Γ).

Proof. From (20), P is Γ-trace class iff its square root S is such that SχF is
an Hilbert-Schmidt operator, that is iff the kernel KS of S is in L2(G × F).
Moreover, we have

τΓ(P ) = ‖SχF‖2HS =
∫

G×F
‖KS(x, y)‖2dxdy. (70)

For (left) invariant operators, one has KP (x, y) = kP (y−1x), and P acts on
L2(G, V ) by convolution as

Pf(x) = (kP ∗ f)(x) =
∫

G
kP (y−1x)f(y)dy.
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By (70), we see that

τΓ(P ) = ‖SχF‖2HS = vol(F)‖kS‖22. (71)

In particular, τΓ(P ) < +∞ iff kS ∈ L2(G, End(V )), in which case

kP = kS ∗ kS ∈ L2(G) ∗ L2(G)

is bounded and continuous on G (and vanishes at ∞). Then, by (70) and
hermitian symmetry of kS (i.e. kS(x−1) = kS(x)∗), we obtain

τΓ(P ) = vol(F)‖kS‖22
= vol(F) Tr

(
(kS ∗ kS)(e)

)
= vol(G/Γ) Tr(kP (e)).

Proposition 6.4 points out the fact that, given a Lie group G and a lattice
Γ ⊂ G (i.e. Γ discrete and vol(G/Γ) < +∞), the Novikov-Shubin numbers
αp(M) of the covering G → M = G/Γ actually depend only on G, but not on
the lattice Γ. The common values for all Γ, denoted by αp(G) in the sequel,
are indeed either infinite, or given by the decays of kernels at the origin e of
G-invariant spectral projectors Eδd(]0, λ2]), also twice the heat kernel decays
on (ker d)⊥ (see §2.2).

Application to α0. We can now use the homogeneity of dH in (69) to recover
the value of α0(Γ) for lattices in a Carnot Lie group G.

Namely, one has ∆Hhε = ε2hε∆H , so that the spectral spaces E∆H
(λ) of

∆H rescale as follows
hε(E∆H

(λ)) = E∆H
(ε2λ). (72)

Therefore, by Propositions 6.2 and 6.4, the spectral density function of ∆H is
homogeneous,

F∆H
(ε2) = dimΓ(E∆H

(ε2)) = εN(G)F∆H
(1). (73)

Hence we recover Varopoulos’ result, for these groups Γ, that

α0(Γ) = lim
ε→0

lnF∆H
(ε2)

ln ε
= N(G),

relating twice the large time heat decay on functions to the growth of G (also
the growth of any cocompact Γ).

Pinching of α1. The same kind of discussion applies to the next exponent
α1(Γ) = α1(G), except that now dc : Ω1H → E2

0 may be polyhomogeneous.
We recall that, by Hopf’s relation, E2

0 ' H2(g, R) is isomorphic to the space
V = R(g)/[R(g),H] of defining relations of g = F(H)/R(g) (with respect to
the free Lie algebra F(H)).

This leads to the following pinching of α1(G), for rational Carnot group G,
i.e. those admitting a lattice Γ.
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Theorem 6.5. [38, 40] If Γ is a lattice in a Carnot group G then α1(Γ) = α1(G)
satisfies

rmin − 1 ≤ β1(G) =
N(G)
α1(G)

≤ rmax − 1,

where rmin and rmax are the minimal and maximal order of defining relations
of G, also minimal and maximal weights of H2(g, R).

Hence the higher order defining relations of G are, the slower heat decays
on one forms, with respect to the growth of G. Notice that if G is a r-step
groups (i.e. g = g1 ⊕ · · · ⊕ gr), then generating relations of G are necessarily of
order pinched between 2 and r + 1, and we obtain in general that

1 ≤ β1(G) ≤ r. (74)

Thus heat on one forms never decays quicker than on function, in t−N(G)/2, and
never slower that t−N(G)/2r. Examples of each type will be given in §6.2.

Proof. In general the differential dc splits in homogeneous components

dc = drmin−1
c + · · ·+ drmax−1

c ,

and we don’t have anymore that the spectral spaces of ∆c properly rescale
under hε, like in (72) for the case of functions. We consider instead the action
of hε on the near-cohomology cones (see (17))

Cdc(λ) = {α ∈ L2(G, Λ1H)/ ker dc | ‖dcα‖ ≤ λ‖α‖}.

Namely, we have

‖dc(h∗kα)‖ = ‖h∗kdcα‖ ≤

{
krmin‖dcα‖ if k ≤ 1,

krmax‖dcα‖ if k ≥ 1,

leading to

hk(Cdc(λ)) ⊂

{
Cdc(λkrmin−1) if k ≤ 1,

Cdc(λkrmax−1) if k ≥ 1,

and finally to the following rescaling, for ε ≤ 1

Cdc(λεrmax−1) ⊂ hε(Cdc(λ)) ⊂ Cdc(λεrmin−1). (75)

By Lemma 3.11, we can recover the spectral density function of δcdc on (ker dc)⊥,
using all Γ-invariant subspaces in the cones Cdc(λ), namely

Fδcdc(λ
2) = sup

L⊂Cdc (λ)
dimΓL.

Putting this together with (75) and Propositions 6.2–6.4, we get the pinching

Fδcdc(ε
2(rmax−1)) ≤ εN(G)Fδcdc(1) ≤ Fδcdc(ε

2(rmin−1)),
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and finally

εN(G)/(rmin−1)Fδcdc(1) ≤ Fδcdc(ε
2) ≤ εN(G)/(rmax−1)Fδcdc(1),

giving the pinching of α1(Γ) = lim inf
ε→0

lnFδcdc(ε
2)

ln ε
.

Notice that the spectral function for dc is finite, since by Theorems 3.12 and
6.1, its dilatational class is the same as for de Rham complex, or even to an
`2-simplicial complex by Theorem 2.6. (Finiteness is automatic at the discrete
simplicial level, while for de Rham complex, it is a direct consequence of the
ellipticity of the Laplacian, see e.g. [1].)

Extensions of Theorem 6.5. We gather some developments around Theo-
rem 6.5.

• This theorem gives a pinching of the asymptotic heat decay on one forms,
on rational Carnot Lie groups, i.e. for those admitting a lattice Γ. It actually
makes sense, and stays true for non rational Carnot Lie groups. One way to
prove it is to notice that, even for non rational Carnot group G, there exists a
discrete Z ⊂ G and a relatively compact D ⊂ G such that

Z−1 = Z and G =
⊔
z∈Z

zD (disjoint union).

(One takes Z = exp(Z) for an additive integral lattice in g, see [40, §3.2.2] for
details.) This allows to ’discretize’ L2(G) = `2(Z)⊗L2(D) and adapt the basic
Propositions 3.8 and 3.9 to this situation.

This technique also raises the following question :
Even, if Z is not a group, one can take a simplicial complex given by the

nerve of an open covering G =
⋃
z∈Z

zΩ, where D ⊂ Ω open. Is it true that

α1(G) still gives the asymptotic heat decay on discrete 1-cochains of this now
non-periodic simplicial complex?

• Another viewpoint on non-rational G is to define a G-trace and dimension
along the lines of Proposition 6.4.

Briefly, let P be a positive G-invariant operator acting on L2 sections of a
G-invariant bundle V , and D ⊂ G be such that 0 < µ(D) < +∞. Then the
G-trace of P is defined by

τG(P ) = µ(D)−1Trace(χDPχD)

= µ(D)−1
∑

i

(χDPχDei, ei),

for any Hilbertian basis (ei) of L2(G, V ). This G-trace doesn’t depend on D.
Indeed if S is the positive square root of P , one has also

τG(P ) = µ(D)−1
∑

i

‖SχDei‖22 (76)

= µ(D)−1‖SχD‖2HS (Hilbert− Schmidt norm)

= µ(D)−1‖KSχD‖22 (L2 − norm)

= ‖kS‖22,
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where KS(x, y) = kS(y−1x) is the kernel of the G-invariant S (to be compared
with (71)). In the case τG(P ) is finite, then kP = kS ∗ kS is bounded and
continuous on G, and we have also

τG(P ) = TrVe(kP (e)).

Following Propositions 3.8 and 3.9, the basic point to check about τG is the
following property, valid on unimodular Lie groups (like nilpotent ones).

Proposition 6.6. If P is a (not necessarily positive) G-invariant bounded op-
erator, then

τG(P ∗P ) = τG(PP ∗).

Proof. Let P = U |P | be the polar decomposition of P , then P ∗P = |P |2 and
by (76)

τG(P ∗P ) = µ(A)−1
∑

i

‖|P |χAei‖22

= µ(A)−1
∑

i

‖U |P |χAei‖22 (U partial isometry)

= µ(A)−1‖PχA‖2HS = ‖kP ‖22.

Finally, since kP ∗(x) = kP (x−1)∗, one has ‖kP ∗‖2 = ‖kP ‖2 on unimodular
groups, and the result.

This gives another mean to extend Theorem 6.5 on non-rational Carnot
groups, replacing the Γ by G-trace.

• In another direction, one can obtain pinchings of higher Novikov-Shubin
exponent αk(G) on k-forms, if Ek

0 ' Hk(g, R) is of homogeneous weight wk.
One get then

min(1, wmin
k+1 − wk) ≤

N(G)
αk(G)

≤ wmax
k+1 − wk . (77)

The proof is the same as for Theorem 6.5. The homogeneity condition on
Hk(g, R) is not automatically satisfied for k ≥ 2. It allows to control the action
of hε on norms in (ker dc)⊥ (needed in this proof).

6.2 Examples

The algebraic pinching of α1(G) is sharp if the group is presented by relations
of same order. We start with such examples.

Heisenberg groups. For instance we have seen in §4.2 that the Heisenberg
groups H2n+1 are quadratically presented for n ≥ 1 and cubically for n = 1.
Therefore

β1(H2n+1) =

{
1 for n ≥ 2
2 for n = 1,
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and hence

α1(H2n+1) =

{
N(H2n+1) = 2n + 2 for n ≥ 2
N(H3)/2 = 2 for n = 1.

In particular heat on one-forms of H3 only decays as 1/t when t → +∞, half
its speed in 1/t2 on functions. Therefore this asymptotic spectral invariant α1

actually distinguishes H3 from R4 (or the discrete groups H3
Z from Z4) although

they have the same growth N(G) = 4.
In order to distinguish (with the asymptotic spectra) higher dimensional

H2n+1
Z from Z2n+2, one has to consider the higher Novikov-Shubin exponent

αn, about the spectrum between n and (n + 1)-cocycles (discrete or forms).
Indeed, by (77) and the cohomological computations (58), one has

βk(H2n+1) = 1 for k 6= n and βn(H2n+1) = 2,

and hence {
αk(H2n+1) = 2n + 2 = αk(R2n+2) for k ≤ n− 1

αn(H2n+1) = n + 1 = αn(R2n+2)/2.

Geometrically, this coincidence of the first exponents is reflected by the fact
that one can find simplicial triangulations of both groups using horizontal sim-
plexes up to topological dimension n, hence with the same homogeneous (Haus-
dorff) dimensions, while vertical (n+1)-dimensional simplexes (with Hausdorff
dim = n + 2) are needed on H2n+1. Notice that (77) actually relates the expo-
nents αk to the homogeneous dimension gap between the cohomology groups
Hk+1(g, R) and Hk(g, R).

Quadratically presented groups and Dehn function. In fact quadrati-
cally presented 2-step groups are very common if

dim(g2) ≤ dim(g1)/2− 1. (78)

Indeed, one can show that, within this bound, a Zariski open dense set of
brackets

[ , ]0 : g1 × g1 → g2

give quadratically presented Lie algebras g = g1 ⊕ g2 (see [40, Prop. 4.1]).
Even more by Gromov’s work [21, §4.2 A”] 2-step groups satisfying (78) are
generically ”quadratically fillable”, meaning that an horizontal closed curve γ
can be filled by a surface of area ≤ Klength(γ)2.

In fact β1 can always be compared with another asymptotic invariant of
finitely presented discrete groups Γ called Dehn filling exponent. Recall it is
the smallest λ such that any trivial word of length n can be factorized using
Knλ elementary relations (equivalently, any closed loop in a Cayley graph of
Γ can be filled by Knλ elementary 2-cells). The following inequalities hold on
general r-step Carnot groups Γ

2 ≤ β1(Γ) + 1 ≤ max weight(H2(g, R)) ≤ Dehn(Γ) ≤ r + 1, (79)

and the above case corresponds to equality between the first four terms.
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Proof. The two first inequalities comes from Theorem 6.5 and (74), while the
last one has been proved by C. Pittet in [35]. We look at the third one.

Given ω ∈ H2(g, R) of weight N(ω), one can find a closed polygonal curve
γ in the generators of Γ such that∫

S
ω = C 6= 0

for one (and then any) surface S bounding γ. Indeed by §4.2 and 4.3, one can
pick a γ whose direction in R(g) is not in ker α, where α ∈ (R(g)/[H,R(g)])∗

represents ω in Hopf’s relation.
Now if Sn is any simplicial surface filling the dilated loop hnγ, one has

|C| =
∣∣∫

S
ω
∣∣ =

∣∣ ∫
Sn

h∗nω
∣∣ =

∣∣∫
Sn

n−N(ω)ω
∣∣

≤ n−N(ω)‖ω‖∞Area(Sn)

so that Area(Sn) ≥ K length(hnγ)N(ω) as needed.

Remark 6.7. It is not true in general that β1(Γ) + 1 = Dehn(Γ). In fact these
two exponents behave differently under products since one finds that

Dehn(Γ1 × Γ2) = max(Dehn(Γ1),Dehn(Γ2)),

while
α1(Γ1 × Γ2) = min

(
α1(Γ1) + α0(Γ2), α1(Γ2) + α0(Γ1)

)
.

In particular α1(Rn ×H3) = n + 2 so that

β1(Rn ×H3) =
n + 4
n + 2

while Dehn(Rn ×H3) = 3.

We leave this as exercises for this Winter School.

One can go beyond the bound (78) staying quadratically presented. Let
H = O ' R8 be the octonions (or Cayley numbers). We define an ’octonionic
contact group’ G15 as follows. Given an imaginary octonion v ∈ V = Im O, we
note J(v) the left multiplication by v on H. Then G15 is the 15-dimensional
H-type group whose Lie algebra g = H ⊕ V ∗ is define as in (65) by

(d0v)(X, Y ) = 〈J(v)X, Y 〉H

This group is quadratically presented. Indeed, following [41, (12.11)] the map

d0 : Λ2
3 g∗ = V ∧H∗ −→ Λ3H∗ (80)

v ∧ α 7−→ d0v ∧ α

is injective (even an isomorphism) and thus the cohomology group H2(g, R) has
no component of weight 3.

Notice that, although it is quadratically presented, this group doesn’t pos-
sess any integrable Legendrian plane (X, Y ) ∈ H (corresponding to ’pure’ re-
lations [X, Y ]0 = 0). In particular it doesn’t enter Gromov’s family of known
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quadratically fillable groups (with a quadratic Dehn function), and its Dehn
exponent seems unknown. (Though there is no C1 Legendrian surface, quite
irregular ’crumpled’ surfaces of Hausdorff dimension 2 might exist anyway?)

Once obtained such an example, we can take products staying in the quadratic
presentation class : because taking products only adds quadratic relations

[X1, X2] = 0 for (X1, X2) ∈ g1 × g2.

We get therefore a 15n-dimensional quadratically presented 2-step Carnot groups
with dimH = 8n. The map (80) being algebraic, we obtain in fact that a generic
(in the Zariski sense) 15n-dimensional Carnot groups with n1 = dim(H) = 8n
is quadratically presented. (Otherwise stated a generic 8n-dimensional distri-
bution H ⊂ R15n gives rise to a quadratically presented Carnot group.) Such
examples raises the following problem.
Question : Is it possible to significantly improve the bound

n2 = dim(g2) ≤
7n1

8
,

while keeping a quadratic presentation? This is a purely algebraic question on
finding effective bounds under which (80) stays injective. Note that (80) only
implies the much larger bound

n2 ≤
(n1 − 1)(n1 − 2)

6
,

but d0 is a very special linear map.

In another direction, we mention there exists (a few) examples of quadrati-
cally presented groups of arbitrary high steps (see [40, §4.1]). These examples
(due to S. Chen [9], J. Carlson and J. Toledo [6]) show that β1 (= 1 here) can
be much smaller than the number of steps r.

Higher weights. We now describe some examples with relations of higher
weights.

Given k and r in N∗, we note Fk,r the r-step ’free’ nilpotent group over Rk.
This is the Lie group whose Lie algebra is the quotient of the free Lie algebra
F(Rk) by elements of weight ≥ r+1. Notice that relations of Fk,r are generated
by all elements of weight r + 1 in F(Rk), so that Theorem 6.5 gives

β1(Fk,r) = r,

the maximum possible value for r-step groups.

In fact β1 is ’generically’ close to r. Given k and n, by a generic Carnot
group G with dim(G) = n and dim(g1) = k, we mean a group associated to a
Zariski open dense set of jets of k-dimensional distributions H in Rn.

Proposition 6.8. [40, Prop. 4.4] Let n(k, r) = dim(Fk,r). Generically, one
has

r − 1 ≤ β1(G) ≤ r if n(k, r) ≤ n < n(k, r + 1). (81)
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Hence the generic pinching is much sharper than the general one (74). This
follows from the remark that, within these dimensions bounds, G is generically
a r-step group which doesn’t contains any relation of weight ≤ r−1. Then (81)
comes from Theorem 6.5. (So this is not an improvement of Theorem 6.5, but
just the observation that the pinching given there is generically quite sharp and
close to the maximal possible value.)

In the opposite direction we now give an example of Carnot groups arising
in semi-simple geometry.

For n ≥ 4, let Tn ⊂ SL(n, R) be the nilpotent group of upper triangular
matrices (Id + strictly upper). This is a (n − 1)-step Carnot group whose Lie
algebra is generated by the elementary matrices Xi = Ei,i+1 for 1 ≤ i ≤ n− 1.
By Kostant and Cartier’s works (see e.g. [7, 14]) the relations of Tn are quadratic
and cubical {

[Xi, Xj ] = 0 for |j − i| > 1,

[Xi, [Xi, Xi+1]] = [Xi+1, [Xi, Xi+1]] = 0
(82)

(Notice that T3 is the 3-dimensional Heisenberg group and is cubically presented
by the last relations.) These Tn give examples of increasing number of steps
with

1 ≤ β1(Tn) ≤ 2

anyway, in contrast to the generic case (81).

These groups give examples of mixed homogeneity, and estimating more
precisely β1 in that case looks delicate in general. Let us show however that

β1(T4) = 2,

as if T4 were purely cubically presented.

Proof. From the results of §4.3 and 4.4, the two relations

[X1, X3] = [X1, [X1, X2]] = 0

given in (82), translate into the following components of dcα for α ∈ Ω1H

dcα(X1, X3) = iH([X1, X3])α = X1α(X3)−X3α(X1),

and

dcα(X1, Y1) = iH([X1, [X1, X2]])α
= X1(X1α(X2)−X2α(X1))− Y1α(X1),

where Y1 = [X1, X2]. In particular for α = fθX2 , one sees that dcα is actually
of weight 3, and non zero if X2

1 .f 6= 0. Then the near-cohomology cone Cdc(λ)
contains a non-vanishing sub-cone

C ′(λ) = {α ∈ L2(Λ1H∗)/ ker dc | dcα of weight ≥ 3 and ‖dcα‖ ≤ λ‖α‖},

which now rescales quadratically through the dilations :

hε(C ′(λ)) = C ′(λε2).
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Following the proof of Theorem 6.5, this leads to the homogeneity of the spectral
density function

Fδcdc(ε
2) � εN(G)/2,

giving the result.

Thus it happens here that the component of low degree of dc is so degener-
ated analytically that the asymptotic spectral behaviour is determined by the
relations of higher weight.

Remark 6.9. It looks possible (but the proof is not fully checked yet) that this
behaviour occurs each time the system δcα = dcα = 0 is under-determined,
when restricted to relations of weight ≤ n, meaning that

dim
(
H2

weight≤n(g, R)
)

< dim(H)− 1 =⇒ β1(G) ≥ n− 1?

In the opposite direction, it also happens that the components of low degree
of dc ’dominate’ analytically the others. For instance let G = Tn/H be any
quotient of the triangular group Tn by a normal subgroup H generated by
elements of weight ≥ 4. Relations of G are generated by those of Tn, at most
cubical, and the generators of h, that can be of order n − 1. One can show
anyway that

β1(G) ≤ 2,

as if the added relations of high order were ’inaudible’ in our asymptotic spectral
problem.

This result relies on analytic properties of the operators, derived from hy-
poellipticity. They are developed in [40, Section 5] and provide some tools for
other geometric applications. Many open problems in Carnot-Carathéodory
geometry, mixing various fields, may be found in [21].
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