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SUB-RIEMANNIAN LIMIT OF THE DIFFERENTIAL
FORM SPECTRUM OF CONTACT MANIFOLDS

MicHEL RUMIN

1 Introduction

One natural approach to sub-Riemannian geometry lies in the study of
the behavior of Riemannian objects in the sub-Riemannian limit. This
consists of blowing up the metric transversely to the Carnot distribution.
These metric spaces converge in the Gromov-Hausdorff sense to the sub-
Riemannian ones [Gro).

However, very little is known about the convergence of some even basic
and linear objects as the spectrum of the Laplacians on differential forms.
We begin here this study in the contact case. We will see that the non-
blowing parts of the spectrum of the Laplacians, d 4+ ¢ and the signature
operator *d — d*, concentrate and are described by their counterparts com-
ing from the contact complex studied in [Ru]. In particular, an interesting
infinite dimensional collapsing eigenvalues phenomenon occurs on middle
degree forms. It corresponds to the special second order differential D of
the contact complex. These spectrum convergences of unbounded opera-
tors are first studied in Theorems 3.5 and 3.6 through the convergence of
their resolvents.

The techniques are much inspired from adiabatic limits as developed for
example in [BeB], [BiL], [D], [MM]. Nevertheless, the algebraic and analytic
situations here are quite different, in some sense opposite to the adiabatic
case, where the unexploded directions need to be integrable and form a
fibration. Anyway, this approach, pointed out by J.-M. Bismut, relies on
some formal resemblances between the problems. Mainly, we will see in
section 3, that the contact complex occurs as a natural spectral sequence
in the sub-Riemannian blow up, just like the Leray spectral sequence of the
fibration does in the adiabatic case.

These algebraic structures used to predict, in a formal power series sense
at first, the different parts of the spectrum that blow up or collapse at differ-
ent rates. The way to turn this into the actual convergence of the resolvents
will rest here on the use of some L? a priori estimates. They will come from
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a sub-Riemannian Bochner technique developed in section 5. This one has
to bypass three facts. First, the Riemannian curvature diverges here, and
makes a Riemannian like Bochner formula unusable. Also, the presence of
an infinite collapsing spectrum phenomenon in middle degrees precludes a
classical first order Sobolev control there. Lastly, again in these degrees, the
second order differential D, coming with the spectral sequence structure,
can’t directly come out and be dominated by the Riemannian Laplacian.

These basic resolvents’ convergences of Laplacians or signature operator
are then taken as a starting point for the study of global and local conver-
gences of heat kernels and eta functions, for non-small times. These are
shown to converge to their hypoelliptic contact counterparts in section 7.

The developed techniques, and most of the results, also apply to Galois
coverings of compact contact manifolds. This can be used to study the
asymptotic behavior of the heat kernel on forms on the Heisenberg groups,
for large time. This problem is related to ours because, through the Heisen-
berg dilations, the large scale Riemannian geometry of this group looks like
the local sub-Riemannian one. Here, the heat associated to the contact
complex appears to be the self-similar limit of the Riemannian process, as
stated in Theorem 7.14.

2 Notation and Heuristic Study

Let M be a contact manifold of dimension 2n + 1. We denote by H the
contact field, that we will assume transversally oriented. Therefore, we can
fix a contact form # on M such that H = kerf. The contact condition
means that df restricted to H is a non-degenerate 2-form. We choose an
(almost) complex structure J on H such that d0(X,JY) = gg(X,Y) is
symmetric positive definite on H. There is no obstruction for doing this
since we do not require J to be integrable: that is to induce an integrable
CR structure. Also associated to 6 is the transverse Reeb field T'; it is the
unique vector field satisfying 0(7') = 1 and L0 = 0. We can now consider
the family of metrics

9e = 9gH + ‘Z_g
where gy = df(-,J -), gr = 6% and T is orthogonal to H. We plan to study
the behavior of the Riemannian spectrum of (M, g.) in the sub-Riemannian
limit ¢ — 0.

The exterior algebra of M splits in horizontal and vertical forms, which
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we will denote by

QM=0VH®ONQH
where Q*H are forms vanishing on 1. With respect to this decomposition,
the exterior differential writes d(ag + 0 A ar) = (dgag + Lar) + 0 A

(,CTOzH — dHaT), that is
dy L
1= (2 i)

where dy = Ilg+gd is the horizontal part of d, L7 the Lie derivative along
T and L is the operator on 2*H defined by La = df A a. Observe that L
and L both preserve horizontal and vertical forms. Before going ahead, we
now work out a conjugation on the exterior algebra. This is the isometry
from (2%, M, g:) to (25, M, g1) defined by
C.lag+0Nar)=ag+ebNar.
We consider then d. = C.d C-! and its adjoint 6. = (d.)*n = C.6%C 1,
such that we have A, = d.6. + 6.d. = C’EAQSCE_I, and for the Hodge star
operator: *g, = C.*, C-1. The advantage of working with these operators
is that they act on a fixed metric space, the spectrum being unchanged
under conjugation.
Now, we have

d. — dy e 1L 5. — on Eﬁ;
< elr —dy €T \e A —on

= (i ) W

A — (AH + 2L Lr +e2LA e [ég, L] +eldm, L) )
(75 \eYA dy) +e[Lr,6n)  Ap +e2LrLlh+ e 2AL
where A is the adjoint of L.

From the structure of these matrices, we can see the differences between
the behavior of the spectrum of A, on functions and forms. Indeed, we have
on functions A. = Ay + e2L5Ly. This is a decreasing (¢ — 0) family of
positive elliptic operators dominating the hypoelliptic Kohn Laplacian Ag.
The maxmin principle associated to subelliptic estimates shows then that
the whole spectrum (eigenvalues and eigenfunctions) of A, converges to-
wards the one of Ay (see [G]).

On the contrary, part of the spectrum on forms is divergent. For exam-
ple, one has A (0) = %20 and also A.(df) = d (A.0) = n%z(dﬁ). Of course,
another part of the spectrum on 1-forms is still convergent, for we can take
ae = d.f- where A.f. = A\.f. are convergent eigenfunctions. We observe
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also that these forms a. = dg f. + €0 A L7 f. are asymptotically horizontal
(for ge).

The aim of this is to introduce the heuristic remark that despite the
divergent terms in A., part of its spectrum actually converges and the
corresponding eigenforms should concentrate on F = ker (LOA AOL) (the 2
term in A.). We note that since L is injective on QPH for p < n — 1 (resp.
surjective onto QP H for p > n + 1), one obtains that

forp<n, ENQPM ={a € Q’M, Aa =0}

=OH (the primitive horizontal forms)
for p>n, ENQPM = A QP H)

={acHAQPH), La=0}.

To complete these preliminary remarks, we now stress the fact that
a special phenomenon of collapsing eigenvalues can occur in the middle
dimensions spaces "M and Q"t'M. We show this on some particular
contact manifolds: we take M to be the boundary of a circular pseudo-
convex domain of C"*!'. Moreover, we suppose that the holomorphic S*
action z — €*?z which preserves the CR structure of M is transverse to H.

We can then fix a contact form 6 such that 0(9/0¢) = 1. Now, we consider
the family of holomorphic (n + 1)-forms

ap = P(Zl,”~ ,Zn+1)d21 A ANdzpyt,
where P is an homogeneous polynomial of degree k. Their restriction ap
to M are closed vertical forms (because ap restricted to H is of bidegree
(n+1,0)). So (1) gives dg(irap) = 0. Moreover, we have
xap = *p(iTap)
= (=)™ D2 J(Girap)  (see [W, I, Thm. 2])
= (~1)" D2 i)

so that finally

n(n+1) __
(dex)ap = (=1)" 2 i"eLpap by (1)
n(n+1) —~
= (=)™ T i"Me(n+ 1+ k)ap.
That means the ap generate an infinite dimensional space of collapsing
eigenforms for the signature operator (and of course for the Laplacian
since A.(ap) = €2(n + 1 + k)?ap). This family of eigenvalues has been
produced using an overabundance of strong geometric hypothesizes (em-
beddability in C" and transverse S' CR action) although we a priori face
a (sub-)Riemannian problem. One goal of this article is to understand
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whether this phenomenon survives to non-integrable J. There, holomor-
phic objects will disappear but small eigenvalues should remain.

3 The Contact Complex and the Sub-Riemannian Limit

The previous remarks lead us to think that the convergent part of the
spectrum on forms concentrates on the subspace £ = ker (R 6) of Q*M.
It must therefore be described by differential operators acting on E and
invariant under the anisotropic change of metric g.. There is a natural
candidate for this: the so-called contact complex in [Ru].

We briefly recall its construction. One considers the differential ideal
T* generated by the contact forms, ie. 7% = {§ A o + df A B} and its
annulator 7* = {a |0 Aa =dd Aa =0} = ENQPZ"M. We have two
induced complexes dg on Q*M/Z* and J* from the de Rham one, and
a second order D from Q"M /TI"™ in J"*! defined the following way. For
a € I™ let Da = da where a is any lift of a in Q"M such that da is
a vertical form. D is easily seen to be well-defined and independent of 6.
However, a choice of 8 and of a partial complex structure J on H allows us
to identify the quotient space Q*M /Z* with the primitive horizontal forms
OpH = EN QP<")f. In this case one can take & = 049{ —0 A LildHa%
where o is the representative of « in QfH, and L~ the inverse of L from
Q" 'H to Q"' H. The formula for D reads then

Da=0nN(Lr+ dHLfldH)Oz% . (2)
The main properties of this construction are:

Theorem 3.1 [Ru]. The complex
0 R—C®M 220l X2 fogp 2 gt 2o, gt g
is a resolution and the associated Laplacians are hypoelliptic.

To enlighten both the construction and the role of this complex in our
problem, we show that it can be derived from spectral sequence consid-
erations (see P. Julg [J] for still another point of view on this complex).
We have to find a filtration of the exterior algebra adapted to the con-
tact sequence and the anisotropic blow-up of metric g.. We choose a basis
01,027 of Q'H and 6 a contact form. We will say a (non-zero) form
« is of contact-weight Nya = p if it is in the linear span of 02 A 6% with
p = card(ly) + 2card(l2), Iy C {1,---,2n}, Iy C {1}. This weight depends
on the choice of the basis but induces a contact-intrinsic filtration of the
exterior algebra by FPQ = {« | Nga > p}. Equivalently a ¢g-form is in FP()
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iff it vanishes on all g-uples of vectors in @*' H ®@*2 TM with k1 +2ky < p.
(And finally FPQ = QP M @ vertical forms of degree p — 1). This filtration
is stable under d, so that a spectral sequence can be associated to it (see
[GrH)).

REMARK 3.2. This construction has a natural generalization in (regu-
lar) Carnot-Caratheodory geometry [Gro|. If a manifold is given a r-step
bracket generating distribution H, one can intrinsically filter the forms us-
ing the d non-decreasing weight Ng, +2 Npg, -+ + r Np,, where H; = H,
Hj, = [H, Hi_1]. (We hope to discuss some of the analytic properties of the
associated spectral sequence elsewhere.)

It turns out that in our contact case this spectral sequence is merely
equivalent to the contact complex as follows from the following straightfor-
ward proposition, stated in the standard notation of [GrH].

PROPOSITION 3.3.
1. ER? (= Flgi?—;;iq) =0 unless ¢ =0 or —1
Eg’o = horizontal (partial) p-forms
Egﬁl = vertical (p — 1)-forms
do = (3%) (induced by d on Ey)
2. Ey (=kerdy/Imdy) ~ E = primitive horizontal forms @& coprimitive
vertical forms
di = dg (including the fact that di = dg =0 on E?’O)
3. By (=kerdg/Imdg) = Hg ~ de Rham cohomology except in degree
nandn+ 1
ds = 0 except in degree n where dy = D.
4. B3 = By except By’ = ker D/Imdg and E§ ™! = kerdg/Tm D
5. K3 = E4y = --- ~ de Rham cohomology.
REMARK 3.4. Before going ahead, we insist on two particular features of
this spectral sequence
e The first one is that D = ds is only a priori defined from E}' ¥ Nker dg
into E7""> 71 /Im dg. But these spaces are actually E7" (= Q2 H) and
E}T271 (= g7t by Theorem 3.1), because
dg: E7" — EfT0 =0
and dg : Epthl =g — pptat
e The reason why this spectral sequence really computes the cohomol-
ogy of M and not only its graded part (see [GrH])

FPHpR
GrlHoR) = O Fori
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is that they coincide! Indeed, this filtration degenerates in the follow-
ing way:

Hpp if p<gq

{0} if p>gq

{0} if p<qg+1

Hip if p>q+1.

for ¢ <n, FPH},, = {

for ¢ > n, FPH},, = {

This stems from the facts that there is no closed vertical form of
degree p < n (due to the injectivity of L : QP~1H — QPTIH) and
that any form of degree p > n is cohomological to a vertical one (due
to the surjectivity of L : QP~2H — QPH).

We now come back to our formula for d.

(0 L\, (dg 0O 0 0
de=¢ <00+ 0 —dy) " \er 0

and observe that the components of this e-splitting are also homogeneous
with respect to the above contact weight Ny and associate filtration. We
mean that (8 6) preserves Ny, (déf 72H) increases it by 1 and ( LOT 8) by 2.

This possibly explains the appearance of the associated spectral se-
quence (and the contact complex) in our problem. In fact, there are strong
algebraic similarities with the adiabatic case. Recall that one considers
there a family of metrics g. = € 29y + gy where, instead of our contact
case, the unexploded V-directions need to form an integrable foliation with
some global hypothesis on the leaves; they have to come from a compact
fibration. One can then define the Leray spectral sequence associated with
the d-stable filtration FPQP*9 = linear span of 02 A 9‘1/2 with card(l;) > p,
which again are homogeneous under the above change of metric.!

A deep study of the adiabatic limit has been undertaken by many au-
thors: Dai, Mazzeo-Melrose, Bismut and co-authors... They have shown,
for various geometric operators (Laplacians, signature, Dolbeault) that the
asymptotic behavior when ¢ — 0 of the spectrum is encoded in the asso-
ciated Leray spectral sequence. Roughly speaking, eigenforms associated
to eigenvalues \; of order less or equal €" converge in the nested spectral
sequence’s spaces E, (rather a Hodge theoretic version of them). Moreover,
the magnified spectrum ="\ converges to the one of operators constructed
from the successive differential d, of the spectral sequence. This screening

'If the Reeb field induces a fibration one can take here V = T, and see that the
adiabatic limit is the opposite of the sub-Riemannian one in this situation.
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procedure converges to cohomology for a finite r with the spectral sequence
degeneration.

This picture will apply in our sub-Riemannian problem. First of all we
define the relevant Hodge versions of the quotient spectral spaces F, of
Prop. 3.3. Let

o Fi =ker (&) (= E): it is the candidate limit space for the conver-
gent part of the spectrum.

o Iy = ker(dg + 6g) C F; with the particularity that dg = 0 on
FP = F1NQ"M and 6g = 0 on FJ"*! (see Prop. 3.3): the limit space
for de Rham cohomology, except in middle degrees.

o F3=FN(Q"M + Qv M) will be the limit space for the collapsing
spectrum.

Now we define

o P.=d. + 6. with A, = P2 = d.6. + 6.d.
the signature operator, when dimM =4l —1=2n+1, is

o S. = (xd: — d*)w acting on Q"M with w = (—1)? on Q% M.
Their contact counterparts are

° PQ = dQ + (SQ and AQ = sz = dQ5Q + (5QdQ acting on F1.

e Pp = D + D* acting on Fy (with the convention, motivated by
Prop. 3.3, that D = 0 outside degree n)

o Ap =D*D+DD* on F» (# 0 only on F3) (a fourth order Laplacian)
the contact-signature operators:

o So = (xdg — dg*)w on F{e"

e Sp = (—1)'Dx on F5"™ (# 0 only on Fy1).

We can formulate two first theorems, describing respectively the non-
collapsing and collapsing spectrum on a compact contact manifold endowed
with the family of metrics g.. All convergences are relative to the norm of
bounded operators in L?. II denotes orthogonal projection.

Theorem 3.5. 3\ € C such that
1. Mg (A= Pe) gy o (A= Po) Mg apy
3. the same holds with the signatures S, and Sg instead;
3. Mpp (A= A) My —— (A= A¢) Mpnpy.

Theorem 3.6. 3\ € C such that
Pl -1
1. A=%)" —— (A= Pp) lp,;

e
e—0

2. idem with S /e and Sp;
3. A =%)" —— (A—Ap) g,

2
€ e—0
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One classical consequence (see [RS]) of convergence in the norm re-
solvent sense of self-adjoint operators is the convergence both of spectral
projections (in particular of the eigenforms) and of the spectrum to the
limit operator one’s (over bounded intervals of R).

4 Miscellaneous formulas

To prove Theorems 3.5 and 3.6, we need first to relate the horizontal H-
operators to the quotiented Q-ones. Also, in view of formula (1), we have to
take care of the actions of Ay, Lp, dg, ... with respect to the eigenspaces
of (1 0 ) (which is the £72 term of A.). We recall these are the factors
of the Lefschetz decomposition:
OVH=QH®LOYWHS--- & L"Q H.
where QjH denotes the primitive horizontal forms, and we have
AL=(k+1)(n—p—Fk)T1d on LFQLH 3)
[A,L] = (n—p)1d on QPH.
These formulas are purely algebraic (order 0), relying only on the existence
on H of the Hermitian structure induced by the relation gy = df(-,J -)

with J almost complex structure (see [W]). We compute now the basic first
and second order identities. We have

d3 = —LLy and [dg,L] = [dy,Lr] = [L,L7] =0. (4)

Proof. Expansion of d? = (df{ fdi; )2 = 0. O

Perhaps more surprising, the following key formula holds even for not
integrable J. It can thus be called an almost-contact-Kdhler identity

(A, dy] = —6% (= =T 16 J). (5)

Proof. Weil’s book ([W]) contains a proof of the Kéahler identity [A,d] =

—67 in the almost Kihler case: that is on symplectic manifolds with a

compatible almost complex structure J and metric g = w(+,J - ). This first
order formula depends only on the following facts:

o dw=0<+=[d, L] =0,
o 6= — xdx,
e the above relation between ¢, w and J.
In our situation, we have such a partial structure on H, taking
e w=4db,
e dy and 6y = — xg dg*p (see [Ru]).
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So, a proof “ala Weil” (without any connection and framing) applies here. O

REMARK 4.1. The fact that (4) holds without zero order term will only
be crucial in the study of the collapsing spectrum, where we will need a
Bochner like formula with controllable ‘error’ terms for A /2.

We can express the action of dy with respect to the Lefschetz decom-
position. We have on QF H

5 = ¢
dy = dp — —L 6/ (6)
H Q n—p+1°Q "

Proof. The first formula comes from [A, 6] = 0 (by (4)).

The second one is a refinement of Prop.4 in [Ru] thanks to the new
(5). 0

We now come to second order relations?

Lr =irD + dob), on QP H .

Proof. Using (6) and [dy, L] = 0, one can expand d%, = —LLr (4). This
leads to the first equation. Relation (2), i7D = L7 — dgL~'dg and (6)
immediately give the second one (dg =0 on QfH). 0

Using (7) and L = L’ (because df is a (1, 1) form), one can see that Lr
preserves the Lefschetz decomposition and moreover, one has on the whole
Q*H:

{ L+ L) =0 -
[A,L7] =0
We study Ag. On QFH with p < n, we have

dgda L

Ap=Ag+ (8063 + 6560) (9)

n—p+1_n—p+2

(where Ag = dgdg on Qi H).

Proof. This follows from Ay = dyéy + égdy and (6). O
One consequence of (9) is the fact that Ay almost preserves the de-

composition Q*H = QfH @© Im L. Indeed, 6Q66‘5 + 6326Q is a first order

operator, vanishing when J is integrable. This can be deduced from the

decomposition

dQ = GQ + 8_Q + N + N, where N = HQSJ’Z"*lHdQHQg’qH (10)

2All order references are given with respect to the natural contact and hypoelliptic
weight: 1 for an horizontal derivative, 2 for a transversal one.
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is an algebraic expression of the Nijenhuis tensor of J. So, we have shown
the following, on QFH = QP H & (Im L), p < n,

)6 )

Ao+ —29  p=

Ap = Q+n—p+1 N ) (11)
p I, AL

where Py) = — L (608}, + 846q)-

In fact, Ay almost preserves (modulo first order differential operators)
the full Lefschetz decomposition. Even more, [Ap, L] = first order. This
comes easily from (5) and decomposition of (4): d3, = —LLr with re-
spect to the bigraduation of 2*H. This also follows immediately from the
fact that Ay is an almost scalar operator on QP9 H with principal part a
Folland-Stein operator (see [Ru, Prop. 2]):

Apg = Ak +i(p — q)Lr + first order, (12)

where A = — Y | (X2 +Y}?), for a J-orthonormal base of H, is the Kohn
Laplacian. Two other important properties of Ay also come from this.

e The first one is that Ay almost respects the complex bigrading of
Q*H. More precisely, the previous computations show that Ag =
AIJ{ + Pﬁl) where Pﬁl) is a first order operator vanishing when J is
integrable and invariant under the transverse Reeb flow.

e Ay is hypoelliptic on QPYH when |p — ¢q| < n.

In fact choosing a sub-Riemannian connection V (like in [Ru], for exam-
ple, but the horizontal part of the Levi-Cevita connection would also fit),
one can obtain the following explicit a priori L? estimates on QPM (resp.
OPH) forp<n

(Aga,a) +Cllal® = F[Vral?
n-—op (13)
A Clal? > ———(A
( QO(,O&) + HO‘H = n—p—|—2( HO, Q)
where C' is a constant depending only on the norm of the curvature of V
(including tensors like the Nijenhuis of J and its first horizontal covariant

derivative, L7J and horizontal curvature).

Proof. (See Prop. 6, 7 part I and Lemma 10 part II of [Ru]). The first
control is the basic L? estimate for the Folland-Stein operators. This is
obtained by writing
1 n
Lr=— > [Vy;, Vx,] + first order,
i=1
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so that,
2 n
(£ra,0) < =3 |Vyal|Vx.al
i=1

< L(ViViua,a) + first order.
The second estimate relies on the use of auxiliary normalized Laplacians.
Namely, (7) suggests to define, on Qf H for p < n, the following

1 1
bdq + md@@ = 0gndoy +dondqy , (14)

n—p
with dg, = \/n—Tde' The basic property of these Laplacians is that they

AQN =
1

nearly preserve J, because by (7),

Agy — Aby = (L7J) + P = first order. (15)
Now, (9) can be rewritten, on Qf H
Ap = (n—p)Aoy + doydoy +db 60, + P (16)
Together with déNééN < AéN =Agy + P](Vl), we obtain that
— 2
Apg +first order < (n —p+2)Ag, < %AQ ,

which gives the second control, the first order part being absorbed by
Cauchy-Schwartz and loosing an arbitrarily small amount of (Aga,«). O

REMARK 4.2. These normalized Laplacians, that appear as a conve-

nient tool here, also have the important feature that they nearly commute

(modulo lower order terms) with all our algebra of operators: dg and 6¢

éof course), but also dé and 6({2 (because Ag, =~ AéN), except in middle
egree.

Finally, we notice that the term [Lp,dp] arising in formula (1) for A,
is a first order (horizontal) operator. More precisely,

[Lr,0H] = —[J_l([,TJ), om] .
Proof. [L7,dy] =0 (by (2)) implies [£}, 6] = 0. Then (8) gives
Lr+Lr=Lr—Lh=Lp—JLp(J-)=-T (L)
therefore,
[Lr,6u] = L7+ L5, 6p) = —[J ' (LrJ), 65]. O

Collecting (2) and the formulas of this section lead finally to the follow-
ing expression of A, in the splitting, for p < n,

PM=0H®OA Q) 'H)® (Im L)P @6 A (Im L)P~
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Ac =D +e Dy + D7+ Q) +2QY (17)
with
1 J oJ _%
AQ + n—p+1dQ6Q € 0 0
R Ap 1 _glss _ _dolloA 0
Dy = ° M I
0 _a(n—pQ-i-Q) HLAIjHL _%
0 0 —TEE T AT
and
0 0 0 0
—p+1
pi=|g "TETE DU | =1Ang 4 ALy
0 0 0 AL
LiLy 0 0 0
0 LrLh 0 0 \ \
2 I B e e
T
0 0 0  LrLlh
o o PP o0
(1)
o 0 0 P
QU — 0 N =T ATl 4+ oAxTl,  (by (11))
Py 00 0

o PY 0 o0
QW =TIp[Lr, 6y + My ldw, L5y,

where Iy, II7, I1y and II;, denote respectively the orthogonal projections
on the horizontal, vertical, primitive forms and on Im L. The reason for
this choice of splitting will become clear in next section.

5 A Priori Estimates

We now briefly describe the method we will follow to prove the resolvent
convergence Theorems 3.5 and 3.6. As already mentioned it is inspired by
adiabatic techniques as developed by Bismut and co-authors in [BiL] and
[BeB]. This consists here of two main steps. First, obtain a priori estimates
of some Sobolev L? norm of a from (A.c, a) or (%a, a). Then, use them
to justify some formal asymptotic inversion of A — P. or A — % in matrix
form. By formal we mean treating the differential parts of the expression
as a priori bounded ones. The associated spectral sequence will naturally
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arise, as in the adiabatic case, while computing the successive asymptotics
of the resolvents (A — e "P.)~ L.

A well-known means to obtain a priori estimates from an expression
(Aa, @) is to use a Bochner type formula A = V*V + curvature. The
classical Riemannian one can’t apply here, because the curvature of the
metrics ge diverges. In fact, one can show (see [Ru, II.5]) that the sectional
curvatures have the following behavior (for X unitary € H):

K (X,T) ~ £ and K. (X,JX) ~ — 3.

So that the Ricci curvature tensor is indefinite:

RA(T,T) ~ 5% , Re(X,X) ~ —5

262 °
Even the scalar curvature goes to —oo as —5%. (Notice that the “universal”
constants ruling the asymptotics are just the curvatures of the Heisenberg
group. This is because our contact manifold viewed in the magnified metrics
g—é = g&.—g + g—{ converges to its tangent cone, the Heisenberg group.)

We remark also that trying to use a more suited sub-Riemannian con-
nection (preserving horizontality, like the one in [Ru, II] for example) in-
stead of Levi Civita’s could possibly be fruitful for estimates based on
(A-cr, ) but will introduce quite uncontrollable terms like (mﬁ%a, a)
while studying (%a,a) (for the collapsing spectrum). It’s why we turn
ourself towards a formula like (17) comparing the two geometric Lapla-
cians A, and Ag (instead of V*V). Observe (17) has the characteristic
that the curvature like “error terms” Q) are only of non-diagonal type
(and we hope that the non-primitive and horizontal components collapse
on the bounded spectrum).

Although formula (17) has a lot of positive diagonal terms, it still con-
tains a divergent one of order 1. We will absorb it in a positive term, even
if weakening the diagonal. This is the aim of the following Bochner type
formula. We use the decomposition of 2P M described in (17) and note
g, U7, Iy, 7 the projections on the different factors.

LEMMA 5.1 (Sub-Riemannian Bochner formula).  One has on QPM, for
p=mn,

K*K, 1
A = Apll = 4 Ap+ ——(dLsH —dosp) | TT L*L
¢eT5Q H’0+n—p+1+< Q+ i dede — dobo) | Hro+LeLe
+ HH,L (AH — %diIHL(SI{I) HH,L + M;;ME + HT,LAHHT,L
+ 5P+ 2D+ QY + Q).
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where
—p+1
K€:<6é noptl o 0)
13
Lé 1
L5:<0 e A— 0)
n—-p+2 ¢
M.=(0 0 Tp6401, —2)
and
0 0 0 0
, B - 100 0 0
Pp=LA =Dy +(AL=2Urp=| 0 0 rv 1

00 0 AL -2
Proof. The principle of this decomposition is the absorption of the divergent
non-diagonal terms of (17) by repeated applications of Cauchy-Schwartz,
starting from the first (less positive diagonal term) to the fourth (more
positive) factor in QPM. We observe that except for the two first terms
(that will have strong geometric and analytic senses), the proposed decom-
position of A, is not so canonical. We mean the non-diagonal terms could
have been balanced by other combinations of diagonal ones, changing so
the L. and M,. This does not matter as the goal of Lemma 5.1 is to obtain
a priori estimates. O
We come to this. Recall that (section 3)
F = primitive horizontal forms @ coprimitive (€ ker L) vertical forms.
DEFINITION 5.2. Let || |1, be the following Sobolev L? norm
e Fora € OPM,p#n,n+1,
2 2 201 112 2 2
e = llallf g +ellallir+ E%HHFILCVHO + [l
e For a € Q" M,
2 2 2 2012 2
lallfc = Mpialf g+ 16gamolls + ¥ llalfr + Sl ke ) allg
1
410
€

o

5+ I3

+ H(SéOéH,o -
e For o € Q"1 ],

te=l*a

e 1 = Mpeallf g + ldoarker L3

2 2 1 2 . A 2 2
+ellallfr + Z M ker pyrallg + 6@irarker . — amker Lllo + v/l
where the lower indices of the norms indicates the number of horizontal or
transversal derivatives controlled in L2.

These norms are adapted to our problem for we have
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ProposITION 5.3. 3C4,Cy > 0 such that, Ve €10, 1]
Cillallfc < (Aca,a)o + [lallf < Calalfi. .
Proof. The right inequality amounts to the continuity of P. = d. + 6. from
the Hilbert space Hy . = (*M, || ||l1.c) into Ho = (UM, || |lo) = L*(2*M).
This is clear outside the middle degrees from (1). The only point to check
on "M is the continuity of
(a%ﬁ,a%ﬁ)—e(dHa%@—%%La%@),

the upper matrix line of d. (see (1)), but this is precisely, by (6),
—L (560‘%,0_%0‘%0)» included expression in definition of ||a" |1 ¢ (this strange
group is also nothing else but the K.a™ term of Lemma 5.1).

The left inequality comes of course from the Bochner type formula
Lemma 5.1.

First, the so-called Pf is actually positive due to LA > 2Id on QPH N
Im L, and AL > 4Id on @ A (Im L)P~! (p < n) as come from (3). Therefore
(Pl a)o _ [T
g2 - g2

We now look at the four Laplacian like diagonal terms of Lemma 5.1.
We have to check that each of them controls its respective part of ||a||% -

e As concerns Ag on QfH, we know by (13) that, for p < n,

(Aqamo,amo)o + lawmoll§ > Cllawmolln
Of course, Ag = dgdg is not hypoelliptic on Q"H, so that
(dbdqatfy o, 'y g)o only controls 6|3
e On O AQP~1H, we have, for p < n,

1

—p+1
Ao+ ————(dD6) — dpdo) > L—PT A
ot el ded — dede) 2

n—p+2 @
controls ”OCT,O”iH (modulo C||«||3) by (13).
e We have on Qf , H, for p <n,
11y, (AH — %d{gHL(SI{[) II;, > 11, (AIJ{ — %dﬁ&{i + 1st order) 11z,
for Ay = Af; + 1st order (section 4),

> I, (6%dY + %dﬁégl + 1st order)IIy,
> %HL(AIJ{ + 1st order)II,

= %HL(AH + 1st OI‘deI‘)HL ,

controls ||aH7L||%7H by (13) (extends for Ay on Q} H because [Ap, L]
is first order (section 4)).
e On 6 A QIL’le with p < mn, Ay controls ||aT,L||%,H by (13).
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We now look at the “curvature terms” Q%) and 5Qf,1). They have no
diagonal component from QF H in itself by (17). One can therefore obtain,
using Cauchy-Schwartz, the following control: 3K such that Ve €]0, 1],

QN a.0)| +¢|(@) o, )] < 2K Jallo [ o < K (e |allf +claf 1)
for any arbitrarily small c.

Lastly, we still have to understand the domination of E%H(XT,OHg for
p < n. Thanks to previous work and Lemma 5.1, we now know that
(Aca, @) + ||a]|3 controls CHaHiH and

n—p+1

2
J
‘6QaH,O - P

1Kz0ll§ =

1
> 5—2|!04T,0H§ — C'lagplli . O

0

Before going on, we remark that the deficiency of control of ||Hp3oz||i I
by (A, a)o in middle degree is unavoidable. The contrary would contra-
dict, by the compact Sobolev embedding of Hq i space in L?, the infinite
dimensional collapsing spectrum phenomenon we already observed in sec-
tion 2.

This also precludes the possibility of independent controls of H(Séa Hollo
and [lazllo instead of ||65amo — tarol|, = |K:allo in [lafl1c for « €
Q"M. Or else, the control of HééaH,oHO added to the already obtained
one of [[6gamllo would give a domination of |[Ilign.0 ggaom )yt moll1,m,
because the system (6q, (%) is hypoelliptic on (Q"YH @ Q*"H)-NQRH as
comes from (11): Ay = dgég + dé(% + 1st order on QfH, and (12). This
is still impossible since the collapsing spectrum should be described by the
one of D*D, not concentrated on Q"YH @ Q0" H. The conclusion is that
the term ||65cvm 0 — "f“aﬂoHO = || K.al|o arising in Lemma 5.1 and || |1
is analytically relevant (at least in middle degree for the moment).

It has also a geometric meaning. Namely, we observe there exist lifting
maps 7 (implicit in [Ru]) from Q5 H in QPM for p < n, defined by

T(OAH@) =agp— 0N L_ldHOéHp with L™ left inverse of L,

=app+0A §hamo by (6) and L™' = (AL)™'A (18)

n—p+1
r(am o) is the unique vertical extension of ag o such that d (g o) restricted
to H is primitive.

A consequence of this definition is that dr = rdg on QbH, p < n
(dr(amp) is a closed extension of dgapo and so is r(dgamp)) and by
definition (section 3) D = dr on Qf{H. This means that r, together with
the projection Ilf o on QjH, realize an homotopy between the de Rham
and contact complexes.
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Now, we observe that

n—p+1

K.a=0= (5&5041{70 — arog and Pra=0=I10,

are precisely the differential defining equations of Imr (through the conju-
gation Ce(ag + 0 A arp) = ag + €0 A ar we have done since section 2).

REMARK 5.4. This space Imr has stronger geometric invariance it seems
to possess at first sight. It is in fact a (C1) contact-invariant space. This
comes from its definition

Imr = {a € Q’M, o and do restricted to H are primitive} .

Indeed, following A. Weil ([W, corollary of Thm.I.3]), ker A = ker L™ P*+1
with L = df A - acting on H-partial p-forms. So this space does not depend
on the chosen adapted J on H, neither of the choice of the contact form
because L — fL on partial forms when 6 — f6.

Coming back to Prop. 5.3, we now know we can’t hope to control
E%HQT,OH% with (Aca,a)g in degree n, although we are aiming to prove
that, even there, the bounded spectrum (¢ — 0) of A, concentrates on
FI' = Q¢ H. Even if loosing some speed of convergence, the component
ar is actually collapsing to 0.

ProPOSITION 5.5. 3C' > 0 such that Ve €]0,1], Vo € Q" M,
(Aca,a)o + [lallf > S llarollf -
In order to prove this, we fix some notation
Ho = ("M, || [o) = L*(Q*M)
Hy g = ("M, || ||1,z) = L? forms with 1 horizontal derivative in L?
Ho will be our pivot space, that is we identify it with its dual H{. Let
’1‘7 g = H_1,n denote the dual of ‘H; . We have the dense inclusions
H—l,H D Hyp = 'HS D) Hl,H
with || |z < llo < ll1u-
Recall that for o € Ho, ||| -1, = supyig, ,,<1(@x, Bo-
Now, Prop. 5.5 immediately stems from Prop. 5.3 and the following
LEMMA 5.6. 3C > 0, such that Ve €10, 1], Va € Q" M,
Clalie = Sllaroll2ym + leroltn = tlerolls -

Proof. The first inequality amounts to the observation that

ar,0
€

lall}. > [[6gamo — <225 > [|85amo — 2222,

> 8izHOéT,O 2—1,H - H‘SEI,)QH,OHQ—LH



Vol. 10, 2000 SUB-RIEMANNIAN SPECTRUM OF CONTACT MANIFOLDS 425

with 6é continuous from Hg in H_1 g since d({g is from Hy g in Ho.

The second inequality is of well-known type in the elliptic context (Pee-
tre’s inequality). Here is a possible “elementary” proof in this hypoel-
liptic case. We choose a partially defined connection Vg and put, for
aro € 0N Qg_lH,

2 2 2
et m = lleds + Vel
Denote by Ijg g (resp. 11 K,+oo[) the spectral projections associated to the
spectral measures of V3,V in [0, K] and | K, +oo[ for some K > 0.

e Obviously,

1o xyoll T i = (Vi VTl o O gyo)o+[ xall§ < (K+1)[allf
and by duality, (K + 1)||o<||2_17H > ||H[0’K]oz||(2).

e We also have,

2 * 2
lalli g = (VEVEI K oo Mk 4oo/@)o + T g o0l
2
> (K + D[ qoofl[g -
Adding these two inequalities with K + 1 = ¢~! gives the result. O

This completes the proof of the a priori estimates we will need for
Theorem 3.5. We continue this section with the study of A./e2. We define
the relevant norm here.

DEFINITION 5.7.
e For a € QPM, p < mn, let
2 2 2 2 2
ol . = é(AQOZH,O,aH,O)o + E%HHFlJ-O‘Hl,H + [y + ELzHKsOéHO

2 1M 15 + N3

where K.ao = § oo — @aﬂo (Lemma 5.1)

o o= *a|yifacQPM,p>n+1.
We will prove
ProrosiTiON 5.8. 3C4,Cy > 0, such that Va € QP M,

Cillall? . < Z(Aca,a)o + [laflf < Collalff . -

Proof. Along the lines of proof of Prop. 5.3. We refer to it for some details.

The right inequality comes from the continuity of % = % from
Hyre = (UM, || ||1vc) into Ho = L. This follows from (2) and (6).

The left inequality is a use of the Bochner type formula Lemma 5.1. We
still have

a(Plesa)f = Mg a3 -

This, associated to the diagonal terms in Lemma 5.1 gives the control of

E%Hﬂ(kerA)laH%H. About “£2 € g A QP ' H we have two estimations.
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e The first one is that the (7),0) diagonal term of Lemma 5.1 satisfies
= (Anpa,a) = i((AQ + smpra ()87 — db))aro. aro),
> 252 (Agar,a1,0)0 -
e And also, following Lemma 5.6, 3C > 0 such that Ve <1,
E—2||04T,0||2_1,H < H5Q04H,0 - @Ho +Cllali
2
< [|#22 ]l + Cllals -
Now we have seen, in Lemma 5.6, that 3K > 0, Va € § A QgilH
ledl§ < K Hlad2y 5 + Klallf o

where one can take [|a| ; = [lallo + (Aga,a)o (due to positivity of Ag
and a priori estimate (13)). Using this with K = 1/2 and a = ag /e gives

sezllarolls < Sllarol2ym + 5t (Agare, aro)i
and finally the control, for a C > 0,

A
llarolly < ( =, 0‘) il

We are left with the dommatlon of the (now not so small) curvature

2
o + Cllall5 -

terms —(Q y o, a)p and (Q N o, a)o. In fact, collecting our estimations,
we still know that there exists a constant C7, depending only of the di-
mension of M, and Cy, depending of 6, J and M (by the norms of the
sub-Riemannian curvatures) such that

1 1
(& a,a), > Cillal . — CallalR — (@ e, a)o| — 2](QF o a)ol -
(19)
(Q y @, a)g is easily handled like in proof of Prop. 5.3: 3K > 0 such
that

II
L@ e )| < 26 a2

1,H
< K(cHalg +cllali )
for any arbitrary small constant c.

By (17), Q%) is a first order operator exchanging ker A and Im L, and
preserving horizontality and verticality of forms. Thus, we can decompose

& ( SV)OZ a)o = 5( gv)aHmO‘HL)O + E%(QS\PO&T,O,&T,L)O-
- The second term is controlled by
Ke} azo aTLHO<K€Ha||1,

- The remaining one is more delicate because a #,0 does not collapse. One
obtains,

1@V amo, amr)| < 1QV amollo || 25,
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< Knllamollallel (20)

where

1 1
Ev=sw QW au,l = 1Q% Tmollla.m.o

llorroll1,m <1
ie. the norm of QE\I,) as an operator from Hy g N QHH in Ho N QY H.
We need to control ||agof1,m#. The discussion breaks into two cases.
For p < n, one can put on QH (see (13))
lecrrollf i = (Aqamo, arro)g + Il -
So that, by definition of || ||/ ., one has
levrrollg < ellaflye + llallo-
This, added in (20), concludes the proof of Prop. 5.8 in these degrees.
For p = n, Ag = dgbg isn’t hypoelliptic. We put then HaH%H =
IVaa|?+ [|a||2, where Vi is a partially defined connection. We will need
the following control

LEMMA 5.9. 3C > 0 such that Vo € Q"M , Ve < 1,
1,0 < 2[lallie + Cllallo.

lever 0
Proof. Recall that on Q" M,

lollve > Zlldanolld + ll6gamo + 215 + lalir

> qamolls + 8gemolls + ol z -
Now we observe that this control is elliptic. More precisely, by (11) and
(12), one has on Q57H with p+ ¢ =n,

dgbg + dééé = Ay + first order
=VyVy+i(p—q)Lr + first order ,
so that,
Isamoll§ + 65emolly + I|Lrall§ > IV rallf — nl(Lra, a)ol
+£rall§ + (P a,a)o
> 3IVEal§ + sl £rallg — Cllalls
for some constant C. O
This lemma associated with (20) gives us that
1
L21QV amo. amr)ol < Kx (2lallve + Clalo) ol
< 2Ky lallf .+ B5E (cllali . + Hlalf)
= N e 2 1e c 0

for any arbitrary small c.
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This estimation, together with (19) is seen to complete the proof of
Prop. 5.8 in the case 2Ky < (4, but seems to be critical otherwise.
The following rescaling argument shows we can always reduce to this case
2Kn < Cf.

Indeed, consider the trzgmsformation 0 — kO for some k > 0 in the
metrics g. g = dO(-,J - ) + Z—Q . We have then

e || — k"T17P||a|]2 for a € PH

o llalli g = IVuald +llallf — &P Vaalf + &7 a3

o Q) = M ALTIy + ToALT, — k1QY) because 6y — k~16y and

dg is unchanged.
This shows that for k& > 1,

|QWhoallogs _ 1
0 < —=Knp,
lll 1, 2), k0 vk
and therefore 2K 19 < C for k large enough (recall that following (19),
C is independent of #). Proposition 5.8 is then proved for the family of

metrics g pg with ¢ — 0. We finally observe that g. 1o = k:g%ﬁ so that

KN ko = sup

Acrg = %A%ﬁ, giving thus Prop. 5.8 for our original family g.. ¢ with
g =¢/ Vk — 0, at least for ¢ small enough. Of course, the controls extend
up to any positive constant, as can been seen with the help of the classical
Bochner formula. Indeed, the Riemannian curvature stays bounded there,

giving uniform a priori L? estimates. O

Before leaving this section, we emphasize the geometric meaning of the
controls of Prop. 5.8. We already knew from Prop. 5.3 and 5.5 that the
bounded eigenforms of A, (¢ — 0) should concentrate on Fj, which ge-
ometrically interprets as the E; term of the contact spectral sequence of
Prop. 3.3. Now, Prop. 5.8 tells us that bounded eigenforms for A./c? (as
harmonic forms for example) have to collapse (at least in weak-limit sense
for the moment) on F» = Fj Nker Ag: the Hodge version of the Ey term of
the spectral sequence. Moreover, the controlled term 1| K.allo in |lal|y
shows that the weak limit of C-!a has to be in ker K.C. = ker K7, that is,
as already mentioned, in the image of the homotopy operator r from the
contact to the de Rham complex. Now, we remember that d.C.r = ¢D
on QyH, where D is the second order operator of the contact complex.
Of course, this D wasn’t directly controllable (in L? norm) by the first or-
der deai, but nevertheless, indirectly appears here through the control of
%||K€Oé||o and this homotopical formula.
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6 Proofs of Theorems 3.5 and 3.6

We will do it here for P. = d. + 6.. As will become clear, the proof would
work equally for the signature operator S; = (%d; — d.*)w. The general
method, widely used in the adiabatic setting (see [BeB], [BiL]) will rely on
the previous a priori L? estimates and trying to solve, in a matrix form,
the equations for A\ ¢ R,

(A= P.)B. =a with a € F§-
P
and (A — )b =a.
€
Recall that we have to work orthogonally to
Fy = (ker 6o N F") @ (kerdg N F*HY)
in the first case because it is the expected limit space for the collapsing
spectrum of P.. (F3 is a closed space in L? if 0g and dg are taken in
distributional sense as continuous operators from L? = H, in (Him)* =
H_l’ H)
First, we need to decompose P. with respect to the splitting of Q*M in
Fi and Ff-, paying some particular attention to the components in F3 C

FP @ F*! and even to O A (Qp ™ H) @ Q% H, due to the unsplittable
controlled combinations
J j 1 : A
K =0l — Fllygporyy and KX = 8qirTlye — 2llgnes pr-
We will therefore use the decompositions,

Fy = Ffame g Fltough and Fib — Flj_,tame @ FlJ_,toughj
with
R = Fl e Fpt R = Fn (B = @y F
and
FoU = (O AQp T H) @ QL B P00 = B0 (B
Note that tame and tough parts are respectively in * (and A) duality.

We start the decomposition of d.. We already know by (1) that we have
in M =0VH®0NQH,

EﬁT —dH
By (8), we have [L, L] = [A, L7] = 0, so that
Dr((FM)Y) € F™™ ) Dp(FPH) =0 and Dp(FF) € FH!

-1
d€—<dH ¢ L)—DH+€DT+E_1DL.
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where, thanks to (7),
DTaze/\ETa:Da+9/\dQ6éa for a € F' = Q4 H .
From (6), di(L*a) = L*(dga — n—i+15g2a) for o € QQH = F} (p <n),
and by definition dg(0Aa) = d.(0Aa) = Dy (OAa) for OAa € OAker L = FF

(p > n). So, we see that
g, Dyllp =dg, HFInDHHFIL:O and HFI"HDHHF%:_eAinTHG/\nglH'
Bringing all this together, we have found that in Fy @ Fj-,

d . dQ +€D HFltameDHHFll,tamc
< HFlLDHHFl HFllDHHFll —I—EilDL

0 0
n
+ 59 /\ dQKE + g (HFJ_,tame DTHFltame DT) .
1

Before taking the adjoint, we can put it in a slightly more convenient form,
if we observe that,
O NdoK! = (KM K + LK?
+1\* J 7
BRI KL+ L (83 Trp = ETygnry)
= E(Kg—’—l)*Kg + HFlj_DHHF{l — 5_1DLHF1J_,tough .
So that, using previous study, we get
dQ+€D HFltame (DH+€DT)HFJ_,tame
— 1
da - HFJ_,tame (DH+5DT)HFtame HFJ_ (DH+EDT)HFJ_ +€71DLH 1 ,tame
1 1 1 1 F1

n+1\* n
+e(KIT) KL
and finally,
P.=d. + 6.
dQ+6Q +€(D+D*) HFltamC (PH+€PT)HFJ_,tame
— 1
o HFlJ_,tame (PH""EPT)FIF{EHHe lei_ (PH+5PT)HF1L +5_1HF]+,tamePLHF1J_,tame

+e((BXH) KD + (K2 K (21)
where
PH:DH—I-DE, PT:DT—f—Dr}kﬂ and PL:DL‘FDE-

REMARKS 6.1. 1. We deliberately do not break the K. terms in matrix
form because we still know we will not be able to control each component
individually, whereas the entire combinations are controllable.

2. We mention here a technical difference with the adiabatic meth-
ods as developed by Bismut and others. Namely, the operator P; isn’t a
perturbation of a diagonal operator, nor converges to such.
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We are now in a position to prove Theorems 3.5 and 3.6. Let A € C\ R
and a € F3-. By self-adjointness of P., 8. = (A — P.)"la exists, and one
has by Prop. 5.3, for some C' > 0,

2
laellg = [|(A = P2)Be||g = [T AP e lf + || P=B I3
> O3 -

Now, by Definition 5.2 and Lemma 5.6, ||3:]| . controls J||TI, . ame /3|3
’ 1

and %HHFIL,touth(Q).
This gives us the uniform control
—1 2 _
WL B3 = [T (A = Po) |} < cC a3
so we can focus now on Il .. For this, we use (21) to obtain the g npt
projection of the equation
(A= P.)B: = .
It is
()\ — (dQ + (SQ))HFlmFSJ_ﬂE — ]._.[Fltame (PH + 5PT)HFIJ_,tameﬂ5
- EHFHTF;- ((K(;H_l)*K? + (Kg)*Kg+1)/3€ = HFla ;
or equivalently,
()\ - PQ)HFlr‘IFj/B?S - HFloé == HFltame(PH + EPT)HFlL,tameﬁg
+ellp e (O A doKL + dj Kt )Be. (22)

We are led to compose this with the inverse of (A — Pg) on Fy N Fy'.
We gather here some analytic facts we will need about it and the inverse
of (A\— Pp) on Fj.

PropoOSITION 6.2. 1. For A € C\ R, (A — Pg) (resp. (A — Pp)) induces
a bicontinuous bijection between the Hilbert spaces F1 N FSJ- N'Hy g and
Fin FgL in L? (resp. F3N'Ha g and F3).

2. Py (resp. Pp) extends to a self-adjoint operator on FyNF3- (resp. F)
in L? with domain Fy N F3J- NHi, g (resp. FsNHa i) and discrete spectrum
without accumulation points.

3. U p,pame is continuous from Ho (= L?) to any Hym, k € N.

4. HFmFSL extends continuously from Hi g and Ha g to themselves.

Proof. We define P = Ag + Pp on Fy, that is P = dgbg + 6gdg on Ffa™e

and P = <d%5‘? 65;(9) on Fioueh — pr g Frtl By Theorem 3.1, it is
a symmetric second order hypoelliptic operator. So, it follows classically

that on a compact manifold, P extends to a self-adjoint operator on L? with
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domain Hg f. The assertions on Pp come then from the restrictions of P
and its resolvent to the stable space F3 = (FJ' Nkerdg) ® (Fy"*! Nkerdg).

For the properties of Pg, we consider

Qx=(A+P)(N = P)71,
which induces a continuous map from £} N F:f- (in L?) to Fy N F3l NHim.
It is a right inverse of (A — Pgp) on F} N F5-. We also observe that Q) =
(A2 — P)"Y(\ + Pg) on Fy N F3- N'"Hy g. This shows that Qx(A — Pg) =
Id holds on Fj} N F3L N Ho, iz and therefore extends continuously on all
Fi N F3L N Hiu. So we get the first point on Pg, from which its self-
adjointness is a classical consequence (see [RS, VIII]).

The third point comes from the fact that Fy N Ff*™€ is the kernel of the
hypoelliptic operator Ag on Ff*™¢. The statements about II FinF result
from its L? boundedness and its commutation with Py and Pp. O

We apply this proposition to the expression (22), observing that

e Py is a first order (horizontal) operator, so that

(A= PQ)_]'HFltamePHHFlJ_,tame is bounded from Hgy = L? to itself.
e Pr must be viewed by (8) as a second order operator, therefore con-
tinuous from Hy i to H_1 p.

We finally get, 3C > 0 such that for a € F3- and 8. = (A — P.) "o,
HHFlﬂFSJ-ﬁE — (A= Po) Mg al|,
< C(IMT s tame Bello + €l | Kz Bello + €l b tame Bz, 1r)
< Cellallp by Definition 5.2 and Proposition 5.3.

This completes the proof of the uniform (L?) convergence,
Mg (A — Pa)_IHFSl o (A= PQ)_IHFmF; -

Writing, by spectral theory,
N -A) =5 =P) T+ A+ P,
we also obtain the uniform convergence of the resolvents of Laplacians,
(A2 —A)t — (N2 —Ag) Iy, on OPM, p#n,n+1,
E—>

and
Mt (A = A) My ——— (W = Ag) M qpr on Q"M@ QM.

e—0

We now proceed with Theorem 3.6. For A € C\ R and o € Q*M, we
consider the equation ()\ — %) B: = «. First of all, by Definition 5.7 and
Proposition 5.8, we know that, for some C > 0,

lal2 = [|(A = £) 8.2 = | Tm APYIB-13 + || 26>
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> OB:N17
> C(a% (AQHFyBaaHFUBa)O + é"ﬂpli,talneﬂang
+ Mo )

Also, from Prop. 6.2, 0 is isolated in the spectrum of Pg on Fj N F?f-
Therefore, 3C > 0 such that

5 (AT B, Tk, )0 > STy Bell5
where we recall that F» = ker Ag. Thus,

HFQL ()\ — %)_1 ——— 0 uniformly in L?.
e—0

We use (21) again to obtain the F, component of the equation ( — %) Be=qv.
It is

()\ - (D + D*))HFQ/BE - HFszfame (P?H + PT) HF].J_,tameﬂg
— gy (0 A doK? + dhKIH) e = Tlpa,

which in turn can be decomposed in Fy N F{*™¢ and F3 = F, N Fltough
components, giving respectively,

)\HF2mFltame6€ - HFQQFltame (IjaH + PT)HFlJ_,tame/gg = HF2mFicameO£
()\—PD)HF3ﬁE—HFB(O/\dQKg-i—déKg—i_l)ﬁg:HFSOé. (23)

Using Prop. 6.2, we obtain that, for some C' > 0,
AL, prame Bz — s, pramecr|[p < %HHFlMameﬁsHO < Cel|Bellre

< Cel|allp by Prop. 5.8 and Definition 5.7,

and also
ML B = (A = Pp)Ipallo < |Hpy (0 A doKZ + d)KE)Bel| 2,1
< C||KeBello < Cel|Bell1r
< Cellallo by Proposition 5.8.
So that finally, observing that Pp = 0 on F5-, we have got

()\ - %)_1 —0> ()‘ - PD)ilnFQ )
E—
uniformly in L?, and the corresponding result on Laplacians, by the same
trick as above,
-1 -1 -1 _
-2 =R (0B 0 B)) - Ap) s

e—0
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7 On the Convergence of Heat Kernels

The heat operators e ** are of particular importance in Riemannian geom-

etry. For instance, their global and local traces play a key role in the index
theorem and analytic torsion theory. Also, eta invariants involve global and
local traces like Tr(Pe~*F*) for P Dirac operators.
We plan here to begin the study of the behavior of some of such traces
in the sub-Riemannian limit of the metric, that is with respect to g. =
02
do(-,J - )+ & when ¢ — 0.

7.1 The global trace convergence. For P a self-adjoint operator on
a compact manifold M with smooth kernel Kp(z,y), the trace of P will be
denote

Tray(P) = / Tr(Kp(x,z))dvol = Z i s
M Spectrum(P)

where (\;);en is the pure point spectrum of P.
Theorem 7.1. Let M be a compact contact manifold endowed with the
family of metrics g.. One has, uniformly for t > tg > 0,

1. on QPM withp #n,n+1,
—tA) — Tra(e7¥3Q)  (Ag acting on FY)
2. on Q"M & Q"I M,

TrM(e

Ac
Trar(e " e%) —— Trp(e t40)

e—0

where Ap = D*D+DD* acts on F3 = (F'Nker 6g)® (F"™ Nker dg).
3. Similarly, for the signature operator S. acting on Q°V*"M , one has

_tAe
Tras (%e ta2) _— TrM(SDe_tAD)
e—0

where (section 3) Sp = (—1)!Dx on Fy'*! for n = 21 4 1.

Proof. This follows easily from the resolvent convergence results (Theorems
3.5 and 3.6) and the developed Bochner technique. We consider the spec-
trum, arranged in increasing order, ()\;(€));en of Ac (resp. A./e? in middle
degree). A classical consequence of norm resolvent convergence (see [RS]),
is the convergence of the spectrum over bounded open intervals of R. So
that, for each A > 0 and not in Spectrum(Ag),

Spectrum(A;) N[0, A — Spectrum(Ag) N[0, A]

(resp. with A.e? and Ap). This implies, for the ith eigenvalue, \;(¢) —
E—>
Xi(AgQ) (resp. Ap).
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We will be able to turn this into the convergence of the sum ), e~tHi(e)

if we can find a fixed summable domination of it. But this comes from
the Bochner technique. Namely, for p # n,n + 1, Prop. 5.3 tell us that
Ya € QPM,
((Ac +1d)a, a) > Cllalli y = (Ao, @)
for an hypoelliptic Laplacian A’;. So the maxmin principle gives that
Xi(e) > N(A) —1  and e ti(e) < o t(Ni(A)-1) ,
whose sum is convergent by hypoellipticity of A’;.

The corresponding domination in middle degree is elliptic as comes from
Definition 5.7, Prop. 5.8 and Lemma 5.9,

((% —1—Id) a,a)o > |l
Lastly, the eta trace in 3 is controlled with

X (%) N < (1447 (%)) M) = (142 (39)) )

ty.(Ae
< Qe 2MF) O

2
L(H+T) "

7.2 The local convergence of heat kernels outside middle de-
grees. Let K.(x,y) and Kqg(x,y) be the respective kernels of e tA< and
[p e *AQIlp. We will be interested now in the problem of the local con-
vergence of K. when ¢ — 0.

Theorem 7.2. Let M be a compact contact manifold and p # n,n + 1,
then
Ke(x7y) T()) KQ(.’L’,y)

15
uniformly on M in C* norm for any k € N.

For this, we have to improve the uniform L? convergence of e "< to-
wards I e *A@TIf,, which comes with Theorem 3.5 and functional calcu-
lus, to a uniform convergence at the kernel level. To perform this, we will
follow a general method used in Bismut-Lebeau’s work on Quillen’s metrics
(see [BiL, part XI, p.165-179)]).

Here is a sketch of it. First, we will extend the regularizing properties of
the resolvent (A — A.)™! to higher order Sobolev spaces. This will be done
by a commutator technique (adapted to the hypoelliptic context here).
Then we will turn this into uniform regularizing properties of e *?< by
using a contour integral such as fF e M\ — A.)7Fd\, with k integer. This
will give for k large enough a uniform L? control of K., and for k even
larger a sufficient Sobolev control to deduce the equicontinuity and uniform
convergence of the kernels.
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We begin this. The a priori estimate Prop. 5.3 and Lax-Milgram as-
sure that (Id+A.) induces a bicontinuous bijection from H; . into H_; .
together with the following uniform norm control, for € €10, 1],

H(Id +A5)_10‘H1,5 < Oy Ml —1e - (24)
To extend this to higher order regularizing properties, we introduce some
families of Sobolev spaces modeled on || ||1.
DEFINITION 7.3. For k€N, e >0 and a € QPM, let
ledle = llelizr + g olleor,m + el Tell-1,m + o,
and Hj . be the corresponding Sobolev space (the (k, H) indices in norms
denote the number of horizontal derivatives controlled in L?).

The estimate (24) will be generalized the following way.

LEMMA 7.4. For k € N, 3Cy such that Ve €]0,1], (Id+A.)~! extends
continuously from Hoy—1,ir into Hop41 ¢, with the uniform operator’s norms
controls,

|(1d +A5)_1H(2k71,H),(2k+1,s) < and

Im..
Fl
€

H(Id YA

‘(2k,H),(2k+1,e) =

We observe that all this is clear for a fixed ¢ by elliptic regularity of A..
The problem is to handle its regularity degeneracy and divergences when
¢ — 0. The commutator technique allows a quite explicit approach of this.

We cover the manifold M with small enough open sets such that on
each of them we can choose orthonormal vector fields (for g;): Xi, X2 =
JXl, e ,Xgn_l,Xgn = JXQn_l in H, and T (the Reeb ﬁeld) Let
0',...,6%" 6° = 0 be the dual base. For X € TM, we note Ox the differ-
ential operator acting on forms defined by

o= Z af’ — Oxa = Z(X.Oq)QI.
1C[0,2n] I
We gather some useful facts about them. P®*) will denote linear differential
operators of order k (in horizontal derivatives).
e [0x,L] = [0x,A] = 0 (because L = >_° ;0% L A 6?2 A - and A are
constant coefficients algebraic operators)
e [0x,0v] = Oxy
o [0x,dy] = PW + POy for X in H (by previous point and the local
Cartan’s formula dg = 22221 dx,(0; A-) + PO)
e [0r,dy] = PW (here, [T, X] € H for all X € H because the Reeb
field T preserves H)
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o [0x,Ly] = PW for X € H (because L = dp + P©))

o [Or,L7] = PO

e similar formulas hold with adjoint and J-conjugate (8p, Lk, d)
instead.

All this and (17) give easily the commutators we will need.
ProrosiTiON 7.5. For X,Y € H, one has
0%y, Ac] = PO + PPop + (PP + PWar) +2PPor
+e Mg (PP + PMar) + e~ 1(PP + PMapI oy
and,
07, Ac] = PO 4 ePW 4 2P0y + e (11 PO 4 PO, )

The first commutator does not seem so “good” because it is still of
hypoelliptic order four. Even so, its high order part factorizes through or,
which itself has good commutation properties (on the Heisenberg group,
our local model, T' is even in the center of the group).

Proof of Lemma 7.4. We begin now the proof of Lemma 7.4. The case
k = 0 follows from (24). We suppose it is true for the rank k& and proceed
by recurrence. We use Proposition 7.5 to write for X, Y € H,

0%y (Id+A:) 7" = (Id+A.) 7105y — (1d+A:) 7 0%y, A (Id +A.) ™
= (Id+A.) 0%y
— (Id+A.) 7 (PO 4 ¢(P@ + PWar) +2PP oy

+e 7 ([ PO 4 POTLL ) (d+A.) 7 (25)

— ([d+A) (PP + e (1T PY 4 PO )) 0 (Td+AL)

with,
or(Id+A.) ™ = (Id4+A.) 1oy — (Id+A.) " Hor, A (Id +A.) 7!
= (Id+A.) " or
— (Id+A) (PP +ePW 4+ 2P0y

(26)
+ 8_1(HF1LP(1) + P(l)HFll))(Id +A€)—1 )
We use this to estimate the norm at rank k£ + 1,
|(1d +AE)710‘H(2k+3,6) - > |9%-(1d +A€)710‘H(2k+176)
X, Ye{X1,.,Xon}
+ H(IdJFAe)AO‘H(QkH,a) - (27)



438 M. RUMIN GAFA

We have to check the continuity properties of each term of (25) (fixed
multiplicative constants will be overviewed):

. H(Id +AE)_la§<YaH(2k+1,s) < H@iyaﬂ(gk,lﬂ) by rank k hypothesis

< HaH(zkH,H) )

o [|Md+A.) 7' PPId+AL) o (2h41e) = [PP(d+A:) o (2k—1,H)
< [[1d+A.) O‘H(2k+2 H)’
and we use that || [|@rr2,m) < cll ll@resm + ¢ l@rr1,m) for any arbi-

trarily small ¢ (which can be proved elementary, as in elliptic theory, by
integration by parts and Cauchy-Schwartz:

||04||(221<;+2,H) = (ngQO‘,VgHQ)O = (Vﬁ”?’a,vfr}““a)o
< lledlrs,myllall rs1,m)
< C2||a||%2k+3,H) +C_2”O‘”%2k—1,H) ).

So that finally c||(Id +A.) " al|(oks,m) < c||(Id+A€)_1aH(2k+376) can be
absorbed in the left side of (27).

[(Td+A.) " (e(P® + PWar) + 2P or)(Id +A.)

O‘H (2k+1,¢)
< [P + POedr + PP or)(1d +A:) " al| 5y 4
< el 2r—1,m) + e’ Id+A.) ! | 2k+3,H) 5
this last term being again absorbed in the left side of (27),
I,
—-1(_Fi p(1) et
H(Id AL ( Lp 4 p )(Id+A )~ H(%W)
< ||lpW
< [|P(1d+A.) a” 2k, H) ) ‘ (2, H)

<M +A) " al| gy ) < Ha” 2% 1,H) -
e Using the same methods, we easily get that
(Id+A.) (PP 4+ e M PY 4 PO )
is continuous from Hap41. into itself, and that, thanks to (26),
Or(Id+A.)~tis from Hopt1,1 t0 Hogt1,.. They can therefore be com-
posed as in (25), so that we obtain finally the required boundedness of
1(Id+A0) | 2h41, 1), (2h43.6)-

. e .
We are left with the control of H (Id+A.)~ —- H(2k+2,H),(2k+3,a)’ which

is the second part of our recurrence hypothesis at rank & + 1. This can
be handled in the same way as our previous estimation. We just have to
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compose the equations (25) and (26) by II Fi /€ by the right, and commute

it with 9% in (25) and dr in (26). All terms can then be controlled using
the rank k hypothesis. O

In order to relate the heat operator e *2< to (A — A.)~! by a con-
tour integral formula, we have to extend our resolvent estimates to \’s
surrounding R™. Let therefore U be the domain of C defined by

U={XeC, RA< —1or |3\ >1}.
We will need
LEMMA 7.6. For k € N, 3C}, such that Ve €0, 1] and A € U, the following
operator’s norm control holds,
1O =2 1y oty < Co(1+ D)™
Proof. The case A = —1 comes from Lemma 7.4. Moreover, we know that

(A — A.)71 s related to (Id+A.)~! by the first resolvent equation (see
[RS])

() (A=A)T=—Id+A) '+ A+ DId+A) T A=A

(i) = —(Id+A) "+ A+ DA = A)H(Id +A.)

To start the proof for K = 0, we also observe that, A. being a positive

self-adjoint operator, it satisfies for A € U,

[lexllo
IV = Ac) aHO dist(\, SpecA,)

A first use of the resolvent equation (i) gives therefore,
I =29 all, 5 < [[A = A el

< Cllafl—vm + (A +1)[|(A = Aq)
< (C+ N +1)llallo
which can be used again in (ii) to obtain
[ =20 ally < L+ el

Lemma 7.6 is then proved by recurrence using (i) and Lemma 7.4. O

<o -

aH 1.z by Lemma 7.4 or (24)

We can now complete the proof of Theorem 7.2. Setting I' = oU, we
have by the functional calculus

1

tA tA 1

f = — — A

e 5 Fe (A e) dA,

but also, Vk € N*,

k=1
_ 721';(?— o /Fe_t)‘()\ ~ AR,
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This, together with Lemma 7.6, implies that e *2< is a uniformly bounded
operator, when ¢ — 0, from H into Hy, 7 for any k& € N. The same is true
with ordinary L? elliptic Sobolev spaces Hy, because a transverse deriva-
tive is recovered by two horizontal ones. Therefore, if A = Id+V*V de-
notes an invertible elliptic Laplacian and || A|| s = Tr(A* A)Y/2 the Hilbert-
Schmidt’s norm (see [RS]), one has VI,m € N,

1AL AT K (2, y)]| 2 = 1A' <A™ s
= ||Ale~ A AR AR | g for any k € N,
< [|A" T B A 2 | A

with ||A™%||zs < +oo for k large enough, and Ale™*A< A™*% yniformly
bounded from L? in itself when ¢ — 0 by Lemma 7.6 and duality.

The Sobolev inequalities give then a uniform control when ¢ — 0 of
K. and its derivatives in sup norm. This allows to improve the week con-
vergence of K. towards Kg (coming with the L? uniform convergence of
e"tBe — Iy e t2eIlx,) to a strong uniform one.

7.3 The local convergence of heat kernels in middle degrees. We
now come to the the problem of the local convergence of the kernel K. (z,y)

of eit% on Q"M & Q"M M. We already know that it weakly converges
towards the kernel Kp(x,y) of llp,e *APIlx,, where Ap = D*D + DD*
and F3 = (F Nkerég) @ (F™ Nkerdyg).

We want to improve this convergence using the same general methods as
above. Although, thanks to Proposition 5.8 and Lemma 5.9, Id +% now
dominates an elliptic Laplacian, it contains more divergent terms. This
makes finally the commutator technique more delicate to apply than pre-

viously. In particular, one important point in the proof of the regularizing
L (Id+A.)~!

and (Id +A.)™1 H?l on higher order Sobolev spaces (Lemma 7.4). This
was obtained with the use of basic operators, the “scalar” derivatives Jx,
that had to preserve the components F} and F f- The problem in middle
degree will be similarly to find operators that respect the relevant splitting
of forms, which is no longer of algebraic nature here.

1
By

properties of (Id +A.)~! was the uniform boundedness of

Recall that we know there that F]* has to be decomposed further in
My
&€

3t = F'Nker 6g and F}'NImdg because H a”l y 1s controlled whereas
Iy o does not collapse in || [|17.. This splitting of F}* implies in turn an

anisotropic convergence of the component in F ll tough _ HAnglH . Indeed,
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we know that
1 (<] )
15t =2 (Sgame — =20
= 16 pra+ LopTlpa — °5°
is controlled, showing that H(éé( F3))LQT0 should a priori collapse at speed

€2 whereas its orthogonal part Hma like € only.

With this in mind, we now l%ok for the possible operators that we
can use in the commutator technique. The basic second order operator
that preserves the decomposition Fy @ FJ* N Fy- is dgbg. It controls two
derivatives of the F' N F3L component by hypoelliptic regularity. We have
to complete it on F1L tough g A QgilH in order that the whole nearly
commutes with K./e. We have by (7)

185 (dgdQey) = L (Lr — §dgbd) boNry
= L(Lrbq + $dabadh + doPy) ) )Tlry

where P](Vl() J) is a first order operator function of the Nijenhuis tensor of J.
Its non-vanishing seems to be an obstruction in this method because the
term dQPJ(Vl() ) /€ is uncontrollable on Fj. So, we will suppose in all the
following that the complex structure J is integrable (gives a CR structure).
In this case, we have found that on F* @ 0 A Q01 H,

K 1 K 8
Ke <dQ5Q 0 )> — 5(dgbo +d)80) =" = Lt 9

gy
e \ 0 b(dodg +dhs) e e T

(28)
We will see that this dgdg +dé(5é controls the A (ker 6o Nker (5&5)l compo-

nent, which is contained in the above fast collapsing space § A (5é(ker 50))*
when J is integrable. We therefore introduce

Fsr =0 A (ker 6 Nker 63)

the remaining part of 9/\(28_1[-[ to be controlled. Before coming to this, we
still have to complete our first regularizing operator to the rest FlL otame
Q"M © (FP @ 0 A Q0 'H) of the algebra, so that the extension nearly
commutes with the full A./e2. For this, we can use (16) and Remark 4.2,

to write on QgilH,

3(dodq +dsy) = dayboy + g0, = Au —Dgy - (29)
Now A g —Ag, makes sense on all ®,<,_1Q5H and, by (16), is hypoelliptic
there. Then, we extend it to the full Lefschetz decomposition of Ff‘ ’tame,

by requiring that it commutes with L. This choice has been induced by the
fact that, thanks to (6), (15), (16) and Remark 4.2, Ay — Ag, "nearly”
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commutes with all our algebra of operators, dg, 0, dé, (%, outside FT".

Namely, one has on (FJ")*, if .J is integrable, the following commutation
relations

[AQN’(SQ]:
1
[Aqy, 83 = [Aqy — AD, .61 =PL),
[An,60] = [d},,60, 6] = L16] (30)

(A1.8) = (8 — Mot + (584 = P, — Lai.

Anyway, in order to be able to use this, and in view of (28), we still have
to find a vertical derivative Op which nicely commutes with A./e2. Again,
in the previous section, this was easily done because our underlying splitting
of forms in anisotropic components Fy and Fi- was algebraic (define by a 0
order operator). Here, this Op has to preserve both F3' = F[' Nkerég, and
commutes in a controllable way with % = (6Qa HO — QT) A natural,
although very strong hypothesis, that allows this, is to suppose that the
complex structure is invariant under the Reeb flow. In this case, one has
by (8), L = —L] = —Lr, so that

[L7,60) = 0 = [Lr,60] = [Lr,do] = [L1.dJ), (31)
and finally [£7, A./e%] = 0, which can be seen directly because the Reeb
flow preserves the metrics g. = df(-,J - ) + g—z.
Lastly, we have to find a third operator in order to control the remaining
components
Fy =FPNkerég and  Fjp =0 A (ker6g Nker§y).
A second order one to try on F3' is *D. Again, we have to find an admissible
conjugate of it through K.. One has on FJ*, by (1),(7) and [W],
«D = x0 \ (L7 — dgé))

n(n+

= ()" 5 I (Lr - dot)),
so that,
n(n+1) n(n+1)
§H((=1)" 2« D) =65((-1)" 2z = D)1l
= (8T Ly — 65 TdgéH) R,
= —J[6q, Lr|Ip, + (Joodg) I, 6511k, ,
where [6¢, L7] = 0 by (31), and on Fz
JéQdQHF:a,T = JAQNHFS,T = HFs,TJAQNHFs,T =p; r Joqdq
because Ag, = AggN (by (15)) preserves Fzp = 6 A (ker 6g N ker (5&5) (that

we will often confuse with i7F3 7). So, we have found that on F7'

n(n+1)
s5((=1)"2 " % D) = (Up, ;T Aoy I, 1 )65 Tk,
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= (HFS,TJAQNHFS,T)(Sé - HFR,,TJ(SQdQ(SéHFﬁll >

with by (7), dgé}, = L1 on ker D O F3-. Thus, we finally get the commu-

tation relation
n(n+1)

6(5((_1) 2 0x D) = (HFS,T‘]AQNHFB,T)(Sé - HFS,TJ(SQ‘CTHFSL ) (32)

and we have found an admissible counterpart of D on 6 A QgilH . Indeed,
we have

K _ n(n+1) K
. ( 1) > D 0 = (HFsT‘]AQNHF3T)—E
€ 0 HF3,TJAQNHF3,T ’ B
— HFs,TJ(SQN‘CTHFSJ- . (33)

We have completed our search of basic regular operators to apply in
the commutator technique. Before coming to this, we need to collect
some analytic information on Ilg, .. We first observe that I, soNker 63 =
I, ., o riker 7 This is convenient because the projections Iy, 5 and I, 7
commute. To see this, we define

Doy, = 0oy Oon + 00y 00, and  Ng, = 9ox0ax +9ox00y -

It follows from (7), (10) and (14) that when J is integrable and invariant
under 7', one has on Qf H for p < n,

{851\/5621\1 +5QN85N = agQN = 8QN5QN +5QN8QN =0

Adgy + 85, =Bay and Ay, —Ag, =ilr (34)

QN
Now we will need the following facts.
LEMMA 7.7. 1. AaQN (resp. AEQ ) is hypoelliptic on QFH for 1 <p <
N
n—1(resp. 1 <g<n-—1).
2. yero=  and its conjugate 1T, 7 are continuous from any Hy g to
QN erdg s
themselves.
3. One has err ogNker 6é = err 851\, errgaN = errg*QN err BZQN ’
Proof. To see the first point, we use (16) and above (34) to write on QFYH
with p + g < n,
Ay = (n—p—a)Aqy +doyday + 0,
< (n—p—q—i—?)AQN = (n—p—q+2)(2AaQN +iET),
so that by (12)
2(n—p—q+2)Aps,, = Ay —iln—p—q—2)Lr
= Ag +i(2p — n — 2)Lr + first order,
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which is an hypoelliptic Folland-Stein operator for 1 < p < n. This estima-
tion is too crude for p = 1 but still gives anyway that AaQN controls the
H'0 derivatives because

A —inly ~ 20y, ~2VE0" w0

This in turn gives that 3C such that dg NEZQ v < CAy,  because 522 ="
is an expression of these H0 derivatives. Lastly we can now refine the use
of (16) to obtain

A =(n—1-q)Agy + 200,05, + 200,500,
<(n—1-9)(280,, +ilr) +2(1+ C)Ay,
which this time leads to an hypoelliptic control.
The other statements of Lemma 7.7 are then direct consequences of this
first point and (34). ]
REMARK 7.8. The operators AaQN are not hypoelliptic on the remaining

spaces Qg’p H since their principal part vanishes (at least) on forms with
anti-CR components (and in fact more since these are quotiented versions
of the more classical Oy ones).

We can now come to the commutator technique.
ProposITION 7.9.  Let Pg, and Pry be defined on Q"M = F' © 6 A
O H & F5'™ by (the power of i is for the symmetry
0 1 Y

n(n+1)

. (=1)" =2 *D 0 0
Pp, =" 0 g, JAQ IR, . 0
0 0 0
and
dgdg 0 0
0 0 Apg —Agy
1. One has, if J is integrable and invariant under the Reeb flow,
K* (1 Mima Mima 1 K*
[PFW%]:_?EPI({)ﬁT 5Q+ EQPIS)ETTg’
and
IT 1 ,tame 1T 1
* 6 ’ 1
P 861 = K ot + L R 0
11 I
+ s P}(L?)ET 1? — adjoints.
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2. The system (P, PFsL) is hypoelliptic of order 2, which means that
Vk € N and a € Q"M

1Pry el + |1 Prrcllen + lallim > lollie,m -
Proof. The first point stems from formulas for A, as given in Lemma 5.1

and (17). The case of Pp, follows then from (33). About Ppy, we have
first of all

dgb
|Prys 259 | = 0 = [Py, DF,
and by (28) and (29)
K*K. K. ;
[Prgs 55| = [Poy K25 + 5 [Ppy Ko

= —%L’T%QHF{L — adjoint.
Also, thanks to (28), we get that on Fj-
1

and finally

Iy

1 ,tame 1
— Fl 1
g

[PFBL,non—diagonal terms of % on FIL] = 5 PS)KT

E — adjoint,

together with

[PF 3L,second order diagonal terms of % on Ff‘}

., .,
= :1 Pg)ET ? — adjoint.

The second point is clear outside 6§ A Q0 'H because (dgdg,*D) is
hypoelliptic on F}*, and Ay — Ag is on QYH for p < n —1 by (16). On
A Qg_lH =[7® F3J-7T, one has

|Prsellk,ir = [[TAQu LR perll i 2 [k 2, = [k s

by hypoellipticity of Ag, and continuity of IIf, ,. (Lemma 7.12). About the

remaining F3L7T, it can be orthogonally decomposed, thanks to Lemma 7.7
and (34) in the following way

F?fT = Og(ker 05, N kerg*Q) @ g (ker 95 N kergg) ® (Imdg NIm dg),
on which Pp = dondoy + dJN(?C‘SN =2(0gy 05, + EQNE*QN) acts as

2A@QN 0 0
0 0 2A0y
completing the hypoelliptic control. O

We can now state the refinement of Theorem 7.1 under the geometric
assumptions which we have been leaded to.
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Theorem 7.10. Let M be a compact contact manifold endowed with the
family of metrics g, and such that the complex structure is integrable and
invariant under the Reeb flow. Then one has uniformly for t >ty > 0,

1. on QPM withp=n orn+1,
e_ts_f — e tADHF
e—0
2. for the signature operator S, acting on Q"M ,

_tAce
5. 12

—tAp
= e

— Spe ;

e—0

smoothly at the kernel level.

REMARK 7.11. It seems unlikely such strong geometric hypothesizes are
really necessary to pass from the global statement, we already obtained in
Theorem 7.1, to this local one. In index theory, some geometric price has
sometimes to be paid to do this, but only for small time problems, which
is not the case here!

The proof will follow the lines of the previous section and we refer to it
for more details. We introduce higher order L? Sobolev spaces and extend
the regularizing properties of the resolvent on them.

LEMMA 7.12. Fork e N,e >0 and o € Q"M, let

1HHFLO‘||’€H+ HK.allp—1,m + &1, Ltame 1,1 -

Then (Id —1—6—2)7 extends continuously from Hoy—1, 7 to Hop41, with the
uniform boundedness, when € — 0, of the following operators

(Id+55 )71 o Hok—1, — Hokt1,e

(Id —i—AE) Hok—1,0 — Hoky1,e

(ld+2)~" Hok,r — Hakt1,e
AE 1 H J_ ,tame

(Id+%5) Hor,i — Hoky1,e

Proof. We can proceed by recurrence as in Lemma 7.4. The case k£ = 0
follows from the basic L? a priori control of Proposition 5.8. The recur-
rence then uses the commutator method applied with Pp,, PFBJ_ and L, as
Proposition 7.9 allows it. O

The proof of the first point of Theorem 7.10 is then completed in the
same manner as in previous section. Lastly, the statement for the signature
operator comes from the obtained uniform smoothing properties of e_t%
and the continuity of S./e from L? to H_1/ . as seen in Prop. 5.8.
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7.4 On the large scale behavior of the heat kernels on forms on
the Heisenberg groups. Although we have been concerned so far with
compact contact manifolds, we now observe that the techniques developed
can also been used in the following non-compact situation, namely, the
study of the asymptotic behavior of the heat operators on forms on the
Heisenberg groups for large times. The first thing to remark for this is
that most of the convergence theorems obtained here for compact contact
manifolds M also hold on their Galois coverings I' — M — M (like their
universal covering spaces with I' = 7 M).

PROPOSITION 7.13. 1. The resolvent convergence Theorems 3.5 and 3.6
hold on M except that the collapsing of the Fy component in 3.6, instead of
being uniform in L?, is only weak on M and strong on compact sets of M.

2. The local convergence theorems of heat kernels 7.2 and 7.10 hold on
compact sets of M x M.

Proof. The basic L? estimates of section 5 rely on the Bochner technique
and still apply here. The only changes in the proofs in section 6 thus depend
on Proposition 6.2. It is still true on M, at the exception of the statement
on the discreteness of the spectra.

Indeed, the only point to check here is the essential self-adjointness of
the operator P = Ag + Pp considered in the proof of Proposition 6.2. It
can be obtained using the same general methods as described for elliptic
operators by Atiyah in [A]. Namely, P being a maximally hypoelliptic
operator of order 2, it satisfies basic estimates

[Pallo+ llallo = Cllalle,x
for compactly supported forms in a fixed compact set of M. The fact is
that, as in the elliptic case of [A], these estimates give a global one by
I-translating and adding them using a I-invariant partition of unity.

Now, in the proofs of section 6, the discreteness of the spectrum of Ag
was only used to obtain the uniform control

1Bl e > 25 (AqBe, Be)o > STy e,

where (. = (/\ — %)_la. That gave the uniform collapsing of II F,- COMPO-
nent in Theorem 3.6. Instead of this, we only get here that

(AQB:; Be)o < e2|Bellr - < [lallg-
Therefore, if we decompose Il m 0B: with respect to the spectral spaces
E(]0,¢]) and E(]e, 00]) associated to Ag, we obtain that,

I (e 000 Be l5 < 2(AqB:, Be)o < ellalfg -
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So, this component is still uniformly collapsing, whereas we only have that

(M eqo.eBes 7)o = (Bes pgoeyv)o — 0,
for all v € L? by the spectral theorem. Anyway, we conserve a uniform first
order Sobolev control of 3: through its (1’, ) norm, and this still implies its
strong convergence to 0, on compact sets. This completes the proof of the
first point of the proposition. The remaining one is clear since the methods
of section 7.2 and 7.3 still apply here, again in restriction to compact sets,
to take profit of the Sobolev controls of the kernels. O

We now come to the Heisenberg group H?"*!. We recall that its Lie
algebra h2"*! is generated by X;, Y;, 1 <i < n and T in the center, with
the commutation relations [Y;, X;] = &;;7. We endowed H*"*! with a
left invariant adapted metric g; = df(-,J - ) + 62 with 6 dual to T" and
JX; =Y, It is well known that these groups admit compact quotients
M = H*t'/T (which are non-trivial circle bundles over a torus), thus
the previous proposition will apply to them. The link with our large scale
Riemannian problem is provided by the parabolic dilations h.. These are
automorphisms of H?"*1 acting on h?**! by h. = eId on H =Vect (X;, Y;)
and h.T = £2T. Moreover, h. induces an isometry between the spaces
(H?"*! g1) and (H?"*1, g./€?), so that

hilg, = Aga/e2 = €2Age .
We recall also that, since section 2, we work with the conjugate operator
A. = C.A,.C, where C. is the point-wise map defined on Q*M by
C.(ag +0Nar) =ag + <0 A ar. Lastly, if P is an operator on Q* H?"+1,
the kernel of h} P transforms like
Kyzp(a,y) = " 2Co Kp(h e, h ') Ce
when expressed in a fixed volume form, and with tangent spaces identified
through translations. Thus, by Proposition 7.13, we finally obtain the
asymptotic behavior at large time of the heat kernels on forms on H?"*1.
Theorem 7.14. One has on QPH*" ! for p £ n,n+1
e Ky a(hi e hty) —— K g (2,y),
e ¢ e—0

and on QnH2n+1 e Qn+1H2n+1

6_2n_2K 7—t4—A(hs_1$7hs_1y) - Ke_tAD (wvy)a
e € e—0

uniformly on compact sets of H?"t1 x H?"*! and non-small t.

Thus, heat on forms “at infinity” of the Heisenberg groups converges
to the contact complex ones, its higher order degeneracy as a spectral se-
quence, in middle degrees, being directly reflected in the lower speed of
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diffusion there. This is of course consistent with a time-dilation rescaling,
the contact Laplacians being homogeneous under h). Namely, one has
RiAQ.g = AQ% =MAg, and  R3Ap, =MAp,,,
so that,
hj(e_mQ) — e B0 and hi(e_tAD) — ~t\'Ap,

We now mention that this result gives, using von Neumann’s I'-dimension,
some numerical information on the spectrum of A near 0. Recall (see [A])
that associated to the I'-cocompact action are the notions of I'-trace of oper-
ators and the related I'-dimension of closed I'-invariant spaces. Briefly, if P
is a positive I'-equivariant Hermitian operator acting on some Hilbert space
H which is a free I'-module, its I-trace is defined by Trp(P) = > .. ;(Pe;, €;)
where one has chosen one vector e; by I'-orbit of a I'-equivariant Hilbert
base of H. If V is a closed I'-invariant subspace in H, its I'-dimension is
dimp (V) = Trp(Ily ), where Iy is the orthogonal projection on V. Lastly,
in the case we consider where P acts on Q*M with smooth kernel one
has Trp(P) = [ Tr(Kp(z,z))dvol, F being a fundamental domain of the
I-action. Moreover, since our operators are left invariant on H?"*!, this
formula simplifies further to Trp(P) = Tr(K (e, e))vol(F). Thus, the previ-
ous theorem leads to the following

COROLLARY 7.15. For A acting on QP H?" 1 let Oa(t) = Trr(e~*?) (this
is also the Laplace transform of the spectrum distribution function of A,
Oa(t) = fe_t’\de()\) with Np(\) = dimp(EA([0,\])) (see [GroS])). One
has, when € — 0

Oa(e2) ~ 52”+2¢9AQ(1) ifp#n,n+1
e"n, (1)  otherwise.

Therefore, the decay exponent of heat on p-forms is oy = n+1if p # n,n+1
and ”T“ otherwise.

These numbers oy, (or sometimes twice these numbers) are called the
Novikov-Shubin numbers, of M = H?*"*!/T here, and have some geomet-
ric interest since Gromov and Shubin proved in [GroS] their homotopical
invariance (see also [BIMW]). Lott in [L], computed them on H? using rep-
resentation theory, and also gave (sharp) bounds on the higher dimensional
Heisenberg groups. Recently, and independently of this work, Schubert
announced in [S] that he found them in all dimensions, using again repre-
sentation theory and algebraic methods (however, it seems there is a gap
in this proof). The proof we gave here has some geometric flavour. But
still, as homotopical invariants, they deserve an “homotopical” approach.
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A direct one is indeed possible. (I am grateful to P. Pansu for his unyielding
and finally communicative conviction about this).

Another computation of cy. Recall that in sections 2 and 3 we observed
that the construction of the contact complex, and in fact the proof of its
local exactness in [Ru], come with explicit homotopy operators, the lifting
maps r in (18), towards the de Rham complex. They are (first order)
operators from QfH to QP M satisfying dr = rdg for p < n and dr = D for
p = n. Above degree n, the contact complex is naturally embedded as a sub-
complex of de Rham’s one, so we can extend r by the inclusion map here.
Reversely, we have a natural projection II from Q*M to Q*M /T ~ Q§M
until degree n and satisfying (by definition) Ild = dglIl. Again, this map
IT has an extension from Q*M to J* in higher degrees. To define this, let
LI_;,/1 = A(LA)~! be the right inverse of L (exists since L is surjective in
the degrees we consider), and define h = 6 A Ll_%lHH (that is h = (L%1 8)
in QM = Q*H & 0 A Q*H. Note also that in some sense h is dal, the
inverse of the zero order term of d by Prop. 3.3). It is easy to check that
II =1d —hd — dh maps Q*M to J* =0 Aker L. In fact II and r induce an
homotopy equivalence between the de Rham and contact complexes since
they are seen to satisfy IIr = Id and rII = Id —hd — dh (where one uses the
left, instead of right, inverse of L in degree < n).

Now, one would like to use the fundamental result of Gromov and Shu-
bin in [GroS| that boundedly homotopy equivalent Hilbert complexes have
the same Novikov-Shubin numbers since, as we already observed, the ones
of the contact complex are clear on the Heisenberg group by its homo-
geneity through the parabolic dilations. Our problem here is that the first
order maps IT and 7 are unbounded in L?, but it is bypassed if, instead
of working with the full de Rham complex, one restricts or projects it to
some spectral space E([0,A]) associated to A (and the same on the con-
tact complex). Indeed, the projection Ig(o,n) is a regularizing map and
induces a bounded homotopy equivalence between the de Rham and cut-off
de Rham complexes, because Id —Ilg(o,n)) = Hgx o) = dH + Hd where
H = 6A_1HE(])\,00[) is bounded. g

REMARK 7.16. We would like to mention, still about these «,,, that this
work also suggests a third natural approach, relying only on the Bochner
formula and related basic estimates of section 4, together with the following
variational principle to estimate the distribution function of Laplacians.



Vol. 10, 2000 SUB-RIEMANNIAN SPECTRUM OF CONTACT MANIFOLDS 451

Namely, one has (see [GroS)),

Nr(\) (= dimp(EA([0,A]))) = sup dimp(L),
Lely
where L) is the set of all I'-invariant closed spaces such that (Aa,a) <
Al|la||? for all & € L. One can check (left to the tireless reader) that the
injection in the Bochner formula of projection and lifting of basic relevant
spectral spaces leads rather easily to another computation of the cy,, and
even, outside middle degrees, to the full equivalent

Nra() ~ Nrag(h) = A"Npag (1)

As a conclusion of this work, we think that it can suggest two directions
of investigations. The first question raised, mimicking a famous one, is
“What do we hear at the infinite of the nilpotent groups?” We mean by this
to study the Laplacians and the limit of heat and wave propagation on forms
at large scale on these groups. As we have just seen here, the answer to this
question for the Heisenberg group is more or less “the contact complex”.
A clue for more general groups is certainly provided by the existence, we
mentioned in section 3, of a spectral sequence naturally generalizing the
contact complex in Carnot-Caratheodory geometry.

The other direction is to study further the behavior, in the contact case,
of global spectral Riemannian invariants (like eta invariant or analytic tor-
sion) in the limit we considered. Although the short time problems are
out of scope of this work, we have seen that some hypoelliptic eta and
zeta functions naturally come out that should be related to the finite part
of their Riemannian counterparts in the sub-Riemannian limit. What we
could really expect in this problem is still quite unclear to us, but an effi-
cient analytic tool to investigate it could probably be the extended Heisen-
berg pseudo-differential calculus, recently developed by Epstein, Mendoza
and Melrose in [EMM], and containing both the elliptic and hypoelliptic
Heisenberg calculi (see [BG]).
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