Lie algebras, vertex algebras and applications

1. Affine Kac-Moody algebras

Problem 1 (Structure of affine Kac-Moody algebras). Let $\mathfrak{g}=\mathfrak{n}_{+} \oplus \mathfrak{h} \oplus \mathfrak{n}_{-}$be a simple Lie algebra with root system $\Delta=\Delta(\mathfrak{g}, \mathfrak{h})$, and $\widehat{\mathfrak{g}}$ the affine Kac-Moody algebra defined by $\widehat{\mathfrak{g}}:=\mathfrak{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K$, with the commutation relations:

$$
\begin{aligned}
& {\left[x t^{m}, y t^{n}\right]=[x, y] t^{m+n}+m \delta_{m+n, 0}(x \mid y) K,} \\
& {[K, \widehat{\mathfrak{g}}]=0}
\end{aligned}
$$

for $x, y \in \mathfrak{g}$ and $m, n \in \mathbb{Z}$. Here (\mid) is a nondegenerate invariant bilinear form of \mathfrak{g} such that $(\theta \mid \theta)=2$, where θ is the highest positive root.
(1) Explain how the Lie algebra $\widehat{\mathfrak{g}}$ can be presented by generators $\left(E_{i}\right)_{0 \leqslant i \leqslant r},\left(F_{i}\right)_{0 \leqslant i \leqslant r},\left(H_{i}\right)_{0 \leqslant i \leqslant r}$, and relations

$$
\begin{aligned}
& {\left[H_{i}, H_{j}\right]=0,} \\
& {\left[E_{i}, F_{j}\right]=\delta_{i, j} H_{i},} \\
& {\left[H_{i}, E_{j}\right]=C_{i, j} E_{j}, \quad\left[H_{i}, F_{j}\right]=-C_{i, j} F_{j},} \\
& \left(\operatorname{ad} E_{i}\right)^{1-C_{i, j}} E_{j}=0, \quad\left(\operatorname{ad} F_{i}\right)^{1-C_{i, j}} F_{j}=0 \text { for } i \neq j,
\end{aligned}
$$

where $\hat{C}=\left(C_{i, j}\right)_{0 \leqslant i \leqslant r}$ is an affine Cartan matrix, that is, \hat{C} satisfies the following relations the following properties,

$$
\begin{aligned}
& C_{i, i}=2 \text { for all } i, \\
& C_{i, j} \in \mathbb{Z} \text { and } C_{i, j} \leqslant 0 \text { if } i \neq j, \\
& C_{i, j}=0 \text { if and only if } C_{j, i}=0,
\end{aligned}
$$

all proper principal minors are strictly positive, i.e.,

$$
\operatorname{det}\left(\left(C_{i, j}\right)_{0 \leqslant i, j \leqslant s}\right)>0 \quad \text { for } \quad 0 \leqslant s \leqslant r-1 \text {, }
$$

and $\operatorname{det}(\hat{C})=0$.
Note that one can choose the labelling $\{0, \ldots, r\}$ so that the subalgebra generated by $\left(E_{i}\right)_{1 \leqslant i \leqslant r}$, $\left(F_{i}\right)_{1 \leqslant i \leqslant r},\left(H_{i}\right)_{1 \leqslant i \leqslant r}$ is isomorphic to \mathfrak{g}, that is, $\left(C_{i, j}\right)_{1 \leqslant i \leqslant r}$ is the Cartan matrix C of \mathfrak{g}.
Detail the construction for $\widehat{\mathfrak{s f}}_{2}$.
(2) By considering the extended affine Lie algebra:

$$
\widetilde{\mathfrak{g}}:=\widehat{\mathfrak{g}} \oplus \mathbb{C} D,
$$

with commutation relations (apart from those of $\widehat{\mathfrak{g}}$),

$$
\left[D, x t^{m}\right]=m x t^{m}, \quad[D, K]=0, \quad x \in \mathfrak{g}, m \in \mathbb{Z}
$$

describe the root system $\hat{\Delta}$ of $\widetilde{\mathfrak{g}}$ associated with the Cartan subalgebra

$$
\widetilde{\mathfrak{h}}:=\widehat{\mathfrak{h}} \oplus \mathbb{C} D=\mathfrak{h} \oplus \mathbb{C} K \oplus \mathbb{C} D .
$$

Give a precise description for $\widehat{\mathfrak{s l}_{2}}$. What is the dimension of $\operatorname{dim} \widehat{\mathfrak{g}}_{\alpha}=\{x \in \widehat{\mathfrak{g}}:[h, x]=\alpha(h) x$ for all $h \in$ $\widetilde{\mathfrak{h}}\}$ for $\alpha \in \hat{\Delta}$?
(References: [5, Chapter 7], [1, Appendix A].)

Problem 2 (Casimir operator, highest weight modules and the BGG category \mathscr{O}). Let $\widetilde{\mathfrak{g}}$ be as in the previous problem: the bilinear form (\mid) extends to an invariant nondegenerate bilinear form on $\tilde{\mathfrak{g}}$ (see [5, Theorem 2.2]). Let $\hat{\rho} \in \widetilde{\mathfrak{h}}^{*}$ be such that

$$
\hat{\rho}\left(\alpha_{i}^{\vee}\right)=1 \quad \text { for } \quad i=0, \ldots, r
$$

For $\alpha \in \hat{\Delta}_{+}$, choose a basis $\left\{e_{\alpha}^{(1)}, \ldots, e_{\alpha}^{(k)}\right\}$ of $\widehat{\mathfrak{g}}_{\alpha}$ such that $\left\{e_{-\alpha}^{(1)}, \ldots, e_{-\alpha}^{(k)}\right\}$ is the basis of $\widehat{\mathfrak{g}}_{\alpha}$ dual of $\left\{e_{\alpha}^{(1)}, \ldots, e_{\alpha}^{(k)}\right\}$ with respect to (\mid). Let $\left\{u_{i}\right\}_{i \in I}$ and $\left\{u^{i}\right\}_{i \in I}$ be dual basis of $\tilde{\mathfrak{h}}$ with respect to (|). Set

$$
\Omega:=2 \sum_{\alpha \in \hat{\Delta}_{+}} \sum_{j} e_{-\alpha}^{(j)} e_{\alpha}^{(j)}+2 \nu^{-1}(\hat{\rho})+\sum_{i} u_{i} u^{i}
$$

where $\nu: \widetilde{\mathfrak{h}} \rightarrow \widetilde{\mathfrak{h}}^{*}$ is the isomorphism induced by (|). $\triangleq \Omega$ is not an element of $U(\widetilde{\mathfrak{g}})$ (infinite sum) in general. Let M be a representation of $\tilde{\mathfrak{g}}$ such that:
(1) M is finitely generated as $U(\widetilde{\mathfrak{g}})$-module,
(2) M is $\widetilde{\mathfrak{h}}$-diagonalizable, that is, $M=\underset{\lambda \in \tilde{\mathfrak{h}}^{*}}{\bigoplus} M_{\lambda}$, where

$$
M_{\lambda}=\{m \in M: h . m=\lambda(h) m \text { for all } h \in \widetilde{\mathfrak{h}}\},
$$

(3) the action of $\widehat{\mathfrak{n}}_{+}$on M is locally finite, that is, for all $m \in M, U\left(\widehat{\mathfrak{n}}_{+}\right) . m$ is finite-dimensional.

The representations of $\widetilde{\mathfrak{g}}$ satisfying (1), (2), (3) are the objects of a full category of the category of $\widetilde{\mathfrak{g}}$-modules called the $B G G$ (Bernstein-Gelfand-Gelfand) category \mathscr{O}, see [4, Chapter 1].
(1) Show that $\left.\Omega\right|_{M}$ is a well-defined element of $\operatorname{End}(M)$.
(2) Show that $\left.\Omega\right|_{M}$ commutes with the action of any $x \in \widetilde{\mathfrak{g}}$.
(3) Let $v \in M_{\lambda}$ be a singular vector. Show that

$$
\Omega v=2(\rho \mid \lambda) v+\left(\sum_{i \in I} u_{i} u^{i}\right) v=(\lambda+2 \rho \mid \lambda) v
$$

(4) Deduce that if $M=U\left(\widehat{\mathfrak{n}}_{-}\right) \cdot v$ with v as in (3), then

$$
\Omega=(\lambda+2 \rho \mid \lambda) \operatorname{Id}_{M}
$$

(References: [5, Chapter 2], [4, Chapter 1].)

2. Vertex algebras

Problem 3 (commutative vertex algebras). Show that a differential algebra R with a derivation ∂ carries a canonical commutative vertex algebra structure such that the vacuum vector is the unit, and

$$
Y(a, z) b=\left(e^{z \partial} a\right) b=\sum_{n \geqslant 0} \frac{z^{n}}{n!}\left(\partial^{n} a\right) b \quad \text { for all } \quad a, b \in R
$$

Give various examples of commutative vertex algebras: coming from the arc space of an affine variety, from the graded algebra of a vertex algebra using the Li filtration, etc.
(Reference: [1, Part I, Sections 1 et 2 \& Part II, Section 4].)

Problem 4 (Heisenberg vertex algebra and Fock space). Let \mathscr{B} be the unital associative algebra generated by elements b_{n}, for $n \in \mathbb{Z}$, with relations

$$
\left[b_{m}, b_{n}\right]=m \delta_{m+n, 0}, \quad m, n \in \mathbb{Z}
$$

(1) Verify that

$$
[b(z), b(w)]=\partial_{w} \delta(z-w)
$$

so that $b(z)$ is local to itself and

$$
b(z) b(w) \sim \frac{1}{(z-w)^{2}}
$$

(2) For $\alpha \in \mathbb{C}$, set

$$
L(z)=\frac{1}{2} \circ b(z)^{2} \circ+\alpha \partial_{z} b(z)
$$

Show that $L(z)$ is local to $b(z)$ and itself, and prove the following OPEs:

$$
\begin{aligned}
& L(z) b(w) \sim-\frac{2 \alpha}{(z-w)^{3}}+\frac{b(w)}{(z-w)^{2}}+\frac{\partial_{w} b(w)}{(z-w)} \\
& L(z) L(w) \sim \frac{\left(1-12 \alpha^{2}\right) / 2}{(z-w)^{4}}+\frac{2 L(w)}{(z-w)^{2}}+\frac{\partial_{w} L(w)}{(z-w)}
\end{aligned}
$$

(3) A \mathscr{B}-module M is called smooth if for each $m \in M$ there exits an integer N such that $b_{n} m=0$ for $n>N$. If M is a smooth \mathscr{B}-module,

$$
b(z)=\sum_{n \in \mathbb{Z}} b_{n} z^{-n-1}
$$

is a field on M.
Let M be a smooth \mathscr{B}-module. Show that the following correspondence gives the vertex algebra $\langle b(z)\rangle_{M}$ a \mathscr{B}-module structure:

$$
\mathscr{B} \rightarrow \operatorname{End}\left(\langle b(z)\rangle_{M}\right) \quad b_{n} \mapsto b(z)_{(n)}
$$

(4) Let

$$
\pi=\mathbb{C}\left[b_{-1}, b_{-2}, \ldots,\right]
$$

Verify that π is a smooth \mathscr{B}-module on which $b_{n}, n \geq 0$, acts as $n \frac{\partial}{\partial b_{-n}}$, and $b_{-n}, n>0$, acts as multiplication by b_{-n}. Define

$$
T=\sum_{n>0} n b_{-n-1} \frac{\partial}{\partial b_{-n}} \in \operatorname{End} \pi
$$

Show that there is a unique vertex algebra structure on π such that 1 is the vacuum vector and $Y\left(b_{-1}, z\right)=$ $b(z)$.
(5) Show that there is a surjective homomorphism $\pi \rightarrow\langle b(z)\rangle_{M}$ of vertex algerbas.
(6) Set $\omega=\frac{1}{2} b_{-1}^{2}+\alpha b_{-2} \in \pi$, so that $L(z)=Y(\omega, z)$. Verify that the OPEs of the questions (2) are equivalent to the following relations:

$$
b_{0} \omega=0, \quad b_{1} \omega=b_{-1}, \quad b_{2} \omega=2 \alpha
$$

(7) Show that $L_{-1}=T$ on π.
(8) Show that the vertex algebra π is simple, that is, there is no non-trivial ideal of π. This implies that the vertex algebra $\langle b(z)\rangle_{M}$ of local fields on any non-trivial smooth \mathscr{B}-module M is isomorphic to π.
(References: [1, Part I, Section 2], [6].)

Problem 5 (Sugawara construction). The aim of the problem is to give to the universal affine vertex $V^{k}(\mathfrak{g})$ at a non-critical level a conformal structure.
(1) Let $V^{\kappa}(\mathfrak{h})$ be the Heisenberg vertex algebra associated with a r-dimensional commutative Lie algebra \mathfrak{h} and a nondegenerate bilinear form κ.
1.1 Show that

$$
T(z)=\frac{1}{2} \sum_{i=1}^{r} \circ x_{i}(z) x^{i}(z) \circ
$$

is a stress tensor (i.e., conformal vector) for $V^{\kappa}(\mathfrak{h})$ with central charge r, where $\left\{x_{i}\right\}_{1 \leqslant i \leqslant r}$ and $\left\{x^{i}\right\}_{1 \leqslant i \leqslant r}$ are dual basis of \mathfrak{h} with respect to κ.
1.2 Observe that if $r=1$, we have $V^{\kappa}(\mathfrak{h}) \cong \pi$. Then compare the construction of T with that of the previous problem.
(2) Let $V^{k}(\mathfrak{g})$ be the universal affine vertex algebra associated with \mathfrak{g} simple, and the invariant nondegenerate bilinear form

$$
(\mid)=\frac{1}{2 h^{\vee}} \times \text { Killing form }
$$

where h^{\vee} is the dual Coxeter number. Set

$$
S=\frac{1}{2} \sum_{i=1}^{\operatorname{dim} \mathfrak{g}} x_{i,(-1)} x_{(-1)}^{i}|0\rangle
$$

where $\left\{x_{i}\right\}_{1 \leqslant i \leqslant \operatorname{dim} \mathfrak{g}}$ and $\left\{x^{i}\right\}_{1 \leqslant i \leqslant \operatorname{dim} \mathfrak{g}}$ are dual basis with respect to (\mid).
(3) For $k \neq-h^{\vee}$, show that $L=\frac{S}{k+h^{\vee}}$ is a stress tensor of $V^{k}(\mathfrak{g})$ with central charge

$$
c(k)=\frac{k \operatorname{dim} \mathfrak{g}}{k+h^{\vee}}
$$

This construction is referred to as the Sugawara construction.
(4) Verify that

$$
\left[L_{m}, x_{(n)}\right]=-n x_{(m+n)} \quad x \in \mathfrak{g}, m, n \in \mathbb{Z} .
$$

(References: [1, Part I, Section 2], [2, Section 3], [6, Theorem 5.7].)

Problem 6 (center of the universal affine vertex algebra).
(1) Let W be a vertex subalgebra of a vertex algebra V. We set

$$
\operatorname{Com}(W, V)=\left\{v \in V:\left[w_{(m)}, v_{(n)}\right]=0 \text { for all } w \in W, m, n \in \mathbb{Z}\right\}
$$

Show that

$$
\operatorname{Com}(W, V)=\left\{v \in V: w_{(n)} v=0 \text { for all } w \in W, n \geqslant 0\right\}
$$

(2) Let V be a vertex algebra, and suppose that there exists a vertex algebra homomorphism $\phi: V^{\kappa}(\mathfrak{g}) \rightarrow V$, so that V is a $\widehat{\mathfrak{g}}_{\kappa}$-module. Show that

$$
\operatorname{Com}\left(\phi\left(V^{\kappa}(\mathfrak{g})\right), V\right)=V^{\mathfrak{g}[t]}
$$

where $V^{\mathfrak{g}[t]}=\{v \in V: \mathfrak{g}[t] v=0\}$. Show that we have the following isomorphism of commutative \mathbb{C}-algebras (the product on the commutative vertex algebra $Z\left(V^{k}(\mathfrak{g})\right)$ is the normally ordered product):

$$
Z\left(V^{k}(\mathfrak{g})\right) \cong \operatorname{End}_{\widehat{\mathfrak{g}}}\left(V^{k}(\mathfrak{g})\right)
$$

It is easily seen that $Z\left(V^{k}(\mathfrak{g})\right)=\mathbb{C}|0\rangle$ for $k \neq-h^{\vee}$ using the stress tensor L. For $k=-h^{\vee}$, the center

$$
Z\left(V^{-h^{\vee}}(\mathfrak{g})\right)=: \mathfrak{z}(\widehat{\mathfrak{g}})
$$

is "huge", and it is usually referred as the Feigin-Frenkel center: we have

$$
\operatorname{gr} \mathfrak{z}(\widehat{\mathfrak{g}}) \cong \mathscr{O}\left(\mathscr{J}_{\infty}(\mathfrak{g} / / G)\right)
$$

where $\mathfrak{g} / / G=\operatorname{Spec} \mathscr{O}(\mathfrak{g})^{G}$ and $\mathscr{J}_{\infty}(\mathfrak{g} / / G)$ is the arc space of $\mathfrak{g} / / G$.
(References: [1, Part I, Section 2], [2, Section 18].)

3. Associated varieties of vertex algebras

Problem 7 (simple affine vertex algebras associated with $\mathfrak{s l}_{2}$). Let N_{k} be the proper maximal ideal of $V^{k}\left(\mathfrak{s l}_{2}\right)$ so that $L_{k}\left(\mathfrak{s l}_{2}\right)=V^{k}\left(\mathfrak{s l}_{2}\right) / N_{k}$. Let I_{k} be the image of N_{k} in $R_{V^{k}\left(\mathfrak{s l}_{2}\right)}=\mathbb{C}\left[\mathfrak{s l}_{2}\right]$. It is known that either N_{k} is trivial, that is, $V^{k}\left(\mathfrak{s l}_{2}\right)$ is simple, or N_{k} is generated by a singular vector v whose image \bar{v} in I_{k} is nonzero ([7,10]).

We assume in this exercise that N_{k} is non trivial. Thus, $N_{k}=U\left(\widehat{\mathfrak{s l}}_{2}\right) v$.
(1) Using Kostant's Separation Theorem ([8]) show that, up to a nonzero scalar,

$$
\bar{v}=\Omega^{m} e^{n}
$$

for some $m, n \in \mathbb{Z}_{>0}$, where $\Omega=2 e f+\frac{1}{2} h^{2}$ is the Casimir element of the symmetric algebra of $\mathfrak{s l}_{2}$.
(2) Deduce from this that $X_{L_{k}\left(\mathfrak{s l}_{2}\right)}$ is contained in the nilpotent cone \mathscr{N} of $\mathfrak{s l}_{2}$.

It is known that N_{k} is nontrivial if and only if k is an admissible level for $\mathfrak{s l}_{2}$, that is,

$$
k=-2+p / q, \quad p, q \in \mathbb{Z}_{>0},(p, q)=1, p \geqslant 2
$$

or $k=-2$ is critical. Since $X_{L_{k}\left(\mathfrak{s l}_{2}\right)}=\{0\}$ if and only if $k \in \mathbb{Z}_{\geqslant 0}$, we get that $X_{L_{k}\left(\mathfrak{s l}_{2}\right)}=\mathscr{N}$ if and only if $k=-2$ or k is admissible and $k \notin \mathbb{Z}_{\geqslant 0}$.

Problem 8 (an explicit computation of an associated variety). The aim of this exercise is to compute $X_{L_{-3 / 2}\left(\mathfrak{s l}_{3}\right)}$. It is known ([12]) that the proper maximal ideal of $V^{-3 / 2}\left(\mathfrak{s l}_{3}\right)$ is generated by the singular vector v given by:

$$
v:=\frac{1}{3}\left(\left(h_{1} t^{-1}\right)\left(e_{1,3} t^{-1}\right)|0\rangle-\left(h_{2} t^{-1}\right)\left(e_{1,3} t^{-1}\right)|0\rangle\right)+\left(e_{1,2} t^{-1}\right)\left(e_{2,3} t^{-1}\right)|0\rangle-\frac{1}{2} e_{1,3} t^{-2}|0\rangle,
$$

where $h_{1}:=e_{1,1}-e_{2,2}, h_{2}:=e_{2,2}-e_{3,3}$ and $e_{i, j}$ is the elementary matrix of the coefficient (i, j) in $\mathfrak{s l}_{3}$ identified with the set of traceless 3 -size square matrices.
(1) Verify that v is indeed a singular vector for $\widehat{\mathfrak{s l}_{3}}$.
(2) Let $\mathfrak{h}:=\mathbb{C} h_{1}+\mathbb{C} h_{2}$ be the usual Cartan subalgebra of $\mathfrak{s l}_{3}$. Show that $X_{L_{-3 / 2}\left(\mathfrak{s l}_{3}\right)} \cap \mathfrak{h}=\{0\}$, and deduce from this that $X_{L_{-3 / 2}\left(\mathfrak{s l}_{3}\right)}$ is contained in the nilpotent cone of $\mathfrak{s l}_{3}$.
(3) Show that the nilpotent cone is not contained in $X_{L_{-3 / 2}\left(\mathfrak{s l}_{3}\right)}$.
(4) Denoting by $\mathbb{O}_{\text {min }}$ the minimal nilpotent orbit of $\mathfrak{s l}_{3}$, conclude that

$$
X_{L_{-3 / 2}\left(\mathfrak{s l}_{3}\right)}=\overline{\mathbb{O}_{\text {min }}} .
$$

REFERENCES

[1] Tomoyuki Arakawa and Anne Moreau. Arc spaces and vertex algebras. https://www.imo.universite-paris-saclay.fr/ ~anne.moreau/CEMPI-arc_space-vertex_algebras.pdf
[2] Edward Frenkel and David Ben-Zvi. Vertex algebras and algebraic curves. Mathematical Surveys and Monographs, 88. American Mathematical Society, Providence, RI, 2001.
[3] James Humphreys. Introduction to Lie algebras and Representation Theory. Springer-Verlag GmbH, 1972.
[4] James Humphreys. Representations of semisimple Lie algebras in the BGG category \mathscr{O}. Graduate Studies in Mathematics, 94. American Mathematical Society, Providence, RI, 2008.
[5] Victor Kac. Infinite-dimensional Lie algebras. Third edition. Cambridge University Press, Cambridge, 1990.
[6] Victor Kac. Vertex algebras for beginners. Second edition. University Lecture Series, 10. American Mathematical Society, Providence, RI, 1998. An introduction to affine Kac-Moody algebras.
[7] Victor Kac and Minoru Wakimoto. Modular invariant representations of infinite-dimensional Lie algebras and superalgebras. Proc. Nat. Acad. Sci. U.S.A., 85(14):4956-4960, 1988.
[8] Bertram Kostant. Lie Group Representations on Polynomial Rings. Amer. J. Math. 85: 327-404, 1963.
[9] Robert V. Moody and Arturo Pianzola. Lie algebras with triangular decompositions. Canadian Mathematical Society Series of Monographs and Advanced Texts. A Wiley-Interscience Publication. John Wiley \& Sons, Inc., New York, 1995.
[10] Fedor Malikov, Boris Feı̆gin and Dmitry Fucks. Singular vectors in Verma modules over Kac-Moody algebras. Funktsional'ny̆ Analiz i ego Prilozheniya, 20(96) (2):25-37, 1986.
[11] Anne Moreau. Lectures on Algèbres de Lie semi-simples : représentations et éléments nilpotents. https://www.imo. universite-paris-saclay.fr/~anne.moreau/M2-cours_Algebres_Lie.pdf
[12] Ozren Perše. Vertex operator algebras associated to certain admissible modules for affine Lie algebras of type A, Glas. Mat. Ser. III 43(63) (1):41-57, 2008.

