
Université Paris-Saclay Année 2022–2023
M2 AAG

Lie algebras, vertex algebras and applications

1. AFFINE KAC-MOODY ALGEBRAS

Problem 1 (Structure of affine Kac-Moody algebras). Let g = n+ ⊕ h ⊕ n− be a simple Lie algebra with root
system ∆ = ∆(g, h), and ĝ the affine Kac-Moody algebra defined by ĝ := g[t, t−1]⊕ CK, with the commutation
relations:

[xtm, ytn] = [x, y]tm+n +mδm+n,0(x|y)K,

[K, ĝ] = 0,

for x, y ∈ g and m,n ∈ Z. Here ( | ) is a nondegenerate invariant bilinear form of g such that (θ|θ) = 2, where θ
is the highest positive root.

(1) Explain how the Lie algebra ĝ can be presented by generators (Ei)06i6r, (Fi)06i6r, (Hi)06i6r, and
relations

[Hi, Hj ] = 0,

[Ei, Fj ] = δi,jHi,

[Hi, Ej ] = Ci,jEj , [Hi, Fj ] = −Ci,jFj ,

(adEi)
1−Ci,jEj = 0, (adFi)

1−Ci,jFj = 0 for i 6= j,

where Ĉ = (Ci,j)06i6r is an affine Cartan matrix, that is, Ĉ satisfies the following relations the following
properties,

Ci,i = 2 for all i,

Ci,j ∈ Z and Ci,j 6 0 if i 6= j,

Ci,j = 0 if and only if Cj,i = 0,

all proper principal minors are strictly positive, i.e.,

det ((Ci,j)06i,j6s) > 0 for 0 6 s 6 r − 1,

and det(Ĉ) = 0.

Note that one can choose the labelling {0, . . . , r} so that the subalgebra generated by (Ei)16i6r,
(Fi)16i6r, (Hi)16i6r is isomorphic to g, that is, (Ci,j)16i6r is the Cartan matrix C of g.

Detail the construction for ŝl2.
(2) By considering the extended affine Lie algebra:

g̃ := ĝ⊕ CD,

with commutation relations (apart from those of ĝ),

[D,xtm] = mxtm, [D,K] = 0, x ∈ g, m ∈ Z,

describe the root system ∆̂ of g̃ associated with the Cartan subalgebra

h̃ := ĥ⊕ CD = h⊕ CK ⊕ CD.

Give a precise description for ŝl2. What is the dimension of dim ĝα = {x ∈ ĝ : [h, x] = α(h)x for all h ∈
h̃} for α ∈ ∆̂?

(References: [5, Chapter 7], [1, Appendix A].)
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Problem 2 (Casimir operator, highest weight modules and the BGG category O). Let g̃ be as in the previous
problem: the bilinear form ( | ) extends to an invariant nondegenerate bilinear form on g̃ (see [5, Theorem 2.2]).
Let ρ̂ ∈ h̃∗ be such that

ρ̂(α∨i ) = 1 for i = 0, . . . , r.

For α ∈ ∆̂+, choose a basis {e(1)
α , . . . , e

(k)
α } of ĝα such that {e(1)

−α, . . . , e
(k)
−α} is the basis of ĝα dual of

{e(1)
α , . . . , e

(k)
α } with respect to ( | ). Let {ui}i∈I and {ui}i∈I be dual basis of h̃ with respect to ( | ). Set

Ω := 2
∑
α∈∆̂+

∑
j

e
(j)
−αe

(j)
α + 2ν−1(ρ̂) +

∑
i

uiu
i,

where ν : h̃→ h̃∗ is the isomorphism induced by ( | ). " Ω is not an element of U(g̃) (infinite sum) in general.

Let M be a representation of g̃ such that:
(1) M is finitely generated as U(g̃)-module,
(2) M is h̃-diagonalizable, that is, M =

⊕
λ∈h̃∗

Mλ, where

Mλ = {m ∈M : h.m = λ(h)m for all h ∈ h̃},
(3) the action of n̂+ on M is locally finite, that is, for all m ∈M , U(n̂+).m is finite-dimensional.

The representations of g̃ satisfying (1), (2), (3) are the objects of a full category of the category of g̃-modules called
the BGG (Bernstein-Gelfand-Gelfand) category O , see [4, Chapter 1].

(1) Show that Ω|M is a well-defined element of End(M).
(2) Show that Ω|M commutes with the action of any x ∈ g̃.
(3) Let v ∈Mλ be a singular vector. Show that

Ωv = 2(ρ|λ)v +

(∑
i∈I

uiu
i

)
v = (λ+ 2ρ|λ)v.

(4) Deduce that if M = U(n̂−).v with v as in (3), then

Ω = (λ+ 2ρ|λ) IdM .

(References: [5, Chapter 2], [4, Chapter 1].)

2. VERTEX ALGEBRAS

Problem 3 (commutative vertex algebras). Show that a differential algebra R with a derivation ∂ carries a canon-
ical commutative vertex algebra structure such that the vacuum vector is the unit, and

Y (a, z)b =
(
ez∂a

)
b =

∑
n>0

zn

n!
(∂na)b for all a, b ∈ R.

Give various examples of commutative vertex algebras: coming from the arc space of an affine variety, from the
graded algebra of a vertex algebra using the Li filtration, etc.
(Reference: [1, Part I, Sections 1 et 2 & Part II, Section 4].)

Problem 4 (Heisenberg vertex algebra and Fock space). Let B be the unital associative algebra generated by
elements bn, for n ∈ Z, with relations

[bm, bn] = mδm+n,0, m, n ∈ Z.

(1) Verify that

[b(z), b(w)] = ∂wδ(z − w)

so that b(z) is local to itself and

b(z)b(w) ∼ 1

(z − w)2
.
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(2) For α ∈ C, set

L(z) =
1

2
◦
◦ b(z)

2 ◦
◦ + α∂zb(z).

Show that L(z) is local to b(z) and itself, and prove the following OPEs:

L(z)b(w) ∼ − 2α

(z − w)3
+

b(w)

(z − w)2
+
∂wb(w)

(z − w)
,

L(z)L(w) ∼ (1− 12α2)/2

(z − w)4
+

2L(w)

(z − w)2
+
∂wL(w)

(z − w)
.

(3) A B-module M is called smooth if for each m ∈ M there exits an integer N such that bnm = 0 for
n > N . If M is a smooth B-module,

b(z) =
∑
n∈Z

bnz
−n−1

is a field on M .

Let M be a smooth B-module. Show that the following correspondence gives the vertex algebra 〈b(z)〉M
a B-module structure:

B → End(〈b(z)〉M ) bn 7→ b(z)(n)

(4) Let
π = C[b−1, b−2, . . . , ].

Verify that π is a smooth B-module on which bn, n ≥ 0, acts as n ∂
∂b−n

, and b−n, n > 0, acts as
multiplication by b−n. Define

T =
∑
n>0

nb−n−1
∂

∂b−n
∈ Endπ.

Show that there is a unique vertex algebra structure on π such that 1 is the vacuum vector and Y (b−1, z) =

b(z).
(5) Show that there is a surjective homomorphism π → 〈b(z)〉M of vertex algerbas.
(6) Set ω = 1

2b
2
−1 + αb−2 ∈ π, so that L(z) = Y (ω, z). Verify that the OPEs of the questions (2) are

equivalent to the following relations:

b0ω = 0, b1ω = b−1, b2ω = 2α.

(7) Show that L−1 = T on π.
(8) Show that the vertex algebra π is simple, that is, there is no non-trivial ideal of π. This implies that the

vertex algebra 〈b(z)〉M of local fields on any non-trivial smooth B-module M is isomorphic to π.
(References: [1, Part I, Section 2], [6].)

Problem 5 (Sugawara construction). The aim of the problem is to give to the universal affine vertex V k(g) at a
non-critical level a conformal structure.

(1) Let V κ(h) be the Heisenberg vertex algebra associated with a r-dimensional commutative Lie algebra h

and a nondegenerate bilinear form κ.
1.1 Show that

T (z) =
1

2

r∑
i=1

◦
◦ xi(z)x

i(z) ◦◦

is a stress tensor (i.e., conformal vector) for V κ(h) with central charge r, where {xi}16i6r and
{xi}16i6r are dual basis of h with respect to κ.

1.2 Observe that if r = 1, we have V κ(h) ∼= π. Then compare the construction of T with that of the
previous problem.

(2) Let V k(g) be the universal affine vertex algebra associated with g simple, and the invariant nondegenerate
bilinear form

( | ) =
1

2h∨
× Killing form,
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where h∨ is the dual Coxeter number. Set

S =
1

2

dim g∑
i=1

xi,(−1)x
i
(−1)|0〉,

where {xi}16i6dim g and {xi}16i6dim g are dual basis with respect to ( | ).

(3) For k 6= −h∨, show that L =
S

k + h∨
is a stress tensor of V k(g) with central charge

c(k) =
k dim g

k + h∨
.

This construction is referred to as the Sugawara construction.
(4) Verify that

[Lm, x(n)] = −nx(m+n) x ∈ g, m, n ∈ Z.

(References: [1, Part I, Section 2], [2, Section 3], [6, Theorem 5.7].)

Problem 6 (center of the universal affine vertex algebra).
(1) Let W be a vertex subalgebra of a vertex algebra V . We set

Com(W,V ) = {v ∈ V : [w(m), v(n)] = 0 for all w ∈W, m, n ∈ Z}.
Show that

Com(W,V ) = {v ∈ V : w(n)v = 0 for all w ∈W,n > 0}.

(2) Let V be a vertex algebra, and suppose that there exists a vertex algebra homomorphism φ : V κ(g)→ V ,
so that V is a ĝκ-module. Show that

Com(φ(V κ(g)), V ) = V g[t],

where V g[t] = {v ∈ V : g[t]v = 0}. Show that we have the following isomorphism of commutative
C-algebras (the product on the commutative vertex algebra Z(V k(g)) is the normally ordered product):

Z(V k(g)) ∼= Endĝ(V k(g)).

It is easily seen that Z(V k(g)) = C|0〉 for k 6= −h∨ using the stress tensor L. For k = −h∨, the center

Z(V −h
∨

(g)) =: z(ĝ)

is “huge”, and it is usually referred as the Feigin-Frenkel center: we have

gr z(ĝ) ∼= O(J∞(g//G)),

where g//G = SpecO(g)G and J∞(g//G) is the arc space of g//G.
(References: [1, Part I, Section 2], [2, Section 18].)

3. ASSOCIATED VARIETIES OF VERTEX ALGEBRAS

Problem 7 (simple affine vertex algebras associated with sl2). Let Nk be the proper maximal ideal of V k(sl2) so
that Lk(sl2) = V k(sl2)/Nk. Let Ik be the image of Nk in RV k(sl2) = C[sl2]. It is known that either Nk is trivial,
that is, V k(sl2) is simple, or Nk is generated by a singular vector v whose image v in Ik is nonzero ([7, 10]).

We assume in this exercise that Nk is non trivial. Thus, Nk = U(ŝl2)v.
(1) Using Kostant’s Separation Theorem ([8]) show that, up to a nonzero scalar,

v = Ωmen,

for some m,n ∈ Z>0, where Ω = 2ef + 1
2h

2 is the Casimir element of the symmetric algebra of sl2.
(2) Deduce from this that XLk(sl2) is contained in the nilpotent cone N of sl2.

It is known that Nk is nontrivial if and only if k is an admissible level for sl2, that is,

k = −2 + p/q, p, q ∈ Z>0, (p, q) = 1, p > 2,

or k = −2 is critical. Since XLk(sl2) = {0} if and only if k ∈ Z>0, we get that XLk(sl2) = N if and only if
k = −2 or k is admissible and k 6∈ Z>0.
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Problem 8 (an explicit computation of an associated variety). The aim of this exercise is to compute XL−3/2(sl3).
It is known ([12]) that the proper maximal ideal of V −3/2(sl3) is generated by the singular vector v given by:

v :=
1

3

(
(h1t

−1)(e1,3t
−1)|0〉 − (h2t

−1)(e1,3t
−1)|0〉

)
+ (e1,2t

−1)(e2,3t
−1)|0〉 − 1

2
e1,3t

−2|0〉,

where h1 := e1,1−e2,2, h2 := e2,2−e3,3 and ei,j is the elementary matrix of the coefficient (i, j) in sl3 identified
with the set of traceless 3-size square matrices.

(1) Verify that v is indeed a singular vector for ŝl3.
(2) Let h := Ch1 + Ch2 be the usual Cartan subalgebra of sl3. Show that XL−3/2(sl3) ∩ h = {0}, and deduce

from this that XL−3/2(sl3) is contained in the nilpotent cone of sl3.
(3) Show that the nilpotent cone is not contained in XL−3/2(sl3).
(4) Denoting by Omin the minimal nilpotent orbit of sl3, conclude that

XL−3/2(sl3) = Omin.
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