Examen de Mathématiques

Le 28/01/2002 - 9h-13h - Barème indicatif - Documents écrits et calculettes interdits

QUESTION DE COURS (4 points)

Pour chaque $n \in \mathbb{N}$, soit u_n une fonction définie sur une partie non vide E de \mathbb{R} et à valeurs dans \mathbb{C} . Dire si les affirmations suivantes sont vraies ou fausses et justifier votre réponse par une preuve ou un contre-exemple.

- 1. Si la série de fonctions $\sum u_n$ converge normalement sur E alors elle converge uniformément sur E (écrire explicitement les définitions utilisées).
- 2. Si la série de fonctions $\sum u_n$ converge uniformément sur E alors elle converge normalement sur E.
- **3.** On suppose E = [0,1]. Si la suite de fonctions $(u_n)_{n\geq 0}$ converge uniformément sur tout segment de [0,1[et si la suite numérique $(u_n(1))_{n\geq 0}$ converge, alors la suite de fonctions $(u_n)_{n\geq 0}$ converge uniformément sur [0,1].

EXERCICE 1 (3 points)

On considère l'intégrale :

$$I = \int_2^{+\infty} \frac{\sin t}{(\ln t)^{\alpha}} dt$$

- **1a.** On suppose $\alpha > 0$. L'intégrale I est-elle convergente ?
- **1b.** On suppose $\alpha \leq 0$. On note, pour tout entier $k \geq 1$, $x_k = \frac{\pi}{6} + 2k\pi$, $y_k = \frac{5\pi}{6} + 2k\pi$. Montrer que l'on a :

$$\inf\left\{\int_{x_k}^{y_k} \frac{\sin t}{(\ln t)^{\alpha}} dt, \ k \in \mathbb{N}^*\right\} > 0.$$

L'intégrale I est-elle convergente ?

EXERCICE 2 (7,5 points)

Soient a et b deux paramètres réels tels que $ab \neq 4$. Soit $g_{a,b}$ l'endomorphisme de \mathbb{R}^3 dont la matrice, dans la base canonique $\mathcal{B} = \{e_1, e_2, e_3\}$ de \mathbb{R}^3 , est :

$$C_{a,b} = \begin{bmatrix} 1 & -1 & b \\ -1 & 1 & 0 \\ a & -a & 2 \end{bmatrix} \qquad (ab \neq 4)$$

- **2a.** Pour quelles valeurs des paramètres réels a et b l'endomorphisme $g_{a,b}$ est-il trigonalisable ? est-il diagonalisable ? (Il y a cinq cas à étudier.)
- **2b.** On suppose a = b = 0.

Donner une base de l'espace vectoriel sur $\mathbb R$ des solutions du système différentiel :

 $X' = C_{0,0}X$, où $X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ est une fonction vectorielle continuement dérivable sur \mathbb{R} . Y

a-t-il une solution telle que $x_1(0) = 1$, $x_2(0) = 0$ et $x_3(0) = 1$? Si oui, la déterminer.

2c. On suppose a = 0 et b = 2.

Montrer qu'il existe une base \mathcal{B}' de \mathbb{R}^3 telle que la matrice de $g_{0,2}$ dans la base \mathcal{B}' soit de la forme :

$$B = \begin{bmatrix} \alpha & 0 & 0 \\ 0 & \beta & 1 \\ 0 & 0 & \beta \end{bmatrix}$$

où α et β sont des nombres réels que l'on déterminera. Calculer la matrice de l'endomorphisme $g_{0,2}^n$ dans la base canonique de \mathbb{R}^3 .

2d. On considère les suites $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$, définie par récurrence par :

$$u_0 = 1, \ v_0 = 1, \ w_0 = 1, \ Y_{n+1} = C_{0,2}Y_n, \ n \in \mathbb{N}, \quad \text{où } Y_n = \begin{bmatrix} u_n \\ v_n \\ w_n \end{bmatrix}, \text{ pour tout } n \in \mathbb{N}.$$

Calculer les termes généraux de ces suites en fonction de $n \in \mathbb{N}$. En déduire que u_n est équivalent à $-v_n$, lorsque n tend vers l'infini.

EXERCICE 3 (8,5 points)

On pose, pour $n \in \mathbb{N}$ et pour $x \in [0, +\infty[$: $f_n(x) = \frac{\pi}{2} - \operatorname{Arctan}(1 + nx)$.

- **3a.** Montrer que la suite de fonctions $(f_n)_{n\geq 0}$ est simplement convergente sur $[0,+\infty[$. On note f la fonction à valeurs réelles définie, pour $x\in [0,+\infty[$, par $f(x)=\lim_{n\to\infty}f_n(x)$.
- **3b.** Déterminer les valeurs du nombre réel $b \ge 0$ telles que la suite de fonctions $(f_n)_{n\ge 0}$ converge uniformément vers f sur l'intervalle $[b, +\infty[$.
- **3c.** Montrer que pour tout nombre réel a > 0, $\frac{1}{1+a} \le \int_a^{+\infty} \frac{1}{1+y^2} dy \le \frac{1}{a}$. En déduire, pour $n \in \mathbb{N}$ et $x \in [0, +\infty[$, un encadrement de $f_n(x)$.

On pose, pour
$$n \in \mathbb{N}^*$$
 et pour $x \in [0, +\infty[: u_n(x) = \frac{f_n(x)}{n}]$.

- **3d.** Montrer que la série de fonctions $\sum u_n$ converge simplement sur $]0, +\infty[$. On note u la fonction à valeurs réelles définie, pour $x \in]0, +\infty[$, par $u(x) = \sum_{n=1}^{+\infty} u_n(x)$. La fonction u est-elle monotone sur l'intervalle $]0, +\infty[$?
- **3e.** La série de fonctions $\sum u_n$ est-elle normalement convergente sur tout intervalle de la forme $[b, +\infty[$, où b > 0? La fonction u est-elle : continue sur $]0, +\infty[$? dérivable sur $]0, +\infty[$?
- **3f.** Pour quels nombres complexes z la suite $(f_n(1)z^n)_{n\geq 0}$ est-elle bornée ? (on pourra utiliser la question 3c). En déduire le rayon de convergence R de la série entière $\sum f_n(1)z^n$, puis étudier la convergence de cette série pour les nombres complexes z tels que |z| = R.

Si l'on pose $v(x) = \sum_{n=0}^{+\infty} f_n(1)x^n$ pour $x \in]-R, R[$, a-t-on :

$$\lim_{x \to -R} v(x) = \sum_{n=0}^{+\infty} f_n(1)(-R)^n ?$$

2