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The equations
Incompressible inviscid liquid, having unit density, occupying a moving domain,
which at time t ≥ 0 is of the form

Ω(t) = { (x , y) ∈ Rd × R : y < η(t, x) }.

η is an unknown. We denote by Σ(t) the free surface

Σ(t) = { (x , y) ∈ Rd × R : y = η(t, x) }.

The eulerian velocity field v : Ω→ R3 solves the incompressible Euler equation

∂tv + v · ∇x,yv +∇x,yP = −gey , ∇x,y · v = 0 in Ω, (1)

where P is the pressure and −gey is the acceleration of gravity ( g > 0 ). The
domain Ω is deformed by the fluid movement so that the particles of fluid at the
interface stay at the interface.

∂tη =
√

1 + |∇η|2 v · n on Σ(t), n normal to Σ(t)

There is no surface tension:
P = 0 on Σ(t).
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Russell : "...the observer near the shore perceives that pieces of wood, or any floating
bodies immersed in the water near its surface, and the water in their vicinity, are not
carried towards the shore with the rapidity of the wave, but are left nearly in the same
place after the wave has passed them..."

t = 0

1ms−1 : y = cos(x − t)

t = π/2

t = π

t = 3π/2

t = 2π
true position (Stokes drift)
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The linearized equation

We have
v = ∇xΦ, ∆Φ = 0 in Ωt , Φ |Σ= Ψ.

The linearized system around (Ψ = 0, η = 0) is{
∂tη − |Dx |ψ = 0, where ψ(t, x) = φ(t, x , 0),

∂tψ + gη = 0,

and hence introducing u = |Dx |
1
2 ψ + i

√
gη we find :

∂tu + i
√
g |Dx |

1
2 u = 0.
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Dispersive waves
Basic computation: u(t, x) = exp(i(k · x − ωt)) solves

∂tu + i
√
g |Dx |

1
2 u = 0

iff ω = |k|
1
2 .

η1 propagates at velocity

|c | =
|ω|
|k|

=

√
g
|k|
.

Waves associated to different frequencies propagate at different speeds.
Compare with

Schrödinger: ∂tu + i |Dx |2 u = 0 (decay in t−1 for x ∈ R2)

Wave eq. : ∂tu + i |Dx | u = 0 (decay in t−1/2 for x ∈ R2)

Capillary WW eq : ∂tu + i |Dx |3/2 u = 0 (decay in t−1 for x ∈ R2)

Gravity WW eq : ∂tu + i |Dx |1/2 u = 0 (decay in t−1 for x ∈ R2)

N. Burq (Orsay) Water-waves 10/06/2011 5 / 28



Lipschitz regularity

Work in Sobolev spaces.
Equation for “fluid particles” which are curves M : [0,T ]→ Ω̄ satisfying

d
dt

M(t) = v(t,M(t)), M(0) = (x , y) ∈ Ω̄,

where v is the eulerian fluid velocity. To solve this ODE one needs v ∈ Lip .
Q1 : Prove well posedness under assumptions (in Sobolev spaces) which only
ensure that the initial velocity has Lipschitz regularity. Main difficulty: study
the elliptic PDE

∆x,yφ = 0 in Ω =
{

(x , y) ∈ Rd × R : y < η(x)
}
,

in domains with Lipschitz boundary
The equation ∂t + i |Dx |1/2 enjoys dispersive properties (Strichartz estimates)
Q2 Prove well posedness under assumptions (in Sobolev spaces) which DO
NOT ensure that the initial velocity has Lipschitz regularity This kind of
property is typical for quasi-linear wave equations.
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Theorem
Let d ≥ 1, s > 1 + d

2 . Let η0 ∈ Hs+ 1
2 (Rd) and let

Ω0 = {(x , y) ∈ Rd × R : y < η0(x)} . Let v0 be such that div v0 = 0 and
curl v0 = 0 in Ω0 and v0|∂Ω0 ∈ Hs(Rd) .
Then there exist T > 0 and a unique solution (η, v) of the gravity water wave
system on Ω where

Ω = {(t, x , y) ∈ [0,T ]× Rd × R : y < η(t, x)}

such that η ∈ C 0([0,T ],Hs+ 1
2 (Rd)) and t 7→ v |∂Ω(t) ∈ C 0([0,T ],Hs(Rd)) .

Theorem
Let d = 2, s > 1 + d

2−
1
12 . Let η0 ∈ Hs+ 1

2 (Rd) Let v0 be such that div v0 = 0 ,
curl v0 = 0 in Ω0 and v0|∂Ω0 ∈ Hs(Rd) Then there exist T > 0 and a solution
(η, v) of the gravity water wave system on

Ω = {(t, x , y) ∈ [0,T ]× Rd × R : y < η(t, x)}

with η ∈ C 0([0,T ],Hs+ 1
2 (Rd)) and t 7→ v |∂Ωt ∈ C 0([0,T ],Hs(Rd)) .

Moreover we have uniqueness in a space XT imbedded in
C 0([0,T ],Hs+ 1

2 (Rd))× C 0([0,T ],Hs(Ωt)) .
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Pionneering works: Nalimov, Ovsjannikov, Yosihara, Craig, Shinbrot, Beale,
T. Hou & J. Lowengrub .
Geometric analysis: Wu, Christodoulou–Lindblad, Lindblad (vectors fields),
Shatah–Zeng (covariant derivative, parallel transport), Coutand–Shkoller
(lagrangian identities), Ambrose-Masmoudi.
Tricky analysis: Beyer-Günther
Normal forms: Wu, Germain–Masmoudi–Shatah (global existence results for
small localized 3D waves), Iooss–Plotnikov.
Singular integrals analysis: Here we follow the approach initiated by
Craig–Schanz–Sulem and further developped by Lannes, Ming-Zhang,
Iooss–Plotnikov and Alazard-Métivier. And also works by Alinhac on shocks.
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Paraproducts
Let ψ ∈ C∞0 (Rd) , φ in C∞0 ({1/2 < |ξ| < 2) ; ψ(ξ) +

∑+∞
j=0 φ(2−jξ) = 1.

∆−1a = F−1(ψâ), ∆ja = F−1(φ(2−jξ)â), j ≥ 0, Sj(a) =

j−1∑
k=−1

∆ka.

so a =
∑+∞

j=−1 ∆ja and the para multiplication operator is defined by

Tau =
∑
j≥2

Sj−1(a)∆ju.

ab = Tab + Tba + R(a, b), R(a, b) =
∑
|i−j|≤1

∆ja∆ib

Theorem (J.M. Bony; paralinearization of a product)

∀σ ∈ R a ∈ L∞, b ∈ Hσ ⇒ Tab ∈ Hσ,

∀s > 0, a ∈ Hs , b ∈ Hs ⇒ R(a, b) ∈ H2s− d
2 .
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Paradifferential operators
Given a symbol a , we define the paradifferential operator Ta by

T̂au(ξ) = (2π)−d
∫
χ(ξ − η, η)â(ξ − η, η)û(η) dη, (2)

where â(θ, η) =
∫
e−ix·θa(x , η) dx and where, for some ε1, ε2 small enough,

χ(θ, η) = 0 for |ξ| ≤ 1,
χ(θ, η) = 1 for |θ| ≤ ε1 |ξ| ,
χ(θ, η) = 0 for |θ| ≥ ε2 |ξ| ,

χ(θ, η) is homogeneous of degree 0 .

Definition
The paradifferential operator Ta of Bony is defined by symbol smoothing:

Ta = Op(σ) with σ̂(θ, η) = χ(θ, η)â(θ, η).

For χ = 1 and b = a(x)ξα then (Tbu)(x) = TaDα
x u .

For χ = 1 and a = a(x , ξ) then Ta = Op(a) :

(Tau)(x) = (2π)−d
∫

e ix·ηa(x , η)û(η) dξ.
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Symbolic calculus

Definition
The class Γm

ρ consists of these symbols a = a(x , ξ) of order m with limited
regularity Cρ in x , such that

∀α ∈ Nd ,∃Kα,∀ |ξ| ≥
1
2
,
∥∥∂αξ a(·, ξ)

∥∥
Cρ ≤ Kα(1 + |ξ|)m−|α|.

Example: η ∈ C 1 implies λ ∈ Γ1
0 .

Theorem

Let m ∈ R and ρ ∈ [0, 1] .
(i) If a ∈ Γm

0 , then Ta is bounded from Hs to Hs−m , ∀s
(ii) If a ∈ Γm

ρ , b ∈ Γm′
ρ then TaTb − Tab is bounded from Hs to Hs−(m+m′−ρ) ,

∀s .
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Back to the equations (Zakharov reduction)
{
∂tv + v · ∇x,yv +∇x,yP = −gey , in Ωη = {(x , y); y < η(x , t)},

∂tη =
√

1 + |∇η|2 v · ν, ν the exterior normal to ∂Ωη

(3)

divv = curlv = 0⇒ u = ∇xφ, ∆φ = 0

Define Ψ = φ |Σ= φ(t, x , η(t, x)) . Then the system reads ∂tψ + gη +
1
2
|∇ψ|2 − 1

2

(
∇η · ∇ψ + G (η)ψ

)2
1 + |∇η|2

= 0.

∂tη =
√

1 + |∇η|2 G (η)Ψ

(4)

Where G (η) is the Dirichlet-Neumann operator in Ωη :

∆φ = 0 in Ωη, φ |Ση= φ(x , η(x)) = Ψ(x), G (η)Ψ = ∂νφ |Ση

Rk: Zakharov framework is too crude for our purpose (due to the lack of
smoothness of η ), but it gives a rather good ideas of the difficulties we have to
solve.
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A nonlinear system
whose coefficients are given by solving elliptic equations in domain with
rough boundaries.
whose linearized system around the 0 solution can be written as

∂tu + i |Dx |
1
2 u = 0.

We shall show a similar diagonalization for the nonlinear equations, by introducing
a “good unknown” u which solves a dispersive equation of the form

∂tu + TV · ∇u + iTγu = f ,

where V is the horizontal component of the velocity, TV is a paraproduct and
Tγ is a paradifferential operator of order 1/2 .
For 2D waves,

Tγ = T√a(t,x) |Dx |
1
2 ,

where a is the so-called Taylor’s coefficient.
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The Dirichlet-Neumann operator
Using the Fourier transform, it is easily seen that G (0) = |Dx | .
More generally, if η ∈ C∞ , then G (η) is an elliptic ΨDO of order 1 ,
self-adjoint, whose principal symbol is

λ(x , ξ) :=

√
(1 + |∇η(x)|2) |ξ|2 − (∇η(x) · ξ)2.

More precisely,
G (η)f = Op(λ)f + R0(η)f ,

where the remainder satisfies

∃K ≥ 1,∀s ≥ 0, ‖R0(η)ψ‖HS ≤ C (‖η‖HS+K ) ‖ψ‖HS .

Remark (Dichotomy between d = 1 and d = 2)
If d = 1 or η = 0 then λ(x , ξ) = |ξ| and

Op(λ) = |Dx | .
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λ is well-defined for any η ∈ C 1 . Aim : compare G (η) to the para-differential
operator Tλ . Namely we want to estimate the operator

R(η) = G (η)− Tλ.

Proposition (The D-N for "smooth domains")
If s > 2 + d/2 then

‖R(η)f ‖HS ≤ C (‖η‖HS+1) ‖f ‖HS ,
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Paralinearization of the DNO
Theorem

Let d ≥ 1 and η ∈ Hs+ 1
2 (Rd) ∩ C

3
2 (Rd) and f ∈ Hs(Rd) ∩ C r (Rd) with

s >
3
4

+
d
2
, r > 1.

Then
R(η)f = G (η)f − Tλf ∈ Hs− 1

2 (Rd).

Moreover

‖R(η)f ‖
HS− 1

2
≤ C

(
‖η‖

HS+ 1
2
, ‖f ‖HS

){
1 + ‖η‖

C
3
2

+ ‖f ‖C r

}
, (5)

for some continuous function C : (R+)2 → R+ depending only on s and r .

Tame estimate : To compare, say, the norms ‖·‖
Hs+ 1

2
and ‖·‖C3/2 , for

s < 1 + d/2 , we notice∥∥∥u(x
ε

)∥∥∥
C

3
2
∼
(1
ε

)3/2
>>

(1
ε

)s+ 1
2−

d
2 ∼

∥∥∥u(x
ε

)∥∥∥
HS+ 1

2
.
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Reduction
Set

ζ = ∇η, V = (v1, v2)|Σ, B = v3|Σ, a = −∂yP|Σ.

γ depends on λ (hence η ) and a .
a is given “ implicitly” by solving an elliptic boundary value problem.

Proposition (Main reduction)

The scalar complex-valued unknown u ∈ C 0([0,T ];Hs− 1
2 (Rd)) defined by

u = T√a ζ + iT√λ (V + TζB),

satisfies
∂tu + TV · ∇u + iTγu = F ,

where
γ =
√

a
√
λ,

and

‖F‖
L∞(0,T ;HS− 1

2 )
≤ C

(
‖η‖

HS+ 1
2
, ‖(V ,B)‖HS

)
{1 + ‖η‖C3/2 + ‖(V ,B)‖C r } .
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Applications: A canal
3D waves in a canal with vertical walls near the free surface: same equations with
non-penetration boundary conditions on the boundary: v · n = 0 , n normal to
the boundary of the canal

After symmetry and periodization : (η,V ) 7→ (η,V ) the symmetric/periodized:
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The canal or a swimming pool
Ensure that the symmetry/periodization process preserves the Sobolev norms.
Right angles at the interface (physical observation, automatically satisfied)
imply that ∂x1η(0, x2) = 0 , and hence

η ∈ Hs((0, 1)x1 × Rx2)⇒ η ∈ Hs((0, 2)x1 × Rx2)

η ∈ Cσ((0, 1)x1 × Rx2)⇒ η ∈ Cσ((0, 2)x1 × Rx2)

As long as s < 7/2 , σ < 3 Here assumptions are η0 ∈ Hs+ 1
2 , s > 1 + d

2 ,
d = 2 !
similar calculations for V .
Work with rough bottom. Here even though initially the bottom is smooth,
after symetry/periodization no more the case
Work with T× R (canal) or T2 (swimming pool) instead of R2 .

To prove the right angle at interface,

[∂tv + (v · ∇x,y )v = −∇x,yP] · n(x , y)⇒ −∇x,yP · n(x , y) = 0

but P |Σ= 0 . Hence ∇x,yP is (proportional to) the normal to Σ , ν .
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Strichartz estimates a brief overview

Lemma
For any ε > 0 , there exists C > 0 such that for any u0 ∈ Hs(R2) ,

Strichartz ‖e it|Dx |1/2u0‖L2((0,1);L∞(R2)) ≤ C‖u0‖H 3
4 +ε

Sobolev ‖e it|Dx |1/2u0‖L∞((0,1);L∞(R2)) ≤ CC‖u0‖H1+ε

Littlewood-Paley decomposition Decompose using a partition of unity in
Fourier, with χn(t) = χ(2−nt), n ≥ 1

u =
∑

n

∆n(u)

prove estimates uniform w.r.t. h = 2−n

‖e it|Dx |1/2χ(h|Dx |)u0‖L2((0,1);L∞(R2)) ≤ Ch−
3
4 +ε‖u0‖L2
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Reduction to a dispersive estimate

TT ∗ argument :

T = e it|Dx |1/2χ(h|Dx |) from L2
x to L2

t , L∞x bounded by Ch−
3
4 +ε

iff T ∗ from L2
t , L1

x to L2
x bounded by Ch−

3
4 +ε

iff TT ∗ from L2
t , L1

x to L2
x to L2

t , L∞x bounded by Ch−
3
2 +2ε

Dispersion (L1
x → L∞x ) estimate

TT ∗f = e it|Dx |1/2
∫ 1

0
e−is|Dx |1/2 f (s, ·)ds

estimate above OK from Hardy-LIttlewood-Sobolev inequality if

‖χ(h|Dx |)e i(t−s)|Dx |1/2χ(h|Dx |)‖L1
x→L∞x ≤

C
h

3
2 |t − s|

N. Burq (Orsay) Water-waves 10/06/2011 21 / 28



The parametrix: using Fourier analysis

χ(h|Dx |)e i(t−s)|Dx |1/2χ(h|Dx |)u0

=
1

(2π)2

∫
e i(x−y)·ξ+t|ξ|1/2χ2(h|ξ|)u(y)dydξ

=
1

(2πh)2

∫
e

i
h

(
(x−y)·η+th1/2|η|1/2

)
χ(η)u(y)dydη

Phase φ(η) =
(

(x − y) · η + th1/2|η|1/2
)

Critical point (x − y) + th1/2η/(2|η|3/2) = 0
Hessian Hessφ ≥ cth1/2

‖χ(h|Dx |)e i(t−s)|Dx |1/2χ(h|Dx |)‖L1→L∞ = ‖K (x , y , t)‖L∞

≤ C
h2 ×

(
h

th1/2

) d
2

=
C

h
3
2 |t|

, d = 2
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Strichartz for the WW system: Difficulties

∂t + i |Dx |1/2 v.s. ∂t + TV∇x + iTγ

Non constant coefficients (no easy solution in Fourier)
Non smooth coefficients: V ∈ Hs , γ ∈ Hs− 1

2 Hence for s > 1 + d/2 ,
V ∈ C 1, γ ∈ C 1/2

Dispersion due to the subprincipal term of order 1/2 , Tγ
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Sketch of the proof

step 1: We perform a frequency analysis: u =
∑∞

j=−1 ∆ju

(∂t + TV · ∇+ iTγ)∆ju = ∆j f +
[
TV · ∇+ iTγ ,∆j

]
u =: Fj

Main part
L = ∂t + Sj(V ) · ∇+ iTγ , Sj(V ) = 2jd ψ̂(2j ·) ? V

step 2: We regularize V and γ (inspired by works by Smith (Strichartz for
wave equations with C 2 coefficients), Bahouri-Chemin and Tataru
(quasilinear wave equations)
Take 0 < δ < 1 (here δ = 2

3 ). Then

(∂t + Sjδ(V ) · ∇+ iTγδ∆ju = Fj + gjδ =: Gj , γδ = ψ(2−jδDx)γ

where
gjδ =

(
Sj(V ) · ∇ − Sjδ(V ) · ∇+ i(Tγ − Tγδ)

)
∆ju
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step 3: We straighten the vector field ∂t + Sjδ(V ) · ∇

Ẋ (t) = Sjδ(V )(t,X (t)), X (0) = x .

Lemma

‖∂X
∂x

(t, ·)− Id‖L∞(Rd ) ≤ C (‖V ‖E0)|t| 12

‖(∂αx X )(t, ·)‖L∞(Rd ) ≤ Cα(‖V ‖E0)h−δ(|α|−1)|t| 12 , |α| ≥ 2, h = 2−j

Then we change variables

vh(t, y) = (∆ju)(t,X (t, y)), h = 2−j

∂tvh + iAh(t, y ,Dy )vh = gh

for a rather explicit operator A of order 1/2 .
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step 4: semiclassical form We set

z = h−
1
2 y , h̃ = h

1
2 , wh̃(t, z) = vh(t, h̃y)

then multiplying the equation by h̃ we obtain

L̃wh̃ := (h̃∂t + iP(t, h̃z , h̃Dz , h̃))wh̃ = h̃Fh̃.

We look for a parametrix on a time intervall of size hρ = h̃2ρ (where ρ = 1
3 ) of

the form

Kv(t, z) = (2πh̃)−d
∫∫

e
i
h̃

(φ(t,z,ξ,h̃)−z′·ξ)b(t, z , ξ, h̃)v(z ′)dz ′dξ

where b is a symbol and φ a real valued phase such that

φ|t=0 = z · ξ, b|t=0 = χ(ξ), suppχ ⊂ {ξ :
1
3
≤ |ξ| ≤ 3}
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step 5: the parametrix
I Solve the eikonal equation

∂φ

∂t
+ p(t, z ,

∂φ

∂z
, h̃) = 0, φ|t=0 = z · ξ

I Solve the transport equations

Lb0 = 0, b0|t=0 = χ(ξ),

Lbj = F (b0, . . . , bj−1), bj |t=0 = 0, j ≥ 1
(6)
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Strichartz estimates on small time intervals

Using the parametrix, the stationnary phase estimate and coming back to the
original variable z → y = h

1
2 z → x = X (t, y) we prove

Proposition
Let χ ∈ C∞0 (Rd), suppχ ⊂ {ξ : 1

2 ≤ |ξ| ≤ 2} and t0 ∈ R. Let u0 ∈ L1(Rd) and
u0,h = χ(hDx)u0. Let S(t, t0)u0,h be the solution of(

∂t +
1
2

(TVδ · ∇+∇ · TVδ) + iTγδ
)
Uh = 0, Uh(t0, x) = u0,h(x).

Then there exist constants C > 0, h0 > 0 such that

‖S(t, t0)u0,h‖L∞(Rd ) ≤ Ch−
3d
4 |t − t0|−

d
2 ‖u0,h‖L1(Rd )

for all h ∈]0, h0] and t ∈]t0, t0 + h
2
3 ].
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