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Abstract. We prove uniform Lp resolvent estimates for the stationary
damped wave operator. The uniform Lp resolvent estimates for the Laplace
operator on a compact smooth Riemannian manifold without boundary were
first established by Dos Santos Ferreira–Kenig–Salo [7] and advanced further
by Bourgain–Shao–Sogge–Yao [2]. Here we provide an alternative proof re-
lying on the techniques of semiclassical Strichartz estimates. This approach
allows us also to handle non-self-adjoint perturbations of the Laplacian and
embeds very naturally in the semiclassical spectral analysis framework.

1. Introduction and statement of result

Let (M, g) be a compact smooth connected Riemannian manifold of dimension
n ≥ 3 without boundary, and let −∆g be the Laplace operator associated to
the metric g. The operator −∆g is self-adjoint on L2(M) with the domain
H2(M), the standard Sobolev space on M , and it has a discrete spectrum
Spec(−∆g) ⊂ [0,∞). In [7], see also [2] and [22], the following uniform resolvent
estimates for the Laplace operator were established.

Theorem 1.1. Given δ > 0, there exists a constant C = C(δ) > 0 such that
for all u ∈ C∞(M) and all λ ∈ Rδ, we have

‖u‖
L

2n
n−2 (M)

≤ C‖(−∆g − λ)u‖
L

2n
n+2 (M)

, (1.1)

where
Rδ = {λ ∈ C : (Imλ)2 ≥ 4δ2(Reλ+ δ2)}. (1.2)

Notice that Rδ is the exterior of a parabolic region, containing the spectrum of
−∆g, see Figure 1. Letting λ = z2, Im z > 0, we observe that the region Rδ is
the image of the region Ξδ = {z ∈ C : Im z ≥ δ} under the map z 7→ z2, and
the estimate (1.1) is equivalent to

‖u‖
L

2n
n−2 (M)

≤ C‖(−∆g − z2)u‖
L

2n
n+2 (M)

, z ∈ Ξδ, (1.3)

see Figure 1.

The work [2] has addressed the very interesting question of the optimality of the
spectral region Rδ, for the uniform estimate (1.1) to hold, revealing that any
sharpening in the spectral region is related to improvements in the remainder
estimates in the Weyl law for the Laplacian. Thus, in [2] it was it is shown that
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Figure 1. The spectral regionsRδ and Ξδ the uniform resolvent
bound (1.1) and (1.3), respectively.

the parabolic region Rδ cannot be improved when M is the standard sphere,
or more generally, a Zoll manifold, due to a cluster structure of the spectrum of
−∆g on such manifolds, [36]. Exploiting the link to the Weyl law, the work [2]
also obtained an improvement over the spectral region in the case of manifolds
of nonpositive sectional curvature and in the case of flat tori.

In [15] the uniform resolvent estimates (1.1) were extended to the case of higher
order elliptic self-adjoint differential operators.

The uniform Lp resolvent estimates (1.1) have turned out to be a very useful
tool in the study of the structure of the spectrum of the periodic Schrödinger
operator with an unbounded potential, see [22] and [16]. Such estimates are also
crucial in solving inverse boundary value problems for Schrödinger operators
with unbounded potentials, see [6] and [17]. Uniform resolvent estimates in
various Lp spaces are also of great importance in control theory, see [1].

To state the main result of this paper, let us consider the following damped
wave equation,

(∂2t −∆g + 2a(x)∂t)v(x, t) = 0, (x, t) ∈M × R,

arising in control theory, see [18]. Here a ∈ C∞(M ;R) is the damping coeffi-
cient. Searching for solutions of the form v(x, t) = eitτu(x), τ ∈ C, we are led
to the corresponding non-self-adjoint spectral problem,

P (τ)u := (−∆g + 2ia(x)τ − τ2)u(x) = 0. (1.4)

We say that τ ∈ C is an eigenvalue of P (τ), if there exists a corresponding
non-trivial function u ∈ L2(M) such that P (τ)u = 0.

Using an integration by parts argument, one can easily see that the eigenvalues
of P (τ) are confined to a band parallel to the real axis, see [25]. More precisely,
if τ is an eigenvalue, then we have

inf a ≤Im τ ≤ sup a, when Re τ 6= 0,

2 min(inf a, 0) ≤Im τ ≤ 2 max(sup a, 0), when Re τ = 0.
(1.5)
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We shall denote the set of the eigenvalues of P (τ) by Spec(P (τ)). Using the an-
alytic Fredholm theory, applied to the family of the operators P (τ) : H2(M)→
L2(M), we see that the set Spec(P (τ)) is discrete. Furthermore, since (1.4) is
invariant under the map (τ, u) 7→ (−τ , u), the eigenvalues are located symmet-
rically around the imaginary axis.

It turns out that the bounds (1.5) on the imaginary parts of the eigenvalues of
P (τ) can be sharpened in the regime when |Re τ | is large, as has been established
in [18], [25], [12]. Since the sharpened bounds are of major importance to us,
we shall now recall the precise statement. First let us introduce some notation.
Let p(x, ξ) = |ξ|2g be the principal symbol of −∆g, defined on T ∗M , and let
Hp be the corresponding Hamilton vector field. The Hamilton vector field Hp

generates the flow exp(tHp) : T ∗M → T ∗M , t ∈ R, which is called the Hamilton
flow of p, and which in this case can be identified with the geodesic flow, see
[32, Chapter 4]. For T > 0, let 〈a〉T denote the symmetric time 2T average of
a along the Hp–flow,

〈a〉T (x, ξ) =
1

2T

∫ T

−T
a ◦ exp(tHp)(x, ξ)dt, (x, ξ) ∈ T ∗M.

It was shown in [18] and [24, Appendix A] that

A+ : = inf
T>0

sup
p−1(1)

〈a〉T = lim
T→∞

sup
p−1(1)

〈a〉T ,

A− : = sup
T>0

inf
p−1(1)

〈a〉T = lim
T→∞

inf
p−1(1)

〈a〉T .

Theorem 1.2 ([18], [25], [12]). For every ε > 0, there are at most finitely many
eigenvalues of P (τ) outside the strip R + i(A− − ε,A+ + ε).

In general we have A+ ≤ sup a, A− ≥ inf a, and the latter inequality becomes
strict, for instance when a ≥ 0, inf a = 0, and the geometric control condition
of Rauch and Taylor holds. Here we say that the geometric control condition
holds if there exists a time T0 > 0 such that any geodesic of length ≥ T0 meets
the open set {x ∈M : a(x) > 0}, see [21].

Our main result is the following generalization of the uniform estimate (1.3) to
the stationary damped wave operator.

Theorem 1.3. For any δ > 0, there exists a constant L > 0, such that for any
neighborhood V of the set Spec(P (τ)) ∩ {τ ∈ C : |Re τ | ≤ L}, there exists a
constant C = C(δ, V ) > 0 such that we have the uniform estimate,

‖u‖
L

2n
n−2 (M)

≤ C‖P (τ)u‖
L

2n
n+2 (M)

, (1.6)

for all u ∈ C∞(M) and all τ ∈ Πδ,V . Here

Πδ,V ={τ ∈ C : Im τ ≥ A+ + δ, |Re τ | ≥ L}
∪ {τ ∈ C : Im τ ≤ A− − δ, |Re τ | ≥ L}
∪ {τ ∈ C : |Re τ | ≤ L} \ V.

(1.7)

See Figure 2, where the spectral region Πδ,V is described.
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Figure 2. Spectral region Πδ,V in the uniform resolvent bound
for the stationary damped wave equation (1.6).

Remark 1.4. In fact we shall prove the following more general result: for any
δ > 0, there exists a constant L > 0, such that for any neighborhood V of the
set Spec(P (τ)) ∩ {τ ∈ C : |Re τ | ≤ L}, there exists a constant C = C(δ, V ) > 0
such that we have

‖u‖Lp′ (M) ≤ C|τ |
2n( 1

p
− 1

2
)−2‖P (τ)u‖Lp(M), (1.8)

for all u ∈ C∞(M), all τ ∈ Πδ,V , and all p ∈ [ 2n
n+2 ,

2(n+1)
n+3 ]. Here 1

p + 1
p′ = 1.

Remark 1.5. It is interesting and important to point out that using L2 bounds
for solutions of second order hyperbolic equations established in [12], Lp resol-
vent estimates of Theorem 1.3 and Remark 1.4 can be extended to the stationary
wave operator perturbed by general first order terms, containing spatial deriva-
tives. However, for simplicity of the exposition here we prefer to keep our
discussion focused on the significant case of the damped wave equation.

Notice that, in particular in the region where |Re τ | is large, Theorem 1.3 estab-
lishes uniform resolvent estimates for P (τ) outside of the dynamically defined
strip R + i(A− − δ, A+ + δ). After a semiclassical reduction, the first step
in the proof of Theorem 1.3 in a crucial region in the spectral τ–plane given
by Im τ = A+ + δ, |Re τ | large, is therefore an averaging procedure realized
by means of a pseudodifferential conjugation, which we carry out following
[25]. Once the averaging procedure has been performed, we obtain a semiclas-
sical non-self-adjoint operator which is an O(h) perturbation of the operator
−h2∆g − 1, with the range of the symbol of the perturbation confined to the
dynamical strip. To conclude, we develop an alternative proof of Theorem
1.1 relying on the semiclassical Strichartz estimates [30, 4, 3, 14] which han-
dles very easily such perturbations and embeds naturally in the semiclassical
spectral analysis framework. Let us also mention the work [13], which gives
a parametrix construction for principally normal operators, that could also be
used to establish the Strichartz estimates, leading to our results.
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Remark 1.6. In fact exploiting the semiclassical approach, we shall give a
proof of the following more general version of Theorem 1.1: given δ > 0, there
exists a constant C = C(δ) > 0 such that for all u ∈ C∞(M), all z ∈ Ξδ, and

all p ∈ [ 2n
n+2 ,

2(n+1)
n+3 ], we have

‖u‖Lp′ (M) ≤ C|z|
2n( 1

p
− 1

2
)−2‖(−∆g − z2)u‖Lp(M), (1.9)

where 1
p + 1

p′ = 1. The estimate (1.9) agrees with the corresponding resolvent

bounds for the Euclidean Laplacian, valid in all of C, see [11].

The proof of Theorem 1.1 given in [7] is based on the Hadamard parametrix for
the resolvent (−∆g−λ)−1, and some estimates for oscillatory integral operators
obtained by the Carleson-Sjölin theory. The proof developed in [2] is based on
the Hadamard parametrix for the operator cos(t

√
−∆g), the spectral cluster

estimates, obtained in [28], and the method of stationary phase. Here we shall
deduce Theorem 1.1 from semiclassical Strichartz estimates. In doing so, we
observe that the most crucial region in the complex spectral z–plane where the
uniform estimates should be obtained is given by Im z = δ > 0, |Re z| is large,
which corresponds to the boundary of the parabolic region in the λ–plane. Here
we perform a semiclassical rescaling, which allows us to microlocalize the prob-
lem to the energy surface p(x, ξ) = 1, where p(x, ξ) is the principal symbol of
−∆g. To handle the problem near the energy surface, we follow the idea of [4]
(see also [14]), and perform a factorization of p(x, ξ)− 1, to reduce the problem
to an evolution equation in n − 1 variables, for which semiclassical Strichartz
estimates in their localized form can be applied. The uniform resolvent esti-
mates in the complementary regions in the spectral z–plane follow directly by
means of some elliptic a priori estimates combined with the Phragmén–Lindelöf
principle.

It has to be noticed that, at the end of the day, all known proofs of Theo-
rem 1.1 (including ours) rely on the choice of a particular space direction which
plays the role of “time” and eventually on the use of the (classical) Hardy-
Littlewood-Sobolev inequality (see also [19, 27] where similar arguments are
used). However, our approach to prove Theorem 1.1 appears to have several
advantages. One of them is that it is directly applicable to more general ellip-
tic operators, including some non-self-adjoint ones, and can be combined very
naturally with methods and ideas coming from semiclassical spectral theory.

The paper is organized as follows. In Section 2 we collect some preliminaries
on the semiclassical analysis, evolution equations, and semiclassical Strichartz
estimates. Section 3 is devoted to the proof of Theorem 1.1, while the estimate
(1.9) in Remark 1.6 is established in Section 4. In Section 5 the argument is
extended to the damped wave operator and Theorem 1.3 is proved. Finally
Section 6 discusses the proof of the estimate (1.8) in Remark 1.4.
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2. Preliminaries on semiclassical analysis and Strichartz
estimates

In this section we shall collect some well-known results of semiclassical analysis
and semiclassical Strichartz estimates following [3, 4, 14, 5, 37].

Let m ∈ R and let

Sm(R2k) = {a ∈ C∞(R2k) : |∂αx ∂
β
ξ a(x, ξ)| ≤ Cα,β〈ξ〉m−|β|, α, β ∈ Nk}

be the Kohn–Nirenberg symbol class. When a ∈ Sm(R2k), one defines the
semiclassical Weyl quantization of a as follows,

aw(x, hDx)u(x) = Opwh (a)u(x) =
1

(2πh)k

∫∫
e

i
h
〈x−y,ξ〉a

(
x+ y

2
, ξ

)
u(y)dydξ,

u ∈ S(Rk), the Schwartz space of functions on Rk.

Let a ∈ C∞(Rt, S0(R2k)) be real-valued. Then by [37, Theorem 4.23], the self-
adjoint operator aw(t, x, hDx) is bounded on L2(Rk), uniformly in h ∈ (0, 1],
locally uniformly in t ∈ R.

Letting r ∈ R, consider the operator equation,

(hDt − aw(t, x, hDx))F (t, r) = 0, t ∈ R,
F (r, r) = I.

(2.1)

Then by [37, Theorem 10.1], the equation (2.1) is uniquely solved by a family
{F (t, r)}t∈R of unitary operators on L2(Rk). Furthermore, we have

F (t, r)F (r, s) = F (t, s) (2.2)

for all t, r, s ∈ R. This follows from the fact that for any r, s ∈ R, F̃ (t, s, r) =
F (t, r)F (r, s)− F (t, s) solves the homogeneous equation

(hDt − aw(t, x, hDx))F̃ (t, s, r) = 0,

with the initial conditions F̃ (r, s, r) = 0, and hence, F̃ (t, s, r) = 0 for any t ∈ R.
The fact that the operator F (t, r) is unitary and (2.2) yield that

F (t, r)∗ = F (t, r)−1 = F (r, t).

This together with (2.2) implies that

F (t, r)F (s, r)∗ = F (t, s). (2.3)

Let l ∈ R, and consider now the following initial value problem,

(hDt − aw(t, x, hDx))u(t, x) = f(t, x), (t, x) ∈ R× Rk,
u(l, x) = u0(x).

Then Duhamel’s formula together with (2.3) give

u(t, x) = F (t, l)u0(x) +
i

h

∫ t

l
F (t, s)f(s, x)ds

= F (t, l)u0(x) +
i

h

∫ t

l
F (t, r)F (s, r)∗f(s, x)ds,

(2.4)
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with any r ∈ R.

Let us now recall the semiclassical Strichartz estimates, following [4, 3, 14] and
[37, Theorem 10.6]. The exponent pair (p, q) is called sharp σ-admissible, σ > 0,
if

2

p
+

2σ

q
= σ, 2 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, (p, q) 6= (2,∞),

If G(t, x) is a function on R × Rk, we use the following standard notation for
its mixed norm,

‖G‖Lp
tL

q
x

=

(∫
R
‖G(t, ·)‖p

Lq(Rk)
dt

)1/p

.

If q̃ ∈ [1,∞], we denote by q̃′ the Hölder conjugate exponent of q̃. Notice
that below we shall not need the difficult end-point case (p = 2) but only the
much easier case 2 < p ≤ +∞. Notice also that these estimates have a long
history in harmonic analysis which can be traced back to the works by Stein and
Tomas [35], Strichartz [33], Greenleaf [9] (see also Stein restriction theorem [31]
and the abstract setting developed by Ginibre and Velo in [8]).

We shall need the semiclassical Strichartz estimates for the microlocalized so-
lution operator F (t, r) to the time-dependent Schrödinger equation (2.1), i.e.
for

U(t, r) := ψ(t− r)χw(x, hDx)F (t, r),

where χ ∈ C∞0 (R2k) and ψ ∈ L∞(R) with compact support sufficiently close
to 0. Using the semiclassical parametrix construction for U(t, r), the following
result was established in [4, Section 2.2], see also [3, 14], [37, Theorem 10.8].

Theorem 2.1. Let I ⊂ R be a compact interval. Assume that

∂2ξa(t, x, ξ) is nonsingular for all (x, ξ) ∈ supp (χ)

and for all t in a neighborhood of I.
(2.5)

Then we have

‖U(t, r)U∗(s, r)‖L1(Rk)→L∞(Rk) ≤ Ch−k/2|t− s|−k/2,
for all s, t ∈ R and r ∈ I with a constant independent of r.

As a consequence of the standard TT ∗ argument, the Hardy-Littlewood-Sobolev
inequality and Theorem 2.1, we state the following semiclassical Strichartz es-
timate, see [4, Corollary 2.2] and [14], [37, Theorem 10.7].

Corollary 2.2. Let I ⊂ R be a compact interval and assume that the condition
(2.5) holds. Then we have

sup
r∈I

(∫
R
‖U(t, r)f‖p

Lq(Rk)
dt

)1/p

≤ Ch−1/p‖f‖L2(Rk), (2.6)

sup
r∈I

∥∥∥∥∫ t

−∞
U(t, r)U∗(s, r)G(s, ·)ds

∥∥∥∥
Lp
tL

q
x

≤ Ch
(

1
p̃′−

1
p
−1
)
‖G‖

Lp̃′
t L

q̃′
x
, (2.7)

for all sharp k/2-admissible pairs (p, q) and (p̃, q̃).
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We shall need the following result, which is a consequence of the proof of [14,
Lemma 2.2].

Lemma 2.3. Let x = (x′, x′′) ∈ Rk, x′ ∈ Rk1, x′′ ∈ Rk2, so that k1 + k2 = k,
and let a ∈ S(T ∗Rk1). Then for 1 ≤ q ≤ p ≤ ∞ and 1 ≤ r ≤ ∞, we have

‖aw(x′, hDx′)u(x′, x′′)‖Lp

x′L
r
x′′
≤ Chk1(

1
p
− 1

q
)
)‖u‖Lq

x′L
r
x′′
.

Recall from [14] that u = u(h) ∈ L2(Rk) is said to be microlocalized in a
compact subset of T ∗Rk if there exists χ ∈ C∞0 (T ∗Rk) such that

u = χw(x, hDx)u+OS(h∞)‖u‖L2(Rk). (2.8)

Here and in what follows the notation OS(h∞) stands for a function g(x;h) ∈
S(Rk) such that

sup
x∈Rk

|xβ∂αx g(x;h)| = O(h∞), for all α, β.

We shall also need the following result from [20, Lemma 3.1].

Lemma 2.4. Let u = u(h) ∈ L2(Rk) be microlocalized in a compact subset of
T ∗Rk. Then

‖u‖L∞x1L2
x′

= O(h−
1
2 )‖u‖L2(Rk), (2.9)

and there exists ϕ ∈ C∞0 (T ∗Rk−1) such that

u(x1, x
′) = ϕw(x′, hDx′)u(x1, ·) +OS(Rk)(h

∞)‖u‖L2(Rk). (2.10)

Let us next recall the classical Sobolev embedding. When 1 ≤ p ≤ ∞ and
s ∈ R, we set

W s,p(Rn) = {u ∈ S ′(Rn) : (1−∆)
s
2u ∈ Lp(Rn)}.

Let 1 < p ≤ q <∞ and 1
p −

1
q = s

n . Then we know that

W s,p(Rn) ⊂ Lq(Rn), Lp(Rn) ⊂W−s,q(Rn), (2.11)

and the inclusions are continuous. We shall need the following semiclassical
version of the embeddings (2.11).

Lemma 2.5. Let 1 < p ≤ q <∞ and 1
p −

1
q = s

n . Then

‖u‖Lq(Rn) ≤ Ch−s‖u‖W s,p
scl (Rn), u ∈ C∞0 (Rn), (2.12)

where

‖u‖W s,p
scl (Rn) = ‖(1− h2∆)

s
2u‖Lp(Rn).

Proof. It suffices to consider the case s > 0. We have to show that

‖(1− h2∆)−
s
2 v‖Lq(Rn) ≤ Ch−s‖v‖Lp(Rn), v ∈ S(Rn).

Let

K(x, y) =
1

(2πh)n

∫
ei(x−y)·ξ/h(1 + ξ2)−

s
2dξ
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be the Schwartz kernel of (1− h2∆)−
s
2 . Noticing that 0 < s < n and applying

[29, Lemma 0.3.8], we get

|K(x, y)| ≤ Ch−s|x− y|−n+s, x 6= y.

The result follows as explained in the proof of [29, Theorem 0.3.7]. �

By duality from (2.12), we get

‖u‖W−s,q
scl (Rn) ≤ Ch

−s‖u‖Lp(Rn), u ∈ C∞0 (Rn). (2.13)

Here

‖u‖W−s,q
scl (Rn) = sup

06=v∈W s,p(Rn)

|〈u, v〉W−s,q
scl (Rn),W s,p

scl (Rn)|
‖v‖W s,p

scl (Rn)

.

When proving Theorem 1.1, we shall need the calculus of semiclassical pseu-
dodifferential operators on a compact smooth Riemannian manifold M . Let
us proceed by recalling some definitions and facts about them, following [37,
Chapter 14]. First recall the standard class of symbols on T ∗M ,

Sm(T ∗M) = {a(x, ξ;h) ∈ C∞(T ∗M × (0, 1]) : |∂αx ∂
β
ξ a(x, ξ;h)| ≤ Cαβ〈ξ〉m−|β|},

m ∈ R. Let us fix a choice of the quantization map

Opwh : Sm(T ∗M)→ Ψm(M),

given by the Weyl quantization in local coordinate charts, identified with convex
domains in Rn, with the associated symbol map,

σ : Ψm(M)→ Sm(T ∗M)/hSm−1(T ∗M).

We have the following properties, enjoyed by the semiclassical pseudodifferential
operators on M .

Proposition 2.6. Assume that a ∈ Sm1(T ∗M) and b ∈ Sm2(T ∗M). Then

(i)

Opwh (a)Opwh (b)−Opwh (ab) ∈ hOpwh (Sm1+m2−1),

(ii)

[Opwh (a),Opwh (b)]− h

i
Opwh (Ha(b)) ∈ h2Opwh (Sm1+m2−2),

where

Ha = ∇ξa · ∇x −∇xa · ∇ξ
is the Hamilton vector field of a,

(iii)

(Opwh (a))∗ −Opwh (a) ∈ hOpwh (Sm1−1),

where (Opwh (a))∗ is the formal L2-adjoint of the operator Opwh (a).

Let us also recall the semiclassical microlocalized version of G̊arding’s inequality,
see [37].
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Theorem 2.7. Let Ω ⊂ T ∗M be open bounded and let a ∈ S0(T ∗M) be such
that

a ≥ γ0 > 0 on Ω.

Let χ ∈ C∞0 (Ω). Then for all h > 0 small enough, and u ∈ L2(M), we have

(Opwh (a)Opwh (χ)u,Opwh (χ)u)L2(M) ≥
γ0
2
‖Opwh (χ)u‖2L2(M) −O(h∞)‖u‖2L2(M).

Proof. Let ψ ∈ C∞(T ∗M ; [0, 1]) be such that ψ = 0 near supp (χ) and ψ = 1
near T ∗M \ Ω. Setting ã = a + Cψ ∈ S0(T ∗M) with the constant C = γ0 +
supT ∗M |a(x, ξ)|, we have that ã = a near supp (χ) and ã ≥ γ0 > 0 on T ∗M .
Applying G̊arding’s inequality [37, Theorem 4.30] to ã, we get

(Opwh (ã)Opwh (χ)u,Opwh (χ)u)L2(M) ≥
γ0
2
‖Opwh (χ)u‖2L2(M),

for all h > 0 small enough. This together with the fact that

(Opwh (ã)−Opwh (a))Opwh (χ) = O(h∞) : L2(M)→ L2(M)

shows the claim. �

3. Laplace operator. Proof of Theorem 1.1

As a warmup, we shall give in this section a proof of Theorem 1.1, using a
semiclassical point of view. When establishing the resolvent estimate (1.3), for
u ∈ C∞(M), we write

(−∆g − z2)u = f. (3.1)

The proof of the estimate (1.3) will consist of several different cases, depending
on the location of the spectral parameter z in the region Ξδ = {z ∈ C : Im z ≥
δ}.

3.1. Easy spectral regions. As the following proposition shows, in some cases
the uniform resolvent estimate (1.3) is a direct consequence of a priori estimates
for the equation (3.1).

Proposition 3.1. There exists C > 0 such that for any z ∈ C, Im (z2) 6= 0, we
have

‖u‖
L

2n
n−2 (M)

≤ C
(
|z|2 + 1

|Im (z2)|
+ 1

)
‖(−∆g − z2)u‖

L
2n
n+2 (M)

, (3.2)

and for any z ∈ C, Re (z2) < 0, we have

‖u‖
L

2n
n−2 (M)

≤ C 1

min(1,−Re (z2))
‖(−∆g − z2)u‖

L
2n
n+2 (M)

. (3.3)

Proof. Using the formulation of (3.1) in terms of quadratic forms, we get

‖∇gu‖2L2(M) − z
2‖u‖2L2(M) = (f, u)L2(M), (3.4)

where ∇g is the gradient operator with respect to the metric g. We deduce that{
|Im (z2)|‖u‖2L2(M) ≤ |(f, u)L2(M)| ≤ ‖u‖H1(M)‖f‖H−1(M),

‖∇gu‖2L2(M) ≤ |z|
2‖u‖2L2(M) + ‖u‖H1(M)‖f‖H−1(M),
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and therefore,

‖u‖2H1 = ‖∇gu‖2L2 + ‖u‖2L2 ≤
(
|z|2 + 1

|Im (z2)|
+ 1

)
‖u‖H1‖f‖H−1 .

This bound together with the classical Sobolev embeddingH1(M) ↪→ L
2n
n−2 (M),

and its dual L
2n
n+2 (M) ↪→ H−1(M) imply the estimate (3.2).

To get (3.3), we conclude from (3.4) that

min(1,−Re (z2))‖u‖2H1(M) ≤ ‖∇gu‖
2
L2(M) − Re (z2)‖u‖2L2(M) = Re (f, u)L2(M),

and proceed similarly to the derivation of (3.2). �

Now when z ∈ Ξδ and Im z ≥ 2|Re z|, writing z2 = (Re z)2 − (Im z)2 +
2iRe zIm z, we see that the uniform resolvent estimate (1.3) in this region is a
consequence of the a priori estimate (3.3). Next, in the region where Im z = δ
and δ

2 ≤ |Re z| ≤ C, with C > 0 being a constant, the uniform resolvent
estimate (1.3) follows from the a priori estimate (3.2).

When establishing the uniform resolvent estimate (1.3), the most crucial region
is therefore given by Im z = δ, |Re z| is large. Assuming that we have proved
(1.3) in this region, let us conclude the proof of Theorem 1.1. To that end,
it remains to establish the estimate (1.3) in the sectors δ < Im z < 2Re z and
δ < Im z < −2Re z. Without loss of generality we shall consider the sector
Π = {z ∈ C : δ < Im z < 2Re z}. Let u, v ∈ C∞(M) be fixed and let

F (z) = ((−∆g − z2)−1u, v)L2(M), z ∈ Π.

The function F is analytic in Π and continuous in Π. For z ∈ Π, we have

|F (z)| ≤ 1

|Im (z2)|
‖u‖L2(M)‖v‖L2(M) ≤

1

δ2
‖u‖L2(M)‖v‖L2(M).

For z ∈ ∂Π, we also have with a constant C > 0,

|F (z)| ≤ C‖u‖
L

2n
n+2 (M)

‖v‖
L

2n
n+2 (M)

, (3.5)

and hence, the Phragmén-Lindelöf principle gives us the estimate (3.5) for all
z ∈ Π. Now we get

‖(−∆g − z2)−1u‖
L

2n
n−2 (M)

= sup
v∈C∞(M),v 6=0

|((−∆g − z2)−1u, v)L2 |
‖v‖

L
2n
n+2 (M)

≤ C‖u‖
L

2n
n+2 (M)

.

This completes the proof of the uniform resolvent estimate (1.3) in the sector
Π, and hence, the proof of Theorem 1.1, once the the uniform estimate in the
crucial region has been established.



12 BURQ, DOS SANTOS FERREIRA, AND KRUPCHYK

3.2. Analysis in the crucial spectral region. Let us assume here that
Im z = δ > 0 and |Re z| is large. Then it will be convenient to make a semiclas-
sical reduction in (3.1) so that we write

|Re z| = 1

h
,

where 0 < h� 1 is a semiclassical parameter. It follows from (3.1) that

(−h2∆g − 1)u = h2f + hαu, α := ±2iδ − hδ2. (3.6)

First multiplying (3.6) by u, integrating over the manifold, taking the imaginary
part, and using Hölder’s inequality, we get the following a priori estimate,

‖u‖2L2(M) ≤
h

2δ
‖f‖

L
2n
n+2 (M)

‖u‖
L

2n
n−2 (M)

. (3.7)

Using the Peter-Paul inequality

ab ≤ a2

2ε
+
εb2

2
≤
(

a√
2ε

+

√
εb√
2

)2

, a, b ≥ 0, ε > 0,

we obtain from (3.7) the following estimate,

‖u‖L2(M) ≤
h

1
2

√
2δ

(‖f‖
L

2n
n+2 (M)√
2ε

+

√
ε‖u‖

L
2n
n−2 (M)√
2

)
, ε > 0, (3.8)

needed in the sequel.

The semiclassical principal symbol of the operator −h2∆g − 1 is given by
p0(x, ξ) = |ξ|2g − 1 ∈ C∞(T ∗M). Set

Σ := {(x, ξ) ∈ T ∗M : p0(x, ξ) = 0}.
We have that

∂ξp0(x, ξ) 6= 0 for all (x, ξ) ∈ Σ ⊂ T ∗M. (3.9)

Then for each x ∈M , the hypersurface

Σx := {ξ ∈ T ∗xM : p0(x, ξ) = 0}
is the unit sphere and hence,

Σx has a nondegenerate second fundamental form at each point ξ. (3.10)

We shall now follow an argument of [4] (see also [14]). Let (x0, ξ0) ∈ Σ. In
view of (3.9), we can assume that ∂ξ1p0(x0, ξ0) 6= 0. Thus, the implicit function
theorem implies that there is a neighborhood of (x0, ξ0) in T ∗M such that the
following factorization

p0(x, ξ) = e(x, ξ)(ξ1 − a(x, ξ′)) (3.11)

holds in this neighborhood. Here ξ = (ξ1, ξ
′), a(x, ξ′), e(x, ξ) are real-valued

and e(x0, ξ0) 6= 0. Then in a possibly smaller neighborhood of (x0, ξ0), we have

|e(x, ξ)| ≥ e0 > 0 (3.12)

for some e0 fixed. Furthermore, it follows from (3.10) that

∂2ξ′a(x0, ξ
′
0) is nondegenerate. (3.13)
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Since the energy surface Σ is compact in T ∗M , there are a finite number of
points (x(j), ξ(j)) ∈ Σ and their neighborhoods V(x(j),ξ(j)) in T ∗M such that

Σ ⊂ ∪Nj=1V(x(j),ξ(j)), (3.14)

and the conditions (3.11), (3.12) and (3.13) hold in each V(x(j),ξ(j)), with ξ1
possibly replaced by some other ξj in the factorization (3.11).

Let ρj ∈ C∞0 (V(x(j),ξ(j)); [0, 1]), 1 ≤ j ≤ N , be a partition of unity, associated to

the cover (3.14), so that

N∑
j=1

ρj = 1 near Σ.

Let χ ∈ C∞0 (T ∗M ; [0, 1]) be such that supp (χ) is contained in a neighborhood
of Σ, with χ = 1 in a smaller neighborhood of Σ. We have

χ =
N∑
j=1

χj , χj := ρjχ. (3.15)

Associated to χj is the corresponding h-pseudodifferential operator Opwh (χj) ∈
Ψ−∞(M) = ∩NΨN (M). Then

WFh(Opwh (χj)) = supp (χj).

Here WFh stands for the semiclassical wave front set, see [37].

Let κi : Ui → Vi ⊂ Rn be a set of local charts in M so that Ui ⊂M is open and
∪Li=1Ui = M . Let ϕi ∈ C∞0 (Ui), 1 ≤ i ≤ L, be a partition of unity, associated
to the cover Ui so that

L∑
i=1

ϕi = 1 on M.

Using (3.6), we get

(−h2∆g − 1)ϕiu = h2ϕif + hαϕiu+ [−h2∆g, ϕi]u.

It follows that

(−h2∆g − 1)Opwh (χj)ϕiu = h2Opwh (χj)ϕif + hBju, (3.16)

where

Bj =αOpwh (χj)ϕi +
1

h
Opwh (χj)[−h2∆g, ϕi]

+
1

h
[−h2∆g,Opwh (χj)]ϕi ∈ Ψ−∞(M),

(3.17)

and

WFh(Bj) ⊂WFh(Opwh (χj)) ⊂⊂ V(x(j),ξ(j)).
Let ψi, ϕ̃i ∈ C∞0 (Ui) be such that ϕ̃i = 1 near supp (ϕi) and ψi = 1 near
supp (ϕ̃i). Then we have, see [37, Chapter 14],

ψiOpwh (χj)ϕi = ψiκ
∗
i χ̃

w
j,i(y, hDy;h)(κ−1i )∗ϕi, (3.18)
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where χ̃wj,i(y, hDy;h) is the Weyl pseudodifferential operator on Rn with the

symbol χ̃j,i ∈ S−N (R2n) for any N , and the principal symbol

σ
(
χ̃wj,i(y, hDy;h)

)
(y, η) = χj(κ

−1
i (y), (∂κi(κ

−1
i (y)))T η). (3.19)

Furthermore,

WFh(χ̃wj,i(y, hDy;h)) = supp (χj(κ
−1
i (y), (∂κi(κ

−1
i (y)))T η)).

We also have

(1− ψi)Opwh (χj)ϕi = O(h∞) : H−N (M)→ HN (M), (3.20)

for all N , see [37, Chapter 14].

Using (3.18), (3.20) and (3.1), we obtain from (3.16) and (3.17) that

(−h2∆g − 1)ψiκ
∗
i χ̃

w
j,i(y, hDy;h)(κ−1i )∗ϕiu = h2ψiκ

∗
i χ̃

w
j,i(y, hDy;h)(κ−1i )∗ϕif

+hψiκ
∗
i B̃j,i(κ

−1
i )∗ϕ̃iu+R0u,

(3.21)

where B̃j,i ∈ Opwh
(
S−N (R2n)

)
for all N , and R0 = O(h∞) : H−N (M) →

HN (M) for all N .

Committing an error O(h∞), in what follows we shall view, as we may, (3.21)
as an equation on Rn. We shall therefore be concerned with the following
situation. Let ϕ, ϕ̃, ψ ∈ C∞0 (Rn) be such that ϕ̃ = 1 near supp (ϕ), and ψ = 1
near supp (ϕ̃). Let g be a C∞ Riemannian metric on Rn such that ∂αx g ∈ L∞
for all α, and let p0(x, ξ) =

∑n
i,j=1 g

ij(x)ξiξj − 1. Let χ0 ∈ C∞0 (R2n) be such

that supp (χ0) is in a neighborhood of (x0, ξ0) ∈ p−10 (0) and such that near
supp (χ0), we have

p0(x, ξ) = e(x, ξ)(ξ1 − a(x, ξ′)), (3.22)

where ξ = (ξ1, ξ
′) and e satisfies

|e(x, ξ)| ≥ e0 > 0. (3.23)

Furthermore,

∂2ξ′a(x, ξ′) is nondegenerate near supp (χ0), (3.24)

see (3.13). Let B ∈ Opwh
(
S−N (R2n)

)
for all N , and let χ = χ(x, ξ;h) ∈

S−N (R2n) for all N be such that

χ = χ0 +O(h) in S−N (R2n),

and
WFh(χw(x, hDx;h)) = supp (χ0). (3.25)

When u ∈ L2(Rn) ∩ C∞(Rn), consider the equation,

(−h2∆g−1)ψχw(x, hDx;h)ϕu = h2ψχw(x, hDx;h)ϕf+hψBϕ̃u+R0u, (3.26)

where
‖R0u‖L2(Rn) = O(h∞)‖u‖L2(Rn). (3.27)

Let us now extend e(x, ξ) arbitrarily to a symbol in S0(R2n) with the bound
(3.23) in all of R2n, and let us also extend a(x1, x

′, ξ′) to a real-valued element

of C∞0 (Rx1 , S0(R2(n−1))).
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Microlocal factorization (3.22) yields that

(−h2∆g − 1)χw(x, hDx;h) =ew(x, hDx)(hDx1 − aw(x, hDx′))χ
w(x, hDx;h)

+ hRw(x, hDx;h),

where Rw ∈ Opwh (S−N (R2n)) for all N > 0. This implies that

(−h2∆g − 1)ψχw(x, hDx;h) =ew(x, hDx)(hDx1 − aw(x, hDx′))ψχ
w(x, hDx;h)

+ hRw1 (x, hDx;h),
(3.28)

where Rw1 (x, hDx;h) ∈ Opwh (S−N (R2n)) for all N .

Since e ∈ S0(R2n) is elliptic, see (3.23), there exists h0 > 0 such that for all
0 < h ≤ h0, the inverse ew(x, hDx)−1 exists and ew(x, hDx)−1 ∈ Opwh (S0(R2n)).
Therefore, we conclude from (3.26) and (3.28) that

(hDx1 − aw(x, hDx′))ψχ
w(x, hDx;h)ϕu = h2f̃ + hB1ϕ̃u+ ew(x, hDx)−1R0u,

(3.29)
where

f̃ = ew(x, hDx)−1ψχw(x, hDx;h)ϕf, (3.30)

B1 = ew(x, hDx)−1(ψB −Rw1 (x, hDx;h)ϕ). (3.31)

Now if supp (ψ) ∩ πx(supp (χ0)) = ∅, then using (3.25), we get

ψ(x)χw(x, hDx;h) = OS′(Rn)→S(Rn)(h
∞).

Here πx : (x, ξ) 7→ x is the projection. Modifying B1 ∈ Opwh (S0(R2n)) in (3.29),
we can assume therefore that supp (ψ) is contained in a small neighborhood of
x0.

Let x0 = (x0,1, x
′
0) ∈ R× Rn−1 and let (l1, l2) be an interval around x0,1, close

to x0,1, so that πx1(supp (ψ)) ⊂ (l1, l2). By Duhamel’s formula (2.4) applied to
(3.29), we get for x1 ∈ (l1, l2),

(ψχw(x, hDx;h)ϕu)(x1, x
′) = i

∫ x1

l1

F (x1, s)(B1ϕ̃u)(s, x′)ds

+
i

h

∫ x1

l1

F (x1, s)((e
w)−1R0u)(s, x′)ds+ ih

∫ x1

l1

F (x1, r)F (s, r)∗f̃(s, x′)ds,

(3.32)
for all fixed r ∈ R. Here {F (x1, r)}x1∈R is a family of unitary operators on
L2(Rn−1) solving

(hDx1 − aw(x, hDx′))F (x1, r) = 0,

F (r, r) = I,

for x ∈ Rn and for all r ∈ R. The unitarity of F (x1, r) is a consequence of the
fact that aw(x, hDx′) is self-adjoint.

Let 0 ≤ χ̃ ∈ C∞0 (T ∗Rn−1) be such that χ̃ = 1 near π(x′,ξ′)(supp (χ0)) and
supp (χ̃) is in a small neighborhood of (x′0, ξ

′
0) so that the condition (3.24)

holds on supp (χ̃) for all x1 in a neighborhood of x0,1. Here

π(x′,ξ′) : T ∗Rn → T ∗Rn−1, (x1, x
′, ξ1, ξ

′) 7→ (x′, ξ′).
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Hence, by the composition formula of h-pseudodifferential operators [37, The-
orem 4.11], see also [5, Proposition 9.5], we get

(1− χ̃w(x′, hDx′))ψχ
w(x, hDx;h) = OS′(Rn)→S(Rn)(h

∞). (3.33)

Using (3.33) and (3.32), we get

(ψχw(x, hDx;h)ϕu)(x1, x
′) = i

∫ x1

l1

χ̃w(x′, hDx′)F (x1, s)(B1ϕ̃u)(s, x′)ds

+
i

h

∫ x1

l1

χ̃w(x′, hDx′)F (x1, s)((e
w)−1R0u)(s, x′)ds

+ ih

∫ x1

l1

χ̃w(x′, hDx′)F (x1, r)F (s, r)∗f̃(s, x′)ds+OS(Rn)(h
∞)‖ϕu‖L2(Rn).

(3.34)

We shall next estimate ‖ψχw(x, hDx;h)ϕu‖
L

2n
n−2 (Rn)

. First, a repeated appli-

cation of Lemma 2.4, allows us to write

ψχw(x, hDx;h)ϕu =ρw(x1, hDx1)ψχw(x, hDx;h)ϕu

+OS(Rn)(h
∞)‖ψχw(x, hDx;h)ϕu‖L2(Rn),

where ρ ∈ C∞0 (T ∗R). In view of Lemma 2.3, we get

‖ψχw(x, hDx;h)ϕu‖
L

2n
n−2 (Rn)

≤Ch−
1
2n ‖ψχw(x, hDx;h)ϕu‖

L
2n
n−1
x1

L
2n
n−2
x′

+O(h∞)‖ϕu‖L2(Rn).
(3.35)

Let us now proceed to estimate ‖ψχw(x, hDx;h)ϕu‖
L

2n
n−1
x1

L
2n
n−2
x′

using the semi-

classical Strichartz estimates (2.6) and (2.7). To that end, we start by estimat-
ing the first integral in the right hand side of (3.34),

J1(x1, x
′) := i

∫ x1

l1

χ̃w(x′, hDx′)F (x1, s)(B1ϕ̃u)(s, x′)ds, x1 ∈ (l1, l2).

Letting

U(x1, s) = 1[0,l2−l1](x1 − s)χ̃
w(x′, hDx′)F (x1, s), (3.36)

we have

J1(x1, x
′) = i

∫ x1

l1

U(x1, s)(B1ϕ̃u)(s, x′)ds.

Following [37, the proof of Theorem 10.8], we write

J1(x1, x
′) = i

∫
R
1(l1,l2)(s)1(−∞,x1)(s)U(x1, s)(B1ϕ̃u)(s, x′)ds

= i

∫
R
1(l1,l2)(s)1(s,+∞)(x1)U(x1, s)(B1ϕ̃u)(s, x′)ds.
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Letting q = 2n
n−2 and p = 2n

n−1 and using Minkowski’s inequality, we get

‖J1‖Lp
x1
Lq

x′
≤
∫
R
‖1(l1,l2)(s)1(s,+∞)(x1)U(x1, s)(B1ϕ̃u)(s, x′)‖Lp

x1
Lq

x′
ds

≤
∫ l2

l1

‖U(x1, s)(B1ϕ̃u)(s, x′)‖Lp
x1
Lq

x′
ds

In view of the condition (3.24), using the semiclassical Strichartz estimate (2.6)
with k = n − 1, q = 2n

n−2 and p = 2n
n−1 in the last term of the above estimate,

we obtain that

‖J1‖Lp
x1
Lq

x′
≤ Ch−1/p

∫ l2

l1

‖(B1ϕ̃u)(s, x′)‖L2
x′
ds ≤ Ch−1/p‖B1ϕ̃u‖L2

x

≤ Ch−1/p‖ϕ̃u‖L2
x
.

(3.37)

Here we have used the fact that the operator B1 in (3.29) is bounded on L2(Rn)
uniformly in h for all h > 0 small enough.

Similarly, we can estimate the second integral in the right hand side of (3.34),

J2(x1, x
′) :=

i

h

∫ x1

l1

χ̃w(x′, hDx′)F (x1, s)((e
w)−1R0u)(s, x′)ds,

obtaining the bound

‖J2‖Lp
x1
Lq

x′
≤ O(h∞)‖u‖L2(Rn). (3.38)

Here we have also used (3.27).

Let us now estimate the third integral in the right hand side (3.34),

J3(x1, x
′) := ih

∫ x1

l1

χ̃w(x′, hDx′)F (x1, r)F (s, r)∗f̃(s, x′)ds,

where f̃ is given by (3.30). To that end we write

J3(x1, x
′) = J3,1(x1, x

′) + J3,2(x1, x
′), (3.39)

where

J3,1(x1, x
′) = ih

∫ x1

l1

χ̃w(x′, hDx′)F (x1, r)F (s, r)∗χ̃w(x′, hDx′)f̃(s, x′)ds,

J3,2(x1, x
′) = ih

∫ x1

l1

χ̃w(x′, hDx′)F (x1, s)(1− χ̃w(x′, hDx′))f̃(s, x′)ds.

(3.40)
In view of (3.33),

(1−χ̃w(x′, hDx′))f̃ = (1− χ̃w(x′, hDx′))e
w(x, hDx)−1ψχw(x, hDx;h)ϕf

= h−2(1− χ̃w(x′, hDx′))e
w(x, hDx)−1ψχw(x, hDx;h)ϕ(−h2∆g − (hz)2)ϕ̃u

= OS(Rn)(h
∞)‖ϕ̃u‖L2(Rn).

(3.41)



18 BURQ, DOS SANTOS FERREIRA, AND KRUPCHYK

Now writing

J3,2(x1, x
′) = ih

∫ x1

l1

U(x1, s)(1− χ̃w(x′, hDx′))f̃(s, x′)ds,

where U(x1, s) is given by (3.36), and estimating J3,2 similarly to J1 above,
using (3.41), we get

‖J3,2‖
L

2n
n−1
x1

L
2n
n−2
x′

= O(h∞)‖ϕ̃u‖L2(Rn). (3.42)

We shall next estimate J3,1. In doing so, we let r = l1. Since χ̃(x′, ξ′) is real-
valued, its Weyl quantization χw(x′, hDx′) is self-adjoint, and therefore, the L2

adjoint of U(s, l1), given by (3.36), is as follows,

U(s, l1)
∗ = 1[0,l2−l1](s− l1)F (s, l1)

∗χ̃w(x′, hDx′).

Hence, for r = l1, we get

J3,1(x1, x
′) = ih

∫ x1

−∞
U(x1, l1)U(s, l1)

∗f̃(s, x′)ds, x1 ∈ (l1, l2).

By the semiclassical Strichartz estimate (2.7) with k = n− 1, q = q̃ = 2n
n−2 and

p = p̃ = 2n
n−1 , we obtain that

‖J3,1‖
L

2n
n−1
x1

L
2n
n−2
x′

≤ Ch
1
n ‖f̃‖

L
2n
n+1
x1

L
2n
n+2
x′

. (3.43)

Since f̃ is microlocalized in a compact subset of T ∗Rn, a repeated application
of Lemma 2.4 shows that

f̃ = ρw(x1, hDx1)f̃ +OS(Rn)(h
∞)‖f̃‖L2(Rn),

where ρ ∈ C∞0 (T ∗R). By Lemma 2.3 and the fact that

f̃ = h−2ew(x, hDx)−1ψχw(x, hDx;h)ϕ(−h2∆g − (hz)2)ϕ̃u,

see (3.30), we get

‖f̃‖
L

2n
n+1
x1

L
2n
n+2
x′

≤ Ch−
1
2n ‖f̃‖

L
2n
n+2 (Rn)

+O(h∞)‖ϕ̃u‖L2(Rn), (3.44)

for all 0 < h small enough. Using (3.39), (3.43), (3.44), (3.42), (3.30), and
the fact that ew(x, hDx)−1ψχw(x, hDx;h) ∈ Opwh (S0(R2n)) is bounded on Lp

uniformly in h, for all 0 < h small enough, see [34, Theorem 2.1], we conclude
that

‖J3‖
L

2n
n−1
x1

L
2n
n−2
x′

≤ Ch
1
2n ‖ϕf‖

L
2n
n+2 (Rn)

+O(h∞)‖ϕ̃u‖L2(Rn). (3.45)

By (3.34), (3.37), (3.38) and (3.45), we get

‖ψχw(x, hDx;h)ϕu‖
L

2n
n−1
x1

L
2n
n−2
x′

≤Ch−
1
2
+ 1

2n ‖ϕ̃u‖L2(Rn) + Ch
1
2n ‖ϕf‖

L
2n
n+2 (Rn)

+O(h∞)‖u‖L2(Rn),
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and therefore, using (3.35), we obtain that

‖ψχw(x, hDx;h)ϕu‖
L

2n
n−2 (Rn)

≤Ch−
1
2 ‖ϕ̃u‖L2(Rn) + C‖ϕf‖

L
2n
n+2 (Rn)

+O(h∞)‖u‖L2(Rn).
(3.46)

We shall return to the compact manifold M . In view of (3.18) and (3.46), we
have

‖ψiOpwh (χj)ϕiu‖
L

2n
n−2 (M)

≤Ch−
1
2 ‖ϕ̃iu‖L2(M) + C‖f‖

L
2n
n+2 (M)

+O(h∞)‖u‖L2(M),
(3.47)

for i = 1, . . . , L and j = 1, . . . , N . By (3.20) and Sobolev’s embedding, we get

(1− ψi)Opwh (χj)ϕi = O(h∞) : L2(M)→ L
2n
n−2 (M),

and therefore, summing over i, we obtain that

‖Opwh (χj)u‖
L

2n
n−2 (M)

≤ Ch−
1
2 ‖u‖L2(M) + C‖f‖

L
2n
n+2 (M)

.

Hence,

‖Opwh (χ)u‖
L

2n
n−2 (M)

≤ Ch−
1
2 ‖u‖L2(M) + C‖f‖

L
2n
n+2 (M)

. (3.48)

Let us now estimate ‖(1−Opwh (χ))u‖
L

2n
n−2 (M)

. To that end, using the equation

(3.6), we get

(−h2∆g−1)(1−Opwh (χ))u = h2(1−Opwh (χ))f+h(1−Opwh (χ))αu+hLu, (3.49)

where L = h−1[h2∆g,Opwh (χ)] ∈ Ψ−∞(M).

For the semiclassical principal symbol p0(x, ξ) = |ξ|2g−1 of the operator−h2∆g−
1, we have p0(x, ξ) 6= 0 on supp (1− χ), and therefore,

|p0(x, ξ)| ≥
〈ξ〉2g
C

, 〈ξ〉g =
√

1 + |ξ|2g,

for all (x, ξ) ∈ supp (1−χ), i.e. the operator−h2∆g−1 is elliptic on supp (1−χ).
Hence, there exists an operator E ∈ Opwh (S−2(T ∗M)) such that

E(−h2∆g − 1)(1−Opwh (χ)) = 1−Opwh (χ) +R, (3.50)

where

R ∈ ∩N≥0,M≥0hNOpwh (S−M ). (3.51)

Applying the operator E to (3.49) and using (3.50), we get

(1−Opwh (χ))u =−Ru+ h2E(1−Opwh (χ))f + hE(1−Opwh (χ))αu

+ hELu.
(3.52)

It follows from (3.51) that

‖Ru‖
L

2n
n−2 (M)

= O(h∞)‖u‖
L

2n
n−2 (M)

, (3.53)
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see [34, Theorem 2.2]. As E ∈ Opwh (S−2(T ∗M)), we have E : L
2n
n−2 (M) →

L
2n
n−2 (M) is bounded uniformly for 0 < h � 1, see [34, Theorem 2.2], and

therefore,

‖hE(1−Opwh (χ))αu+ hELu‖
L

2n
n−2 (M)

= O(h)‖u‖
L

2n
n−2 (M)

. (3.54)

Furthermore, as

E : W
−2, 2n

n−2

scl (M)→ L
2n
n−2 (M)

is uniformly bounded for 0 < h � 1, see [34, Theorem 2.2], and from the
semiclassical Sobolev embedding (2.13), we obtain that

h2‖E(1−Opwh (χ))f‖
L

2n
n−2 (M)

≤ Ch2‖(1−Opwh (χ))f‖
W
−2, 2n

n−2
scl (M)

≤ C‖f‖
L

2n
n+2 (M)

.
(3.55)

We conclude from (3.52), using (3.53), (3.54) and (3.55) that

‖(1−Opwh (χ))u‖
L

2n
n−2 (M)

≤ O(h)‖u‖
L

2n
n−2 (M)

+ C‖f‖
L

2n
n+2 (M)

. (3.56)

It follows from (3.48) and (3.56) that

‖u‖
L

2n
n−2 (M)

≤ C(h−
1
2 ‖u‖L2(M) + h‖u‖

L
2n
n−2 (M)

+ ‖f‖
L

2n
n+2 (M)

). (3.57)

By (3.8), we get

‖u‖
L

2n
n−2 (M)

≤ C
(

1√
2ε
‖f‖

L
2n
n+2 (M)

+

√
ε√
2
‖u‖

L
2n
n−2 (M)

+ h‖u‖
L

2n
n−2 (M)

+ ‖f‖
L

2n
n+2 (M)

)
,

and therefore, taking ε > 0 and h0 > 0 sufficiently small but fixed, we obtain
that for all h ∈ (0, h0],

‖u‖
L

2n
n−2 (M)

≤ C‖f‖
L

2n
n+2 (M)

.

This completes the proof of the uniform resolvent estimate (1.3) in the region
where Im z = δ and |Re z| ≥ C, for some C > 0 large enough, and thus, the
proof of Theorem 1.1.

4. Laplace operator. Proof of Remark 1.6

Let us first remark that in view of the Riesz–Thorin interpolation theorem, the
estimate (1.9) is a consequence of (1.3) and the following endpoint bound,

‖u‖
L

2(n+1)
n−1 (M)

≤ C|z|−
2

n+1 ‖(−∆g − z2)u‖
L

2(n+1)
n+3 (M)

, (4.1)

valid for u ∈ C∞(M) and z ∈ Ξδ. In what follows we shall therefore concentrate
on proving (4.1). When doing so, we shall continue to use the same notation as
in the previous sections, and we shall proceed by inspection of the arguments
used in the proof of Theorem 1.1.
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4.1. Analysis in the crucial spectral region. Here we assume that Im z =
δ > 0 and |Re z| is large, and then we see that similarly to the a priori estimate
(3.7), we have

‖u‖2L2(M) ≤
h

2δ
‖f‖

L
2(n+1)
n+3 (M)

‖u‖
L

2(n+1)
n−1 (M)

. (4.2)

Next, we consider the formula (3.34), where we now have to estimate the norm
‖ψχw(x, hDx;h)ϕu‖

L
2(n+1)
n−1 (Rn)

. Contrary to the proof of Theorem 1.1, to that

end, we do not need to use the semiclassical embedding of Lemma 2.3 but we
rely on the semiclassical Strichartz estimates (2.6) and (2.7) only. To bound
the first integral in the right hand side of (3.34), using (2.6) with k = n−1 and

p = q = 2(n+1)
n−1 , we get

‖J1‖
L

2(n+1)
n−1 (Rn)

≤ Ch−
(n−1)
2(n+1) ‖ϕ̃u‖L2(Rn), (4.3)

cf. (3.37). The estimate for the second integral in the right hand side of (3.34)
is as follows,

‖J2‖
L

2(n+1)
n−1 (Rn)

≤ O(h∞)‖u‖L2(Rn), (4.4)

cf. (3.38). To bound the third integral in the right hand side (3.34), we shall
estimate J3,1 and J3,2 given by (3.39) and (3.40). First we have

‖J3,2‖
L

2(n+1)
n−1 (Rn)

= O(h∞)‖ϕ̃u‖L2(Rn), (4.5)

cf. (3.42). Using the semiclassical Strichartz estimate (2.7) with k = n − 1,

p = q = p̃ = q̃ = 2(n+1)
n−1 , we get

‖J3,1‖
L

2(n+1)
n−1 (Rn)

≤ Ch
2

n+1 ‖ϕf‖
L

2(n+1)
n+3 (Rn)

, (4.6)

cf. (3.43). By (4.3), (4.4), (4.5), (4.6), we obtain that

‖ψχw(x, hDx;h)ϕu‖
L

2(n+1)
n−1 (Rn)

≤ Ch−
(n−1)
2(n+1) ‖ϕ̃u‖L2(Rn)

+ Ch
2

n+1 ‖ϕf‖
L

2(n+1)
n+3 (Rn)

+O(h∞)‖u‖L2(Rn),

cf. (3.46). Returning to the compact manifold M , we conclude that

‖Opwh (χ)u‖
L

2(n+1)
n−1 (M)

≤ Ch−
(n−1)
2(n+1) ‖u‖L2(M) + Ch

2
n+1 ‖f‖

L
2(n+1)
n+3 (M)

, (4.7)

cf. (3.48).

Let us now estimate ‖(1 − Opwh (χ))u‖
L

2(n+1)
n−1 (M)

. To this end, we shall ex-

amine the expression (3.52). When doing so we rely on the fact that E ∈
Opwh (S−2(T ∗M)), and thus, for any s ∈ [0, 2], and 1 < p <∞, we have

E : W−s,pscl (M)→ Lp(M) (4.8)

is uniformly bounded for 0 < h� 1, see [34, Theorem 2.5, page 268],
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Using (4.8) with s = 2n
n+1 and the semiclassical Sobolev embedding (2.13), we

obtain that

h2‖E(1−Opwh (χ))f‖
L

2(n+1)
n−1 (M)

≤ Ch2‖(1−Opwh (χ))f‖
W
− 2n

n+1 ,
2(n+1)
n−1

scl (M)

≤ Ch
2

n+1 ‖f‖
L

2(n+1)
n+3 (M)

,

(4.9)
cf. (3.55). We also have

‖hE(1−Opwh (χ))αu+ hELu‖
L

2(n+1)
n−1 (M)

= O(h)‖u‖
L

2(n+1)
n−1 (M)

, (4.10)

cf. (3.54), and

‖Ru‖
L

2(n+1)
n−1 (M)

= O(h∞)‖u‖
L

2(n+1)
n−1 (M)

, (4.11)

cf. (3.53). We conclude from (3.52), using (4.9), (4.10) and (4.11) that

‖(1−Opwh (χ))u‖
L

2(n+1)
n−1 (M)

≤ O(h)‖u‖
L

2(n+1)
n−1 (M)

+ Ch
2

n+1 ‖f‖
L

2(n+1)
n+3 (M)

,

(4.12)
cf. (3.56).

Now it follows from (4.7) and (4.12) that

‖u‖
L

2(n+1)
n−1 (M)

≤ C
(
h
− (n−1)

2(n+1) ‖u‖L2(M) + h‖u‖
L

2(n+1)
n−1 (M)

+ h
2

n+1 ‖f‖
L

2(n+1)
n+3 (M)

)
,

cf. (3.57), and therefore, by (4.2) and the Peter–Paul inequality, we get

‖u‖
L

2(n+1)
n−1 (M)

≤ C
(
h

1
n+1 ‖f‖1/2

L
2(n+1)
n+3 (M)

‖u‖1/2
L

2(n+1)
n−1 (M)

+h‖u‖
L

2(n+1)
n−1 (M)

+ h
2

n+1 ‖f‖
L

2(n+1)
n+3 (M)

)
≤ C

(
h

2
n+1

2ε
‖f‖

L
2(n+1)
n+3 (M)

+
ε

2
‖u‖

L
2(n+1)
n−1 (M)

+h‖u‖
L

2(n+1)
n−1 (M)

+ h
2

n+1 ‖f‖
L

2(n+1)
n+3 (M)

.

)
Taking ε > 0 and h0 > 0 sufficiently small but fixed, we obtain that for all
h ∈ (0, h0],

‖u‖
L

2(n+1)
n−1 (M)

≤ Ch
2

n+1 ‖f‖
L

2(n+1)
n+3 (M)

.

This completes the proof of the resolvent estimate (4.1) in the region where
Im z = δ and |Re z| ≥ C, for some C > 0 large enough.

4.2. Easy spectral regions. In the region where Im z = δ and |Re z| ≤ C,
the estimate (4.1) is a consequence of the uniform estimate (1.3), in view of the
embeddings

L
2n
n−2 (M) ⊂ L

2(n+1)
n−1 (M) ⊂ L2(M) ⊂ L

2(n+1)
n+3 (M) ⊂ L

2n
n+2 (M). (4.13)
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When z ∈ Ξδ and Im z ≥ 2|Re z|, we see that Re (z2) = (Re z)2 − (Im z)2 < 0,
and therefore,

‖(−∆g − z2)−1‖L2(M)→L2(M) =
1

dist(z2, Spec(−∆g))
=

1

|z|2
. (4.14)

In this region the estimate (4.1) follows therefore by the Riesz–Thorin interpo-
lation theorem between (4.14) and (1.3). To establish the estimate (4.1) in the
remaining regions given by δ < Im z < 2Re z and δ < Im z < −2Re z, we apply
the Phragmén–Lindelöf principle to the holomorphic function

z 7→ z
2

n+1 ((−∆g − z2)−1u, v)L2(M), u, v ∈ C∞(M),

in these regions. The proof of Remark 1.6 is complete.

5. Damped wave equation. Proof of Theorem 1.3

Here we shall revisit the proof of Theorem 1.1, to prove Theorem 1.3. For
u ∈ C∞(M), we write

Pu = P (τ)u = (−∆g + 2iτa(x)− τ2)u = f. (5.1)

As in the case of the Laplacian, the proof of the estimate (1.6) will consist of
several different cases, depending on the location of the spectral parameter τ
in the region Πδ,V of the complex plane, defined by (1.7). Let us start with the
most significant region.

5.1. Spectral Region I. Assume that τ ∈ C is such that A++δ ≤ Im τ := β ≤
sup a+ δ and |Re τ | is large. Then it will be convenient to make a semiclassical
reduction in (5.1) so that we let

|Re τ | = 1

h
,

where 0 < h� 1 is a semiclassical parameter. It follows from (5.1) that

h2Pu = (−h2∆g − 1− h(±2iβ − hβ2) + 2ih(±1 + ihβ)a(x))u = h2f. (5.2)

We shall consider the case Re τ > 0, as the other case can be treated in the
same way.

A crucial step now is the derivation of an a priori estimate, which is similar to
the estimate (3.7) in the case of the Laplacian. Once this estimate has been
established, the rest of the proof will follow along the same lines as the proof
of Theorem 1.1. When proving the a priori estimate, following an argument of
[25, Section 2], we shall conjugate the operator h2P by an elliptic self-adjoint
operator Q = Opwh (eq), where q ∈ S0(T ∗M) is to be chosen. Notice that for all
h > 0 small enough, we have Q−1 = Opwh (e−q) + hR0 where R0 ∈ Opwh (S−1).
Letting p(x, ξ) be the semiclassical principal symbol of −h2∆g, by Proposition
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2.6, we get

Q−1(−h2∆g)Q = −h2∆g +Q−1[−h2∆g, Q]

= −h2∆g +Q−1
(
h

i
Opwh (eqHp(q)) + h2R1

)
= −h2∆g − ihOpwh (Hp(q)) + h2R2,

and
Q−1a(x)Q = a(x) + hR3,

with R1, R2 ∈ Opwh (S0) and R3 ∈ Opwh (S−1), and therefore,

Q−1(h2P )Q = −h2∆g − 1 + ihOpwh (2a(x)−Hp(q))− 2ihβ + h2R4, (5.3)

with R4 ∈ Opwh (S0). It also follows from (5.2) that

Q−1(h2P )Qv = h2Q−1f, (5.4)

where
v = Q−1u. (5.5)

Setting

q̃(x, ξ) =

∫ T

0

(
t

T
− 1

)
a(exp(tHp)(x, ξ))dt+

∫ 0

−T

(
1 +

t

T

)
a(exp(tHp)(x, ξ))dt,

we check that
2a(x)−Hp(q̃) = 2〈a〉T on T ∗M.

Let us choose ε > 0 sufficiently small but fixed, and let ϕ ∈ C∞0 (T ∗M) be such
that ϕ = 1 on p−1([1− ε, 1 + ε]). Setting q = ϕq̃, we see that q ∈ S0(T ∗M) and

2a(x)−Hp(q) = 2〈a〉T on p−1((1− ε, 1 + ε)). (5.6)

It follows from (5.3) and (5.6) that

Q−1(h2P )Q = −h2∆g − 1 + ihOph(âT )− 2ihβ + h2R4, (5.7)

where âT ∈ S0(T ∗M) is such that

âT = 2〈a〉T on p−1((1− ε, 1 + ε)). (5.8)

Let 1 − ε < E < 1 + ε. Then by the homogeneity property of the Hp-flow, we
have

sup
p−1(E)

〈a〉T = sup
p−1(1)

〈a〉√ET ,

and therefore,

lim
T→∞

sup
p−1(E)

〈a〉T = lim
T→∞

sup
p−1(1)

〈a〉√ET = A+,

locally uniformly in E > 0. Hence, choosing T sufficiently large but fixed,
depending on δ > 0, we get

〈a〉T (x, ξ) ≤ A+ +
δ

2
, (5.9)

for all (x, ξ) ∈ p−1([1− ε, 1 + ε]).
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It follows from (5.7) that

Im (Q−1(h2P )Q) = hRe Opwh (âT )− 2hβ + h2R5, (5.10)

where R5 ∈ Opwh (S0). Using Proposition 2.6 and the fact that âT is real-valued,
we get

Re Opwh (âT ) =
1

2

(
Opwh (âT ) + Opwh (âT )∗

)
= Opwh (âT ) + hR6, (5.11)

where R6 ∈ Opwh (S−1). We conclude from (5.10) and (5.11) that

Im (Q−1(h2P )Q) = hOpwh (âT − 2β) + h2R7, (5.12)

where R7 ∈ Opwh (S0).

Using the fact that β ≥ A+ + δ, and (5.8), (5.9), we get

2β − âT = 2(β − 〈a〉T ) ≥ δ on p−1((1− ε, 1 + ε)).

Let 0 ≤ χ ∈ C∞0 (p−1((1 − ε, 1 + ε))) be such that χ = 1 near p−1(1). An
application of the semiclassical microlocalized version of G̊arding’s inequality,
see Theorem 2.7, gives(

Opwh (2β − âT )Opwh (χ)v,Opwh (χ)v
)
L2(M)

≥δ
2
‖Opwh (χ)v‖2L2(M)

−O(h∞)‖v‖2L2(M),
(5.13)

for all 0 < h small enough.

Using (5.12) and (5.13), we obtain that

δh

4
‖Opwh (χ)v‖2L2(M) −O(h∞)‖v‖2L2(M)

≤ −
(
Im (Q−1(h2P )Q)Opwh (χ)v,Opwh (χ)v

)
L2(M)

= −Im
(
(Q−1(h2P )Q)Opwh (χ)v,Opwh (χ)v

)
L2(M)

≤
∣∣(Q−1(h2P )QOpwh (χ)v,Opwh (χ)v

)
L2(M)

∣∣,
(5.14)

for all 0 < h small enough.

In view of (5.4) we have

Q−1(h2P )QOpwh (χ)v = h2Opwh (χ)Q−1f + [Q−1(h2P )Q,Opwh (χ)]v. (5.15)

Hence, by Hölder’s inequality and the uniform boundedness of the operators
Opwh (χ) and Q−1 in Lp spaces with 1 < p <∞, we get

h2
∣∣(Opwh (χ)Q−1f,Opwh (χ)v

)
L2(M)

∣∣ ≤ O(h2)‖f‖
L

2n
n+2 (M)

‖v‖
L

2n
n−2 (M)

. (5.16)

To estimate the scalar product
∣∣([Q−1(h2P )Q,Opwh (χ)]v,Opwh (χ)v

)
L2(M)

∣∣ in-

volving the commutator, we shall argue as follows. Let χ1 ∈ C∞0 (p−1((1−ε, 1+
ε))) be such that χ1 = 1 near p−1(1) and such that supp (χ1) is contained in
the interior of the set where χ = 1. By [26, Appendix A], see also [37, Theorem
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9.5], we know that WFh([Q−1(h2P )Q,Opwh (χ)]) is a compact subset of supp (χ)
such that

WFh([Q−1(h2P )Q,Opwh (χ)]) ∩ {(x, ξ) : χ(x, ξ) = 1}◦ = ∅,

where {·}◦ denotes the interior of the set. Hence,

WFh([Q−1(h2P )Q,Opwh (χ)]) ∩WFh(Opwh (χ1)) = ∅,

and therefore,

[Q−1(h2P )Q,Opwh (χ)]Opwh (χ1) = O(h∞) : Hs1(M)→ Hs2(M),

for any s1, s2 ∈ R. Thus,∣∣([Q−1(h2P )Q,Opwh (χ)]v,Opwh (χ)v
)
L2(M)

∣∣ ≤ O(h∞)‖v‖2L2(M)

+
∣∣([Q−1(h2P )Q,Opwh (χ)](1−Opwh (χ1))v,Opwh (χ)v

)
L2(M)

∣∣. (5.17)

In view of (5.3), we know that the operator Q−1(h2P )Q is elliptic on supp (1−
χ1), and thus, there exists a parametrix E ∈ Opwh (S−2(T ∗M)) such that

EQ−1(h2P )Q = 1−Opwh (χ1) +R,

where

R ∈ ∩N≥0,M≥0hNOpwh (S−M ).

Applying E to (5.4), we get

(1−Opwh (χ1))v = h2EQ−1f −Rv. (5.18)

Using (5.18) together with the fact that

[Q−1(h2P )Q,Opwh (χ)] ∈ hOpwh (S−∞),

we get∣∣([Q−1(h2P )Q,Opwh (χ)](1−Opwh (χ1))v,Opwh (χ)v
)
L2(M)

∣∣
≤ h2|

(
[Q−1(h2P )Q,Opwh (χ)]EQ−1f,Opwh (χ)v

)
L2(M)

∣∣
+
∣∣([Q−1(h2P )Q,Opwh (χ)]Rv,Opwh (χ)v

)
L2(M)

∣∣
≤ O(h3)‖f‖

L
2n
n+2 (M)

‖v‖
L

2n
n−2 (M)

+O(h∞)‖v‖2L2(M).

(5.19)

We conclude from (5.17) and (5.19) that∣∣([Q−1(h2P )Q,Opwh (χ)]v,Opwh (χ)v
)
L2(M)

∣∣ ≤ O(h∞)‖v‖2L2(M)

+O(h3)‖f‖
L

2n
n+2 (M)

‖v‖
L

2n
n−2 (M)

.

(5.20)
It follows from (5.14), (5.15), (5.16), and (5.20) that

‖Opwh (χ)v‖2L2(M) ≤ O(h)‖f‖
L

2n
n+2 (M)

‖v‖
L

2n
n−2 (M)

+O(h∞)‖v‖2L2(M). (5.21)
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Using the fact that the operator Q−1(h2P )Q is elliptic on supp (1− χ), we get
(5.18) with χ in place of χ1. This implies that

‖(1−Opwh (χ))v‖2L2(M) ≤ h
2|(EQf, (1−Opwh (χ))v)L2(M)|

+ |(Rv, (1−Opwh (χ))v)L2(M)|
≤ O(h2)‖f‖

L
2n
n+2 (M)

‖v‖
L

2n
n−2 (M)

+O(h∞)‖v‖2L2(M).

(5.22)
The estimates (5.21) and (5.22) yield the following a priori estimate,

‖v‖2L2(M) ≤ O(h)‖f‖
L

2n
n+2 (M)

‖v‖
L

2n
n−2 (M)

, (5.23)

for all h > 0 small enough, which is similar to (3.7) in the case of the Laplacian.

Now as a consequence of (5.4) and (5.7), we obtain the following equality, which
is similar to (3.6),

(−h2∆g − 1)v = h2Q−1f + hOpwh (r7)v,

where r7 = 2i(A+ + δ) − iâT − hr3 ∈ S0(T ∗M). Relying on the microlocal
factorization of the semiclassical principal symbol of the operator −h2∆g − 1,
the semiclassical Strichartz estimates, and a parametrix in the elliptic region,
similarly to the discussion of the crucial spectral region in the proof of Theorem
1.1, we obtain the estimate

‖v‖
L

2n
n−2 (M)

≤ C(h−
1
2 ‖v‖L2(M) + h‖v‖

L
2n
n−2 (M)

+ ‖f‖
L

2n
n+2 (M)

),

which is the same as the estimate (3.57) in the proof of Theorem 1.1. Using
the a priori estimate (5.23), we get that for all h > 0 small enough,

‖v‖
L

2n
n−2 (M)

≤ C‖f‖
L

2n
n+2 (M)

.

This together with (5.5) completes the proof of the uniform resolvent estimate
(1.6) in the spectral region where A+ + δ ≤ Im τ ≤ sup a + δ and |Re τ | ≥ L1,
for some L1 > 0 large enough.

5.2. Spectral region II. Let τ ∈ C be such that inf a − δ ≤ Im τ ≤ A− − δ
and |Re τ | is large. This region can be treated in the same way as the first
region.

5.3. Spectral region III. Let τ ∈ C be such that |Re τ | ≤ 1
2 |Im τ | and |Im τ |

sufficiently large, depending on the damping coefficient a. Multiplying (5.1) by
u, integrating by parts and taking the real part, we get

‖∇gu‖2L2(M) + ((Im τ)2 − (Re τ)2)‖u‖2L2(M)

= 2Im τ

∫
a|u|2dVg + Re (f, u)L2(M),

(5.24)
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where dVg is the Riemannian volume element of M . Using that |Re τ | ≤ 1
2 |Im τ |,

we obtain that

‖∇gu‖2L2(M) +
3

4
(Im τ)2‖u‖2L2(M)

≤ 2|Im τ |‖a‖L∞(M)‖u‖2L2(M) + ‖f‖H−1(M)‖u‖H1(M).

Assuming that |Im τ | ≥ L2, where L2 > 0 is sufficiently large constant, depend-
ing on ‖a‖L∞(M), so that

|Im τ |
(

3

4
|Im τ | − 2‖a‖L∞

)
≥ 1,

we get ‖u‖H1(M) ≤ ‖f‖H−1(M), and therefore, by Sobolev’s embedding, we
obtain the uniform resolvent estimate (1.6) in this region.

5.4. Spectral region IV. Let L = max{L1, L2}, and let V be an open neigh-
borhood of the set Spec(P (τ)) ∩ {τ ∈ C : |Re τ | ≤ L, |Im τ | ≤ 2L}. Then the
set K = {τ ∈ C : |Re τ | ≤ L, |Im τ | ≤ 2L} \ V is compact. Once we know that
the following uniform estimate holds,

‖(−∆g + 2ia(x)τ − τ2)−1‖H−1(M)→H1(M) ≤ C, (5.25)

for all τ ∈ K with a constant C > 0, independent of τ , the uniform resolvent
estimate (1.6) in the case τ ∈ K is a consequence of (5.25) and Sobolev’s
embedding. To show (5.25), first observe that the operator

P (τ) = −∆g + 2ia(x)τ − τ2 : H1(M)→ H−1(M)

is Fredholm of index zero, and it follows from the analytic Fredholm theory
that the inverse P (τ)−1 exists for τ ∈ C \ Spec(P (τ)) and moreover,

C \ Spec(P (τ)) 3 τ 7→ P (τ)−1 ∈ L(H−1(M), H1(M))

is holomorphic. Hence, the function

C \ Spec(P (τ)) 3 τ 7→ ‖P−1(τ)‖L(H−1(M),H1(M))

is continuous, and thus, bounded on the compact set K. The uniform estimate
(5.25) follows.

5.5. Spectral region V. Let us finally discuss the remaining four portions of
the spectral τ–plane,

Σ1 = {τ ∈ C : sup a+ δ < Im τ < 2Re τ,Re τ ≥ L},
Σ2 = {τ ∈ C : sup a+ δ < Im τ < −2Re τ,Re τ ≤ −L},
Σ3 = {τ ∈ C : −2Re τ < Im τ < inf a− δ,Re τ ≥ L},
Σ4 = {τ ∈ C : 2Re τ < Im τ < inf a− δ,Re τ ≤ −L}.
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Here the following L2 resolvent estimates for the stationary damped wave op-
erator, obtained by integration by parts, will be important,

‖(−∆g + 2ia(x)τ − τ2)−1f‖L2(M) ≤
1

2|Re τ |(Im τ − sup a)
‖f‖L2(M),

Re τ 6= 0, Im τ > sup a, (5.26)

‖(−∆g + 2ia(x)τ − τ2)−1f‖L2(M) ≤
1

2|Re τ |(inf a− Im τ)
‖f‖L2(M),

Re τ 6= 0, Im τ < inf a.

Without loss of generality we shall consider the region Σ1. Let u, v ∈ C∞(M)
be fixed and let

F (τ) = ((−∆g + 2ia(x)τ − τ2)−1u, v)L2(M), τ ∈ Σ1.

Then the function F (τ) is analytic in Σ1 and continuous in Σ1. Furthermore,
for any τ ∈ Σ1, using (5.26), we get

|F (τ)| ≤ 1

2Lδ
‖u‖L2(M)‖v‖L2(M).

We have also shown that for any τ ∈ ∂Σ1, the following estimate holds,

|F (τ)| ≤ C‖u‖
L

2n
n+2 (M)

‖v‖
L

2n
n+2 (M)

, (5.27)

with C being independent of τ , and thus, by the Phragmén-Lindelöf principle,
we have the estimate (5.27) for all τ ∈ Σ1. Hence, for any τ ∈ Σ1, we have

‖(−∆g+2ia(x)τ − τ2)−1u‖
L

2n
n−2 (M)

= sup
v∈C∞(M),v 6=0

|((−∆g + 2ia(x)τ − τ2)−1u, v)L2(M)|
‖v‖

L
2n
n+2 (M)

≤ C‖u‖
L

2n
n+2 (M)

,

which completes the proof of the uniform resolvent estimate (1.6) for τ ∈ Σ1.
The proof of Theorem 1.3 is complete.

6. Damped wave equation. Proof of Remark 1.4

Let us first observe that to establish the estimate (1.8) it suffices to prove the
following bound,

‖u‖
L

2(n+1)
n−1 (M)

≤ C|τ |−
2

n+1 ‖P (τ)u‖
L

2(n+1)
n+3 (M)

, (6.1)

valid for u ∈ C∞(M) and τ ∈ Πδ,V . When discussing the derivation of (6.1),
we shall use the same notation as in Section 5.
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6.1. Spectral Region I. Here we assume that τ ∈ C is such that A+ + δ ≤
Im τ := β ≤ sup a + δ and |Re τ | is large. The discussion in Sections 5 and 4
shows that to establish (6.1) in this region, it suffices to obtain the following a
priori estimate

‖u‖2L2(M) ≤ O(h)‖f‖
L

2(n+1)
n+3 (M)

‖u‖
L

2(n+1)
n−1 (M)

, (6.2)

cf. (5.23), which follows by a straightforward inspection of the conjugation
argument in Section 5.

6.2. Spectral Region II. Let τ ∈ C be such that inf a − δ ≤ Im τ ≤ A− − δ
and |Re τ | is large. This region can be treated in the same way as the first
region.

6.3. Spectral region III. Let τ ∈ C be such that |Re τ | ≤ 1
2 |Im τ | and |Im τ |

sufficiently large, depending on the damping coefficient a. Here the estimate
(6.1) follows by the Riesz–Thorin interpolation theorem between the uniform
estimate (1.6) and the following L2 bound for the resolvent,

‖P (τ)−1‖L2(M)→L2(M) = O
(

1

|τ |2

)
. (6.3)

When checking (6.3), we observe that (5.24) implies that

3

4
(Im τ)2‖u‖2L2(M) ≤ 2|Im τ |‖a‖L∞‖u‖2L2(M) + ‖f‖L2(M)‖u‖L2(M).

Assuming that |Im τ | ≥ 4‖a‖L∞ := L2, we get

1

4
|Im τ |2‖u‖L2(M) ≤ ‖f‖L2(M),

showing (6.3).

6.4. Spectral region IV. The estimate (6.1) in the compact spectral region
K = {τ ∈ C : |Re τ | ≤ L, |Im τ | ≤ 2L} \ V follows from the uniform estimate
(1.6) and the embedding (4.13).

6.5. Spectral region V. Here the estimate (6.1) is obtained by an application
of the Phragmén–Lindelöf principle to the holomorphic function

τ 7→ τ
2

n+1 (P (τ)−1u, v)L2(M), u, v ∈ C∞(M)

in this region. The proof of Remark 1.4 is complete.
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