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Control for Schrödinger equations

Control problem on a manifold or a domain M: Fix T > 0 and an
open set ! ⇢ M, a 2 L1 supported in !. For u0, v0 2 L2(T2), does
there exists a control g 2 L2(0,T )⇥ ! such that the solution to

(i@
t

+�)u = g(x , t)1(0,T )a(x), u |
t=0= u0(+bdry conditions)

satisfies
u |

t=T

= v0



Control of waves

Consider the wave equation on a Riemanian manifold M
g

,
a 2 L1(M), a � 0, T > 0

(@2
t

��)u = f ⇥ 1(0,T ) ⇥ a(x), (u |
t=0, @tu |

t=0) = (u0, u1)

Given (u0, u1) 2 H1 = H1(M)⇥ L2(M) initial data and
(v0, v1) 2 H1 target data in energy space, can we choose f in
suitable space such that

(u |
t=T

, @
t

u |
t=T

) = (v0, v1)?

Natural space for f is L2((0,T )⇥M). If answer yes: exact
controlability



Stabilization for waves

(@2
t

��+ a(x)@
t

)u= 0,

(u |
t=0, @tu |

t=0)= (u0, u1) 2 H1 ⇥ L2 = H1

The natural energy is decaying (a � 0)

E (u)(t) =

Z

M

|r
x

u|2 + |@
t

u|2dx , d
dt

E (t) =

Z

M

�a(x)|@
t

u|2dx

Question: speed of decay of E (u)(t)?

• The energy of all solutions tend to 0 i↵ there exists no non
trivial stationary equilibrium, i.e.
��e = �2e, a⇥ e = 0 ) e = 0.

• Semi-group property: If there exists a uniform rate f (t),

8(u0, u1) 2 H1,E (u)(t)  f (t)E (u)(0), lim
t!+1

f (t) = 0,

then can choose f (t) = Ce�ct (uniform) stabilization.



Observation and HUM duality imply equivalence

• There exists a rate f (t) such that lim
t!+1 f (t) = 0 and

8(u0, u1) 2 H1(M)⇥ L2(M),E (u)(t)  f (t)E (u)(0).

(and then can choose f (t) = Ce�ct)

• 9T > 0, c > 0; 8(u0, u1) 2 H1(M)⇥ L2(M), if u is the
solution to the damped wave equation, then

E (u)(0)  C

Z
T

0

Z

M

2a(x)|@
t

u|2dxdt.

• 9T > 0, c > 0; 8(u0, u1) 2 H1(M)⇥ L2(M), if u is the
solution to the undamped wave equation then

E (u)(0)  C

Z
T

0

Z

M

2a(x)|@
t

u|2dxdt.

• The wave equation is exactly controlable in time T



Observation and HUM duality imply equivalence

• 9T > 0,C > 0; 8(u0) 2 L2(M), if u is the solution to the
Schrödinger equation, then

ku0k2
L

2  C

Z
T

0

Z

M

a(x)|u|2(x , t)dxdt.

• The Schrödinger equation is exactly controlable in time T



The geometric control assumption for waves

(a 2 C 0(M),T ) controls geometrically (M, g) if every geodesic
starting from any point x0 2 M in any direction ⇠0, �(x0,⇠0)(s),
encounters {a > 0} in time smaller that T

Theorem (Rauch-Taylor, Bardos-Lebeau-Rauch 88’, N.B- P.G.)

a 2 C 0(M) geometric control is equivalent to observability (and
hence control and stabilization) for wave equations. a 2 L1(M)
Strong Geometric Control is su�cient for observability which
implies Weak Geometric Control.

9T , c > 0; 8⇢0 2 S⇤M, 9s 2 (0,T ), 9� > 0;

a � c a.e. on B(�⇢0(s), �).
(SGCC)

9T > 0; 8⇢0 2 S⇤M, 9s 2 (0,T ); �⇢0(s) 2 supp(a) (WGCC)

supp(a) is the support (in the distributional sense) of a,



The geometric control assumption

Theorem (Lebeau 92’)

a 2 C 0(M) geometric control is su�cient for observability (and
hence control) for Schrödinger. a 2 L1(M) Strong Geometric
Control is su�cient for observability.

Yes No



The geometric control assumption

Theorem (Lebeau 92’)

a 2 C 0(M) geometric control is su�cient for observability (and
hence control) for Schrödinger. a 2 L1(M) Strong Geometric
Control is su�cient for observability.

Yes No



Some examples on tori

Figure: Checkerboards: the damping a is equal to 1 in the blue region, 0
elsewhere. The geodesics are (periodized) straight lines. The first
example satisfies (SGCC) while all others satisfy (WGCC) but
not (SGCC)



Going beyond the Strong Geometric Control condition

• For Schrödinger (GCC) Su�cient, not necessary. Give some
examples and study their stability

• For wave equations, understand the di↵erence between
(SGCC) and (WGCC)



Ja↵ard’s result
Ja↵ard’s theorem states that Schrödinger equation is exactly
controlable by any (non empty) space-time open set :

Theorem (Ja↵ard, 1990)

for any T > 0 and any (non trivial) open set ! ⇢ T2, for any
u0 2 L2(T2), there exists a control g 2 L2(0,T )⇥ ! such that the
solution to

(i@
t

+�)u = g(x , t)1(0,T )⇥!, u |
t=0= u0

satisfies u |
t>T

⌘ 0

• Stable with respect to dimension (Komornik 90’ true on any
rational torus)

• Not stable by perturbations of the metric (false on spheres)
• Probably not stable by first order perturbations (Wunsch
2010’)

• Stable by zeroth’ order perturbations



Control for Schrödinger equations
Theorem (J. Bourgain, N. B., M. Zworski 2012)

Let T2 = (0, 2⇡)⇥ (0, a), a > 0 be any torus. Assume that
V 2 L2(T2). Then, for any T > 0 and any ! ⇢ T2, there exists
C > 0 such that for any u0 2 L2(T2),

ku0k2
L

2  C

Z
T

0
ke it(�+V )u0k2

L

2(!)dt

V 2 L2(T2) replaced by
• V = 0, rational torus, Ja↵ard, (1990), lacunary series, Kahane
results, harmonic analysis

• V = 0, Td , rational torus Komornik (2005) lacunary series,
Kahane results, harmonic analysis

• {0} any torus, N.B. M. Zworski (2004), geometric, microlocal
proof

• C 0(T2) any torus, N.B. M. Zworski (2011)
• {V 2 L1(Td),V continuous except on a set of Lebesque
measure 0}, rational torus?, Anantharaman-Macia (2011)



Stabilization for wave equations: the result
Theorem (Does Stabilization holds? a = 1 in blue region 0
otherwise)

YES 80’
(Taylor-Rauch)

YES
(NB-PG 16)

NO
(NB-PG 16)

NO
(NB-PG 16)

YES
(NB-PG 16)

NO
(NB-PG 16)



Another geometric condition

When the manifold is a two dimensional torus and the damping a
is a linear combination of characteristic functions of rectangles, i.e.
there exists N rectangles (or polygons), R

j

, j = 1, . . .N (disjoint
and non necessarily vertical), and 0 < a

j

, j = 1, . . . ,N such that

a(x) =
NX

j=1

a
j

1
x2R

j

, (1)

then

Theorem (NB–P. Gérard 16)

Stabilization holds for the waves on T2 i↵ there exists T > 0 such
that all geodesics (straight lines) of length T either encounters the
interior of one of the rectangles or follows for some time one of the
sides of a rectangle R

j1 on the left and for some time one of the
sides of another (possibly the same) rectangle R

j2 on the right.



Stabilization for wave equations: the result

YES YES NO

NO YES NO



Reduction to resolvent estimate (time Fourier analysis)

Proposition
Stabilization (or control) for waves is equivalent to a resolvent
estimate:

9C > 0; 8⌧ 2 R, k(��� ⌧2 + 2ia(x)⌧)�1kL(L2)  C (1 + |⌧ |)�1

, (��� ⌧2 + 2ia(x)⌧)u = f ) kuk
L

2  C (1 + |⌧ |)�1kf k
L

2

and to stationary observation estimate

(��� ⌧2)v = g ) kvk
L

2  C (1 + |⌧ |)�1kgk
L

2 + Ckpa(x)vk
L

2

Control for Schrödinger is equivalent to stationary observation
estimate

(��� �)v = g ) kvk
L

2  Ckgk
L

2 + Ckpa(x)vk
L

2



A remark: Ja↵ard’s result implies a weaker estimate, after
N.B-M.Hitrik and N. Anantharaman-M.Leautaud

A priori estimate: (��� ⌧2 + ia(x)⌧)u = f , multiply by u,
integrate on Td get (for any non trivial a � 0)

Z

Td

|r
x

u|2 � ⌧2|u|2 + i⌧a(x)|u|2dx =

Z

M

f u.

) |⌧ |
Z

M

a(x)|u|2dx = Im (

Z

M

f udx)  kf k
L

2kuk
L

2 .

Apply Schrödinger estimate to

(���⌧2)u = f � ia(x)⌧u ) kuk
L

2  C (kf � ia(x)⌧uk
L

2+kauk
L

2),

Gives

kuk
L

2  Ckf k
L

2 + |⌧ |1/2kf k1/2
L

2 kuk1/2
L

2 ) kuk
L

2  C (1 + |⌧ |)kf k
L

2 .



Estimates for (��� ⌧ 2 + 2ia(x)⌧)u = f ,
• Argue by contradiction. If wave estimate not true then there
exists sequences ⌧

n

! +1, u
n

, f
n

, (�� ⌧2
n

)u
n

= f
n

, and

1 = ku
n

k
L

2 > n(
1

1 + |⌧
n

|kfnkL2 + kau
n

k
L

2) (2)

• a 6⌘ 0. Low frequency regime follows from uniqueness of
solutions to elliptic second order operators (Carleman
estimates):

(��� ⌧2)u = 0 ! kuk
L

2  C⌧kuak
L

2

• High frequency regime, describe how mass concentrate in
phase space (X ,⌅) 2 T2 ⇥ R2 (position and momentum).
Natural scales: X ⇠ 1, ⌅ ⇠ ⌧

n

.
• From (2) deduce that no mass accumulate in (the interior of
{a > 0}) and that the mass accumulate along geodesics
(propagation properties of microlocal defect measures)

• Get contradiction from the Geometric control property.



Second microlocalization

(��� ⌧2
n

)u
n

= f
n

,
kf

n

k
L

2 = o(|⌧
n

|),
kau

n

k
L

2 = o(1)
ku

n

k
L

2 = 1

• We know that the total mass of u
n

is (asymptotically when
n ! +1) concentrated on the red geodesic. We also know
that in some regions there is no mass on the right and on
some other regions no mass on the left along this geodesic

• Develop second microlocalization to understand at finer scales
how the mass can concentrate on the red geodesic
{x = 1/2, y 2 [0, 1) 2 T2} from left or right. Scales:

y ⇠ 1, ⌘ ⇠ ⌧
n

, x � 1/2 ⇠ ⌧�↵
n

, ⇠ ⇠ ⌧1�↵
n

.

Describe concentration at these scales and conclude by
contradiction.



A geometric proof of Ja↵ard’s estimate
N.B-M.Zworski02’, see also Anantharaman-Macia 11’

(��� ⌧2
n

)u
n

= f
n

,
kf

n

k
L

2 = o(1),
kau

n

k
L

2 = o(1)
ku

n

k
L

2 = 1

a = 1 in blue circle

• We know that the total mass of u
n

is (asymptotically when
n ! +1) concentrated on geodesics which do not encounter
the blue region, hence on periodic geodesics (non periodic
geodesics are dense and enter the interior of the blue region).
Say one of the red vertical ones

• Write

u
n

=
X

k

e ikyu
n,k(x), �@2

x

� (⌧2
n

� k2))u
n,k = f

n,k .



(�@2
x

� ⌧2
n

+ k2)u
n,k = f

n,k ,

!

The 1-d red region, ! ⇢ (0, 1) satisfies the SGCC. We deduce

ku
n,kk2

L

2(0,1)  C (kf
n.kk2

L

2(0,1) + ku
n,k1!k2

L

2(0,1)),

and summing in k

ku
n

k2
L

2  C (kf
n

k2
L

2 + ku
n

1!⇥(0,1)k2
L

2)  o(1) + Cku
n

1!k2
L

2),

Propagating again vertically gives the contradiction.


