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Abstract. Using tools from semiclassical analysis, we give weighted L∞ estimates for
eigenfunctions of strictly convex surfaces of revolution. These estimates give rise to new
sampling techniques and provide improved bounds on the number of samples necessary
for recovering sparse eigenfunction expansions on surfaces of revolution. On the sphere,
our estimates imply that any function can be efficiently recovered to within a factor of
its best s-term approximation in the first N spherical harmonics from its values at m &
sN1/6 log4(N) sampling points, improving on the previous bound of m & sN1/4 log4(N)
necessary sampling points. In particular, any function having an s-sparse expansion can
be recovered exactly from such undersampled measurements.

1. Introduction

Consider the sphere and a chosen rotational action generated by ∂ϕ:

S2 := {x ∈ R3 : x2
1 + x2

2 + x2
3 = 1} , ∂ϕ = x1∂x2 − x2∂x1 ,

S2 3 x = (cosϕ sin θ, sinϕ sin θ, cos θ) , 0 ≤ θ ≤ π , 0 ≤ ϕ ≤ 2π .

Let k, ` ∈ Z, |k| ≤ `, and let Y k
` (ϕ, θ) be the L2 normalized spherical harmonics, the joint

eigenfunctions of the Laplacian in spherical coordinates ∆S2 and the rotational generator

∂ϕ:

−∆S2Y k
` = −

(
1

sin2 θ
∂2
ϕ +

1

sin θ
∂θ (sin θ∂θ)

)
Y k
` = l(l + 1)Y k

` ,
1

i
∂ϕY

k
` = kY k

` ,∫ 2π

0

∫ π

0

Y k
` (ϕ, θ)Y k′

`′ (ϕ, θ) sin θdθdϕ = δ``′δkk′ .

(1.1)

Applied to the sphere, our main result on weighted L∞ estimates reads

Theorem 1. Let Y k
` (ϕ, θ), 0 ≤ ϕ ≤ 2π, 0 ≤ θ ≤ π, be the spherical harmonics defined

above. Then for ` ≥ 1,

| sin2 θ cos θ|1/6 |Y k
` (ϕ, θ)| ≤ C`1/6 , (1.2)

where C is a universal constant.
1
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The power `1/6 in (1.2) can be explained as follows. Taking the Fourier expansion in ϕ

reduces the first differential equation in (1.1) to(
1

sin θ
h∂θ (sin θh∂θ) +

α2

sin2 θ
− 1

)
u = 0, h = (`(`+ 1))−1/2, α = hk,

where k ∈ Z is an eigenvalue of 1
i
∂ϕ and Y k

` = u(θ)eikϕ. When α is such that 0 <

ε < |α| < 1 − ε, this equation has two turning points at sin θ = ±α. Physically this

corresponds to caustic formation: the focusing at turning points increases the intensity of

the wave function, that is, it increases the L∞ norm by a factor of h−1/6 ∼ `1/6 according

to Proposition 4.5 below.1 Since the h−1/6 loss happens all over the sphere, such growth in

the L∞ norm cannot be eliminated by a weight function. In order to get a uniform bound

on the entire sphere in (1.2), we choose a weight function vanishing at the pole and the

equator. A more detailed explanation of the weights and the principles of semiclassical

analysis on which the analysis is based is given at the end of Section 3.

1.1. Motivation. Consider functions on the sphere which are bandlimited and sparse:

f(ϕ, θ) =

√
N−1∑
`=0

∑̀
k=−`

c`,kY
k
` (ϕ, θ); at most s < N of the c`,k are nonzero. (1.3)

Functions well-approximated as bandlimited and sparse arise in applications ranging from

models for protein structure [22] to cosmic microwave background (CMB) data [1]. In

[26], the authors showed that such functions can be efficiently reconstructed from far less

information than their ambient dimension suggests; in particular, they showed that for

certain sets of sampling points (ϕi, θi) ∈ S2, i ∈ [m], of size

m & sN1/4 log4N, (1.4)

any function f of the form (1.3) can be reconstructed from its values f(ϕi, θi) as the

function of bandwidth
√
N − 1 whose coefficient vector c = c`,k has minimal `1-norm

‖c‖1 =
∑√N−1

`=0

∑`
k=−` |c`,k|. It is shown that m angular coordinates (ϕi, θi) where m

satisfies (1.4), drawn independently from the measure dθdϕ on [0, π] × [0, 2π], will almost

always be a set of sampling points for which this holds.

Theorem 1 of this paper improves on the results in [26] by improving on the required

number of sampling points for recovering functions of the form (1.3) to

m & sN1/6 log4(N) (1.5)

by drawing angular coordinates (ϕi, θi) independently from the measure | tan(θ)|1/3dθdϕ on

[0, π]× [0, 2π]. The specific statement is given in Corollary 1. As seen in Figure 1.1(c), this

measure generates higher sampling density around the poles and equator of the sphere; the

1The h−1/6 factor can be seen on the model example of the equation (h2D2
x + x)v = 0, with a turning

point at x = 0 and locally L2-normalized solution h−1/6Ai(h−2/3x), where Ai is the Airy function. The
h−1/6 normalization here follows from the asymptotic behavior of Ai(y) as y → −∞.
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measure dθdϕ, illustrated in Figure 1.1(b) and on which the analysis of [26] is based, only

generates higher sampling density at the poles.

It remains open whether the factor of N1/6 in (1.5) can be eliminated. As the discussion

following Theorem 1 indicates, such a result cannot be proven using weight functions alone.

1.2. Sparse recovery for arbitrary surfaces of revolution. The weighted L∞ es-

timates given in Corollary 3 of Section 3 provide sampling strategies more broadly for

recovering sparse eigenfunction expansions on any strictly convex surface of revolution.

In particular, assume that M is a strictly convex surface of revolution parametrized by

(r, ϕ) ∈ [r−, r+]× [0, 2π). The induced Riemannian metric on M is given by

g = dr2 + a(r)2dϕ2, a(r) = (r+ − r)(r − r−)b(r), b(r±) > 0, b′(r±) = 0,

where a(r) has a unique nondegerate local maximum at r = r0, r− < r0 < r+: a′(r) 6= 0,

r 6= r0, a′′(r0) < 0. In particular, using Corollary 3 in Section 3, we will prove the following.

Proposition 1.1. Suppose that M is a strictly convex surface of revolution and consider

{ψj}, the (L2-normalized) joint eigenfunctions of the Laplace-Beltrami operator on M and

the rotational generator 1
i
∂ϕ.

Let m, s, and N be given integers satisfying

m & sN1/6 log4(N), (1.6)

and suppose that m coordinates (ϕi, ri)
m
i=1 are drawn independently from the measure(
a(r)

|r − r0|

)1/3

drdϕ

on [r−, r+] × [0, 2π). With probability exceeding 1 − N− log3(s) with respect to the draw of

the coordinates, any function f(ϕ, r) =
∑N

j=1 cjψj(ϕ, r) which is s-sparse, ‖c‖0 ≤ s, is

recovered exactly from the samples
(
f(ϕi, ri)

)m
i=1

as the minimizer of an `1-minimization

program:

c = arg min
z∈CN

‖z‖1 subject to
N∑
j=1

zjψj(ϕi, ri) = f(ϕi, ri), i ∈ [m]. (1.7)

Applying Proposition 1.1 to the sphere, we get the following corollary.

Corollary 1. With high probability with respect to the draw of m & sN1/6 log4N i.i.d.

sampling points on the sphere (ϕi, θi) from the measure | tan1/3(θ)|dθdϕ on [0, π]× [0, 2π],

any s-sparse function of the form (1.3) is recovered exactly as the minimizer of the convex

program (1.7).
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Figure 1.1. The spherical sampling measures (a) sin(θ) dθdϕ, (b) dθdϕ,

and (c) | tan(θ)|1/3 dθdϕ, as illustrated through m = 10, 000 i.i.d. samples

from each measure.

1.3. Numerical experiments. In this section we assess the impact of the sparse recovery

results in Corollary 1 for problem sizes of practical interest. We draw m sampling points

(ϕi, θi) i.i.d. from each of the measures (a) sin(θ) dθdϕ, (b) dθdϕ, and (c) | tan(θ)|1/3 dθdϕ,

as illustrated in Figure 1.1, and compare the rate of correct reconstruction of sparse ban-

dlimited functions via `1-minimization (1.7) for each of the three sampling schemes. More

specifically, for each choice of sampling measure, we vary a number of sampling points m

between 1 and N , and vary a sparsity level s between 1 and m. For each choice of m and s,

we generate 50 s-sparse bandlimited functions by repeatedly choosing a support S ⊂ [N ] of

size |S| = s at random, and prescribing to the chosen support i.i.d. Gaussian coefficients.

From left to right, the phase diagrams in Figure 1.2 correspond to sampling measures

(a) sin(θ)dθdϕ, (b) dθdϕ, and (c) | tan(θ)|1/3dθdϕ. White indicates complete recovery, and

black indicates no recovery whatsoever. It is clear that the sampling strategies (b) and (c)

give better results than (a). Diagrams (b) and (c) both show a sharp transition between

complete recovery and no recovery whatsoever as the ratio s/m increases as a function of

m/N . However, the region of phase space corresponding to complete recovery is noticeably

larger in (3) when m/N is large. Note that when m = N , all three sampling schemes

should give perfect reconstruction as the system of equations y = Ac in the minimization

problem (1.7) has a unique solution with probability 1. However, plots (a) and (b) show zero

reconstruction around this point, an artifact of round-off error due to the ill-conditioning

of the corresponding sampling schemes.

Organization of the paper. In Section 2 we review the relationship between sparse re-

covery techniques on manifolds and weighted L∞ bounds on the associated eigenfunctions.

We then show how the main results of this paper strengthen and generalize existing sparse



WEIGHTED EIGENFUNCTION ESTIMATES 5

m/N

s/
m

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

m/N
s/
m

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

m/N

s/
m

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

(a) (b) (c)

Figure 1.2. Phase diagrams illustrating transition between uniform re-

covery (white) to no recovery whatsoever (black) of sparse spherical har-

monic expansions f(ϕ, θ) =
∑19

`=0

∑`
k=−` c`,kY

k
` (ϕ, θ), ‖c‖0 ≤ s, from sam-

ples f(ϕi, θi). In (a), the sampling points are drawn from the volume measure

sin θ dθdϕ illustrated in Figure 1.1(a). In (b) the sampling points are drawn

from the Cartesian measure dθdϕ illustrated in Figure 1.1(b), and in (c) the

sampling points are drawn from the measure | tan(θ)|1/3 dθdϕ illustrated in

Figure 1.1(c).

recovery bounds. The generalization of Theorem 1 to arbitrary convex surfaces of revo-

lution is given in Theorem 2 of Section 3, while Section 4 provides a detailed account of

preliminaries from semiclassical analysis needed for the proof which is presented in Section

5.

Notation. In the paper C denotes a constant, independent of asymptotic parameters,

but changing depending on the context. We use the usual O notation with subscripts to

indicate that the associated constant might depend on the variable in the subscript, for

instance f = Ox(g) means that f(x, y) ≤ C(x)g(y) for some C(x) depending on x. We

follow the basic notational convention listed in [31, Appendix A]. Consequently the above

notation should not be confused with u = OV (g) for V a Hilbert space; the latter means

that ‖u‖V ≤ Cg. The notation f . g means that there exists C such that f ≤ Cg. Finally,

we use the shorthand [N ] = {1, 2, ..., N}. A vector x ∈ CN or x ∈ RN is called s-sparse if

it is supported on an index set S ⊂ [N ] of cardinality |S| ≤ s, and we specify an s-sparse

vector using the notation ‖x‖0 := |S| = {#j : |xj| > 0}.

2. Compressed sensing and weighted L∞ estimates

Suppose we have a finite system of functions {ψj : j ∈ [N ]} on a compact manifold M .

Suppose we also have a function f : M → C which is s-sparse with respect to this function
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system,

f =
N∑
j=1

cjψj, ‖c‖0 ≤ s < N. (2.1)

The area of compressed sensing [4] is concerned with the following questions. For a given

system {ψj} and s-sparse function f of the form (2.1), how many samples f(xi) where

xi ∈M do we need to uniquely identify f? Is it possible moreover to efficiently and stably

reconstruct such a function from these samples? To distinguish a linear combination of the

N functions ψj we would clearly need N samples. On the other hand, if f is s-sparse and

the locations of its s nonzero coefficients cj are known, then we would need only s samples

to distinguish f . If we know a priori that f is s-sparse but we do not know the locations

of the s coefficients, then 2s samples can still suffice for distinguishing f . Consider the

matrix Ψ ∈ Cm×N with entries Ψi,j = ψj(xi), and observe that a vector of m samples can

be written as (
f(x1), f(x2), . . . , f(xm)

)t
= Ψc. (2.2)

Each s-sparse function f has a distinct image y = Ψc if every sub-matrix of the m × N
matrix Ψ consisting of at most 2s columns is non-singular, and this is true for many

m×N matrices having only m = 2s rows (consider matrices having i.i.d. Gaussian entries,

for example.) Subject to this “restricted invertibility” condition, one could distinguish the

unique s-sparse solution to y = Ψc by minimizing over all s-sparse vectors c. In general, this

is an NP-hard problem. However, if we strengthen the “restricted invertibility” condition

to a certain restricted isometry condition — a property that can only hold if Ψ has at least

m & s log(N/s) rows [7], [13], [9] — then polynomial-time sparse recovery algorithms are

possible. In the compressed sensing literature, a matrix Ψ ∈ Cm×N is said to have the

restricted isometry property of order 2s if, for a fixed parameter δ < 1,

(1− δ)‖u‖2 ≤ ‖Ψu‖2 ≤ (1 + δ)‖u‖2, ∀u : ‖u‖0 ≤ 2s. (2.3)

As shown in [4], if a matrix Ψ ∈ Cm×N has this property, and if y = Ψc for some s-sparse

vector c ∈ CN , then c is guaranteed to also be the vector of minimal `1-norm among

solutions z to the underdetermined system Ψz = y. That is,

c = arg min
z
‖z‖1 subject to Ψz = Ψc. (2.4)

Moreover for an arbitrary vector c ∈ CN , the solution c# to the `1-minimization program

(2.4) will satisfy the error bound

‖c− c#‖2 . ‖c− c0‖1/
√
s, (2.5)

where c0 is the best s-sparse approximation to c, satisfying ‖c−c0‖p = arg minz∈CN :|z|≤s ‖c−
z‖p, and being the s-sparse vector which is equal to c over the support of the s largest-

magnitude entries of c and zero everywhere else.
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Recall that `1-minimization can be solved efficiently as a linear programming problem in

the real-valued case and as a second-order cone programming problem in the general case.

2.1. Sparse recovery for bounded orthonormal systems. In general the restricted

isometry property (2.3) is hard to verify for a given matrix Ψ. For certain random matrices,

this property can nevertheless be guaranteed with high probability. Suppose we have a

system of functions {ψj : j ∈ [N ]} which are orthonormal on a measurable space M

endowed with a probability measure ν, i.e.∫
M

ψj(x)ψi(x)dν(x) = δi,j, i, j ∈ [N ]. (2.6)

Suppose further that m sampling points xi ∈M are drawn independently from the orthogo-

nalization measure ν. Then, as shown in [23], with high probability with respect to the draw

of the sampling points, the normalized sampling matrix 1√
m

Ψ, where Ψi,j = ψj(xi), satisfies

the restricted isometry property (2.3) as long as the number of samples m & B2s log4(N),

where

B = max
j
‖ψj‖∞. (2.7)

The parameter B should be interprested as a measure of incoherence between the basis ψj
and pointwise measurements; the smaller B, the fewer number m of sampling points are

needed to recover sparse expansions (2.1). This can be interpreted as a discrete Heisenberg

uncertainty principle [10]. A precise statement follows.

Proposition 2.1. Suppose {xi : i ∈ [m]} is a set of independent and identically distributed

(i.i.d.) sampling points drawn from the orthogonalization measure ν associated to an or-

thonormal system of functions {ψj : j ∈ [N ]} with uniform bound B = maxj ‖ψj‖∞. If

m & B2s log4(N), (2.8)

then with probability at least 1−N− log3(s), the following holds for all f(x) =
∑N

j=1 cjψj(x).

From samples (f(xi))
m
i=1, the minimizer

c# = arg min
z∈CN

‖z‖1 subject to
N∑
j=1

zjψj(xi) = f(xi), i ∈ [m] (2.9)

satisfies the error bound

‖c− c#‖2 . ‖c− c0‖1/
√
s, (2.10)

where c0 is the best s-sparse approximation to c. If f is s-sparse, then reconstruction is

exact c# = c.

Let us apply Proposition 2.1 to a concrete example. The orthonormal system of complex

exponentials ψj(t) = e2πijt, t ∈ [0, 1], has optimal uniform bound B = maxj ‖ψj‖∞ = 1.

Applying Proposition 2.1, we see that m & s log4(N) sampling points drawn independently
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from the uniform measure on [0, 1] will be sufficient to identify any s-sparse trigonometric

polynomial of degree at most N .

The complex exponentials are eigenfunctions of the Laplacian on the circle. More gener-

ally, for a compact n-dimensional Riemannian manifold, the L2-normalized eigenfunctions

with eigenvalue λ are bounded in L∞ by λ(n−1)/4 – see [31, Section 7.4] and references

given there. Since the number of eigenvalues less than λ behaves like N = λn/2 (see [17] or

[31, Section 14.3]), we obtain a uniform bound on the first N eigenfunctions of a general

n-dimensional manifold:

B ' N
n−1
2n .

Applying Proposition 2.1 gives the following.

Corollary 2. Let (M, g) be a compact n-dimensional Riemannian manifold and let {ψj :

j ∈ [N ]} be the first N eigenfunctions of the Laplacian on M (with respect to the ordering

of eigenfunctions).

Suppose {xi : i ∈ [m]} is a set of independent and identically distributed sampling points

drawn from the measure given by the Riemannian volume. If the number of sampling points

satisfies

m & sN
n−1

n log4(N), (2.11)

then with probability at least 1−N− log3(s), the following holds for all f(x) =
∑N

j=1 cjψj(x).

If Ψ is the sampling matrix associated to the eigenfunctions and sampling points, and if

c# is the `1-minimizer as defined in (2.9), then

‖c− c#‖2 . ‖c− c0‖1/
√
s,

where c0 is the s-term approximation to c.

When n = 1, we recover the near-optimal number of measurements m & s log4(N).

However, even for n = 2, the number of measurements m & sN1/2 log4N represents is

significantly weaker result, and as the dimension n increases, the bound (2.11) becomes

weaker and weaker as the basis functions can become more and more localized on the

manifold. In [25], Proposition 2.1 was generalized to give estimates with a wider range of

applicability.

Proposition 2.2 (From [25]). Let {ψj : j ∈ [N ]} be an orthonormal system of functions

on a probability space M with orthogonalization measure ν.

Suppose that ω : M → R satisfies
∫
M
ω(x)ν(x)dx = 1, and suppose that the functions

Qj(x) = ω(x)−1/2ψj(x) are bounded:

sup
j∈[N ]

sup
x∈M
|Qj(x)| ≤ K. (2.12)

Suppose that m & K2s log4(N), and suppose that {xi : i ∈ [m]} are i.i.d. sampling points

from the composite orthogonalization measure µ = ων.
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Then with probability at least 1−N− log3(s) the following holds for all f(x) =
∑N

j=1 cjψj(x).

The minimizer

c# = arg min
z∈CN

‖z‖1 subject to
N∑
j=1

cjψj(xi) = f(xi), i ∈ [m], (2.13)

satisfies the error bound

‖c− c#‖2 . ‖c− c0‖1/
√
s, (2.14)

where c0 is the best s-sparse approximation to c.

Proof. The system {Qj}j∈[N ], where Qj(x) = ω(x)−1/2ψj(x), satisfies supj∈[N ] ‖Qj‖∞ ≤
K. Moreover, by design the Qj are orthonormal with respect to the composite measure

µ = ων. Noting that the set of linear constraints
∑N

j=1 cjψj(xi) = f(xi) are equivalent to

the constraints ω(xi)
−1/2

∑N
j=1 cjψj(xi) = ω(xi)

−1/2f(xi), we apply Proposition 2.1 to the

system {Qj} to derive the stated result. �

Remark: In Proposition 2.1, and in turn Proposition 2.2 and Proposition 1.1, the `1-

minimization program can be adapted to be robust to measurement noise yi = f(xi)± ηj;
for details, we refer the reader to [23].

Proposition 2.2 elucidates the connection between weighted L∞ estimates on orthonormal

function systems and sparse recovery guarantees. Below we summarize how Proposition

2.2, applied to the weighted L∞ estimates of this paper, improves and generalizes previous

results on sparse function recovery on the sphere and gives rise to Proposition 1.1.

(1) In [20], Krasikov proved the following weighted L∞ estimate for the spherical har-

monics Y k
` :

(sin θ)1/2|Y k
` (ϕ, θ)| . `1/4.

This estimate implies

sup
0≤`≤

√
N−1

sup
−`≤k≤`

(sin θ)1/2|Y k
` (ϕ, θ)| . N1/8. (2.15)

In [26], the authors applied Proposition 2.2 using this estimate to conclude that

m & sN1/4 log4N sampling points on the sphere with angular coordinates (ϕi, θi)

drawn independently from the measure dθdϕ on [0, π]× [0, 2π) suffice for recovering

sparse spherical harmonic expansions of the form (1.3). This improves on the m &
sN1/2 log4(N) required sampling points drawn i.i.d. from the uniform distribution

on the sphere as given by Corollary 2.

(2) The weighted L∞ estimate

| sin2 θ cos θ|1/6 |Y k
` (ϕ, θ)| ≤ C`1/6 (2.16)

given in Theorem 1 provides even stronger sparse recovery guarantees for spherical

harmonic expansions. Applying this estimate to Proposition 2.2 gives Corollary
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1: m & sN1/6 log4(N) sampling points (ϕi, θi) from the measure | tan(θ)|1/3dθdϕ
suffice for recovering sparse spherical harmonic expansions (1.3).

(3) As summarized in Proposition 1.1, the weighted L∞ estimate of Corollary 3 gives rise

to more general sampling strategies for recovering sparse eigenfunction expansions

on strictly convex surfaces of revolution.

3. Weighted eigenfunction estimates for surfaces of revolution

If M be a smooth surface of revolution, let ∂ϕ be the vector field generating the action of

the circle S1 = R/(2πZ) on M by rotations around the axis of revolution. Denote by ∆ the

Laplace–Beltrami operator on M , and by Dϕ the self-adjoint operator 1
i
∂ϕ which commutes

with ∆. This follows the standard convention for the operators quantizing momenta.

Let h > 0 be a small parameter, and assume that u ∈ C∞(M) satisfies the conditions

‖u‖L2 ≤ C0 , (3.1)

‖(−h2∆− 1)u‖L2 ≤ C0h , (3.2)

(hDϕ − α)u = 0 . (3.3)

Here α ∈ hZ varies in a fixed compact set and C0 is some fixed constant. Both −h2∆− 1

and hDϕ − α are semiclassical differential operators; we will freely use the notation of

semiclassical analysis that can be found, for example, in [31, Chapter 4] (see also [21]).

We also assume that u satisfies the following localization assumption: there exists a

compactly microlocalized operator X(h) (that is, X(h) = ψw(x, hDx) +OH−N
h →HN

h
(hN) for

some ψ ∈ C∞c (T ∗M) and each N) and fixed constants CN such that for each N ,

‖(1−X(h))u‖HN
h
≤ CNh

N . (3.4)

Remark: Conditions (3.1), (3.2), and (3.4) are in particular satisfied if u is an L2 normal-

ized eigenfunction of −∆ for an eigenvalue in the segment

h−2[1− C0h, 1 + C0h] ,

as applied in Proposition 1.1.

The weaker condition (3.2) has the advantage that it is local:

Proposition 3.1. Assume that χ ∈ C∞(M) and Dϕχ = 0. If u satisfies (3.1)–(3.3), then

χu satisfies these conditions as well, possibly with larger value of the constant C0.

Similarly, if condition (3.4) holds for u, it holds for χu.

Proof. Conditions (3.1) and (3.3) for χu are trivially satisfied; we now verify (3.2). Since

the commutator [−h2∆, χ] is equal to h times a semiclassical differential operator of order



WEIGHTED EIGENFUNCTION ESTIMATES 11

Figure 3.1. A surface of revolution

1, we have

‖(−h2∆− 1)χu‖L2 ≤ ‖χ(−h2∆− 1)u‖L2 + ‖[−h2∆, χ]u‖L2

= O(h(1 + ‖u‖H1
h
)).

However,

‖u‖2
H1

h
∼ ((−h2∆ + 1)u, u)L2 = O(1)

by (3.1) and (3.2). Here Hs
h denotes the semiclassical Sobolev space defined using the norm

‖(I − h2∆M)s/2u‖L2 .

To verify (3.4), we use that χu = χX(h)u +OC∞(h∞); however, if Y (h) is a compactly

microlocalized pseudodifferential operator equal to the identity microlocally near the wave-

front set of X(h) (and thus of χX(h)), then (1−Y (h))χu = (1−Y (h))χX(h)u+OC∞(h∞) =

OC∞(h∞).

�

Proposition 3.1 implies that, if we want to obtain weighted L∞ (or any other local)

estimates on every function u satisfying (3.1)–(3.3), it is enough to cover M by open sets

invariant under rotation (which we will call bands) and prove the estimates for functions

supported in each of these bands. The next result provides weighted L∞ estimates for three

common types of behavior of the metric in bands:

Theorem 2. Let Uε ⊂ M be a band given by one of the three cases below; the small

parameter ε > 0 characterizes the width of this band. Then for ε > 0 and h > 0 small

enough and some constant C, and for each α ∈ hZ varying in a fixed compact set, each

function u ∈ C∞(M) supported in Uε and satisfying (3.1)–(3.4) has the following weighted

L∞ estimates:

(1) Regular case: Uε has coordinates (r, ϕ) ∈ (−ε, ε)× S1 and the metric

g = g(r)[dr2 + dϕ2]. (3.5)

Here g is a smooth function independent of ε, and g(0) > 0, g′(0) 6= 0. The

corresponding estimate is

|u(r, ϕ)| ≤ Ch−1/6. (3.6)
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r = 0

r = 0

Regular Equator Pole

Figure 3.2. Three considered types of bands, with a geodesic shown for each type

(2) Elliptic equator: Uε has the same coordinates and metric as in the regular case, but

g(0) > 0, g′(0) = 0, and g′′(0) < 0. The corresponding estimates are

|u(r, ϕ)| ≤ C min(h−1/4 , h−1/6r−1/6 , h−1/6|g(0)− α2|−1/12); (3.7)

|u(r, ϕ)| ≤ Cr−1/2 for |g(0)− α2| < εr2. (3.8)

(3) Pole: Uε has coordinates (x, y) = (r cosϕ, r sinϕ), with |x|2 + |y|2 < ε2, and the

metric

g = g(x2 + y2)[dx2 + dy2] = g(r2)[dr2 + r2 dϕ2], (3.9)

where g is a smooth function and g(0) > 0. The corresponding estimates are

|u(r, ϕ)| ≤ C min(h−1/2 , h−1/6r−1/3 , h−1/6|α|−1/3); (3.10)

|u(r, ϕ)| ≤ Cr−1/2 for |α| < εr. (3.11)

Remark. The metric of a surface of revolution can be brought locally to the form (3.5)

or (3.9), with g(0) > 0, with no conditions on the derivatives of g. Indeed, away from the

poles (points on the surface lying on the axis of rotation), the metric has the form

(1 + g̃′(r̃)2)dr̃2 + g̃(r̃)2 dϕ2,

where r̃ is the projection onto the axis of rotation and g̃ is a positive function giving the

profile of the surface. Making a change of variables r̃ → r with dr/dr̃ = g̃(r̃)−1
√

1 + g̃′(r̃)2,

we bring the metric to the form (3.5). The case of a pole is handled similarly. As (r̃, ϕ) we

can use the geodesic polar coordinates with respect to the pole and a different change of

variables r̃ → r.

We obtain the following corollary for convex surfaces of revolution. The estimate is the

analogue of the estimate (1.2) in the case of the sphere:
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Corollary 3. Suppose that M is a strictly convex surface of revolution parametrized by

(r, ϕ) ∈ [r−, r+] × [0, 2π), with the metric dr2 + a(r) dϕ2 as in the discussion preceeding

Proposition 1.1. Suppose that

(∆− λ)u = 0, (1
i
∂ϕ − k)u = 0, ‖u‖L2(M) = 1. (3.12)

Then,

a(r)1/3|r − r0|1/6|u(r, ϕ)| ≤ Cλ1/12. (3.13)

The Riemannian volume measure on M is given by a(r)drdϕ which means that the

sampling measure based on (3.13) should be given by(
a(r)

|r − r0|

)1/3

drdθ;

here a(r)/(r − r0) is the replacement for tan θ. The constant K in (2.12) is given by

K ' N1/12.

Theorem 2 does not cover the case of a band with metric of the form (3.5) and g′(0) = 0,

g′′(0) ≤ 0; in particular, it does not apply to the case of a hyperbolic equator, when

g′′(0) < 0. This case does not occur for convex surfaces considered here.

Let us give an informal explanation of the estimates in Theorem 2. By considering

an eigenfunction decomposition of u, we can reduce to the case when u is an exact joint

eigenfunction of −h2∆ and hDϕ, rather than a function satisfying (3.2). Using semiclassical

analysis (see [31, 21] for the general theory and the references below for specific facts we

will be using), we can relate the behavior of the ‘quantum’ object u for small values of the

‘Planck constant’ h to the corresponding ‘classical’ integrable Hamiltonian system given by

the principal symbols p and q of −h2∆ and hDϕ, respectively. The principal symbol of a

differential operator is a polynomial (on each fiber) function on the cotangent bundle T ∗M ,

obtained formally by replacing each instance of hDxj
by the corresponding momentum ξj,

and then discarding the terms of higher order in h. In our situation, p is the square of the

norm induced by g on the cotangent bundle and q is the momentum corresponding to ϕ.

The function u will then be concentrated, or microlocalized, on the set

Λ = {p = 1, q = α} ⊂ T ∗M.

One can in fact approximate u by certain explicit highly oscillating integral expressions up

to an O(h∞) error; our analysis would consist of studying the asymptotic behavior of these

integrals as h→ 0. The set Λ consists of unit geodesics with prescribed angular momentum

(that is, of rotations of one such geodesic); there are two possibilities:

(1) Λ is a Lagrangian torus;

(2) Λ is a circle corresponding to an equator.
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In case (1), u is a Lagrangian distribution associated to Λ – that is, it can be written

as a finite sum of expressions of the WKB form (4.1), with Φ(x, θ) locally parametrizing

the Lagrangian Λ and a some smooth symbol – see Section 4.1 for details. The L∞ norm

of u corresponds to how well Λ projects onto the base space M . At a point where the

tangent space of Λ projects surjectively onto M , the L∞ norm of u is O(1). The only other

possibility that could arise in the regular case is a turning point; that is, a point where the

function r has a nondegenerate critical point when restricted to a geodesic (for the sphere,

these are the points of maximal and minimal latitude on a given great circle). The behavior

of u near the turning points is similar to that of the Airy function, and its L∞ norm is of

order h−1/6 by a variant of Van der Corput’s lemma.

If one is unfamiliar with Lagrangian distributions, the simple model case to consider

would be the eigenfunctions of the Laplacian h2D2
x on the circle S1 = R/(2πZ). Those

are given by eiλx/h, with the eigenvalue λ2. (Note that only a discrete set of λ is possible

here – this is a baby version of the quantization condition mentioned in the next section.)

The corresponding symbol is p(x, ξ) = ξ2 and the corresponding Lagrangian would be

{x ∈ S1, ξ = λ}; it projects surjectively onto the x variables, which corresponds to the fact

that we do not need any integration variables θ in the formula (4.1) to define eigenfunctions,

and to the fact that the L∞ norm of eigenfunctions is bounded by a constant.

For α = 0, a new kind of problem arises – the intersection of Λ with the fiber of T ∗M at

a pole is a not a point, but a circle consisting of all unit covectors at the pole, leading to a

loss of h−1/2 in the L∞ norm. This problem disappears and we get back the h1/6 estimate

if either α is away from zero or we are away from the pole, which is reflected in (3.10). If

α = 0, the turning points are located at the poles; therefore, away from the poles we get

an O(1) estimate. The blow-up rate of this estimate as we approach a pole is quantified

by (3.11).

In case (2) we can separate out the ϕ variable (as Λ does not pass through any poles)

and obtain a one-dimensional problem; then u is a low-lying eigenfunction of a Schrödinger

operator with a potential well. The bottom of the well eigenfunctions (those with g(0) −
α2 = O(h)) are approximated by the Gaussian h−1/4e−r

2/(2h); we see that they are

O(min(h−1/4, r−1/2)) .

This explains the first part of (3.7) and (3.8). However, if g(0)− α2 is bounded away from

zero, we are away from the equator and thus back to case (1), which explains the h−1/6

term in (3.7).

4. Preliminaries

4.1. Semiclassical Lagrangian distributions. In this subsection, we briefly review the

local theory of semiclassical Lagrangian distributions; see for example [2],[15, Chapter 6],
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[16, Chapter 8] or [29, Section 2.3] for a detailed account, and [19, Section 25.1] or [14,

Chapter 11] for the presentation in the closely related microlocal case.

Assume that X is a manifold and Φ(x, θ) is a smooth real-valued function defined on an

open set UΦ ⊂ X × Rm. Define the critical set CΦ ⊂ UΦ by

(x, θ) ∈ CΦ ⇐⇒ ∂θΦ(x, θ) = 0.

The function Φ is called a (nondegenerate) phase function, if for each (x, θ) ∈ CΦ, the

differentials d(∂θ1Φ), . . . , d(∂θmΦ) are linearly independent at (x, θ). If this is the case, the

set

ΛΦ = {(x, ∂xΦ(x, θ)) | (x, θ) ∈ CΦ} ⊂ T ∗X

is an (immersed) Lagrangian submanifold. We say that Φ generates ΛΦ; in general, if

Λ ⊂ T ∗X is a Lagrangian submanifold and (x, ξ) ∈ ΛΦ ⊂ Λ, then we say that Φ generates

Λ near (x, ξ). For each Lagrangian submanifold Λ and each (x, ξ) ∈ Λ, there exists a phase

function generating Λ near (x, ξ); however, such phase function is not unique.

If Λ ⊂ T ∗X is an (embedded) Lagrangian submanifold, Φ is a phase function generating

Λ near some point, and a(x, θ;h) ∈ C∞c (UΦ) is bounded in C∞x,θ uniformly in h, we can define

the h-dependent family of smooth functions

u(x;h) = h−m/2
∫
eiΦ(x,θ)/ha(x, θ) dθ. (4.1)

Here the factor h−m/2 is chosen so that ‖u(x;h)‖L2 is bounded by a certain C∞ seminorm

of a and equivalent to the L2 norm of a|CΦ
, modulo O(h) terms. We call u(x;h) a (semi-

classical compactly microlocalized) Lagrangian distribution associated to Λ. This family is

microlocalized on ΛΦ in the following sense:

b ∈ C∞c (T ∗X) , b|neigh(ΛΦ) = 0 =⇒ ‖bw(x, hDx)u(x;h)‖L2 = O(h∞) .

More generally, we call u(x;h) a Lagrangian distribution associated to Λ, if it is the sum

of finitely many expressions of the form (4.1), for different phase functions parametrizing

Λ, and an OC∞c (h∞) remainder.

If u(x;h) is a Lagrangian distribution associated to Λ, Φ is a phase function generating

Λ, and u is microlocalized in a compact subset of ΛΦ, then we can always write u in the

form (4.1) for some amplitude a modulo an O(h∞) remainder. (The general case can al-

ways be reduced to this one by a microlocal partition of unity, if we know enough phase

functions to cover the whole Λ.) In other words, if two phase functions locally generate

the same Lagrangian, then oscillatory integrals (4.1) associated to one phase function can

be written in the form (4.1) using the other phase function as well. However, the for-

mulas relating even the principal parts of the amplitudes corresponding to different phase

functions are quite complicated; obtaining a geometric interpretation for these formulas is

the subject of global theory of Lagrangian distributions. This global theory is needed to

produce quantization conditions that we use below; however, as we are only interested in
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estimating the resulting eigenfunctions and in some rough properties of the spectrum given

by quantization conditions, we do not use the global theory directly.

4.2. Specific generating functions and L∞ estimates. In this subsection, we assume

that Λ ⊂ T ∗Rn is a Lagrangian submanifold and (x0, ξ0) ∈ Λ.

Proposition 4.1. Take 0 ≤ m ≤ n and denote x = (x′, x′′), ξ = (ξ′, ξ′′), where x′, ξ′ ∈ Rm

and x′′, ξ′′ ∈ Rn−m. Assume that T(x0,ξ0)Λ projects surjectively onto the (x′, ξ′′) variables.

Then there exists a function S(x′, ξ′′) such that near (x0, ξ0), Λ is given by

{ξ′ = −∂x′S(x′, ξ′′), x′′ = ∂ξ′′S(x′, ξ′′)}.

Consequently, Λ is generated near (x0, ξ0) by the phase function

Φ(x, θ) = x′′ · θ − S(x′, θ), θ ∈ Rn−m.

Proof. For the reader’s convenience we recall the well known argument. We can write Λ

locally as a graph {ξ′ = −F (x′, ξ′′), x′′ = G(x′, ξ′′)}. The restriction of the symplectic

form dξ ∧ dx to Λ is zero; therefore, the restriction of the 1-form α = x′′ dξ′′ − ξ′ dx′ to Λ

is closed. Therefore, there exists a function S(x′, ξ′′) such that α = dS when restricted to

Λ. However, if we use (x′, ξ′′) as a coordinate system on Λ, then α = Gdξ′′ + F dx′ and

dS = ∂ξ′′S dξ
′′ + ∂x′S dx

′; it follows that F = ∂x′S and G = ∂ξ′′S. �

In one special case Λ can be locally parametrized by x; the corresponding Lagrangian

distributions satisfy the best L∞ estimate possible:

Proposition 4.2. Assume that the tangent space to Λ at each point projects surjectively

onto the x variables. Then, each Lagrangian distribution u(x;h) associated to Λ satisfies

‖u(x;h)‖L∞ = O(1).

Proof. Putting x′ = x and x′′ = ∅ in Proposition 4.1, we get a phase function Φ(x) = −S(x).

The expression (4.1) for this phase function has the form e−iS(x)/ha(x;h) and is trivially

O(1) in L∞. �

If Λ does not satisfy the condition of Proposition 4.2, then the associated Lagrangian

distributions can have L∞ norm as large as h−n/2. However, in some cases we are still able to

find a phase function satisfying some additional conditions that will ensure a better bound.

We will in particular use the following estimate for the case when θ is one-dimensional:

Proposition 4.3. Assume that Φ(x, θ), (x, θ) ∈ U ⊂ Rn × R, is a phase function and

|∂θΦ(x, θ)|+ |∂2
θΦ(x, θ)|+ |∂3

θΦ(x, θ)| > 0 for each (x, θ) ∈ U.

Then each oscillatory integral u(x;h) of the form (4.1) satisfies

‖u‖L∞ = O(h−1/6).
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Proof. This follows from the van der Corput’s Lemma as presented in [30, Proposition

VIII.2]. We can also argue using more precise asymptotics which are relevant when precise

information at the caustic is needed: If the amplitude a(x, θ;h) is supported in a region

where |∂θΦ| + |∂2
θΦ| > 0, then we can apply the stationary phase method to (4.1) to get

‖u‖L∞ = O(1). (Alternatively, the corresponding piece of the Lagrangian ΛΦ will satisfy

the condition of Proposition 4.2.) If at (x0, θ0) we have ∂θΦ(x0, θ0) = ∂2
θΦ(x0, θ0) = 0 and

∂3
θΦ(x0, θ0) 6= 0, then we can apply [18, Theorem 7.7.18] which shows that for a supported

near (x0, θ0), there exist smooth functions a1, a2, b such that a1, b are real-valued and

h−
1
2

∫
eiΦ(x,θ)/ha(x, θ) dθ = h−1/6eib(x)/hAi(h−

2
3a1(x))a2(x) +O(h

1
6 ) .

Since the Airy function Ai is bounded, this expression is O(h−1/6). A partition of unity

argument finishes the proof of the proposition. �

4.3. L∞ estimates for potential wells. Assume that V (x), x ∈ R, is a smooth real-

valued potential such that:

• for each N , there exists a constant CN such that |∂Nx V (x)| ≤ CN(1 + |x|2) for all x;

• there exists a constant εV > 0 such that V (x) ≥ εV |x|2 for all x;

• V (0) = V ′(0) = 0, V ′′(0) = 2c2 for some c > 0, and ±V ′(x) > 0 for ±x > 0.

Consider the semiclassical Schrödinger operator

P (h) = h2D2
x + V (x);

let p(x, ξ) = ξ2 + V (x) be the corresponding principal symbol. Since p(x, ξ) → ∞ as

|x| + |ξ| → ∞, it follows [31, Section 6.3] (see also [27, Proposition III.5]) that P (h) is a

self-adjoint operator on L2(R) with compact resolvent and therefore posesses a complete

orthonormal system of eigenfunctions.

For λ > 0, p does not have critical points on p−1(λ) and thus produces a completely

integrable one-dimensional Hamiltonian system. The following is a corollary of the spectral

theory of self-adjoint operators corresponding to quantum completely integrable systems

(see [15, Section 2.7] or [29, Theorème 5.1.11]):

Proposition 4.4. Let K be a compact subset of (0,∞). Then for h small enough, the

eigenvalues λ of P (h) in K are simple and given by the quantization condition

S(λ) = (2j + 1)πh+O(h2), j ∈ Z, (4.2)

where S(λ) is the action functional:

S(λ) =

∮
p(x,ξ)=λ

ξ dx

and the curve p−1(λ) is oriented clockwise. In particular, S is smooth and S ′(λ) > 0 every-

where. Moreover, each L2 normalized joint eigenfunction corresponding to an eigenvalue
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x

ξ

x+x−

Γ+Γ−

Figure 4.1. The curve p−1(λ) and the regions Γ±

λ ∈ K is a Lagrangian distribution associated to p−1(λ) (that is, it admits a parametriza-

tion by integrals of the form (4.1) with estimates on the symbol and the remainder uniform

in λ).

Remark. The quantization condition (4.2) is valid for the eigenvalues close to zero as

well, if we add the requirement that j ≥ 0. This can be proved by conjugating P (h) by a

semiclassical Fourier integral operator to a function of the harmonic oscillator; it follows

from the analysis in [6] and can be found for example in [29, Theorème 5.2.4].

For λ away from zero, we get the following estimate on eigenfunctions of P (h):

Proposition 4.5. Let K be a compact subset of (0,∞). Then each L2-normalized eigen-

function vλ with eigenvalue λ ∈ K satisfies

‖vλ‖L∞ = O(h−1/6).

Proof. By Proposition 4.4, vλ is a Lagrangian distribution associated to the curve p−1(λ).

Let Γ± be the intersections of p−1(λ) with small neighborhoods of the turning points

(x±(λ), 0); here x−(λ) < x+(λ) are the two roots of the equation V (x) = λ. Away from Γ±,

the curve p−1(λ) projects diffeomorphically onto the x axis; therefore, by Proposition 4.2,

Lagrangian distributions associated to p−1(λ) \ (Γ+ ∪ Γ−) have L∞ norm O(1). It remains

to consider the case of a Lagrangian distribution associated to, say, Γ+. However, Γ+ can

be parametrized by ξ and thus by Proposition 4.1 it has a generating function of the form

Φ(x, ξ) = xξ − T (ξ). We can calculate that ∂3
ξT (ξ) is nonvanishing; it remains to apply

Proposition 4.3. �

Using Proposition 4.5 together with elliptic estimates, we get L∞ bounds on functions

satisfying the analogue of (3.2):
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Proposition 4.6. Assume λ ∈ R lies in a fixed compact set K and u ∈ C∞c (R) satisfies

‖u‖L2 ≤ C0, ‖(P (h)− λ)u‖L2 ≤ C0h, (4.3)

for some constant C0. Then:

(1) If χ ∈ C∞c (T ∗R) is equal to 1 near p−1(λ), then

‖(1− χw(x, hDx))u‖L∞ = Oχ,λ(1).

In particular, if π : T ∗R→ R is the projection map, then

x 6∈ π(p−1(λ)) =⇒ |u(x)| = Ox,λ(1) . (4.4)

The constants in O(·) are locally uniform in x, λ.

(2) If |λ| ≥ δ for some constant δ > 0, then

‖u‖L∞ = Oδ(h−1/6).

(3) If |x| ≥ δ for some constant δ > 0, then

|u(x)| = Oδ(h−1/6).

Remark. We do not assume the localization condition (3.4) and work only under the

hypothesis (4.3). That is because we will apply the proposition to a rescaled version of the

original u which no longer satisfies (3.4).

Proof. 1. The operator P (h) − λ is elliptic with respect to the order function m(x, ξ) =

1 + x2 + ξ2 on supp(1 − χ); therefore, the elliptic parametrix construction (as in [31,

Section 4.5] or [8, Proposition 8.6], with minor adjustments found for example in [12,

Proposition 5.1]) gives a symbol q ∈ S(m−1) such that

qw(x, hDx)(P (h)− λ) = 1− χw(x, hDx) +OL2→L2(h∞).

Therefore, by Sobolev embedding

‖(1− χw(x, hDx))u‖L∞ . ‖(1− χw(x, hDx))u‖H1 . h−1‖(1− χw(x, hDx))u‖H1
h

. h−1‖qw(x, hDx)(P (h)− λ)u‖H1
h

+O(h∞)‖u‖L2

. h−1‖(P (h)− λ)u‖L2 +O(h∞)‖u‖L2 = O(1).

To show (4.4), it suffices to apply the previous inequality with χ vanishing near π−1(x),

but equal to 1 near p−1(λ).

2. If λ ≤ −δ, then p−1(λ) = ∅ and thus part 1 of this proposition applies with χ ≡ 0. We

now assume that λ ≥ δ. Take χ̃ ∈ C∞c (λ/2, 2λ) equal to 1 near λ; then the operator χ̃(P (h)),

defined by means of functional calculus, is pseudodifferential, compactly microlocalized, and

equal to the identity microlocally near p−1(λ) [8, Chapter 8]. By part 1 of this proposition,

we have

u = χ̃(P (h))u+OL∞(1);
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it remains to estimate ‖χ̃(P (h))u‖L∞ . Let v1, v2, . . . ∈ C∞ be the orthonormal basis of

L2(R) consisting of eigenfunctions of P (h) with eigenvalues λ1, λ2, . . . . If

u =
∑
j

cjvj,

then by (4.3), ∑
j

(|λj − λ|+ h)2|cj|2 ≤ 4C2
0h

2;

‖χ̃(P (h))u‖L∞ ≤
∑

λ/2≤λj≤2λ

|cj| · ‖vj‖L∞

≤ 2C0h
(

sup
λ/2≤λj≤2λ

‖vj‖L∞
)
·
( ∑
λ/2≤λj≤2λ

(|λj − λ|+ h)−2

)1/2

.

The sum in the second factor is O(h−1) by the quantization condition (4.2). The supremum

in the first factor is O(h−1/6) by Proposition 4.5.

3. There exists δ1 > 0, depending on δ, such that if |x| ≥ δ and |λ| ≤ δ1, then x 6∈
π(p−1(λ)). The case |λ| ≤ δ1 is then handled by (4.4), while the case |λ| ≥ δ1 is handled

by part 2 of this proposition. �

5. Proof of Theorem 2

5.1. Regular case. We have

g(r)[−h2∆− 1] = h2[D2
r +D2

ϕ]− g(r).

We then separate out the ϕ variable: if u(r, ϕ) = u(r)eiαϕ/h, then

u(r) ∈ C∞c (−ε, ε) , ‖u‖L2 = O(1) , ‖(h2D2
r + α2 − g(r))u‖L2 = O(h) . (5.1)

Now, for ε small enough,

g(r) = V0 − V (r + x0) , |r| < ε

where a potential V (x) satisfies conditions of Section 4.3. Moreover, |x0| > 2ε. If ũ(x) =

u(x− x0), then ‖(P (h)− V0 + α2)ũ‖L2 = O(h), where

P (h) = h2D2
x + V (x).

However, ũ is supported away from zero; therefore, by part 3 of Proposition 4.6, we find

‖u‖L∞ = O(h−1/6)

as required.
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5.2. Case of an equator. As in the regular case, we can separate out the ϕ variable and

obtain (5.1). Now, take a potential V (r) satisfying conditions of Section 4.3 such that

V (r) = g(0)− g(r) for |r| < ε. Then, ‖(P (h)− λ)u‖L2 = O(h), with

P (h) = h2D2
r + V (r) , λ = g(0)− α2.

For λ or r bounded away from zero, we can argue similarly to the regular case. Indeed,

(3.7) follows from parts 2 and 3 of Proposition 4.6. To obtain the estimate (3.8) for r

bounded away from zero, we use (4.4): the condition in (3.8) means that |λ| ≤ εr2 so that

r 6∈ π(p−1(λ)).

If both λ and r are close to zero, we will use the natural rescaling of the quantum

harmonic oscillator: for some constant C1 and C−1
1 h ≤ β ≤ C1, define

(Tβf)(r̃) = β1/4f(β1/2r̃), f ∈ L2(R);

hβ = β−1h, λβ = β−1λ ,

Vβ(r̃) = β−1V (β1/2r̃), Pβ(hβ) = h2
βD

2
r̃ + Vβ(r̃).

We note that if V (r) = r2, then

Pβ(hβ) = h2
βD

2
r̃ + V (r̃) ;

that is, the operator does not change. For a general potential we get closer to the harmonic

oscillator as β → 0. Moreover, the potential Vβ satisfies conditions of Section 4.3 uniformly

in β. Indeed, the only nontrivial part is verifying the first of these conditions for N = 0, 1,

and this follows from the fact that V (r) = O(r2) and V ′(r) = O(|r| + r2). Therefore, the

constants in the estimates of Proposition 4.6 do not depend on β.

The operator Tβ is unitary on L2(R) and

Pβ(hβ)− λβ = β−1Tβ(P (h)− λ)T ∗β ,

Therefore, if uβ = Tβu, then

‖uβ‖L2 = O(1), ‖(Pβ(hβ)− λβ)uβ‖L2 = O(hβ).

For ε > 0 small enough, we have P (h) ≥ ε(h2D2
r + r2); the ground state of the quantum

harmonic oscillator, which by scaling invariance is known to be bound from below by εh

([31, Section 6.1]), giving thus P (h) ≥ εh. Therefore, we can assume that |λ| ≥ εh – indeed,

if |λ| ≤ εh, then we can replace λ by εh and obtain same conditions on u and stronger

conclusions (except for (3.8) in case when r2 < h – however, in this case r−1/2 ≥ h−1/4

and (3.8) follows from (3.7)). Now, consider the following two subcases:

(1) |λ| < εr2. Since |λ| ≥ εh, we have |r| > h1/2. Put β = r2; then u(r) = r−1/2uβ(±1)

(depending on the sign or r) and |λβ| < ε. For ε small enough, r̃ = ±1 does not lie in

the projection of {ξ2 +Vβ(r̃) = λβ}; therefore, (4.4) applies, giving |uβ(±1)| = O(1)

and thus |u(r)| = O(r−1/2); this proves (3.8), which implies (3.7) in the present

case.
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(2) |λ| ≥ εr2, where ε is chosen as in case (1). Put β = |λ|; then λβ = ±1 depending on

the sign of λ and u(r) = |λ|−1/4uβ(r̃), where r̃ = |λ|−1/2r is bounded. Now, part 2

of Proposition 4.6 applies for λβ = 1 and part 1 of the same proposition applies for

λβ = −1 (with χ = 0), giving |uβ(r̃)| = O(h
−1/6
β ) and thus |u(r)| = O(h−1/6|λ|−1/12).

This proves (3.7) as the third term in the minimum expression is controlled by each

of the other two in the present case.

5.3. Case of a pole. Define the operators P (h) = −h2∆ and Q(h) = hDϕ; let p, q be the

corresponding semiclassical principal symbols; for λ ≥ 0, consider the compact set

Λ(λ, α) = {p = λ, q = α} ⊂ T ∗M.

We start by an analogue of part 1 of Proposition 4.3:

Proposition 5.1. Assume that X(h) is a compactly microlocalized pseudodifferential op-

erator on S2 microlocally equal to the identity near Λ(1, α). Then

‖(1−X(h))u‖L∞ = O(1).

Proof. Using the localization assumption (3.4), a microlocal partition of unity, and the

elliptic parametrix construction (see the proof of Proposition 4.6) we can write

(1−X(h))u = A(h)(P (h)− 1)u+B(h)(Q(h)− α)u+OC∞(h∞), (5.2)

where both A(h) and B(h) are pseudodifferential and compactly microlocalized, and thus

act L2 → L∞ with norm O(h−1) [31, Theorem 7.10]. We now use (3.2) and (3.3) in (5.2)

and that proves the proposition. �

If (ξ, η) are the momenta corresponding to the coordinates (x, y) = (r cosϕ, r sinϕ), then

p = g(x2 + y2)−1(ξ2 + η2), q = xη − yξ.

Therefore, if α is bounded away from zero and ε is small, then the projection of Λ(1, α)

onto M does not intersect Uε = {r < ε} and ‖u‖L∞ = O(1) by Proposition 5.1. Therefore,

we may assume that |α| < ε. The symbols p and q have linearly independent differentials

on Λ(1, 0), and they Poisson commute; therefore, Λ(λ, α) is a Lagrangian torus for small

α and λ close to 1. The joint spectrum of P (h), Q(h) near (1, 0) obeys a quantization

condition; in particular, the spectrum of P (h) restricted to the eigenspace {Q(h) = α} is

approximated by a formula similar to (4.2). (See [5] or [29, Theorème 5.1.11].) Similarly

to the proof of part 2 of Proposition 4.6, we reduce the problem to the following

Proposition 5.2. If ε > 0 is small enough, then each L2 normalized joint eigenfunction v

for P (h), Q(h) with eigenvalue (λ, α), where |λ−1|, |α| < ε, satisfies the following estimates

for |r| < ε:

|v(r, ϕ)| = O(min(h−1/2, h−1/6r−1/3, h−1/6|α|−1/3)); (5.3)

|v(r, ϕ)| = O(r−1/2) for |α| < εr. (5.4)
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Proof. As follows from the proof of the quantization condition, v(r, ϕ) is a Lagrangian

distribution associated to Λ(λ, α). Using a microlocal partition of unity and the rotational

symmetry of the problem, we can reduce to the case when v is microlocalized in {ξ >
η/2, |r| < ε}. However, in this region Λ(λ, α) can be parametrized by x, η, since the

matrix of derivatives of p, q in y, ξ is nondegenerate for x = y = 0; by Proposition 4.1,

Λ(λ, α) is generated by a phase function of the form Φ = yη − S(x, η;λ, α), where S is

a smooth function. We recall that this means that on p = λ and q = α, ξ = −∂xS and

y = ∂ηS.

From this we calculate

∂xS(0, η, λ, α) = −
√
g(y2)λ− η2 = −

√
λg(0)− η2 +O(α2) ,

∂ηS(0, η, λ, α) = −α/ξ = − α√
λg(0)− η2

+O(α2);

if we normalize S by the condition S(0, 0, λ, α) = 0, then S(0, η, λ, 0) = 0, and

∂αS(0, η, λ, 0) = ∂αS(0, 0, λ, 0) +

∫ η

0

∂α∂ηS(0, t, λ, 0)dt = −
∫ η

0

dt√
λg(0)− t2

= − arcsin(η/
√
λg(0)) .

Now, put (r, α) = (sr̃, sα̃) with r̃2 + α̃2 = 1 and define h̃ = h/s; we get by (4.1),

v(r, ϕ;λ, α, h) = h−1/2

∫
exp (i(sr̃η sinϕ− S(sr̃ cosϕ, η;λ, sα̃))/h) a dη

= s−1/2h̃−1/2

∫
exp

(
iΦ̃(η, s, r̃, α̃, ϕ, λ)/h̃

)
a dη,

where

Φ̃ = r̃(η sinϕ+
√
λg(0)− η2 cosϕ) + α̃ arcsin(η/

√
λg(0)) +O(s) ,

and

a = a(sr̃ cosϕ, sr̃ sinϕ, η) , a ∈ C∞c (R3) .

For s small enough, Φ̃ satisfies the condition of Proposition 4.3. Indeed, under the change

of variables η =
√
λg(0) sin θ we get Φ̃ = r̃

√
λg(0) cos(θ − ϕ) + α̃θ +O(s). Therefore,

|v| = O(s−1/2h̃−1/6) = O(s−1/3h−1/6).

This proves (5.3) (note that the bound O(h−1/2) follows directly from the integral represen-

tation). To show (5.4), note that for |α| < εr, α̃ is close to zero; then Φ̃ is a Morse function

and we can use stationary phase in place of Proposition 4.3 (see also the beginning of the

proof of that proposition). �

Acknowledgements. NB acknowledges partial support from Agence Nationale de la

Recherche project ANR-07-BLAN-0250. SD and MZ acknowledge partial support by the

National Science Foundation under the grant DMS-0654436. They are also grateful to



24 NICOLAS BURQ, SEMYON DYATLOV, RACHEL WARD, AND MACIEJ ZWORSKI
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[8] M. Dimassi and J. Sjöstrand, Specral asymptotics in the semi-classical limit, Cambridge University
Press, 1999.

[9] D. Donoho, Compressed sensing, IEEE Trans. Inform. Theory 52(2006), 1289–1306.
[10] D. Donoho and P. Starck, Uncertainty principles and signal recovery, SIAM J. Appl. Math 49 3

(1989), 906–931.
[11] D. Donoho and X. Huo, Uncertainty principles and ideal atomic decompositions, IEEE Trans. Inform.

Theory 47(2001), 2845–2862.
[12] S. Dyatlov, Quasi-normal modes and exponential energy decay for the Kerr–de Sitter black hole, Comm.

Math. Phys. 306(2011), 119–163.
[13] S. Foucart, A. Pajor and H. Rauhut, The Gelfand widths of `p-balls for 0 < p ≤ 1 J. Complexity 26

(2010), no. 6, 629–640
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[18] L. Hörmander, The Analysis of Linear Partial Differential Operators. I. Distribution Theory and

Fourier Analysis, Springer Verlag, 1983.
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